35 research outputs found

    A fully integrated multiband frequency synthesizer for WLAN and WiMAX applications

    Get PDF
    This paper presents a fractional N frequency synthesizer which covers WLAN and WiMAX frequencies on a single chip. The synthesizer is fully integrated in 0.35μm BiCMOS AMS technology except crystal oscillator. The synthesizer operates at four frequency bands (3.101-3.352GHz, 3.379-3.727GHz, 3.7-4.2GHz, 4.5-5.321GHz) to provide the specifications of 802.16 and 802.11 a/b/g/y. A single on-chip LC - Gm based VCO is implemented as the core of this synthesizer. Different frequency bands are selected via capacitance switching and fine tuning is done using varactor for each of these bands. A bandgap reference circuit is implemented inside of this charge pump block to generate temperature and power supply independent reference currents. Simulated settling time is around 10μsec. Total power consumption is measured to be 118.6mW without pad driving output buffers from a 3.3V supply. The phase noise of the oscillator is lower than -116.4dbc/Hz for all bands. The circuit occupies 2.784 mm2 on Si substrate, including DC, Digital and RF pads

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Designing an Efficient WCDMA Compliant Fractional-N Frequency Synthesizer

    Get PDF
    In this paper, fractional-N PLL is introduced to generate 1.965 GHz according to WCDMA specification , where a proposed deterministic 4th order MASH structure that guarantees a long sequence length to be used with simple stochastic dithering at the last stage as a noise shaping technique achieving hardware budget compared with classical dithering that used long linear feedback shift register LFSR . Modulator in band phase noise is -100dBc/Hz within the loop bandwidth of 1MHz, the PLL lock time is less than 25 μs. C++ language is used in the simulation of the system behavior for all blocks of the synthesizer due to its flexibility and high speed of execution, then data is post processed using MATLAB R2011a. The proposed MASH structure consumes 89% FFs and 90% LUTs of the Dithered MASH reported in ref.[9] for identical number of bits achieve significant hardware cost reduction

    A Wide Band Adaptive All Digital Phase Locked Loop With Self Jitter Measurement And Calibration

    Get PDF
    The expanding growth of mobile products and services has led to various wireless communication standards that employ different spectrum bands and protocols to provide data, voice or video communication services. Software deffned radio and cognitive radio are emerging techniques that can dynamically integrate various standards to provide seamless global coverage, including global roaming across geographical regions, and interfacing with different wireless networks. In software deffned radio and cognitive radio, one of the most critical RF blocks that need to exhibit frequency agility is the phase lock loop (PLL) frequency synthesizer. In order to access various standards, the frequency synthesizer needs to have wide frequency tuning range, fast tuning speed, and low phase noise and frequency spur. The traditional analog charge pump frequency synthesizer circuit design is becoming diffcult due to the continuous down-scalings of transistor feature size and power supply voltage. The goal of this project was to develop an all digital phase locked loop (ADPLL) as the alternative solution technique in RF transceivers by taking advantage of digital circuitry\u27s characteristic features of good scalability, robustness against process variation and high noise margin. The targeted frequency bands for our ADPLL design included 880MHz-960MHz, 1.92GHz-2.17GHz, 2.3GHz-2.7GHz, 3.3GHz-3.8GHz and 5.15GHz-5.85GHz that are used by wireless communication standards such as GSM, UMTS, bluetooth, WiMAX and Wi-Fi etc. This project started with the system level model development for characterizing ADPLL phase noise, fractional spur and locking speed. Then an on-chip jitter detector and parameter adapter was designed for ADPLL to perform self-tuning and self-calibration to accomplish high frequency purity and fast frequency locking in each frequency band. A novel wide band DCO is presented for multi-band wireless application. The proposed wide band adaptive ADPLL was implemented in the IBM 0.13µm CMOS technology. The phase noise performance, the frequency locking speed as well as the tuning range of the digitally controlled oscillator was assessed and agrees well with the theoretical analysis

    Clock Generation Design for Continuous-Time Sigma-Delta Analog-To-Digital Converter in Communication Systems

    Get PDF
    Software defined radio, a highly digitized wireless receiver, has drawn huge attention in modern communication system because it can not only benefit from the advanced technologies but also exploit large digital calibration of digital signal processing (DSP) to optimize the performance of receivers. Continuous-time (CT) bandpass sigma-delta (ΣΔ) modulator, used as an RF-to-digital converter, has been regarded as a potential solution for software defined ratio. The demand to support multiple standards motivates the development of a broadband CT bandpass ΣΔ which can cover the most commercial spectrum of 1GHz to 4GHz in a modern communication system. Clock generation, a major building block in radio frequency (RF) integrated circuits (ICs), usually uses a phase-locked loop (PLL) to provide the required clock frequency to modulate/demodulate the informative signals. This work explores the design of clock generation in RF ICs. First, a 2-16 GHz frequency synthesizer is proposed to provide the sampling clocks for a programmable continuous-time bandpass sigma-delta (ΣΔ) modulator in a software radio receiver system. In the frequency synthesizer, a single-sideband mixer combines feed-forward and regenerative mixing techniques to achieve the wide frequency range. Furthermore, to optimize the excess loop delay in the wideband system, a phase-tunable clock distribution network and a clock-controlled quantizer are proposed. Also, the false locking of regenerative mixing is solved by controlling the self-oscillation frequency of the CML divider. The proposed frequency synthesizer performs excellent jitter performance and efficient power consumption. Phase noise and quadrature phase accuracy are the common tradeoff in a quadrature voltage-controlled oscillator. A larger coupling ratio is preferred to obtain good phase accuracy but suffer phase noise performance. To address these fundamental trade-offs, a phasor-based analysis is used to explain bi-modal oscillation and compute the quadrature phase errors given by inevitable mismatches of components. Also, the ISF is used to estimate the noise contribution of each major noise source. A CSD QVCO is first proposed to eliminate the undesired bi-modal oscillation and enhance the quadrature phase accuracy. The second work presents a DCC QVCO. The sophisticated dynamic current-clipping coupling network reduces injecting noise into LC tank at most vulnerable timings (zero crossing points). Hence, it allows the use of strong coupling ratio to minimize the quadrature phase sensitivity to mismatches without degrading the phase noise performance. The proposed DCC QVCO is implemented in a 130-nm CMOS technology. The measured phase noise is -121 dBc/Hz at 1MHz offset from a 5GHz carrier. The QVCO consumes 4.2mW with a 1-V power supply, resulting in an outstanding Figure of Merit (FoM) of 189 dBc/Hz. Frequency divider is one of the most power hungry building blocks in a PLL-based frequency synthesizer. The complementary injection-locked frequency divider is proposed to be a low-power solution. With the complimentary injection schemes, the dividers can realize both even and odd division modulus, performing a more than 100% locking range to overcome the PVT variation. The proposed dividers feature excellent phase noise. They can be used for multiple-phase generation, programmable phase-switching frequency dividers, and phase-skewing circuits

    Design and realization of fully integrated multiband and multistandard bi-cmos sigma delta frequency synthesizer

    Get PDF
    Wireless communication has grown, exponentially, with wide range of applications offered for the customers. Among these, WLAN (2.4-2.5GHz, 3.6-3.7GHzand 4.915- 5.825GHz GHz), Bluetooth (2.4 GHz), and WiMAX (2.500-2.696 GHz, 3.4-3.8 GHz and 5.725-5.850 GHz) communication standard/technologies have found largest use local area, indoor – outdoor communication and entertainment system applications. One of the recent trends in this area of technology is to utilize compatible standards on a single chip solutions, while meeting the requirements of each, to provide customers systems with smaller size, lower power consumption and cheaper in cost. In this thesis, RF – Analog, and – Digital Integrated Circuit design methodologies and techniques are applied to realize a multiband / standart (WLAN and WiMAX) operation capable Voltage- Controlled-Oscillator (VCO) and Frequency Synthesizer. Two of the major building blocks of wireless communication systems are designed using 0.35 μm, AMS-Bipolar (HBT)-CMOS process technology. A new inductor switching concept is implemented for providing the multiband operation capability. Performance parameters such as operating frequencies, phase noise, power consumption, and tuning range are modeled and simulated using analytical approaches, ADS® and Cadence® design and simulation environments. Measurement and/or Figure-of-Merit (FOM) values of our circuits have revealed results that are comparable with already published data, using the similar technology, in the literature, indicating the strength of the design methodologies implemented in this study

    Low power digitally controlled oscillator for IoT applications

    Get PDF
    This work is focused on the design of a Low Power CMOS DCO for IEEE 802.11ah in IoT applications. The design methodology is based on the Unified current-control model (UICM), which is a physics-based model and enables an accurate all-region model of the operation of the device. Additionally, a transformer-based resonator has been used to solve the low-quality factor issue of integrated inductors. Two digitally controlled oscillators (DCO) have been implemented to show the advantages of utilizing a transformedbased resonator and the methodology based on the UICM model. These designs aim for the operation in low voltage supply (VDD) since VDD scaling is a trend in systems-onchip (SoCs), in which the circuitry is mostly digital. Despite the degradation caused by VDD scaling, new RF and analog circuits must deliver similar performance of the older CMOS nodes. The first DCO design was a low power LC-tank DCO, implemented in 40nm bulk-CMOS. The first design presented a DCO operating at 45% of the nominal VDD without compromise the performance. By reducing the VDD below the nominal value, this DCO reduces power consumption, which is a crucial feature for IoT circuits. The main contribution of this first DCO is the reduction of VDD scaling impact on the phase-noise do the DCO. The LC-based DCO operates from 1.8 to 1.86 GHz. At the maximum frequency and 0.395V VDD, the power consumption is a mere 380 W with a phase-noise of -119.3 dBc/Hz at 1 MHz. The circuit occupies an area of 0.46mm2 in 40 nm CMOS, mostly due to the inductor. The second DCO design was a low-power transformer-based DCO design, implemented in 28nm bulk-CMOS. This second design aims for the VDD reduction to below 0.3 V. Operating in a frequency range similar to the LC-based DCO, the transformer-based DCO operated with 0.280V VDD with a power consumption of 97 W. Meanwhile, the phase-noise was -101.95 dBc/Hz at 1 MHz. Even in the worst-case scenario (i.e., slow-slow and 85oC), this second DCO was able to operate at 0.330V VDD, consuming 126 W, while it keeps a similar phase-noise performance of the typical case. The core circuit occupies an area of 0.364 mm2.Este trabalho objetiva o projeto de um DCO de baixa potência em CMOS para aplicações de IoT e aderentes ao padrão IEEE 802.11ah. A metodologia de projeto é baseada no modelo de controle de corrente unificado (UICM), que é um modelo com embasamento físico que permite uma operação precisa em todas as regiões de operação do dispositivo. Adicionalmente, é utilizado um ressonador baseado em transformador visando solucionar os problemas provenientes do baixo fator de qualidade de indutores integrados. Para destacar as melhorias obtidas com o projeto do ressonador baseado em transformador e com a metodologia baseada no modelo UICM, dois projetos de DCO são realizados. Esses projetos visam a operação com baixa tensão de alimentação (VDD), uma vez que o escalonamento do VDD é uma tendência em sistemas em chip (SoCs), em que o circuito é majoritariamente digital. Independente da degradação causada pelo escalonamento de VDD, circuitos analógicos e de RF atuais devem oferecer desempenho semelhante ao alcançado em tecnologias CMOS mais antigas. O primeiro projeto foi um DCO de baixa potência com tanque LC, implementado em tecnologia bulk-CMOS de 40nm. O primeiro projeto apresentou uma operação a 45% do VDD nominal sem comprometer o desempenho. Ao reduzir o VDD abaixo do valor nominal, este DCO reduz o consumo de energia, que é uma característica crucial para circuitos IoT. A principal contribuição deste DCO é a redução do impacto do escalonamento do VDD no ruído de fase. O DCO com tanque LC opera de 1,8 a 1,86 GHz. Na frequência máxima e com VDD de apenas 0,395V, o consumo de energia é 380 W e o ruído de fase é -119,3 dBc/Hz a 1 MHz. O circuito ocupa uma área de 0.46mm2 em processo CMOS de 40 nm. O segundo projeto foi um DCO de baixa potência baseado em transformador, implementado em tecnologia bulk- CMOS de 28nm. Este projeto visa a redução de VDD abaixo de 0,3 V. Operando em uma faixa de frequência semelhante ao primeiro DCO, o DCO baseado em transformador opera com VDD de 0,280V e com consumo de potência de 97 W. O ruído de fase foi de -101,95 dBc/Hz a 1 MHz. Mesmo no pior caso de processo, este DCO opera a um VDD de 0,330V, consumindo 126 W, com o ruído de fase semelhante ao caso típico. O circuito ocupa uma área de 0.364mm2

    Digital enhancement techniques for fractional-N frequency synthesizers

    Get PDF
    Meeting the demand for unprecedented connectivity in the era of internet-of-things (IoT) requires extremely energy efficient operation of IoT nodes to extend battery life. Managing the data traffic generated by trillions of such nodes also puts severe energy constraints on the data centers. Clock generators that are essential elements in these systems consume significant power and therefore must be optimized for low power and high performance. The focus of this thesis is on improving the energy efficiency of frequency synthesizers and clocking modules by exploring design techniques at both the architectural and circuit levels. In the first part of this work, a digital fractional-N phase locked loop (FNPLL) that employs a high resolution time-to-digital converter (TDC) and a truly ΔΣ fractional divider to achieve low in-band noise with a wide bandwidth is presented. The fractional divider employs a digital-to-time converter (DTC) to cancel out ΔΣ quantization noise in time domain, thus alleviating TDC dynamic range requirements. The proposed digital architecture adopts a narrow range low-power time-amplifier based TDC (TA-TDC) to achieve sub 1ps resolution. Fabricated in 65nm CMOS process, the prototype PLL achieves better than -106dBc/Hz in-band noise and 3MHz PLL bandwidth at 4.5GHz output frequency using 50MHz reference. The PLL achieves excellent jitter performance of 490fsrms, while consumes only 3.7mW. This translates to the best reported jitter-power figure-of-merit (FoM) of -240.5dB among previously reported FNPLLs. Phase noise performance of ring oscillator based digital FNPLLs is severely compromised by conflicting bandwidth requirements to simultaneously suppress oscillator phase and quantization noise introduced by the TDC, ΔΣ fractional divider, and digital-to-analog converter (DAC). As a consequence, their FoM that quantifies the power-jitter tradeoff is at least 25dB worse than their LC-oscillator based FNPLL counterparts. In the second part of this thesis, we seek to close this performance gap by extending PLL bandwidth using quantization noise cancellation techniques and by employing a dual-path digital loop filter to suppress the detrimental impact of DAC quantization noise. A prototype was implemented in a 65nm CMOS process operating over a wide frequency range of 2.0GHz-5.5GHz using a modified extended range multi-modulus divider with seamless switching. The proposed digital FNPLL achieves 1.9psrms integrated jitter while consuming only 4mW at 5GHz output. The measured in-band phase noise is better than -96 dBc/Hz at 1MHz offset. The proposed FNPLL achieves wide bandwidth up to 6MHz using a 50 MHz reference and its FoM is -228.5dB, which is at about 20dB better than previously reported ring-based digital FNPLLs. In the third part, we propose a new multi-output clock generator architecture using open loop fractional dividers for system-on-chip (SoC) platforms. Modern multi-core processors use per core clocking, where each core runs at its own speed. The core frequency can be changed dynamically to optimize for performance or power dissipation using a dynamic frequency scaling (DFS) technique. Fast frequency switching is highly desirable as long as it does not interrupt code execution; therefore it requires smooth frequency transitions with no undershoots. The second main requirement in processor clocking is the capability of spread spectrum frequency modulation. By spreading the clock energy across a wide bandwidth, the electromagnetic interference (EMI) is dramatically reduced. A conventional PLL clock generation approach suffers from a slow frequency settling and limited spread spectrum modulation capabilities. The proposed open loop fractional divider architecture overcomes the bandwidth limitation in fractional-N PLLs. The fractional divider switches the output frequency instantaneously and provides an excellent spread spectrum performance, where precise and programmable modulation depth and frequency can be applied to satisfy different EMI requirements. The fractional divider has unlimited modulation bandwidth resulting in spread spectrum modulation with no filtering, unlike fractional-N PLL; consequently it achieves higher EMI reduction. A prototype fractional divider was implemented in a 65nm CMOS process, where the measured peak-to-peak jitter is less than 27ps over a wide frequency range from 20MHz to 1GHz. The total power consumption is about 3.2mW for 1GHz output frequency. The all-digital implementation of the divider occupies the smallest area of 0.017mm2 compared to state-of-the-art designs. As the data rate of serial links goes higher, the jitter requirements of the clock generator become more stringent. Improving the jitter performance of conventional PLLs to less than (200fsrms) always comes with a large power penalty (tens of mWs). This is due to the PLL coupled noise bandwidth trade-off, which imposes stringent noise requirements on the oscillator and/or loop components. Alternatively, an injection-locked clock multiplier (ILCM) provides many advantages in terms of phase noise, power, and area compared to classical PLLs, but they suffer from a narrow lock-in range and a high sensitivity to PVT variations especially at a large multiplication factor (N). In the fourth part of this thesis, a low-jitter, low-power LC-based ILCM with a digital frequency-tracking loop (FTL) is presented. The proposed FTL relies on a new pulse gating technique to continuously tune the oscillator's free-running frequency. The FTL ensures robust operation across PVT variations and resolves the race condition existing in injection locked PLLs by decoupling frequency tuning from the injection path. As a result, the phase locking condition is only determined by the injection path. This work also introduces an accurate theoretical large-signal analysis for phase domain response (PDR) of injection locked oscillators (ILOs). The proposed PDR analysis captures the asymmetric nature of ILO's lock-in range, and the impact of frequency error on injection strength and phase noise performance. The proposed architecture and analysis are demonstrated by a prototype fabricated in 65 nm CMOS process with active area of 0.25mm2. The prototype ILCM multiplies the reference frequency by 64 to generate an output clock in the range of 6.75GHz-8.25GHz. A superior jitter performance of 190fsrms is achieved, while consuming only 2.25mW power. This translates to a best FoM of -251dB. Unlike conventional PLLs, ILCMs have been fundamentally limited to only integer-N operation and cannot synthesize fractional-N frequencies. In the last part of this thesis, we extend the merits of ILCMs to fractional-N and overcome this fundamental limitation. We employ DTC-based QNC techniques in order to align injected pulses to the oscillator's zero crossings, which enables it to pull the oscillator toward phase lock, thus realizing a fractional-N ILCM. Fabricated in 65nm CMOS process, a prototype 20-bit fractional-N ILCM with an output range of 6.75GHz-8.25GHz consumes only 3.25mW. It achieves excellent jitter performance of 110fsrms and 175fsrms in integer- and fractional-N modes respectively, which translates to the best-reported FoM in both integer- (-255dB) and fractional-N (-252dB) modes. The proposed fractional-N ILCM also features the first-reported rapid on/off capability, where the transient absolute jitter performance at wake-up is bounded below 4ps after less than 4ns. This demonstrates almost instantaneous phase settling. This unique capability enables tremendous energy saving by turning on the clock multiplier only when needed. This energy proportional operation leverages idle times to save power at the system-level of wireline and wireless transceivers

    Quadrature Frequency Synthesis for Wideband Wireless Transceivers

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2014. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xi, 112 pages.In this thesis, three different techniques pertinent to quadrature LO generation in high data rate and wideband RF transceivers are presented. Prototype designs are made to verify the performance of the proposed techniques, in three different technologies: IBM 130nm CMOS process, TSMC 65nm CMOS process and IBM 32nm SOI process. The three prototype designs also cover three different frequency bands, ranging from 5GHz to 74GHz. First, an LO generation scheme for a 21 GHz center-frequency, 4-GHz instantaneous bandwidth channelized receiver is presented. A single 1.33 GHz reference source is used to simultaneously generate 20 GHz and 22 GHz LOs with quadrature outputs. Injection locking is used instead of conventional PLL techniques allowing low-power quadrature generation. A harmonic-rich signal, containing both even and odd harmonics of the input reference signal, is generated using a digital pulse slimmer. Two ILO chains are used to lock on to the 10th and 11th harmonics of the reference signal generating the 20 GHz and the 22 GHz quadrature LOs respectively. The prototype design is implemented in IBM's 130 nm CMOS process, draws 110 mA from a 1.2 V supply and occupies an active area of 1.8 square-mm. Next, a wide-tuning range QVCO with a novel complimentary-coupling technique is presented. By using PMOS transistors for coupling two VCOs with NMOS gm-cells, it is shown that significant phase-noise improvement (7-9 dB) can be achieved over the traditional NMOS coupling. This breaks the trade-off between quadrature accuracy and phase-noise, allowing reasonable accuracy without a significant phase-noise hit. The proposed technique is frequency-insensitive, allowing robust coupling over a wide tuning range. A prototype design is done in TSMC 65nm process, with 4-bits of discrete tuning spanning the frequency range 4.6-7.8 GHz (52% FTR) while achieving a minimum FOM of 181.4dBc/Hz and a minimum FOMT of 196dBc/Hz. Finally, a wide tuning-range millimeter wave QVCO is presented that employs a modified transformer-based super-harmonic coupling technique. Using the proposed technique, together with custom-designed inductors and metal capacitors, a prototype is designed in IBM 32nm SOI technology with 6-bits of discrete tuning using switched capacitors. Full EM-extracted simulations show a tuning range of 53.84GHz to 73.59GHz, with an FOM of 173 dBc/Hz and an FOMT of 183 dBc/Hz. With 19.75GHz of tuning range around a 63.7GHz center frequency, the simulated FTR is 31%, surpassing all similar designs in the same band. A slight modification in the tank inductors would enable the QVCO to be employed in multiple mm-Wave bands (57-66 GHz communication band, 71-76 GHz E-band, and 76-77 GHz radar band)
    corecore