55 research outputs found

    Effect of CMOS Technology Scaling on Fully-Integrated Power Supply Efficiency

    Get PDF
    International audienceIntegrating a power supply in the same die as the powered circuits is an appropriate solution for granular, fine and fast power management. To allow same-die co-integration, fully integrated DC-DC converters designed in the latest CMOS technologies have been greatly studied by academics and industrialists in the last decade. However, there is little study concerning the effects of the CMOS scaling on these particular circuits. To show the trends, this paper compares the achievable efficiencies of the 2:1 switched capacitor DC-DC converter topology under the same constraints in 65, 130 and 350nm bulk CMOS nodes and 28nm in bulk and FDSOI technologies with various capacitor options

    3D ICs: An Opportunity for Fully-Integrated, Dense and Efficient Power Supplies

    Get PDF
    International audienceWith 3D technologies, the in-package solution allows integrated, efficient and granular power supplies to be designed for multi-core processors. As the converter design obtains few benefits from the scaling, 3DIC allows the best technology to be chosen i.e. one which suits the DC-DC converter design. This paper evaluates the achievable power efficiency between on-die and in-package converters using a combination of active (28 and 65nm CMOS nodes) and passive (poly, MIM, vertical capacitor) layers. Based on the same load power consumption, on-die and in-package switched capacitor converters achieve 65% and 78% efficiency, respectively, in a 1mm 2 silicon area. An additional high density capacitance layer (100nF/mm 2) improves efficiency by more than 20 points in 65nm for the same surface which emphasizes the need for dedicated technology for better power management integration. This paper shows that in-package power management is a key alternative for fully-integrated, dense and efficient power supplies

    Voltage stacking for near/sub-threshold operation

    Get PDF

    On-chip Voltage Regulator– Circuit Design and Automation

    Get PDF
    Title from PDF of title page viewed May 24, 2021Dissertation advisors: Masud H Chowdhury and Yugyung LeeVitaIncludes bibliographical references (page 106-121)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2021With the increase of density and complexity of high-performance integrated circuits and systems, including many-core chips and system-on-chip (SoC), it is becoming difficult to meet the power delivery and regulation requirements with off-chip regulators. The off-chip regulators become a less attractive choice because of the higher overheads and complexity imposed by the additional wires, pins, and pads. The increased I2R loss makes it challenging to maintain the integrity of different voltage domains under a lower supply voltage environment in the smaller technology nodes. Fully integrated on-chip voltage regulators have proven to be an effective solution to mitigate power delivery and integrity issues. Two types of regulators are considered as most promising for on-chip implementation: (i) the low-drop-out (LDO) regulator and (ii) the switched-capacitor (SC)regulator. The first part of our research mainly focused on the LDO regulator. Inspired by the recent surge of interest for cap-less voltage regulators, we presented two fully on-chip external capacitor-less low-dropout voltage regulator design. The second part of this proposal explores the complexity of designing each block of the regulator/analog circuit and proposed a design methodology for analog circuit synthesis using simulation and learning-based approach. As the complexity is increasing day-by-day in an analog circuit, hierarchical flow mostly uses for design automation. In this work, we focused mainly on Circuit-level, one of the significant steps in the flow. We presented a novel, efficient circuit synthesis flow based on simulation and learning-based optimization methods. The proposed methodology has two phases: the learning phase and the evaluation phase. Random forest, a supervised learning is used to reduce the sample points in the design space and iteration number during the learning phase. Additionally, symmetric constraints are used further to reduce the iteration number during the sizing process. We introduced a three-step circuit synthesis flow to automate the analog circuit design. We used H-spice as a simulation tool during the evaluation phase of the proposed methodology. The three most common analog circuits are chosen: single-stage differential amplifier, operational transconductance amplifier, and two-stage differential amplifier to verify the algorithm. The tool is developed in Python, and the technology we used is0.6um. We also verified the optimized result in Cadence Virtuoso.Introduction -- On-chip power delivery system -- Fundamentals of on-chip voltage regulator -- LDO design in 45NM technology -- LDO design in technology -- Analog design automation -- Proposed analog design methodology -- Energy efficient FDSOI and FINFET based power gating circuit using data retention transistor -- Conclusion and future wor

    A Biofuel-Cell-Based Energy Harvester With 86% Peak Efficiency and 0.25-V Minimum Input Voltage Using Source-Adaptive MPPT

    Get PDF
    This article presents an efficient cold-starting energy harvester system, fabricated in 65-nm CMOS. The proposed harvester uses no external electrical components and is compatible with biofuel-cell (BFC) voltage and power ranges. A power-efficient system architecture is proposed to keep the internal circuitry operating at 0.4 V while regulating the output voltage at 1 V using switched-capacitor dc–dc converters and a hysteretic controller. A startup enhancement block is presented to facilitate cold startup with any arbitrary input voltage. A real-time on-chip 2-D maximum power point tracking with source degradation tracing is also implemented to maintain power efficiency maximized over time. The system performs cold startup with a minimum input voltage of 0.39 V and continues its operation if the input voltage degrades to as low as 0.25 V. Peak power efficiency of 86% is achieved at 0.39 V of input voltage and 1.34 μW of output power with 220 nW of average power consumption of the chip. The end-to-end power efficiency is kept above 70% for a wide range of loading powers from 1 to 12 μW. The chip is integrated with a pair of lactate BFC electrodes with 2 mm of diameter on a prototype-printed circuit board (PCB). Integrated operation of the chip with the electrodes and a lactate solution is demonstrated

    Power Management Techniques for Supercapacitor Based IoT Applications

    Get PDF
    University of Minnesota Ph.D. dissertation. January 2018. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xi, 89 pages.The emerging internet of things (IoT) technology will connect many untethered devices, e.g. sensors, RFIDs and wearable devices, to improve health lifestyle, automotive, smart buildings, etc. This thesis proposes one typical application of IoT: RFID for blood temperature monitoring. Once the blood is donated and sealed in a blood bag, it is required to be stored in a certain temperature range (+2~+6°C for red cell component) before distribution. The proposed RFID tag is intended to be attached to the blood bag and continuously monitor the environmental temperature during transportation and storage. When a reader approaches, the temperature data is read out and the tag is fully recharged wirelessly within 2 minutes. Once the blood is distributed, the tag can be reset and reused again. Such a biomedical application has a strong aversion to toxic chemicals, so a batteryless design is required for the RFID tag. A passive RFID tag, however, cannot meet the longevity requirement for the monitoring system (at least 1 week). The solution of this thesis is using a supercapacitor (supercap) instead of a battery as the power supply, which not only lacks toxic heavy metals, but also has quicker charge time (~1000x over batteries), larger operating temperature range (-40~+65°C), and nearly infinite shelf life. Although nearly perfect for this RFID application, a supercap has its own disadvantages: lower energy density (~30x smaller than batteries) and unstable output voltage. To solve the quick charging and long lasting requirements of the RFID system, and to overcome the intrinsic disadvantages of supercaps, an overall power management solution is proposed in this thesis. A reconfigurable switched-capacitor DC-DC converter is proposed to convert the unstable supercap's voltage (3.5V~0.5V) to a stable 1V output voltage efficiently to power the subsequent circuits. With the help of the 6 conversion ratios (3 step-ups, 3 step-downs), voltage protection techniques, and low power designs, the converter can extract 98% of the stored energy from the supercap, and increase initial energy by 96%. Another switched-inductor buck-boost converter is designed to harvest the ambient RF energy to charge the supercap quickly. Because of the variation of the reader distance and incident wave angle, the input power level also has large fluctuation (5uW~5mW). The harvester handles this large power range by a power estimator enhanced MPPT controller with an adaptive integration capacitor array. Also, the contradiction between low power and high tracking speed is improved by adaptive MPPT frequency

    Integrated high-voltage switched-capacitor DC-DC converters

    Get PDF
    The focus of this work is on the integrated circuit (IC) level integration of high-voltage switched-capacitor (SC) converters with the goal of fully integrated power management solutions for system-on-chip (SoC) and system-in-pagage (SiP) applications. The full integration of SC converters provides a low cost and compact power supply solution for modern electronics. Currently, there are almost no fully integrated SC converters with input voltages above 5 V. The purpose of this work is to provide solutions for higher input voltages. The increasing challenges of a compact and efficient power supply on the chip are addressed. High-voltage rated components and the increased losses caused by parasitics not only reduce power density but also efficiency. Loss mechanisms in high-voltage SC converters are investigated resulting in an optimized model for high-voltage SC converters. The model developed allows an appropriate comparison of different semiconductor technologies and converter topologies. Methods and design proposals for loss reduction are presented. Control of power switches with their supporting circuits is a further challenge for high-voltage SC converters. The aim of this work is to develop fully integrated SC converters with a wide input voltage range. Different topologies and concepts are investigated. The implemented fully integrated SC converter has an input voltage range of 2 V to 13 V. This is twice the range of existing converters. This is achieved by an implemented buck and boost mode as well as 17 conversion ratios. Experimental results show a peak efficiency of 81.5%. This is the highest published peak efficiency for fully integrated SC converters with an input voltage > 5V. With the help of the model developed in this work, a three-phase SC converter topology for input voltages up to 60 V is derived and then investigated and discussed. Another focus of this work is on the power supply of sensor nodes and smart home applications with low-power consumption. Highly integrated micro power supplies that operate directly from mains voltage are particularly suitable for these applications. The micro power supply proposed in this work utilizes the high-voltage SC converter developed. The output power is 14 times higher and the power density eleven times higher than prior work. Since plenty of power switches are built into modern multi-ratio SC converters, the switch control circuits must be optimized with regard to low-power consumption and area requirements. In this work, different level shifter concepts are investigated and a low-power high-voltage level shifter for 50 V applications based on a capacitive level shifter is introduced. The level shifter developed exceeds the state of the art by a factor of more than eleven with a power consumption of 2.1pJ per transition. A propagation delay of 1.45 ns is achieved. The presented high-voltage level shifter is the first level shifter for 50 V applications with a propagation delay below 2 ns and power consumption below 20pJ per transition. Compared to the state of the art, the figure of merit is significantly improved by a factor of two. Furthermore, various charge pump concepts are investigated and evaluated within the context of this work. The charge pump, optimized in this work, improves the state of the art by a factor of 1.6 in terms of efficiency. Bidirectional switches must be implemented at certain locations within the power stage to prevent reverse conduction. The topology of a bidirectional switch developed in this work reduces the dynamic switching losses by 70% and the area consumption including the required charge pumps by up to 65% compared to the state of the art. These improvements make it possible to control the power switches in a fast and efficient way. Index terms — integrated power management, high input voltage, multi-ratio SC converter, level shifter, bidirectional switch, micro power supplyDer Schwerpunkt dieser Arbeit liegt auf der Erforschung von Switched-Capacitor (SC) Spannungswandler für höhere Eingangsspannungen. Ziel der Arbeit ist es Lösungen für ein voll auf dem Halbleiterchip integriertes Power Management anzubieten um System on Chip (SoC) und System in Package (SiP) zu ermöglichen. Die vollständige Integration von SC Spannungswandlern bietet eine kostengünstige und kompakte Spannungsversorgungslösung für moderne Elektronik. Der kontinuierliche Trend hin zu immer kompakterer Elektronik und hin zu höheren Versorgungsspannungen wird in dieser Arbeit adressiert. Aktuell gibt es sehr wenige voll integrierte SC Spannungswandler mit einer Eingangsspannung größer 5 V. Die mit steigender Spannung zunehmenden Herausforderungen an eine kompakte und effiziente Spannungsversorgung auf dem Chip werden in dieser Arbeit untersucht. Die höhere Spannungsfestigkeit der verwendeten Komponenten korreliert mit erhöhten Verlusten und erhöhtem Flächenverbrauch, welche sich negativ auf den Wirkungsgrad und die Leistungsdichte von SC Spannungswandlern auswirkt. Bestandteil dieser Arbeit ist die Untersuchung dieser Verlustmechanismen und die Entwicklung eines Modells, welches speziell für höhere Spannungen optimiert wurde. Das vorgestellte Modell ermöglicht zum einen die optimale Dimensionierung der Spannungswandler und zum anderen faire Vergleichsmöglichkeiten zwischen verschiedenen SC Spannungswandler Architekturen und Halbleitertechnologien. Demnach haben sowohl die gewählte Architektur und Halbleitertechnologie als auch die Kombination aus gewählter Architektur und Technologie erheblichen Einfluss auf die Leistungsfähigkeit der Spannungswandler. Ziel dieser Arbeit ist die Vollintegration eines SC Spannungswandlers mit einem weiten und hohen Eingangsspannungsbereich zu entwickeln. Dazu wurden verschiedene Schaltungsarchitekturen und Konzepte untersucht. Der vorgestellte vollintegrierte SC Spannungswandler weist einen Eingangsspannungsbereich von 2 V bis 13 V auf. Dies ist eine Verdopplung im Vergleich zum Stand der Technik. Dies wird durch einen implementierten Auf- und Abwärtswandler-Betriebsmodus sowie 17 Übersetzungsverhältnisse erreicht. Experimentelle Ergebnisse zeigen einen Spitzenwirkungsgrad von 81.5%. Dies ist der höchste veröffentlichte Spitzenwirkungsgrad für vollintegrierte SC Spannungswandler mit einer Eingangsspannung größer 5 V. Mit Hilfe des in dieser Arbeit entwickelten Modells wird eine dreiphasige SC Spannungswandler Architektur für Eingangsspannungen bis zu 60 V entwickelt und anschließend analysiert und diskutiert. Ein weiterer Schwerpunkt dieser Arbeit adressiert die kompakte Spannungsversorgung von Sensorknoten mit geringem Stromverbrauch, für Anwendungen wie Smart Home und Internet der Dinge (IoT). Für diese Anwendungen eignen sich besonders gut hochintegrierte Mikro-Netzteile, welche direkt mit dem 230VRMS-Hausnetz (bzw. 110VRMS) betrieben werden können. Das in dieser Arbeit vorgestellte Mikro-Netzteil nutzt einen in dieser Arbeit entwickelten SC Spannungswandler für hohe Eingangsspannungen. Die damit erzielte Ausgangsleistung ist 14-mal größer im Vergleich zum Stand der Technik. In SC Spannungswandlern für hohe Spannungen werden viele Leistungsschalter benötigt, deshalb muss bei der Schalteransteuerung besonders auf einen geringen Leistungsverbrauch und Flächenbedarf der benötigten Schaltungsblöcke geachtet werden. Gegenstand dieser Arbeit ist sowohl die Analyse verschiedener Konzepte für Pegelumsetzer, als auch die Entwicklung eines stromsparenden Pegelumsetzers für 50 V-Anwendungen. Mit einer Leistungsaufnahme von 2.1pJ pro Signalübergang reduziert der entwickelte Pegelumsetzer mit kapazitiver Kopplung um mehr als elfmal die Leistungsaufnahme im Vergleich zum Stand der Technik. Die erreichte Laufzeitverzögerung beträgt 1.45 ns. Damit erzielt der vorgestellte Hochspannungs-Pegelumsetzer als erster Pegelumsetzer für 50 V-Anwendungen eine Laufzeitverzögerung unter 2 ns und eine Leistungsaufnahme unter 20pJ pro Signalwechsel. Im Vergleich zum Stand der Technik wird die Leistungskennzahl um den Faktor zwei deutlich verbessert. Darüber hinaus werden im Rahmen dieser Arbeiten verschiedene Ladungspumpenkonzepte untersucht und bewertet. Die in dieser Arbeit optimierte Ladungspumpe verbessert den Stand der Technik um den Faktor 1.6 in Bezug auf den Wirkungsgrad. Die in dieser Arbeit entwickelte Schaltungsarchitektur eines bidirektionalen Schalters reduziert die dynamischen Schaltverluste um 70% und den benötigten Flächenbedarf inklusive der benötigten Ladungspumpe um bis zu 65% gegenüber dem Stand der Technik. Diese Verbesserungen ermöglichen es, die Leistungsschalter schnell und effizient anzusteuern. Schlagworte — Integriertes Powermanagement, hohe Eingangsspannung, Multi-Ratio SC Spannungswan- dler, Pegelumsetzer, bidirektionaler Schalter, Mikro-Netztei

    Wideband CMOS Data Converters for Linear and Efficient mmWave Transmitters

    Get PDF
    With continuously increasing demands for wireless connectivity, higher\ua0carrier frequencies and wider bandwidths are explored. To overcome a limited transmit power at these higher carrier frequencies, multiple\ua0input multiple output (MIMO) systems, with a large number of transmitters\ua0and antennas, are used to direct the transmitted power towards\ua0the user. With a large transmitter count, each individual transmitter\ua0needs to be small and allow for tight integration with digital circuits. In\ua0addition, modern communication standards require linear transmitters,\ua0making linearity an important factor in the transmitter design.In this thesis, radio frequency digital-to-analog converter (RF-DAC)-based transmitters are explored. They shift the transition from digital\ua0to analog closer to the antennas, performing both digital-to-analog\ua0conversion and up-conversion in a single block. To reduce the need for\ua0computationally costly digital predistortion (DPD), a linear and wellbehaved\ua0RF-DAC transfer characteristic is desirable. The combination\ua0of non-overlapping local oscillator (LO) signals and an expanding segmented\ua0non-linear RF-DAC scaling is evaluated as a way to linearize\ua0the transmitter. This linearization concept has been studied both for\ua0the linearization of the RF-DAC itself and for the joint linearization of\ua0the cascaded RF-DAC-based modulator and power amplifier (PA) combination.\ua0To adapt the linearization, observation receivers are needed.\ua0In these, high-speed analog-to-digital converters (ADCs) have a central\ua0role. A high-speed ADC has been designed and evaluated to understand\ua0how concepts used to increase the sample rate affect the dynamic performance
    corecore