31 research outputs found

    Millimeter-Wave CMOS Digitally Controlled Oscillators for Automotive Radars

    Get PDF
    All-Digital-Phase-Locked-Loops (ADPLLs) are ideal for integrated circuit implementations and effectively generate frequency chirps for Frequency-Modulated-Continuous-Wave (FMCW) radar. This dissertation discusses the design requirements for integrated ADPLL, which is used as chirp synthesizer for FMCW automotive radar and focuses on an analysis of the ADPLL performance based on the Digitally-Controlled-Oscillator (DCO) design parameters and the ADPLL configuration. The fundamental principles of the FMCW radar are reviewed and the importance of linear DCO for reliable operation of the synthesizer is discussed. A novel DCO, which achieves linear frequency tuning steps is designed by arranging the available minimum Metal-Oxide-Metal (MoM) capacitor in unique confconfigurations. The DCO prototype fabricated in 65 nm CMOS fullls the requirements of the 77 GHz automotive radar. The resultant linear DCO characterization can effectively drive a chirp generation system in complete FMCW automotive radar synthesizer

    ON FUNDAMENTAL OPERATING PRINCIPLES AND RANGE-DOPPLER ESTIMATION IN MONOLITHIC FREQUENCY-MODULATED CONTINUOUS-WAVE RADAR SENSORS

    Get PDF
    The diverse application areas of emerging monolithic noncontactradar sensors that are able to measure object’s distance and velocity is expected to grow in the near future to scales that are now nearly inconceivable. A classical concept of frequency-modulated continuous-wave (FMCW) radar, tailored to operate in the millimeter-wave (mm-wave) band, is well-suited to be implemented in the baseline CMOS or BiCMOS process technologies. High volume production could radically cut the cost and decrease the form factorof such sensing devices thus enabling their omnipresence in virtually every field. This introductory paper explains the key concepts of mm-wave sensing starting from a chirp as an essential signal in linear FMCW radars. It further sketches the fundamental operating principles and block structure of contemporary fully integrated homodyne FMCW radars. Crucial radar parameters like the maximum unambiguously measurable distance and speed, as well as rangeand velocity resolutions are specified and derived. The importance of both beat tones in the intermediate frequency (IF) signal and the phase in resolving small spatial perturbations and obtaining the 2-D range-Doppler plot is pointed out. Radar system-level trade-offs and chirp/frame design strategies are explained. Finally, the nonideal and second-order effects are commented and the examples of practical FMCW transmitter and receiver implementations are summarized

    RF MEMS technology for millimeter-wave radar sensors

    Full text link
    The dissertation discusses RF MEMS technology for millimeter-wave radar sensors. RF MEMS, which stands for radio frequency micro-electromechanical system, and radar sensor fundamentals are briefly introduced. Of particular interest are: Firstly, a self-aligned fabrication process for capacitive fixed-fixed beam RF MEMS components is disclosed. It enables scaling of the critical dimensions and reduces the number of processing steps by 40% as compared with a conventional RF MEMS fabrication process. Scaling of the critical dimensions of RF MEMS components offers the potential of submicrosecond T/R switching times. RF MEMS varactors with beam lengths of 30 μm are demonstrated using the self-aligned fabrication process, and the performance of a 4 by 4 RF MEMS varactor bank is discussed as well. At 20 GHz, the measured capacitance values range between 180.5 fF and 199.2 fF. The measured capacitance ratio is 1.15, when a driving voltage of 35 V is applied, and the measured loaded Q factor ranges between 14.5 and 10.8. The measured cold-switched power handling is 200 mW. The simulated switching time is 354.6 ns. Secondly, an analog RF MEMS slotline TTD phase shifter is disclosed, for use in conjunction with ultra wideband (UWB) tapered slot antennas, such as the Vivaldi aerial and the double exponentially tapered slot antenna. It is designed for transistor to transistor logic (TTL) bias voltage levels and exhibits a measured phase shift of 28.2°/dB (7.8 ps/dB) and 59.2°/cm at 10 GHz, maintaining a 75 Ω; differential impedance match (S11dd ≤ -15.8 dB). The input third-order intercept point (IIP3) is 5 dBm at 10 GHz for a Δf of 50 kHz, measured in a 100 Ω differential transmission line system.Ph.D.Electrical EngineeringUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/61348/1/vcaeken.pd

    Frequency synthesizer for integrated FMCW radar sensors in the millimeter-wave band

    Get PDF
    Primene prenosivih beskontaktnih radarskih senzora kratkog dometa, koji daju informacije o prisustvu, položaju i relativnoj brzini, prakticno su neprebrojive. Ovi radarski sistemi ne samo da imaju potencijal da poboljšaju kvalitet usluga u mnogim oblastima, vec se ocekuje da budu pokretac mnogih inovativnih rešenja ubuduce...Applications of portable short-range noncontact radar sensors, which provide information on presence, position, and relative speed, are virtually countless. These radar systems not only have the potential to improve the service quality in numerous existing fields, but are also expected to be the driving force for many novel applications in the near future..

    Four-element phased-array beamformers and a self-interference canceling full-duplex transciver in 130-nm SiGe for 5G applications at 26 GHz

    Get PDF
    This thesis is on the design of radio-frequency (RF) integrated front-end circuits for next generation 5G communication systems. The demand for higher data rates and lower latency in 5G networks can only be met using several new technologies including, but not limited to, mm-waves, massive-MIMO, and full-duplex. Use of mm-waves provides more bandwidth that is necessary for high data rates at the cost of increased attenuation in air. Massive-MIMO arrays are required to compensate for this increased path loss by providing beam steering and array gain. Furthermore, full duplex operation is desirable for improved spectrum efficiency and reduced latency. The difficulty of full duplex operation is the self-interference (SI) between transmit (TX) and receive (RX) paths. Conventional methods to suppress this interference utilize either bulky circulators, isolators, couplers or two separate antennas. These methods are not suitable for fully-integrated full-duplex massive-MIMO arrays. This thesis presents circuit and system level solutions to the issues summarized above, in the form of SiGe integrated circuits for 5G applications at 26 GHz. First, a full-duplex RF front-end architecture is proposed that is scalable to massive-MIMO arrays. It is based on blind, RF self-interference cancellation that is applicable to single/shared antenna front-ends. A high resolution RF vector modulator is developed, which is the key building block that empowers the full-duplex frontend architecture by achieving better than state-of-the-art 10-b monotonic phase control. This vector modulator is combined with linear-in-dB variable gain amplifiers and attenuators to realize a precision self-interference cancellation circuitry. Further, adaptive control of this SI canceler is made possible by including an on-chip low-power IQ downconverter. It correlates copies of transmitted and received signals and provides baseband/dc outputs that can be used to adaptively control the SI canceler. The solution comes at the cost of minimal additional circuitry, yet significantly eases linearity requirements of critical receiver blocks at RF/IF such as mixers and ADCs. Second, to complement the proposed full-duplex front-end architecture and to provide a more complete solution, high-performance beamformer ICs with 5-/6- b phase and 3-/4-b amplitude control capabilities are designed. Single-channel, separate transmitter and receiver beamformers are implemented targeting massive- MIMO mode of operation, and their four-channel versions are developed for phasedarray communication systems. Better than state-of-the-art noise performance is obtained in the RX beamformer channel, with a full-channel noise figure of 3.3 d
    corecore