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interrompido o meu antigo e motivante trabalho para ingressar na faculdade.

Tenho como referência e motivação o trabalho árduo e incasável dos meus pais, o
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Sumário

A crescente procura por equipamentos portáteis com recursos de áudio é uma reali-

dade. Estes equipamentos precisam de amplificadores de potência de áudio para pro-

duzir som através de pequenos alto-falantes ou auscultadores. Como estes equipa-

mentos dependem de baterias para a sua própria alimentação, o uso de amplifi-

cadores de áudio extremamente eficientes é de relevante importância, tal como re-

duzir o calor gerado pelo amplificador de potência, de modo que dissipadores de

calor volumosos possam ser eliminados, permitindo uma redução de tamanho aos

equipamentos.

Amplificadores lineares, como os de Classe AB, embora exibam uma alta lineari-

dade, possuem baixo rendimento, especialmente para ńıveis reduzidos de potência.

Amplificadores de Classe D podem atingir um alto rendimento, já que os tranśıstores

de sáıda são utilizados como interruptores e, portanto, a dissipação de potência é

idealmente zero. Um dos principais desafios no projecto de amplificadores de Classe

D é a concepção do modulador, que codifica o sinal analógico de entrada em uma

sequência de pulsos usados para produzir o sinal de potência da sáıda. O espectro da

sequência de pulsos contém o sinal de áudio pretendido, bem como, as componentes

indesejáveis (mas inevitáveis) de alta frequência.

Este trabalho apresenta um modulador Sigma-Delta de terceira ordem com 1,5-bit

com realimentação distribúıda e deslocação de zeros para amplificadores de áudio

de Classe D. A fim de melhorar a relação sinal-rúıdo (SNDR), sem aumentar signi-

ficativamente a sobre amostragem (OSR) ou a ordem do modulador (não superior a
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3), o modulador usa deslocação de zeros e 1,5-bit de quantização.

Palavras Chave: Amplificador de Class D, Modulação Sigma-Delta

, Áudio .



Abstract

An increasing demand for portable media devices with audio capabilities is the

reality today. These devices need audio power amplifiers to produce sound trough

speakers or earphones. Since these devices rely on batteries for their energy needs,

the use of extremely efficient audio amplifiers is of paramount importance. It is also

important to reduce the heat generated by the power amplifier itself, so that the

bulky heat sink can be eliminated, thus allowing for small size portable devices.

Linear amplifiers, such as class AB, have high linearity, but have low efficiency espe-

cially for lower power levels. Class D amplifiers can achieve high efficiencies because

the power devices are used as switches and therefore their power dissipation is, ide-

ally, zero. One of the main challenges in the design of class D amplifiers is designing

the modulator circuit that encodes the input analogue signal into a switching se-

quence used to produce the output power signal. The spectrum of the switching

sequence contains the desired audio signal plus undesired (but unavoidable) high-

frequency content.

This work presents a 3rd order 1.5-bit Σ∆ modulator with distributed feedback

and local resonator feedback for Class D audio amplifiers. In order to improve

the signal-to-noise-and-distortion ratio (SNDR), without increasing significantly the

oversampling ratio (OSR) or the order of the modulator (not greater then 3), the

modulator uses transmission zeros and 1.5-bit quantization.

Keywords: Continuous-Time (CT) Sigma-Delta (Σ∆), Class D am-

plifier, Audio.
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Chapter 1

Introduction

1.1 Motivation

Due to the major concerns of global sustainability, there is a growing need for energy

saving. The energy efficiency of audio amplifiers can be an important contribution

to this end. Furthermore, the increasing demand for portable media devices with

audio capabilities is a reality. These devices need audio power amplifiers to produce

sound trough small speakers or earphones. Since these devices rely on batteries for

their energy needs, the use of extremely efficient audio amplifiers is of paramount

importance. It is also important to reduce the heat generated by the power amplifier

itself, so that the bulky heat sink can be eliminated, thus allowing for small size

portable devices.

Linear amplifiers, such as class AB, have high linearity, but have low efficiency espe-

cially for lower power levels. Class D amplifiers can achieve high efficiencies because

the power devices are used as switches and therefore their power dissipation is, ide-

ally, zero [1] [2]. The efficiency advantage of the Class D amplifiers is unquestionable

and, through this trait, this Class of amplifier has earned much interest.

23



24 CHAPTER 1. INTRODUCTION

1.2 Audio Amplifiers

1.2.1 Introduction

The most important characteristics of an amplifier are efficiency, linearity, output

power, and signal gain. Typically, there is a trade-off between these characteristics.

Understanding these trade-offs is an essential step in the designing process of an

audio amplifier.

Power Efficiency

The power efficiency is defined as

η = Pload

Psource
· 100% (1.1)

where Pload is the average power delivered to the load and Psource is the average

power supplied by the source. The average power is given by

Pavg = 1
T

∫ T

0

p(t)dt

and where T is the period of the signal.

Linearity

An amplifier is linear if it preserves the details of the signal waveform, such that,

Vout(t) = G · Vin(t)

where, Vout and Vin are the output and input signals respectively, and G is a constant

representing the gain of the amplifier.



1.2. AUDIO AMPLIFIERS 25

1.2.2 Class A

Class A amplifiers have the best linearity characteristic of all ( for a theoretical point

of view) but also has the lowest efficiency that ideally can not be larger than 50%.

This is due to the fact that the output transistors are always ON (see Figure 1.1). To

achieve high linearity and gain, the amplifier base and drain DC voltage should by

chosen correctly so that the amplifier operates in the linear region, meaning that the

bias current should be equal to the maximum load current. The device, since it is

turn on (conducting), is constantly carrying current, which represents a continuous

loss of power in the amplifier and consequently, a degradation of efficiency.

+VCC

-VCC

Figure 1.1: Class A Amplifier.

1.2.3 Class B

Class B (depicted in Figure 1.2) is characterized by biasing the output transistors

on the edge of the cut-off region resulting in a bias current of zero. This increases

the efficiency of the circuit, ideally, to 78.5%. The transistors only drive current

when they are excited by the input signal.

Essentially, this Class of amplifier implements two devices in the output stage in a

”push-pull” configuration, with each amplifying half of the waveform and operating

in strict time alternation. This configuration provides much greater efficiency than

Class A. The drawback of Class B amplifiers is that the zero-crossing point of the
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wave-form can create distortion because one device must change from the ON region

to the cut-off region while the other device changes form the cut-off region to the

ON region. Any asymmetry in this transition leads to part of the signal to be cut.

+VCC

-VCC

ONVB

ONVB

Figure 1.2: Class B Amplifier.

1.2.4 Class AB

The Class AB is an intermediate class between class A and B where, the output stage

devices are biased with a DC current larger then 0, thus minimizing the crossover

distortion. In this case, there is a current in the output transistors (bias current)

which is smaller, when compared to the bias current of Class A, so that the efficiency

is close to Class B.

+VCC

-VCC

Figure 1.3: Class AB Amplifier.
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Figure 1.3 shows the Class AB amplifier with two bias voltages to avoid crossover

distortion. This Class is frequently used in audio amplifiers.

1.2.5 Class D

Class D amplifiers differ fundamentally from the more familiar classes of A, B, and

AB. In this Class of amplifier the output devices do not operate in the linear mode.

Instead the output transistors are operated as switches. When a transistor is off,

the current through it is zero. When it is on, the voltage across it is very small,

ideally zero. In each case, the power dissipated (P = V × I) as the heat in the

transistor is very low. This increases the efficiency, therefore requiring less power

from the power supply and smaller heat sinks for the amplifier. The main drawback

of this class of amplifier is the distortion and noise introduced into the signal by the

switching operation of the power stage. A broad overview of class D amplifiers will

be studied in Chapter 2.

1.3 Thesis Objectives and Contributions

The main objective of this thesis is to research and design of a Continuous-time

(CT) Sigma-Delta (Σ∆) modulator for Class D audio power amplifiers. This work

gives an important contribution of personal knowledge acquired and to the scientific

community as a result of the published papers.

1.4 Thesis Structure

After a brief introduction, the remainder of the dissertation is organized as follows.

Chapter 2 gives a general overview of the Class D amplifiers. Sigma-Delta modula-

tion and several architecture options for the modulator will be studied in Chapter

3. The Chapter 4 proposes a combination of two architectures studied in Chapter
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3 in order to improve the SNDR value, and also, explains the steps necessary to

design the circuit implementation of the proposed Σ∆ modulator, and shows the

electrical simulations results of the modulator circuits. Finally, Chapter 5 concludes

the thesis and discusses future work.



Chapter 2

Class D Amplifiers

2.1 Introduction

Typically, a Class D amplifier (Figure 2.1) consists of two stages. The first stage is

a signal processing stage that converts the input audio signal into a two-level (1-bit)

signal. This two-level signal represents a Pulse-Width Modulation (PWM) signal or

a Pulse-Density Modulation (PDM) signal. The second stage of the amplifier is a

power output stage, in which the two-level signal drives the output power MOSFETs

(half-bridge or full-bridge).

MODULATOR SPEAKERSWITCHING

OUTPUT

STAGE

LOW-PASS

FILTER

(LC)
( )inv t ( )outd n ( )outv t( )outy n

Figure 2.1: Class D open-loop-amplifier block diagram.

The Class D amplifier dissipates much less power than the traditional Class A/AB.

The output stage devices switches between the positive and negative power supplies

so as to produce a train of voltage pulses. This waveform reduces the power dissi-

pation of the amplifier, because the output transistors have zero current when not

switching, and have low VDS when they are conducting current, thus resulting in a

29
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smaller power dissipation (VDS×IDS) in the amplifier. Due to the binary switching

of the output devices of the amplifier, the output signal of the amplifier contains

high frequency components. These components must be filtered in order to reduce

the electromagnetic energy radiated by the amplifier, typically, a LC filter is used

for this function.

2.1.1 Important Factors in Audio Class D Design

The strongest motivation to use Class D for audio applications is the low power

dissipation, but there are important challenges in the design of this type of amplifiers.

These include:

• Sound quality

• Modulation techniques

• Electromagnetic interference (EMI)

• LC filter design

• Total system cost

• System specifications

2.2 Sound Quality

To achieve a good sound quality in Class D audio amplifiers, some issues must be

taken into account.

The sound quality of an audio amplifier is fundamentally determined by its perfor-

mance in term of distortion (e.g. THD) and noise (e.g. PSRR). One of the problems

with open-loop Class D amplifier is the propensity of the output stage to introduce

non-linearities and noise into the signal [3]. The non-linearity and noise will, as a

result, lead to poor THD and PSRR performance in an open-loop Class D amplifier.



2.3. MODULATION TECHNIQUE 31

The Power-supply noise couples almost directly to the speaker with very small re-

jection. This occurs because the output stage transistors connect the power supplies

to the low-pass filter through a very low resistance. The filter rejects high-frequency

noise, but is designed to allow all audio frequencies, including the low frequencies

from the Power-supply (noise). However, there are good solutions to these problems.

Using singe-loop feedback with high loop gain (as is done in many linear amplifiers)

or double-loop feedback contributes a lot for a better performance [4]. Feedback

from the LC filter input will significantly improve PSRR and attenuate all non-LC-

filter distortion mechanisms. LC filter nonlinearities can be attenuated by including

the speaker in the feedback loop. On the other hand, the use of a loop feedback

complicates the amplifier design.

2.3 Modulation Technique

The first step in designing a switching amplifier is the choice of the modulation

technique.

One of the main challenges in the design of class D amplifiers is designing the mod-

ulator circuit that encodes the input analogue signal into a switching sequence used

to produce the output power signal. The spectrum of the switching sequence con-

tains the desired audio signal plus undesired (but unavoidable) high-frequency con-

tent. The three most common architectures used to implement the modulator are:

pulse-width modulation (PWM) [3] with a triangle-wave (or saw-tooth) oscillator,

self-oscillating modulation [5] and Sigma-Delta Modulation [6] [7] (SDM).

2.3.1 Pulse Width Modulation (PWM)

Pulse-width modulation is the most common modulation technique, as shown in

Figure 2.2. Conceptually, PWM compares the input audio signal to a triangular or

ramping waveform with a fixed carrier frequency. This creates a stream of pulses at
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the carrier frequency within each period of the carrier, the duty-cycle ratio of the

PWM pulse is proportional to the amplitude of the input signal . This sampling

process is called natural sampling. One challenge in this case is to generate a linear

carrier to minimize harmonic distortion, this can be particulary hard for large carrier

frequencies.

This modulation technique is attractive because the concept is simple and it allows

high SNR on audio-band; however, PWM has several problems: The PWM process

inherently adds distortion in many implementations [8], also, harmonics of the PWM

carrier frequency produce electromagnetic interference (EMI).

Comparator Low

High
Input signal

Chopping

(carrier) signal

 

Figure 2.2: Analog PWM generator.

2.3.2 Pulse Density Modulation (PDM)

A PDM signal can be generated using a (Σ∆) modulator. The modulator uses a

low resolution quantizer (typically 1-bit) to produce a digital signal from the input

signal. The filter in the modulator has a high-pass transfer function that removes

the quantization noise from the lower frequencies and transfers it to the higher

frequencies. The high frequency quantization noise can be eliminated by a low pass

filter. Sigma-Delta modulators are very well known and are the chosen architecture

for A/D converter of audio signals and therefore the design of these type of circuits

is very well understood [7]. A broad overview of Σ∆ Modulation will be presented

in Chapter 3.
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2.3.3 Self-Oscillating Modulation

Self-oscillating amplifiers use the feedback loop to create their own clock signal, in-

stead of using an externally provided clock [5]. The properties of the loop determine

the variable switching frequency of the modulator. An outstanding audio quality

is possible thanks to the feedback; nevertheless, the loop is self-oscillating, so it’s

difficult to synchronize with any other switching circuits, or to connect to digital

audio sources without first converting the digital to analog. Figure 2.3 depicts the

principle of an self-oscillating amplifier.

Loop Filter

L

C

Comparator
Digital

Buffer

( )inV t

e

Figure 2.3: Principle scheme of an basic Self-Oscillating amplifier.

The basic building block consists of a comparator, a loop filter and a digital buffer.

The comparator is not clocked, so the loop is fully analog. The loop filter is con-

structed so the loop is unstable. A limit cycle oscillation exists in the loop, resulting

in a square wave output with a determined frequency. When this unstable system

is forced by an external signal (Vin) with a frequency lower than this self-oscillation

frequency, the limit cycle acts as dither and linearizes the system as long as the error

signal (e) at the inputs of the comparator is smaller than the limit cycle amplitude

at the comparator input. The output is a square wave containing the limit cycle

frequency and the forced signal. The transfer function of the linearized system is

dependent on the limit cycle amplitude [9].
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2.4 Output Power Stage

The output stage of the Class D amplifiers are usually implemented using two topolo-

gies: half-bridge or full-bridge configurations. Each topology has advantages and

disadvantages.

DC

Figure 2.4: Half-bridge output stage with LC low-pass filter.

In brief, a half-bridge (depicted in Figure 2.4) is potentially simpler and requires a

simpler low pass filter, however the current drawn from the power supplies is signal

dependent and therefore a signal replica can appear in the power supply voltages

which can cause distortion. In order to reduce this effect it is necessary to filter the

signal from the power supply using large capacitors.

DC

M1

M4M3

M2

Figure 2.5: Full-bridge output stage with LC low-pass filter.

The full-bridge is shown in Figure 2.5). This topology requires two half-bridge

amplifiers and a more complicated output filter. The full-bridge draws a constant
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current from the power supply and therefore does not introduce the signal in the

power supply, which improves the circuit performance and simplifies the design of

the power supply circuit. Another advantage of the full-bridge configuration is the

absence of the offset, which means that zero DC current flows at the output and

consequently improving the global power dissipation. Also, this configuration allows

1.5-bit quantization and the corresponding three-level quantization can be described

as:

1. [−1]→ green path (M2 to M3)

2. [ 0]→ red path (M3 to M4 or M4 to M3)

3. [+1]→ blue path (M1 to M4)

2.5 EMI Considerations

The high-frequency components of the switching signal in a Class D amplifier out-

puts requires serious consideration. If not properly understood and managed, these

components can generate large amounts of electromagnetic interference (EMI) and

disrupt operation of other electrical equipment nearby.

The EMI can have two sources of origin: signals that are radiated into space and

those that are conducted via speaker and power-supply wires. A useful principle is

to minimize the area of loops that carry high-frequency currents, since the strength

of associated EMI is related to loop area and the proximity of loops to other circuits

[10]. The amount of power radiated from these loops is dependent of the loop area

when compared to the wavelength of the signals, therefore it is also important to

reduce the maximum frequency of the signals in the amplifier. This means that it

is very important to use a switching frequency as low as possible, corresponding to

using a low OSR in the Σ∆ modulator.
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2.6 LC Filter

The essential idea of the output filter of a Class D audio amplifier is to prevent the

radiation of the high frequency components of the switching output signal. Since

the energy of the unwanted signals is located at high frequencies this means using

a low-pass filter. The inductance of a loudspeaker coil alone will, in general, be

low enough to allow some of the switching-frequency energy to pass through it

to ground, causing significant losses [11]. A correctly designed output filter limits

supply current, protects the loudspeaker from switching waveforms and reduces EMI.
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C1

C1

L1
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L2
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(d)

Figure 2.6: Filter arrangements for the full-bridge output stage. (a) is the simplest
but allows a common-mode signal on the speaker cabling. (b) and (c) are the most
usual versions. (d) is a four-pole filter.
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The use of an output full-bridge requires a somewhat more complex output filter. If

the simple two-pole filter of Figure 2.6a is used, the switching frequency is kept out

of the loudspeaker, but the wiring to it will carry a large common-mode signal from

the amplifier. A balanced filter is therefore commonly used, in either the Figure

2.6b or Figure 2.6c versions. Figure 2.6d illustrates a four-pole output filter.

2.6.1 Design

The design of the the low-pass filter for the Class D amplifier is based on a single-

ended approach (Figure 2.7).

inV outV

HBL

HBC
HBR

Figure 2.7: LC low-pass filter for single-ended.

The transfer function of the filter can be derived using a voltage divider equation in

which the load impedance is a parallel combination of RHB and CHB.

H(s) =
Vout(s)

Vin(s)
=

RHB

s·RHB ·CHB+1

RHB

s·RHB ·CHB+1
+ s · LHB

=
1

LHB ·CHB

s2 + s · 1
RHB ·CHB

+ 1
LHB ·CHB

(2.1)

A Butterworth approximation low pass filter for providing flat response in the pass

band can be chosen, which is critical for the audio system to improve its dynamic

performance. Equaling Equation 2.1 to the characteristic equation of a second-order

Butterworth filter in a standard form is obtained.

H(s) =
1

LHB ·CHB

s2 + s · 1
RHB ·CHB

+ 1
LHB ·CHB

=
1

s2 + s ·
√

2 + 1
(2.2)
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Analyzing the Equation 2.2 an equation for CHB can be written as:

CHB =
1

2 ·
√

2 · ωc ·RHB

(2.3)

HBL

HBC
HBR

HBR
HBC

HBL

LoadRC

L

L

Figure 2.8: Combination of two half-bridge in to a full-bridge topology.

Due to the combination of two half-bridge in to a full-bridge topology (depicted in

Figure 2.8) some relations can be done: C = CHB

2
and RLoad = RHB · 2.

Replacing in Equation 2.3 the CHB for C · 2 and RHB for RLoad

2
the Equation for the

capacitor is given by:

C =
1

2 ·
√

2 · ωc ·RLoad

(2.4)

The value of the inductance remain the same, after the combination of two half-

bridge in to a full-bridge, and the expression for the LHB is given by:

LHB =
1

CHB

=

√
2 ·RHB

ωc

→ L = LHB (2.5)

Typically, a 4 or 8 Ω resistor is assumed for the calculus of the filter components;

however, it is necessary to have in mind that, in reality, we have different speakers

with different types of frequency response. Due to this, is necessary to compensated

the filter variations with a proper network feedback design.

The output inductor should withstand the whole output current without saturation,

as well as keep the energy for the off cycle. An ideal inductor (in terms of linearity)
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is an air-cone; nerveless, the size and number of turns required for the output stage

of Class D amplifiers makes it impractical, so a core has to be used in order to reduce

turn number and also provided a confined magnetic circuit. Powder cores or ferrite

cores can be used [12]. In Ferrite cores, it is necessary a ”gap” where the energy is

stored.

2.7 Total system cost

In the design of the Class D amplifiers it is necessary to have in mind the estimative

of the total system cost for the success of the product in terms of market share and

viability.

One way (and the most significant) to reduce the total system cost is the use of

the half-bridge topology for power stages in order to take advantage of the minor

complexity and reduced of material costs. Since a half-bridge is normally half of

a common full-bridge output, the quantity of power MOSFET’s and output filter

components is reduced by a factor of 2. However, the use of a half-bridge instead of

a full-bridge topology requires a DC-blocking capacitor at the output, hence highly

susceptible to noise on the power supply rail, and does not allow the use of 1.5-bit

quantization.

Another situation to have in mind is the choice of the tolerance of the resistors

(R) and capacitors (C) . The use of components mismatch with R=1% and C=5%

instead of R=5% and C=20%, increases the cost of those components (R and C)

in about 40%; however, the results will be better in terms of performance. This

analysis was based on prices from the online store RSr 1.

1http://pt.rs-online.com/web/
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2.8 System Specifications

The sensitivity of the human ear is biased toward the lower end of the audible

frequency spectrum, around 3 kHz. Being 50 Hz, the bottom end of the spectrum,

and being 17 kHz, the top end at those limits, the sensitivity of the ear is reduced

by approximately 50 dB from the sensitivity at 3 kHz [13]. Taking advantage of

these features of the ear and considering that most people will not be able to hear

sounds above 16 kHz, the bandwidth of an audio amplifier, in reality, does not need

to be higher than 18 kHz.

A low switching frequency is important because it allows to use power transistors

with lower transition frequency (fT ), thus lowering the cost. The behavior of the

transistor is similar to an ideal switch, when the switching frequency is lower. The

choice of fS have also to have in mind the limits of the frequency switching of the

IC drivers existing in the market2, in order to possibility the implementation of the

output stage with IC drivers and to not increase significantly the oversampling ratio

(OSR).

2ZL1505 - An integrated high-speed MOSFET driver from Intersilr (http://www.intersil.com)



Chapter 3

Sigma-Delta Modulation

3.1 Introduction

Sigma-Delta (Σ∆) modulators are the most suitable A/D converters for low-frequency,

high-resolution applications, in view of their inherent linearity, reduced anti-aliasing

filtering requirements and robust analog implementation. Moreover, by trading

speed for accuracy, Σ∆ modulators allow high performance to be achieved with

low sensitivity to analog component imperfections and without need for component

trimming [14].

One of the advantages of Sigma-Delta Modulation (SDM) is that most of the high-

frequency energy in Sigma-Delta is distributed over a wide range of frequencies (not

concentrated in tones at multiples of a carrier frequency, as in PWM) providing

SDM with a potential EMI advantage over PWM.

Sigma-Delta Modulation can be implemented using Continuous-time (CT) or discrete-

time (DT) integrators. Compared to their discrete-time counterparts, CT-SDM’s

provide the added benefit of inherent anti-alias filtering and sampling error suppres-

sion [15]. Also, the gain-bandwidth product (GBW) and slew rate requirements of

the used amplifiers in CT are much lower compared to their DT. However, their

principal disadvantage is their sensitivity to clock jitter [16]. Several architectures

41
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options for a modulator in order to improve the signal-to-noise-and-distortion ratio

(SNDR) value, without increasing the oversampling ratio (OSR) or the order of the

modulator, can be implemented [17].

3.2 Σ∆ ADC Basic Concepts

This chapter is intended to give an basic introduction and overview of analog-to-

digital conversion (ADC), first in general and thereafter for the Σ∆ modulation, in

this case, the CT-Σ∆ modulator.

3.2.1 Sampling and Quantization

The process of the conversion of analog signals to the digital domain can be sepa-

rated in two operations [18]: the uniform sampling in time and the quantization in

amplitude. Assuming that the signal information of the continuous input signal x(t)

is contained in the signal band (| fsig |≤ fB where fB is the signal bandwidth), the

sampling in time is a completely reversible process. The original signal (continuous

input signal) can be reconstructed without aliasing by simply low-pass filtering the

sampled signal, as long as the Nyquist Theorem is fulfilled (fS ≤ 2 · fB = fN).

In the process of quantization in amplitude, a continuous range of analog values is

encoded into a set of discrete levels and the process of quantization is non-reversible.

The quantization process involved in A/D conversion is an inherently non-linear

operation and introduces errors to the conversion [19]; thus, the primary objective

in A/D converter design is to limit this error.

The Figure 3.1 shows the transfer function of an ADC or quantizer, and as previously

mentioned, is nonlinear. Considering that the input signal is random, that it changes

rapidly and that the number of quantization steps is large, then the quantization

error or noise (en) can be considered white noise. The quantization steps can be

defined as ∆ = FS
2B−1

where FS is the full-scale output range and B the number of
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Digital output

Analog input

ne

Figure 3.1: Quantization error (en) when the quantization interval is defined by the
midpoint.

bits. Thus, the quantization noise power can be expressed as:

e2rms =
1

∆

∫ −∆
2

∆
2

e2 de =
∆2

12
(3.1)

The noise power spectral density (PSD) of the quantization is given by:

Se(f) =
e2rms

fS

=
∆2

12
· 1

fS

(3.2)

Oversampling

If an ideal low pass filter is used the SNR improves 3 dB each time the over-sampling

ratio is doubled (where OSR = fS

2·fB
). A generic equation for the SNR is given by

[6]:

SNR = 6.02 ·B + 1.76 + 10 · log(OSR) (dB) (3.3)

It is important to understand that this is an approximated expression due to the fact

that in reality the quantization noise is correlated to the input signal and therefore

the PSD of the quantization noise is not uniform.
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3.2.2 First order CT-Σ∆ Modulator

The analysis of the sampling and noise theory, mentioned before, can now be used

to show how a Σ∆ modulator shapes quantization noise. The Block Diagram of the

1st order Σ∆ modulator principle is illustrated in Figure 3.2a.

( )outd n( )inv t
dt

( )outy t

ADC

DAC

(a) Σ∆ modulator principle.

1

s

( )outY s( )inV s

( )qN s

quantizer

(b) Linearized mathematical model.

Figure 3.2: Block Diagram of the 1st order Σ∆ modulator

The comparator of the circuit is represented in the sum node at the right of the

integrator and it’s here that sampling occurs and quantization noise is added. Con-

stantly, the output value is subtracted from its input signal and the result of this

operation is fed to the quantizer via an integrator. The feedback forces the average

value of the quantized output to track the average input. Any differences between

them accumulates in the integrator and the feedback loop will correct itself.

The main characteristic of a Σ∆ modulator is the different transfer behavior for the

quantization error signal, the noise transfer function (NTF) and the input signal

the signal transfer function (STF). Analyzing the mathematical model from Figure

3.2b, the modulator output may be expressed by 2 ways:
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1. Letting Nq(s) = 0 for the moment, and solving for Yout(s)
Vin(s)

is possible to obtain

the STF:

Yout(s) = [Vin(s)− Yout(s)] ·
1

s

STF =
Yout(s)

Vin(s)
=

1
s

1 + 1
s

=
1

s+ 1
(3.4)

2. By letting the signal Vin(s) = 0 and solving for the Yout(s)
Nq(s)

the NTF is obtained:

Yout(s) = −Yout(s) ·
1

s
+Nq(s)

NTF =
Yout(s)

Nq(s)
=

1

1 + 1
s

=
s

s+ 1
(3.5)

Analyzing the Equations 3.4 and 3.5 above, they shows that indeed the oversampled

modulator acts as a low-pass filter for the input signal (showed in Figure 3.3a)

and a high-pass filter for noise. In Figure 3.3b is shown the noise shaping of the

oversampled 1st order Σ∆ modulator.
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Figure 3.3: NTF and STF of the 1st order Σ∆ modulator
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3.3 Study of 3rd Order CT-Σ∆ Modulators

The first step in the design of the modulator is choosing the order modulator, the

clock frequency value, and the bandwidth. Σ∆ modulators of orders higher than

2 are possible to design but they cannot simply be made by adding further stages

because the resulting system would, most likely, be unstable. In view of this problem,

the design procedure for finding the optimal 3rd Σ∆ modulator coefficients was based

on the described in [20]. Briefly, this methodology describes an empirical method

based on ordinary filter design that can be used to design high-order modulators.

Taking advantage of the features of the human ear described in Chapter 2 Section

2.8 and considering that most people will not be able to hear sounds above 16 kHz,

the bandwidth of an audio amplifier, in reality, does not need to be higher than 18

kHz. Therefore the modulator will be designed to have a signal bandwidth of 18 kHz

and a peak SNDR value with at least 80 dB (the SNDR is defined for a bandwidth

of 18 kHz).

As previously stated, it very important to use a low sampling frequency value in

order to reduce the EMI of the amplifier and also to avoid non-ideal effects in the

output devices during switching. A ideal 3rd Σ∆ modulator (assuming that it could

be stable) with an OSR value of 32 could theoretically produce an SNDR value of

around 95 dB. Therefore a sampling frequency value of 1.2 MHz is selected, resulting

in a OSR value of about 33.3.

However, due to the inherent instability of the modulator it is necessary to use a

transfer function that limits the noise shaping resulting in a lower SNDR value.

Therefore, several architecture options for the modulator will be studied in order to

improve the SNDR value.
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3.3.1 1-bit with Distributed Feedback

The block diagram of the 3rd order 1-bit Σ∆ modulator with distributed feedback,

implemented using CT integrators, is shown in Figure 3.4. The signal transfer

function (STF) of this structure is given by Equation 3.6 and will be essentially a

3rd order Butterworth low pass filter. The cut-off frequency of this filter function is

selected in order to limit the maximum gain of the NTF and eliminate the instability

of the modulator.

1
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1
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ADC

1-bit

DAC

1-bit

( )outd n( )inv t

1b 2b 3b

( )outy t

Figure 3.4: Block diagram of the 3rd order 1-bit Σ∆ modulator with distributed
feedback.

The noise transfer function (NTF) given by Equation 3.7 was designed to be a 3rd

order Butterworth high-pass filter with a cut-off frequency of 99.6 kHz. The values

of the coefficients b1, b2 and b3 were calculated in order to implement the selected

Butterworth transfer function. The modulator was simulated using SIMULINKr.

Each simulation calculated 219 points of the output signal and a fast Fourier trans-

formation using a Blackman-Harris window was applied in order ro complete the

output spectrum.

STF =
1

s3 + s2 · b3 + s · b2 + b1
(3.6)

NTF =
s3

s3 + s2 · b3 + s · b2 + b1
(3.7)

Figure 3.5 shows the output spectrum of the traditional 3rd order 1-bit Σ∆ modu-
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lator, obtained by simulation, in this case a maximum SNDR value of 64.2 dB was

obtained. The frequency of the sine wave input signal is 1 kHz.
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Figure 3.5: Output spectrum of the 3rd order 1-bit Σ∆ modulator with distributed
feedback (219 points FFT using a Blackman-Harris window).

The low SNDR results from the low cut-off frequency of the filter which in term can

not be increased because the modulator would became instable.

3.3.2 1-bit with Distributed Feedback and Local Resonator

Feedback

One technique to improve the SNDR is to optimally distribute the zeros of NTF

inside the signal bandwidth, unlike the traditional design described above where

NTF zeros are all placed at DC. The architecture shown in Figure 3.6 allows dis-

tributing the zeros of NTF inside the signal bandwidth and can be designed using a

Chebyshev type II high-pass filter, in this case the stopband edge frequency of the

filter is 18 kHz. The coefficients b1, b2 and b3 determine the position of the poles

and α the position of the zeros of the NTF (Equation 3.9). Note that the zeros do
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not appear in the STF (Equation 3.8).
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Figure 3.6: Block diagram of the 3rd order 1-bit Σ∆ modulator with distributed
feedback and local resonator feedback.

STF =
1

s3 + s2 · b3 + s · (α + b2) + b1
(3.8)

NTF =
s · (s2 + α)

s3 + s2 · b3 + s · (α + b2) + b1
(3.9)
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Figure 3.7: Output spectrum of the 3rd order 1-bit Σ∆ modulator with distributed
feedback and local resonator feedback (219 points FFT using a Blackman-Harris
window).
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The Figure 3.7 shows the output spectrum of the 3rd order 1-bit Σ∆ modulator with

distributed feedback and local resonator feedback, obtained by simulation, in this

case a maximum SNDR value of 71.6 dB was obtained. As expected, the shift of

the zeros from DC to the signal bandwidth improved the maximum SNDR value.

3.3.3 1.5-bit with Distributed Feedback

Another option to improve the SNDR is use a 1.5-bit quantizer (corresponding to

three-level quantization) instead of 1-bit quantizer. The increase of the resolution

of the quantizer improves the linearity of the feedback in the modulator. Since this

results in a more stable loop, it is possible to use a larger cut-off frequency in the

modulator and therefore improve the maximum SNDR value. In this case a cut-off

frequency of 133.2 kHz was selected. The use of three levels also reduces unnecessary

switching of the full-bridge output stage so that the switching loss is minimized.
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Figure 3.8: Block diagram of the 3rd order 1.5-bit Σ∆ modulator with distributed
feedback.

Figure 3.9 shows the simulated output spectrum of the 3rd order 1-bit Σ∆ modu-

lator with a 1.5-bit quantizer, in this case a maximum SNDR value of 76.9 dB was

obtained. As expected the increase in the resolution of the quantizer improved the

maximum SNDR value of the modulator.
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Figure 3.9: Output spectrum of the 3rd order 1.5-bit Σ∆ modulator with distributed
feedback (219 points FFT using a Blackman-Harris window).
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Chapter 4

Proposed Architecture

4.1 Introduction

In order to obtain a maximum SNDR value with at least 80 dB, the topologies

described in Chapter 3 Section 3.3 (3rd order 1-bit Σ∆ with distributed feedback and

local resonator feedback and the 3rd order 1.5-bit Σ∆ with distributed feedback) were

combined into the same modulator (Figure 4.1). The loop filter in the modulator was

designed to have a stopband edge frequency of 18 kHz and a stop band attenuation

of 58.5 dB, with a sampling frequency (fS) of 1.2 MHz.

The choice of fS was based in Chapter 2 Section 2.8 were the limits of the frequency

switching of the IC drivers existing in the market and also a low switching frequency

is important for a better performance in terms off efficiency. Furthermore, the

stopband edge frequency of 18 kHz is based in Chapter 2 Section 2.8, were the

features of the ear and considering that most people will not be able to hear above

16 kHz, the bandwidth of an audio amplifier, in reality, does not need to be higher

than 18 kHz.

53
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4.2 Theoretical Analysis
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Figure 4.1: Block diagram of the 3rd order 1.5-bit Σ∆ modulator (mathematical
model) with distributed feedback and local resonator feedback.

Analyzing the Block diagram of the Figure 4.1 same equations can be writen in

order to obtain the signal transfer function (STF) and the noise transfer function

(NTF) of the proposed architecture.

Letting Nq(s) = 0 for the moment the equations for the outputs are:

y1(s) = [vin(s) · k0 − b1 · Vref · yout(s)] ·
k1

s · TS

y2(s) = [y1(s)− y3(s) · α− b2 · Vref · yout(s)] ·
k2

s · TS

y3(s) = [y2 − b3 · Vref · yout(s)] ·
k3

s · TS

yout(s) = y3(s)

Solving the the system of Equations for yout(s)
vin(s)

and for simplification assuming k1 =

k2 = k3 = TS the STF is obtained as:

STF =
yout(s)

vin(s)
=

k0

s3 + s2 · b3 · Vref + s · b2 · Vref + b1 · Vref

(4.1)

By letting the signal Vin(s) = 0 the equations for the outputs are defined as:
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y1(s) = [0− b1 · Vref · yout(s)] ·
k1

s · TS

y2(s) = [y1(s)− y3(s) · α− b2 · Vref · yout(s)] ·
k2

s · TS

y3(s) = [y2 − b3 · Vref · yout(s)] ·
k3

s · TS

yout(s) = Nq(s) + y3(s)

Assuming for simplification k1 = k2 = k3 = TS and solving for the yout(s)
Nq(s)

the NTF

is obtained as:

NTF =
yout(s)

Nq(s)
=

s(s2 + α)

s3 + s2 · b3 · Vref + s · b2 · Vref + b1 · Vref

(4.2)

The NTF of the filter (Equation 4.2) allows distributing the zeros of NTF inside the

signal bandwidth and can be designed using a Chebyshev type II filter. In order

to implement the filter transfer function it was used the tool SIMULINKr for

several simulations . The MATLABr code synthesizing a CT Chebyshev type II

filter is:

[A,B] = CHEBY 2(order, R,Wn,′ high′,′ s′)

where order = 3 defines the NTF order of the filter, with the stopband ripple R =

58.5 dB and stopband edge frequency Wn = 18 · 103 · 2π [rad/s] and the ”’high’,’s’”

designs a CT high-pass filter. The Equation 4.3 gives the transfer function of the

high-pass filter obtained with the previous MATLABr code.

NTF =
s(s2 + 9.574 · 109)

s3 + s2 · 1.334 · 106 + s · 8.999 · 1011 + 3.034 · 1017
(4.3)

Comparing the NTF of Equation 4.2 with the NTF of Equation 4.3 it is possi-

ble to obtain all the coefficients for the simulation of the proposed architecture in
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SIMULINKr. Note that is necessary to adjust the stopband ripple to obtain a

maximum SNDR value and also a stable loop filter.

The Table 4.1 gives the coefficients values of the simulated architecture.

Table 4.1: Coefficients of the proposed architecture.

Coefficients
k0 k1 = k2 = k3 b1 b2 b3 α

0.0621 1 0.1756 0.6249 1.1120 0.0066

Figure 4.2 shows the output spectrum of the modulator, obtained by simulation, in

this case a maximum SNDR value of 80.2 dB was obtained. The combination of

all the previous techniques, studied in Chapter 3 Section 3.3, allowed to obtain a

maximum SNDR value with at least 80 dB using a 3rd order Σ∆ modulator with an

OSR value of approximately 32.
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Figure 4.2: Output spectrum of the 3rd order 1.5-bit Σ∆ modulator with distributed
feedback and local resonator feedback (219 points FFT using a Blackman-Harris
window).
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4.3 Circuit Design

It is necessary to design an electrical circuit that has the same behavior as the

architecture that was developed in the previous section.

Figure 4.3 shows a simple method to convert the mathematical model into the

electrical model. Note that the TS ( 1
FS

) is the period of the sampling frequency (FS

= 1.2 MHz).
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Figure 4.3: Conversion of the mathematical model into the electrical model.

Analyzing the Figure 4.3.b) an equation for yout1(s) can be written as:

yout1(s) =
k0 · k1

s · TS

· vin(s)− b1 · k1

s · TS

· vref (s) (4.4)

The equation for the output (voamp1(s)) of the integrator (depicted in Figure 4.3.c))

is given by:

voamp1(s) = − 1

s ·Rin · C
· vin(s)− 1

s ·Rfb · C
· vref (s) (4.5)

Equaling Equation 4.4 to Equation 4.5 (yout1(s) = voamp1(s)) is possible to obtain
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an expression for Rin and Rfb. Note that the operational amplifier is considered

ideal in this approach.

Rin =
TS

k0 · k1 · C
, Rfb =

TS

b1 · k1 · C
(4.6)

The same idea can be applied to the other integrators blocks of the modulator

resulting in the modulator circuit shown in Figure 4.4. The values of the components

can be obtained using the approach previously described, assuming that all the

capacitors have a 1nF value.
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Figure 4.4: Schematic design of the modulator.

Table 4.2 gives all passive component values for the modulator.

Table 4.2: Selected passive component values.

Components
Id. Value Units

C1 = C2 = C3 1 nF
Rin 13.3 kΩ

R11 = R12 825 Ω
R23 4.75 kΩ
R22 1.33 kΩ
R21 750 Ω

R51 = R52 10 kΩ
R53 124 kΩ
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In order to confirm the correct design of the modulator, the STF (Figure 4.5) and

NTF (Figure 4.6) of the modulator are obtained by performing two AC simulations

of the circuit of Figure 4.4, after replacing the quantizer by a wire.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

-250

-200

-150

-100

-50

0
M

a
g
n
it
u
d
e
 [

d
B

]

Frequency [Hz]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

-300

-200

-100

0

100

200

P
h
a
s
e
 [

d
e
g
re

e
s
]

Frequency [Hz]

Figure 4.5: Bode diagram of the STF of the modulator.
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Figure 4.6: Bode diagram of the NTF of the modulator.
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4.3.1 ADC Design

The 1.5-bit quantizer (three levels) is realized by two comparators and is showed

in Figure 4.7. The output of the comparators is encoded to 1.5-bit representation

using the circuit shown in Figure 4.10. The threshold voltage for comparison is

determined by several simulations of the propose architecture in order to obtain the

max point of the SNDR as function of the threshold voltage. Figure 4.8 shows the

measured SNDR as function of threshold voltage (Vt), from this simulation results

the value of 0.36V was selected for Vt.

Vt

Vt

Comp. 1

signalV

1COut

2COut
Comp. 2

Figure 4.7: Schematic design of 1.5-bit quantizer.

Table 4.3: ADC codification.

VSignal State OutC1 OutC2

VSignal > Vt +1 0 1
−Vt < VSignal < Vt 0 1 1

VSignal < Vt -1 1 0

Since the threshold voltage of the comparators has a random error, a Monte Carlo

analysis, where the Vt voltage of the comparators was randomly changed from the

selected nominal value with a 3σ value of 10 mV, was performed for 500 cases. The

histogram of the SNDR values obtained in this analysis is shown in Figure 4.9, this

histogram shows that the SNDR in the worst case only degrades about 0.8 dB with

the variation of the offset of the comparators.
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Figure 4.8: Measured SNDR as function of threshold voltage (Vt). Data obtained
by running 1000 simulations with a Vt step of 0.4 mV.
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Figure 4.9: Histogram of the behavioral simulated SNDR of the proposed Σ∆ mod-
ulator (3σvt = 10 mV) . Data obtained by running 500 Monte-Carlo simulations of
the proposed architecture.
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1CI

2CI

1LDout

2LDout

Figure 4.10: Encoding logic for 1.5-bit quantizer.

Table 4.4: Logic codification of the 1.5-bit quantizer.

IC1 IC1 State DoutL1 DoutL2

0 0 x 0 0
0 1 +1 0 1
1 0 -1 1 0
1 1 0 0 0

4.3.2 Important Parameters in Operational Amplifiers

In the previous analysis it was assumed that the operational amplifiers were ideal,

when real amplifiers are used the non-ideal effects can change the behavior of the

modulator. In order to understand what is the required performance of the different

parameters of the amplifiers, such as: gain-bandwidth product (GBW), slew rate and

DC gain, the modulator circuit was simulated using a first order electrical model for

the amplifiers. This model includes DC gain, a single pole and the slew rate effect.

In these simulations the amplifier parameters were set to different values in order to

determine the minimum required values for the different parameters.

To investigate the SNDR degradation due to the variation of the parameters of

the operational amplifiers, different electrical simulations with variations in the DC

gain, the GBW, and the slew rate were performed. In these simulations a first order

model for the amplifier with a DC gain = 72 dB, a GBW = 50 MHz, and a slew

rate = 10 V/µs was used. The output of the circuits was analyzed using a 216 points

FFT with a Blackman-Harris window, these results are shown in Figures (4.11, 4.12,

and 4.13).
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Figure 4.11: Influence of the DC gain in the output spectrum of the modulator
(results obtained with electrical simulations with first order model amplifier with a
GBW = 50 MHz, and a slew rate = 10 V/µs).

Observing Figure 4.11 it is clear that a reduction of the DC gain of the first amplifier

causes a reduction of noise shaping at low frequencies. The reduction of the gain in

the second and third operational amplifier decreases notch attenuation due to zeros

in the NTF.

As it can be observed in Figure 4.12, the decrease of the GBW of the amplifiers

decreases the frequency of the zeroes, resulting in added noise in the upper part of

the signal band, therefore degrading the SNDR.

From Figure 4.13 it is possible to conclude that a low slew rate in the amplifier

results in added distortion and a degradation of the notch produced by the zeroes.

These simulations show that if the amplifiers have a DC gain of 72 dB, a GBW of 50

MHz and a slew rate of 10 µV they do not affect the performance of the modulator

significantly.
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Figure 4.12: Influence of the GBW in the output spectrum of the modulator (results
obtained with electrical simulations with first order model amplifier with a DC gain
= 72 dB, and a slew rate = 10 V/µs).
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Figure 4.13: Influence of the slew rate in the output spectrum of the modulator
(results obtained with electrical simulations with first order model amplifier with a
DC gain = 72 dB, and a GBW = 50 MHz).
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4.4 Monte Carlo Analysis of the Circuit

In order to verify the stability of the design, a 500 cases Monte Carlo analysis where

the value of the components were randomly selected around the nominal values with

a gaussian distribution with 3σ = 5% and 3σ = 20% for the capacitors and with

3σ = 1% and 3σ = 5% for the resistors.

Figure 4.14 shows the histograms of the SNDR values obtained in this analysis,

and shows that the SNDR in worst case degrades about 1.4 dB (Figure 4.14a) due

to components mismatch of 3σ∆R
R

= 1% and 3σ∆C
C

= 5% and in the order case

degrades about 3 dB (Figure 4.14b) due to components mismatch of 3σ∆R
R

= 5%

and 3σ∆C
C

= 20%.
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Figure 4.14: Histogram of the behavioral simulated SNDR of the proposed Σ∆
modulator with component values mismatch. Data obtained by running 500 Monte-
Carlo simulations of the proposed architecture.

The output swing of the three integrators in the modulator was verified using behav-

ioral simulations. The histogram of each output voltage is depicted in Figure 4.15,

these histograms show that the output voltages are smaller than ± 1.5V, therefore

the operational amplifiers should not approach saturation during the operation of

the circuit.
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Figure 4.15: Histogram of the behavioral simulated output voltage of the (a) first
integrator, (b) second integrator, and (c) third integrator for the proposed Σ∆
modulator.

4.5 Simulation Results
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Figure 4.16: Class D audio amplifier implementation.

Figure 4.16 shows the circuit implementation of the proposed architecture. This
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circuit was simulated using an electrical simulator and the output spectrum was

calculated, this is shown in Figure 4.17 and in this case a maximum SNDR value of

80.1 dB was obtained. The electrical simulations used a first order model amplifier

with a DC gain = 72 dB, a GBW = 50 MHz, and a slew rate = 10 V/µs.
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Figure 4.17: Output spectrum of the proposed architecture obtained with electrical
simulations with first order model amplifier with a DC gain = 72 dB, a GBW = 50
MHz, and a slew rate = 10 V/µs (216 points FFT using a Blackman-Harris window).

The simulations shows good results, either in tool MATLABr/SIMULINKr

(80.2 dB) or in the electrical simulator (80.1 dB) and are virtually identical. How-

ever, it is necessary to have in account that the simulations in the tool SIMULINKr

were performed with noise and in the electrical simulator did not introduce any noise

in the circuit.

In order to obtain the evolution of the SNDR of the modulator as a function of

the input signal amplitude, several simulations were performed for input signal with

different amplitude values and the SNDR value was calculated for each case. The

measured SNDR as function of input level is shown in Figure 4.18 and this curve

shows that the Σ∆ modulator has a dynamic range (DR) of about 77.5 dB and a
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peak SNDR value of about 81.9 dB.
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Figure 4.18: Measured SNDR as function of Input Level.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

A key motivation to use Class D amplifiers in many applications is the high effi-

ciency. One of the main challenges in the design of class D amplifiers is designing

the modulator circuit that encodes the input analogue signal into a switching se-

quence used to produce the output power signal. The new advancements in Class D

modulation techniques have permitted Class D amplifiers to prosper in applications

where linear amplifiers have dominated.

In the design of the modulator, and depending of the application, the choice of the

order, the bandwidth, the clock frequency, and the components mismatch, are very

important to limit the system cost and also for the performance of the amplifier.

The 3rd order 1.5-bit Σ∆ modulator with distributed feedback and local resonator

feedback for Class D audio amplifiers, proposed in this work, allows to improve

the signal-to-noise-and-distortion ratio (SNDR), without increasing significantly the

oversampling ratio (OSR) or the order of the modulator (not greater then 3), to

achieve this, the modulator uses transmission zeros and 1.5-bit quantization. The

electrical simulation results indicate that this proposed architecture can achieve a

least 80 dB of a maximum SNDR value with a dynamic range (DR) of about 77.5

69
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dB.

Table 5.1: Comparison of similar architectures.

Ref. Architecture BW[kHz] SNR[dB] DR[dB] fS[MHz]
[21] 3rd CT-Σ∆ 4-bit 24 92.5 93.5 3
[22] 3rd CT-Σ∆ 12-bit 25 66 81 2.4
[23] 3rd CT-Σ∆ 12-bit 25 73 80 2.4
[24] 3rd CT/DT-Σ∆ 4-bit 20 99 106 5.1
[25] 3rd CT-Σ∆ 4-bit 20 77 95 12

This work 3rd CT-Σ∆ 1.5-bit 18 80.11 77.5 1.2

Analyzing the Table 5.1, this work has the lower sampling frequency, as desired,

with a considerable SNDR.

5.2 Future Work

The implementation of the proposed architecture in PCB is the obvious future work.

This implementation is important to confirm the good results obtained in the tool

MATLABr/SIMULINKr as well in the electrical simulator. As future work, is

also important, the study of new feedback topologies from the output stage and the

speaker in order to improve the power supply rejection ratio (PSRR) and the total

harmonic distortion (THD).

1SNDR - electrical simulator



Appendix A

SIMULINK Circuit
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Figure A.1: Simulink circuit of the proposed architecture.
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Appendix C

Cadence Virtuoso Spectre Circuits

Figure C.1: Proposed architecture.

Figure C.2: Filter of the proposed architecture.
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Figure C.3: Operational amplifier.
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Abstract—This paper presents a 3rd order 1.5-bit Σ∆ modula-
tor with distributed feedback and local resonator feedback for a
Class D audio amplifier. In order to improve the signal-to-noise-
and-distortion ratio (SNDR), without increasing the oversampling
ratio (OSR) or the order of the modulator, the modulator
uses transmission zeros and 1.5-bit quantization. High level
simulations of the modulator show that it has a maximum SNDR
value of 82.4 dB and a dynamic range (DR) of 76 dB, for a signal
bandwidth of 18 kHz and a sampling frequency of 1.2 MHz. The
use of a full-bridge output stage allows 1.5-bit quantization.

Index Terms—Continuous-Time (CT) Sigma-Delta (Σ∆), Class
D amplifier, Audio.

I. INTRODUCTION

Due to the major concerns of global sustainability, there is
a growing need for energy saving. The energy efficiency of
audio amplifiers can be an important contribution to this end.

The traditional Class AB continuous-time power amplifiers
have a maximum theoretical efficiency of 78.5% [1] while
Class D amplifiers can approach 100% in theory. The ef-
ficiency advantage of the Class D amplifiers is irrefutable
and, through this trait, switching-amplifier topologies have
earned much of their market share. The basic idea of a
Class D amplifier is that the devices of the output stage
work as switches, therefore, under ideal conditions, the power
dissipation of the output devices is zero (because when the
device is ON its current is large but its voltage is zero). In order
for a Class D amplifier to work it is necessary to transform
the input analog signal into a digital signal that controls the
switching of the output devices.

Sigma-Delta (Σ∆) modulators are the most suitable A/D
converters for low-frequency, high-resolution applications, in
view of their inherent linearity, reduced anti-aliasing filtering
requirements and robust analog implementation. Moreover,
by trading speed for accuracy, Σ∆ modulators allow high
performance to be achieved with low sensitivity to analog
component imperfections and without requiring component
trimming [2].

This paper describes a 3rd order 1.5-bit continuous-time
(CT) Σ∆ modulator with distributed feedback and local res-
onator feedback intended for use in a Class D full-bridge audio
power amplifier, in order to obtain a large SNDR value while

using a moderately low switching frequency. The use of local
resonator feedback in the modulator, allows to implement a
Chebyshev type II filter, which results in a large SNDR value
even for a low oversampling ratio (OSR) value. The use of 1.5-
bit in the quantizer can eliminate some the inherent drawbacks
of a binary switching scheme. With this technique, the output
stage provides current to load only when needed, and the
switching activity of output stage is greatly reduced, especially
when input signal has a small amplitude value. These features
increase the power efficiency of the amplifier [3].
The paper is organized as follows. Section II gives a

general overview of the Class D amplifier. In Section III
several architecture options for the modulator will be studied.
The Section IV proposes a combination of two architectures
studied in Section III in order to improve the SNDR value,
without increasing the OSR or the order of the modulator (not
greater then 3). Finally, Section V concludes the paper.

II. CLASS D AMPLIFIERS

Typically, a Class D amplifier (Figure 1) consists of two
stages. The first stage is a signal processing stage that converts
the input audio signal into a two-level (1-bit) signal. This
two-level signal represents a Pulse-Width Modulation (PWM)
signal or a Pulse-Density Modulation (PDM) signal. The
second stage of the amplifier is a power output stage, in which
the two-level signal drives the output power MOSFETs (half-
bridge or full-bridge).

MODULATOR SPEAKERSWITCHING
OUTPUT
STAGE

LOW-PASS
FILTER
(LC)( )inv t ( )outd n ( )outv t( )outy n

Fig. 1. Class D open-loop-amplifier block diagram.

The Class D amplifier dissipates much less power than the
traditional Class A/AB. The output stage devices switches
between the positive and negative power supplies so as to
produce a train of voltage pulses. This waveform reduces
the power dissipation of the amplifier, because the output
transistors have zero current when not switching, and have
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low VDS when they are conducting current, thus resulting in
a smaller power dissipation (VDS×IDS) in the amplifier. Due
to the binary switching of the output devices of the amplifier,
therefore the output signal of the amplifier contains high
frequency components. These components must be filtered in
order to reduce the electromagnetic energy radiated by the
amplifier, typically, a LC filter is used for this function.

A. Important Factors in Audio Class D Design

The strongest motivation to use Class D for audio applica-
tions is the low power dissipation, but there are important
challenges in the design of this type of amplifiers. These
include:

• Sound quality
• Modulation techniques
• EMI
• LC filter design
• System cost

B. Modulation Technique

Perhaps the first step in designing a switching amplifier is
the choice of the modulation technique.

There are a variety of modulator topologies used in Class
D amplifiers, the most basic topology utilizes pulse-width
modulation (PWM) with a triangle-wave (or sawtooth) os-
cillator. However, there are other techniques with a little
more complexity such as Pulse Density Modulation (PDM)
and Hysteresis switching. In this paper only the fundamental
concepts of these techniques will be discussed.
1) Pulse Width Modulation (PWM): PWM is the most

common modulation technique. Conceptually, PWM compares
the input audio signal to a triangular or ramping waveform
with a fixed carrier frequency. This creates a stream of pulses
at the carrier frequency. Within each period of the carrier, the
duty ratio of the PWM pulse is proportional to the amplitude
of the audio signal.
2) Pulse Density Modulation (PDM): A PDM signal can be

generated using a (Σ∆) modulator. The modulator uses a low
resolution quantizer (typically 1-bit) to produce a digital signal
from the input signal. The filter in the modulator has a high-
pass transfer function that removes the quantization noise from
the lower frequencies and transfers it to the higher frequencies.
The high frequency quantization noise can eliminated by a
low pass filter. Sigma-Delta modulators are very well known
and are the architecture of choice for A/D converter for audio
signals and therefore the design of these type of circuits is
very well understood [7].
3) Hysteresis switching: Self-oscillating amplifiers have

been developed recently. This type of amplifier always in-
cludes a feedback loop, with properties of the loop determining
the switching frequency of the modulator, instead of an
externally provided clock.

The obvious shortcoming of this circuit is the variability of
the switching frequency in function of the power supply volt-
age. A minor modification is to use the switching waveform
itself as the hysteresis feedback. Amplifiers constructed along

these lines typically produce fairly respectable performance,
accounting for the popularity of this arrangement. This still
leaves two rather serious drawbacks. The most important
problem is the lack of control over the output filter. The other
is that the minimum pulse width produced is only half that of
the idle pulse width [4].

C. Output Power Stage

The output stage of the Class D amplifiers are usually
implemented using two topologies: half-bridge or full-bridge
(depicted in Figure 2) configurations. Each topology has
advantages and disadvantages. In brief, a half-bridge is poten-
tially simpler and requires a simpler low pass filter, however
the current drawn from the power supplies is signal dependent
and therefore a signal replica can appear in the power supply
voltages which can cause distortion. In order to reduce this
effect it is necessary to filter the signal from the power supply
using large decoupling capacitors. The full-bridge topology
requires two half-bridge amplifiers and a more complicated
output filter. The full-bridge draws a constant current from
the power supply and therefore does not introduce the signal
in the power supply, which improves the circuit performance
and simplifies the design of the power supply circuit [5].

DC

Fig. 2. Differential switching output stage with LC low-pass filter.

D. EMI Considerations

The high-frequency components of the switching signal in
a Class D amplifier outputs requires serious consideration. If
not properly understood and managed, these components can
generate large amounts of electromagnetic interference (EMI)
and disrupt operation of other equipment.
The EMI can have two sources of origin: signals that are

radiated into space and those that are conducted via speaker
and power-supply wires. A useful principle is to minimize
the area of loops that carry high-frequency currents, since the
strength of associated EMI is related to loop area and the
proximity of loops to other circuits [6]. The amount of power
radiated from these loops is dependent of the loop area when
compared to the wavelength of the signals, therefore it is also
important to reduce the maximum frequency of the signals
in the amplifier. This means that it is very important to use
a switching frequency as low as possible, corresponding to
using a low OSR in the Σ∆ modulator.



III. 3RD ORDER CONTINUOUS-TIME (CT) Σ∆
MODULATOR

The first step in the design of the modulator is choosing
the order modulator and the clock frequency value.(Σ∆)
modulators of orders higher than 2 are possible to design but
they cannot simply be made by adding further stages because
the resulting system would, most likely, be unstable. In view of
this problem, the design procedure for finding the optimal 3rd

Σ∆ modulator coefficients was based on the described in [7].
Briefly, this methodology describes an empirical method based
on ordinary filter design that can be used to design high-order
loops.

The sensitivity of the human ear is biased toward the lower
end of the audible frequency spectrum, around 3 kHz. Being
50 Hz, the bottom end of the spectrum, and being 17 kHz, the
top end, the sensitivity of the ear is down by approximately
50 dB on that at 3 kHz [8]. Taking advantage of these features
of the ear and considering that most people will not be able
to hear above 16 kHz, the bandwidth of an audio amplifier, in
reality, does not need to be higher than 18 kHz. Therefore the
modulator will be designed to have a signal bandwidth of 18
kHz and a peak SNDR value larger than 80 dB (the SNDR is
defined for a bandwidth of 18 kHz).

As previously stated, it very important to use a low sampling
frequency value in order to reduce the EMI of the amplifier and
also to avoid non-ideal effects in the output devices during the
switching. A ideal 3rd Σ∆ modulator (assuming that will be
stable) with an OSR value of 32 could theoretically produce an
SNDR value of around 95 dB. Therefore a sampling frequency
value of 1.2 MHz is selected, resulting in a OSR about 33.3.

However, due to the inherent instability of the modulator
it is necessary to use a transfer function that limits the noise
shaping resulting in a lower SNDR value. Therefore, several
architecture options for the modulator in order to improve the
SNDR value, will be studied.

A. 1-bit with Distributed Feedback
The block diagram of the 3rd order 1-bit Σ∆ modulator

with distributed feedback, implemented using CT integrators,
is shown in Figure 3. The signal transfer function (STF) of
this structure is given by Equation 1 and will be essentially a
3rd order Butterworth low pass filter. The cut-off frequency of
this filter function is selected in order to limit the maximum
gain of the NTF and eliminate the instability of the modulator.

1
s

1
s

1
s

ADC
1-bit

DAC
1-bit

( )outd n( )inv t

1b 2b 3b
( )outy t

Fig. 3. Block diagram of the 3rd order 1-bit Σ∆ modulator with distributed
feedback.

The noise transfer function (NTF) given by Equation 2
was designed to be a 3rd order Butterworth high-pass filter

with a cut-off frequency of 99.6 kHz. The values of the
coefficients b1, b2 and b3 were calculated in order to implement
the selected Butterworth transfer function. The modulator
was simulated using SIMULINK�. Each simulation was
calculated using 219 points and a fast Fourier transformation
using a Blackman-Harris window was applied.

STF =
1

s3 + s2 · b3 + s · b2 + b1
(1)

NTF =
s3

s3 + s2 · b3 + s · b2 + b1
(2)

Figure 4 shows the output spectrum of the traditional 3rd

order 1-bit Σ∆ modulator, obtained by simulation, in this
case a maximum SNDR value of 64.2 dB was obtained. The
frequency of the sine wave input signal is 1 kHz.
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Fig. 4. Output spectrum of the 3rd order 1-bit Σ∆ modulator with distributed
feedback (219 points FFT using a Blackman-Harris window).

B. 1-bit with Distributed Feedback and Local Resonator Feed-
back

One technique to improve the SNDR is to optimally dis-
tribute the zeros of NTF inside the signal bandwidth, unlike
the traditional design described above where NTF zeros are
all placed at DC. The architecture shown in Figure 5 allows
distributing the zeros of NTF inside the signal bandwidth and
can be designed using a Chebyshev type II filter, in this case
the stopband edge frequency of the filter is 18 kHz. The
coefficients b1, b2 and b3 fix the position of the poles and
α the position of the zeros of the NTF (Equation 4). Note that
the zeros do not appear in the STF (Equation 3).

STF =
1

s3 + s2 · b3 + s · (α+ b2) + b1
(3)

NTF =
s · (s2 + α)

s3 + s2 · b3 + s · (α+ b2) + b1
(4)
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Fig. 5. Block diagram of the 3rd order 1-bit Σ∆ modulator with distributed
feedback and local resonator feedback.
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Fig. 6. Output spectrum of the 3rd order 1-bit Σ∆ modulator with distributed
feedback and local resonator feedback (219 points FFT using a Blackman-
Harris window).

The Figure 6 shows the output spectrum of the 3rd or-
der 1-bit Σ∆ modulator with distributed feedback and local
resonator feedback, obtained by simulation, in this case a
maximum SNDR value of 71.6 dB was obtained. As expected,
the shift of the zeros from DC to the signal bandwidth
improved the maximum SNDR value.

C. 1.5-bit with Distributed Feedback

Another option to improve the SNDR is use a 1.5-bit
quantizer (corresponding to three-level quantization) instead of
1-bit quantizer. The increase of the resolution of the quantizer
improves the linearity of the feedback in the modulator. Since
this results in a more stable loop, it is possible to use a larger
cut-off frequency in the modulator and therefore improve the
maximum SNDR value. In this case a cut-off frequency of
133.2 kHz was used. The use of three levels also reduces
unnecessary switching of the full-bridge output stage so that
the switching loss is minimized.

Figure 8 shows the simulated output spectrum of the 3rd

order 1-bit Σ∆ modulator with a 1.5-bit quantizer, in this
case a maximum SNDR value of 77.3 dB was obtained.
As expected the increase in the resolution of the quantizer
improved the maximum SNDR value of the modulator.
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Fig. 7. Block diagram of the 3rd order 1.5-bit Σ∆ modulator with distributed
feedback.
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Fig. 8. Output spectrum of the 3rd order 1.5-bit Σ∆ modulator with
distributed feedback (219 points FFT using a Blackman-Harris window).

IV. PROPOSED Σ∆ MODULATOR

In order to obtain a maximum SNDR value larger than 80
dB, the topologies described above (3rd order 1-bit Σ∆ with
distributed feedback and local resonator feedback and the 3rd

order 1.5-bit Σ∆ with distributed feedback) were combined
into one modulator (Figure 9). The loop filter in the modulator
was designed to have a stopband edge frequency of 18 kHz.
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Fig. 9. Block diagram of the 3rd order 1.5-bit Σ∆ modulator with distributed
feedback and local resonator feedback.

Figure 10 shows the output spectrum of the modulator,
obtained by simulation, in this case a maximum SNDR value
of 82.4 dB was obtained. The combination of all the previous
techniques allowed to obtain a maximum SNDR value larger
than 82.4 dB using a 3rd order Σ∆ modulator with an OSR
value of approximately 32.
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Fig. 10. Output spectrum of the 3rd order 1.5-bit Σ∆ modulator with
distributed feedback and local resonator feedback (219 points FFT using a
Blackman-Harris window).

In order to obtain the evolution of the SNDR of the
modulator as a function of the input signal amplitude, several
simulations were performed for input signal with different
amplitude values and the SNDR value was calculated for each
case. The measured SNDR as function of input level is shown
in Figure 11 and this curve shows that the Σ∆ modulator has
a dynamic range (DR) of about 76 dB.
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Fig. 11. Measured SNDR as function of Input Level.

V. CONCLUSION

This paper presents a 3rd order 1.5-bit Σ∆ modulator with
distributed feedback and local resonator feedback for a Class
D audio amplifier. In order to improve the SNDR, without
increasing the OSR or the order of the modulator (not greater
then 3), the modulator uses transmission zeros and 1.5-bit
quantization. High level simulations of the modulator show
that it has a maximum SNDR value of 82.4 dB and a dynamic

range of 76 dB, for a signal bandwidth of 18 kHz and a
sampling frequency of 1.2 MHz. The increase of the resolution
of the quantizer (1.5-bit quantizer instead of 1-bit quantizer)
improves the linearity of the feedback in the modulator. Since
this results in a more stable loop, it is possible to increase the
stopband ripple in the modulator and therefore improve the
maximum SNDR value.
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