34 research outputs found

    On-chip ultra low power optical wake-up receiver for wireless sensor nodes targeting structural health monitoring

    Get PDF
    Wireless sensor network (WSN) consists of distributed nodes deployed for monitoring the physical conditions and organizing collected data at the central control unit. Power consumption is the challenges in WSN as the network consists of wireless sensor nodes becomes denser. By utilizing WSN and visible light technology, a simple health monitoring system design can be approached that are smaller in size, faster and lower power consumption. This work focuses on design a low power optical wake-up receiver to reduce the energy consumption of each node in WSN. A wake-up receiver is designed to be always-on for detecting incoming signal and switches on the stand by protocol controller and WSN network for data transmission process. The characteristic of optical transmission and functional circuit of a wake-up receiver has been investigated. A low power optical wake-up receiver has been designed in 180nm Silterra CMOS process technology. The proposed wake-up receiver consumes only 443pW in standby mode and 1.89nW in active mode. The proposed optical wake-up receiver drastically reduces the power consumption by more than one third compared to other wake-up receivers which could be a milestone in the medical field if successfully conducted

    Ultra-Low Power Optical Interface Circuits for Nearly Invisible Wireless Sensor Nodes.

    Full text link
    Technological advances in the semiconductor industry and integrated circuit design have resulted in electronic devices that are smaller and cheaper than ever, and yet they are more pervasive and powerful than what could hardly be imagined several decades ago. Nowadays, small hand-held devices such as smartphones have completely reshaped the way people communicate, share information, and get entertained. According to Bell’s Law, the next generation of computers will be cubic-millimeter-scale in volume with more prevalent presence than any other computing platform available today, opening up myriad of new applications. In this dissertation, a millimeter-scale wireless sensor node for visual sensing applications is proposed, with emphasis on the optical interface circuits that enable wireless optical communication and visual imaging. Visual monitoring and imaging with CMOS image sensors opens up a variety of new applications for wireless sensor nodes, ranging from surveillance to in vivo molecular imaging. In particular, the ability to detect motion can enable intelligent power management through on-demand duty cycling and reduce the data storage requirement. Optical communication provides an ultra-low power method to wirelessly control or transmit data to the sensor node after encapsulation and deployment. The proposed wireless sensor node is a nearly-invisible, yet a complete system with imaging, optics, two-way wireless communication, CPU, memory, battery and energy harvesting with solar cells. During its ultra-low power motion detection mode, the overall power consumption is merely 304 nW, allowing energy autonomous continuous operation with 10 klux of background lighting. Such complete features in the unprecedented form factor can revolutionize the role of electronics in our future daily lives, taking the “Smart Dust” concept from fiction to reality.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110399/1/coolkgh_1.pd

    Ultra-Low Power Circuit Design for Miniaturized IoT Platform

    Full text link
    This thesis examines the ultra-low power circuit techniques for mm-scale Internet of Things (IoT) platforms. The IoT devices are known for their small form factors and limited battery capacity and lifespan. So, ultra-low power consumption of always-on blocks is required for the IoT devices that adopt aggressive duty-cycling for high power efficiency and long lifespan. Several problems need to be addressed regarding IoT device designs, such as ultra-low power circuit design techniques for sleep mode and energy-efficient and fast data rate transmission for active mode communication. Therefore, this thesis highlights the ultra-low power always-on systems, focusing on energy efficient optical transmission in order to miniaturize the IoT systems. First, this thesis presents a battery-less sub-nW micro-controller for an always-operating system implemented with a newly proposed logic family. Second, it proposes an always-operating sub-nW light-to-digital converter to measure instant light intensity and cumulative light exposure, which employs the characteristics of this proposed logic family. Third, it presents an ultra-low standby power optical wake-up receiver with ambient light canceling using dual-mode operation. Finally, an energy-efficient low power optical transmitter for an implantable IoT device is suggested. Implications for future research are also provided.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145862/1/imhotep_1.pd

    On-demand sensor node wake-up using solar panels and visible light communication

    Get PDF
    To significantly reduce, or eliminate completely, the energy waste caused by the standby (idle) mode of wireless sensor nodes, we propose a novel on-demand wake-up system, which allows the nodes to be put into sleep mode unless their activation is truly necessary. Although there have been many studies proposing RF-based wake-up radio systems, in this work, we develop the first visible light communication (VLC)-based wake-up system. The developed system can extend the existing VLC systems and can be exploited to derive new application areas such as VLC tags. The system uses an off-the-shell indoor solar panel as receptor device of the wake-up signal as well as for energy harvesting purposes, through which it is able to harvest enough energy for its autonomous work. The design, implementation details and the experimental evaluation results are presented, which include flickering characterization and wake-up range evaluations. The results show that the developed system achieve reasonable wake-up distances for indoor environments, mainly where the use of VLC systems are considered.Peer ReviewedPostprint (published version

    On-Chip Ultra Low Power Optical Wake-Up Receiver For Wireless Sensor Nodes Targeting Structural Health Monitoring

    Get PDF
    Wireless sensor network (WSN) consists of distributed nodes deployed for monitoring the physical conditions and organizing collected data at the central control unit. Power consumption is the challenges in WSN as the network consists of wireless sensor nodes becomes denser. By utilizing WSN and visible light technology, a simple health monitoring system design can be approached that are smaller in size, faster and lower power consumption. This work focuses on design a low power optical wake-up receiver to reduce the energy consumption of each node in WSN. A wake-up receiver is designed to be always-on for detecting incoming signal and switches on the stand by protocol controller and WSN network for data transmission process. The characteristic of optical transmission and functional circuit of a wake-up receiver has been investigated. A low power optical wake-up receiver has been designed in 180nm Silterra CMOS process technology. The proposed wake-up receiver consumes only 443pW in standby mode and 1.89nW in active mode. The proposed optical wake-up receiver drastically reduces the power consumption by more than one third compared to other wake-up receivers which could be a milestone in the medical field if successfully conducte

    Performance evaluation and comparative analysis of SubCarrier Modulation Wake-up radio systems for energy-efficient wireless sensor networks

    Get PDF
    Energy-efficient communication is one of the main concerns of wireless sensor networks nowadays. A commonly employed approach for achieving energy efficiency has been the use of duty-cycled operation of the radio, where the node’s transceiver is turned off and on regularly, listening to the radio channel for possible incoming communication during its on-state. Nonetheless, such a paradigm performs poorly for scenarios of low or bursty traffic because of unnecessary activations of the radio transceiver. As an alternative technology, Wake-up Radio (WuR) systems present a promising energy-efficient network operation, where target devices are only activated in an on-demand fashion by means of a special radio signal and a WuR receiver. In this paper, we analyze a novel wake-up radio approach that integrates both data communication and wake-up functionalities into one platform, providing a reconfigurable radio operation. Through physical experiments, we characterize the delay, current consumption and overall operational range performance of this approach under different transmit power levels. We also present an actual single-hop WuR application scenario, as well as demonstrate the first true multi-hop capabilities of a WuR platform and simulate its performance in a multi-hop scenario. Finally, by thorough qualitative comparisons to the most relevant WuR proposals in the literature, we state that the proposed WuR system stands out as a strong candidate for any application requiring energy-efficient wireless sensor node communications.Peer ReviewedPostprint (published version

    Millimeter-scale RF Integrated Circuits and Antennas for Energy-efficient Wireless Sensor Nodes

    Full text link
    Recently there has been increased demand for a millimeter-scale wireless sensor node for applications such as biomedical devices, defense, and surveillance. This form-factor is driven by a desire to be vanishingly small, injectable through a needle, or implantable through a minimally-invasive surgical procedure. Wireless communication is a necessity, but there are several challenges at the millimeter-scale wireless sensor node. One of the main challenges is external components like crystal reference and antenna become the bottleneck of realizing the mm-scale wireless sensor node device. A second challenge is power consumption of the electronics. At mm-scale, the micro-battery has limited capacity and small peak current. Moreover, the RF front-end circuits that operates at the highest frequency in the system will consume most of the power from the battery. Finally, as node volume reduces, there is a challenge of integrating the entire system together, in particular for the RF performance, because all components, including the battery and ICs, need to be placed in close proximity of the antenna. This research explores ways to implement low-power integrated circuits in an energy-constrained and volume constrained application. Three different prototypes are mainly conducted in the proposal. The first is a fully-encapsulated, autonomous, complete wireless sensor node with UWB transmitter in 10.6mm3 volume. It is the first time to demonstrate a full and stand-alone wireless sensing functionality with such a tiny integrated system. The second prototype is a low power GPS front-end receiver that supports burst-mode. A double super-heterodyne topology enables the reception of the three public GPS bands, L1, L2 and L5 simultaneously. The third prototype is an integrated rectangular slot loop antenna in a standard 0.13-ÎŒm BiCMOS technology. The antenna is efficiently designed to cover the bandwidth at 60 GHz band and easily satisfy the metal density rules and can be integrated with other circuitry in a standard process.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143972/1/hskims_1.pd

    Wake-up radio systems : design, development, performance evaluation and comparison to conventional medium access control protocols for wireless sensor networks

    Get PDF
    During the recent years, the research related to Wake-up Radio (WuR) systems has gained noticeable interest. In WuR systems, a node initiating a communication first sends a Wake-up Call (WuC) by means of its Wake-up Transmitter (WuTx), to the Wake-up Receiver (WuRx) of a remote node to activate it in an on-demand manner. Until the reception of the WuC, the node's MCU and main data transceiver are in sleep mode. Hence, WuR drastically reduce the power required by wireless nodes. This thesis provides a complete analysis of several WuR designs vs. conventional MAC protocols for Wireless Sensor Networks (WSN). The research is performed in an incremental fashion and includes hardware, softwar and simulation topics. WuR systems enable energy savings in plenty of different applications, e.g., retrieving information from environmental pollution sensors placed in a city by a mobile collector node, or activating a sleeping wireless AP. They are easy to program in and provide implicit synchronization. However, achieving a good WuRx design may become a challenge because power amplifiers cannot be used for the sake of energy. The system proposed in chapter 2 is a successful WuR system prototype. The so-called S”A-WuRx is less complex than commercial WuR systems, it is cheaper from the monetary point of view, requires several times less energy and allows for up to 15 meters of communication, an adequate value for WuR systems. However, the system can be improved by including several desirable features, such as longer operational ranges and/or addressing mechanisms. The so-called Time-Knocking (TicK) addressing strategy, analyzed in chapter 3, enables energy efficient node addressing by varying the time between WuCs received by a MCU. TicK allows for variable length addresses and multicast. A WuR system may not fit any possible application. Thus, while the S”A-WuRx and TicK efficiently solved many of the requirements of single-hop and data-collector applications, they lack of flexibility. Instead, SCM-WuR systems in chapter 4 feature an outstanding trade-off between hardware complexity, current consumption and operational range, and even enable multi-hop wake-up for long remote sensor measure collection. To contextualize the WuR systems developed, chapter 5 provides an overview of the most important WuR systems as of 2014. Developing a MAC protocol which performs acceptably in a wide range of diverse applications is a very difficult task. Comparatively, SCM-WuR systems perform properly in all the use cases (single and multi-hop) presented in chapter 6. Bluetooth Low Energy, or BLE, appears as a duty-cycled MAC protocol mainly targeting single-hop applications. Because of its clearly defined use cases and its integration with its upper application layers, BLE appears as an extremely energy-efficient protocol that cannot be easily replaced by WuR. Because of all these aspects, the performance of BLE is analyzed in chapter 7. Finally, chapter 8 tries to solve one of the issues affecting WuR systems, that is, the need for extra hardware. While this issue seems difficult to solve for WuRx, the chapter provides ideas to use IEEE 802.11-enabled devices as WuTx.Durant els Ășltims anys, la investigaciĂł relativa als sistemes de RĂ dios de Wake-up (de l'anglĂšs Wake-up Radio, WuR) ha experimentat un interĂšs notable. En aquests sistemes, un node inicia la comunicaciĂł inal.lĂ mbrica transmetent una Wake-up Call (WuC), per mitjĂ  del seu transmissor de Wake-up (WuTx), dirigida al receptor de Wake-up (WuRx) del node remot. Aquesta WuC activa el node remot, el microcontrolador (MCU) i la rĂ dio principals del qual han pogut romandre en mode "sleep" fins el moment. AixĂ­ doncs, els sistemes WuR permeten un estalvi drĂ stic de l'energia requerida pels nodes sense fils. Aquesta tesi proposa diferents sistemes WuR i els compara amb protocols MAC existents per a xarxes de sensors sense fils (Wireless Sensor Networks, WSN). La investigaciĂł es realitza de forma progressiva i inclou hardware, software i simulaciĂł. Els sistemes WuR permeten un estalvi energĂštic notable en moltes aplicacions: recolÂżlecciĂł d'informaciĂł ambiental, activaciĂł remota de punts d'accĂ©s wi-fi, etc. SĂłn fĂ cils de programar en software i comporten una sincronitzaciĂł implĂ­cita entre nodes. Malauradament, un consum energĂštic mĂ­nim impossibilita l'Ășs d'amplificadors de potĂšncia, i dissenyar-los esdevĂ© un repte. El sistema presentat en el capĂ­tol 2 Ă©s un prototip exitĂłs de sistema WuR. De nom S”A-WuR, Ă©s mĂ©s senzill que alternatives comercials, Ă©s mĂ©s econĂČmic, requereix menys energia i permet distĂ ncies de comunicaciĂł WuR majors, de fins a 15 metres. L'estratĂšgia d'adreçament Time-KnocKing, presentada en el capĂ­tol 3, permet dotar l'anterior S”A-WuR d'una forma d'especificar el node adreçat, permetent estalvi energĂštic a nivell de xarxa. TicK opera codificant el temps entre diferents WuC. Depenent del temps entre intervals, es desperten el/s node/s desitjats d'una forma extremadament eficient. Tot i els seus beneficis, hi ha aplicacions no implementables amb el sistema S”A-WuR. Per a aquest motiu, en el capĂ­tol 4 es presenta el sistema SCM-WuR, que ofereix un rang d'operaciĂł de 40 a 100 metres a canvi d'una mĂ­nima complexitat hardware afegida. SCM-WuR cobreix el ventall d'aplicacions del sistema S”A-WuRx, i tambĂ© les que requereixen multi-hop a nivell WuR. El capĂ­tol 5 de la tesi compara els dos sistemes WuR anteriors vers les propostes mĂ©s importants fins el 2014. El capĂ­tol 6 inclou un framework de simulaciĂł complet amb les bases per a substituir els sistemes basats en duty-cycling a WuR. Degut a que desenvolupar un protocol MAC que operi acceptablement bĂ© en multitud d'aplicacions esdevĂ© una tasca prĂ cticament impossible, els sistemes WuR presentats amb anterioritat i modelats en aquest capĂ­tol representen una soluciĂł versĂ til, interessant i molt mĂ©s eficient des del punt de vista energĂštic. Bluetooth Low Energy, o Smart, o BLE, representa un cas d'aplicaciĂł especĂ­fica on, degut a la gran integraciĂł a nivell d'aplicaciĂł, la substituciĂł per sistemes de WuR esdevĂ© difĂ­cil Per a aquesta raĂł, i degut a que es tracta d'un protocol MAC extremadament eficient energĂšticament, aquesta tesi contĂ© una caracteritzaciĂł completa de BLE en el capĂ­tol 7. Finalment, el capĂ­tol 8 soluciona un dels inconvenients del sistemes WuR, el disseny de WuTx especĂ­fics, presentant una estratĂšgia per a transformar qualsevol dispositiu IEEE 802.11 en WuTx

    Development of Aerial-Ground Sensing Network: Architecture, Sensor Activation, and Spatial Path-Energy Optimization

    Get PDF
    Title from PDF of title page viewed May 13, 2019Dissertation advisor: ZhiQiang ChenVitaIncludes bibliographical references (pages 101-110)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2019The advent of autonomous navigation, positioning, and in general robotics technologies has enabled the maturity of small to miniature-sized unmanned aerial vehicles (UAVs; or colloquially called drones) and their wide use in engineering practice as a low-cost and effective geospatial remote sensing solution. Meanwhile, wireless sensing network technology (WSN) has also matured in recent years with many applications found in engineering practice. In this dissertation, a novel aerial ground wireless sensing network (AG-WSN) is developed, which is expected to transform a number of critical geospatial sensing and monitoring practices, such as precision agriculture, civil infrastructure protection, and disaster response. Towards the maximal energy efficiency, three research problems are concerned in this dissertation. First, a radio-frequency (RF) wake-up mechanism is investigated for aerial activation of ground sensors using a UAV platform. Second, the data transmission under wireless interference between the UAV and ground WSN is experimentally investigated, which suggests practical relations and parameters for aerial-ground communication configuration. Last, this dissertation theoretically explores and develops an optimization framework for UAV's aerial path planning when collecting ground-sensor data. An improved mixed-integer non-linear programming approach is proposed for solving the optimal spatial path-energy using the framework of the traveling-salesman problem with neighborhoods.Introduction -- Development of radio-frequency sensor wake-up through UAV as an aerial gateway -- Experimental investigation of aerial-ground network communication towards geospatially large-scale structural health monitoring -- Spatial path-energy optimization for tactic unmanned aerial vehicles operation in aerial-ground networking -- Conclusion and future wor
    corecore