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Abstract

The expanding growth of mobile products and services has led to various wireless com-
munication standards that employ different spectrum bands and protocols to provide
data, voice or video communication services. Software defined radio and cognitive
radio are emerging techniques that can dynamically integrate various standards to
provide seamless global coverage, including global roaming across geographical re-
gions, and interfacing with different wireless networks. In software defined radio and
cognitive radio, one of the most critical RF blocks that need to exhibit frequency
agility is the phase lock loop (PLL) frequency synthesizer. In order to access various
standards, the frequency synthesizer needs to have wide frequency tuning range, fast
tuning speed, and low phase noise and frequency spur. The traditional analog charge
pump frequency synthesizer circuit design is becoming difficult due to the continuous
down-scalings of transistor feature size and power supply voltage. The goal of this
project was to develop an all digital phase locked loop (ADPLL) as the alternative
solution technique in RF transceivers by taking advantage of digital circuitry’s char-
acteristic features of good scalability, robustness against process variation and high
noise margin. The targeted frequency bands for our ADPLL design included 880MHz-
960MHz, 1.92GHz-2.17GHz, 2.3GHz-2.7GHz, 3.3GHz-3.8GHz and 5.15GHz-5.85GHz
that are used by wireless communication standards such as GSM, UMTS, bluetooth,
WiMAX and Wi-Fi etc.

This project started with the system level model development for characterizing
ADPLL phase noise, fractional spur and locking speed. Then an on-chip jitter de-
tector and parameter adapter was designed for ADPLL to perform self-tuning and
self-calibration to accomplish high frequency purity and fast frequency locking in each
frequency band. A novel wide band DCO is presented for multi-band wireless applica-
tion. The proposed wide band adaptive ADPLL was implemented in the IBM 0.13µm
CMOS technology. The phase noise performance, the frequency locking speed as well
as the tuning range of the digitally controlled oscillator was assessed and agrees well
with the theoretical analysis.
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Chapter 1

Introduction

1.1 PLL Fundamental

A Phase Locked Loop (PLL) is one of the most important blocks in wireless communi-

cation system. It is widely used for clock and data recovery or frequency synthesizer.

The PLL based frequency synthesizer is deployed as local oscillator (LO) to perform

frequency translation between baseband (BB) and radio frequency (RF) in wireless

transceivers as shown in Fig. 1.1.

In a direct-conversion transmitter, the digital I/Q signals are converted into ana-

log signals via the digital-to-analog converter (DAC). Then the low pass filter (LPF)

filters out the DAC noise caused by DAC in frequency domain. After that, the

baseband analog signals are up-converted to RF frequency by a single-sideband mod-

ulator. A power amplifier (PA) which is connected to an antenna is the last stage in

the transmitter path to provide enough output power. In a direct-conversion receiver,

the signal received from the antenna goes through a low noise amplifier (LNA) first.

Then it is down-converted to baseband signal via a quadrature mixer. The following
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Figure 1.1: PLL applications in wireless transceiver. (a) A simplified direct-conversion
transmitter; (b) A simplified direct-conversion receiver.

LPF filters frequency noise and the programmable gain amplifier (PGA) can alternate

signals to the required level for the analog-to-digital converter (ADC). At last, the

I/Q signals are fed into digital signal processing block.

Fig. 1.2 illustrates a basic block diagram of charge pump PLL (CPPLL). A tra-

ditional analog charge pump PLL typically consists of five main blocks, which are

phase frequency detector (PFD), charge pump (CP), loop filter (LF), voltage con-

trolled oscillator (VCO) and frequency divider (DIV). PFD block compares the phase

difference between the input reference clock (REF) and the feedback signal (FB) and
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Figure 1.2: The block diagram of charge pump PLL.

generates up and down signals according to phase difference as its outputs. Charge

pump converts up and down signals to current by two switches. After filtering out

the low frequency noise through the loop filter, the VCO generates the output signal

with the targeted frequency. The frequency divider divides the VCO output frequency

by a programmable number N and generates the feedback signal. It is clear that,

PLL operates as a negative feedback control system. In the locking condition, the

relationship between PLL output signal frequency and the reference signal frequency

is:

fout = N · fref (1.1)

In modern wireless applications, a fine frequency resolution is desired in PLL

design. In an integer PLL, the divider value N is an integer number, which means

the PLL frequency resolution equals fref . Also, the bandwidth of PLL is usually no

more than one tenth of fref for stability consideration. In order to get a better fine

frequency resolution in the integer PLL, it requires a reference signal with a lower

frequency. The lower reference frequency results in a longer settling time. Besides, a

very narrow bandwidth will result in a loop filter that takes large chip area.
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Compared to the integer PLL, the fractional-N PLL can improve fine frequency

resolution without reducing the PLL bandwidth. The effective bits of fractional part

of divider value N determines the PLL fine frequency resolution. In a fractional-N

PLL, a multi-modulus divider (MMD) with delta sigma modulator (DSM) is em-

ployed. The DSM generates the command word for MMD to produce a fractional

division ratio. The divider value is changed between different integer values and the

average results in a fractional value.

All digital PLL (ADPLL) frequency synthesizers are recently emerging to replace

CPPLL in many RF transceivers and computer chips on account of the superior

features that digital circuits can provide, such as robustness, scalability, small area

and power dissipation etc. As shown in Fig. 1.3, an ADPLL typically consists of four

main blocks, which are phase frequency detector (PFD), digital loop filter (DLF),

digitally controlled oscillator (DCO), frequency divider (DIV).

Figure 1.3: The block diagram of ADPLL.

Comparing with the analog charge pump PLLs, each block in ADPLLs is digital.

Time to digital converter (TDC) based digital phase frequency detector replaces the

conventional phase frequency detector. The TDC is applied to quantize the phase-

frequency difference between the feedback clock and the input reference clock. The

charge pump and analog loop filter are replaced by a digital loop filter. The VCO is
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replaced by a DCO, whose output frequency is controlled by a digital control code.

The digital frequency divider is used to control the generation and tuning of PLL

output frequency.

In wireless communication, frequency tuning range, phase noise, jitter and locking

time are key characteristics of the ADPLL frequency synthesizer. Frequency tuning

range determines the band applicability. ADPLL frequency synthesizer’s phase noise

and jitter cause significant degradation in wireless communication systems perfor-

mance. ADPLL with low quality phase noise performance will reduce the effective

signal to noise ratio, limit bit error and data rate. Therefore, it is important to

investigate the relationship between ADPLL variables and characteristics.

1.2 Motivation

With the expanding growth of mobile products and services, the wireless communica-

tion standards employ different spectrum bands and protocols to provide data, voice

or video communication services. Smart phone is just a particular example that relies

on PLLs to modulate or demodulate multi wireless communication standards such

as GSM, GMTS, bluetooth, Wi-Fi and WiMAX. In order to save chip area, power

consumption and cost, it is necessary for a single PLL to modulate or demodulate

wireless signals with different wireless standards. In order to access various standards

such as GSM, GMTS, WiMAX, bluetooth and Wi-Fi, the PLL frequency synthesizer

needs to have wide frequency tuning range, fast tuning speed, and low phase noise

and frequency spur. Recently, software defined radio and cognitive radio are emerg-

ing techniques that can dynamically integrate various standards to provide seamless
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global coverage, including global roaming across geographical regions, and interfacing

with different wireless networks.

One of the most critical components in wide band ADPLL is digitally controlled

oscillator (DCO). The DCO must cover wide frequency range and have low phase

noise performance. There are two types of DCO in ADPLL: LC-tank DCO and

ring oscillator DCO. In wireless communication applications, LC-tank DCO is widely

adopted in ADPLL frequency synthesizer. Comparing to the ring oscillator, LC-tank

DCO has superior phase noise performance. However, LC resonator typically has

limited frequency tuning range due to limited varactor tuning capability. In order to

increase PLL frequency tuning range, there are some researches focusing on wide band

VCOs/DCOs development [1-5]. Fig. 1.4 summarizes recent wide band VCOs/DCOs

operating frequency range performances.

Figure 1.4: Frequency range performances of recent wide band VCOs/DCOs.
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Also, there are many researches focusing on multi-band PLL frequency synthe-

sizer [6-11] recently. Table 1.1 summarizes those PLLs’ frequency tuning ranges,

phase noise, jitter, power consumptions and etc. In reference [6], the core VCO is

operating in frequency of 3.2GHz-4GHz. The VCO output is divided by 2 to gener-

ate the 1.6GHz-2GHz signal and mixed up to form the 4.8GHz-6GHz signal. The

2.4GHz-5GHz and 0.8GHz-1GHz signals are generated by adding divide-by-two cir-

cuits after the 4.8GHz-6GHz and 1.6GHz-2GHz signals. Extra power is consumed

since multiplier and divider are applied in this method. In reference [7], the frequency

tuning range covers 0.38GHz-6GHz and 9GHz-12GHz. A divide-by-two circuit is

designed to accomplish the frequency band of 0.3GHz-13.7GHz. Reference [8-11]

covers multi-band frequency range whose central frequency is closed to each other.

Table 1.1: Recent multi-band PLLs characteristics.

Ref. Freq. Range Band Phase Noise Power Tech.
GHz @1MHz freq. offset mW

[6] 0.8-6 802.11abg/PCS/ -110dBc/Hz 43.2 0.18µm
DCS/Cellular band @3.24GHz

[7] 0.3-13.7 -114.6dBc/Hz 24 65nm
@4.85GHz

[8] 0.8-2 GSM/WCDMA -135dBc/Hz N/A 0.18µm
[9] 2.39-3.28 FMCW -103dBc/Hz N/A 0.18µm

4.79-6.55 Rada system @2.4GHz
[10] 9.1-11.6 X band -102dBc/Hz 32.5 0.13µm

@9.61GHz
[11] 1.8-3 802.15.4, BLE N/A 20 65nm

5Mbps proprietary

This research presents a multi-band LC-tank DCO. The frequency range covers

multiple frequencies including 800MHz to 1.1GHz, 1.8GHz to 2.8GHz, 3GHz to

4GHz and 5GHz to 6GHz. The proposed ADPLL can cover GSM, UMTS, WiMAX,
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bluetooth and Wi-Fi wireless communication frequency bands. Moveover, as the

proposed DCO eliminates the need of switches in the LC-tank, the resistive loss and

phase noise effects are greatly alleviated.

Besides frequency tuning range, phase noise and jitter are key parasitics in AD-

PLL. ADPLL frequency synthesizer’s phase noise and jitter cause significant degrada-

tion in wireless communication systems performance. ADPLL with low quality phase

noise and jitter performance will reduce the effective signal to noise ratio, limit bit

error and data rate. Designing a low phase noise, low jitter PLL becomes a challenge

for RF circuit designers. Fig. 1.5 summarizes recent wide band VCOs/DCOs phase

noise performances. In our previous research [12], ADPLL’s phase noise performance

can be further improved by adjusting circuit parameters including PFD resolution,

loop filter coefficients and DCO gain. Also, there are some researches focus on PLL

design with adaptive bandwidth [13-14]. In reference [13], authors have presented an

adaptive bandwidth PLL according to the locking status and the phase error amount.

In reference [14], authors have proposed an adaptive bandwidth PLL which is relied

on the small-signal conductance tracking the large-signal conductance of the VCO.

There is no research on adjusting ADPLL parameter according to output phase noise

or jitter performance. In order to accomplish adaptive ADPLL, the on chip jitter

measurement is an important function block. In reference [15], on chip jitter mea-

surement is based on an all digital frequency discriminator. In reference [16], on chip

jitter measurement is analyzed and designed based on the deadzone method. Ref-

erence [17] uses a low-noise voltage-controlled delay-line and mixer-based frequency

discriminator to extract the phase-noise fluctuations at baseband. Those researches

only measure the jitter or phase noise, but not adjust the PLL loop parameters to
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improve PLL performance. This research also focuses on both on chip jitter mea-

surement and jitter calibration through adjustable filter coefficients. The research

analyzes the relationship between ADPLL circuit parameter and jitter performance.

The on chip jitter measurement is presented according to the analysis of the relation-

ship between PLL output signal’s jitter and DCO control code. By adjusting the loop

filter’s coefficients according to the jitter measurement results, the ADPLL output

jitter performance can be further improved to meet requirement.

Figure 1.5: Phase noise performances of recent VCOs/DCOs.

Fig. 1.6 shows the model of the proposed wide band ADPLL with self jitter

calibration. Phase frequency detector compares the reference signal and feedback

signal to generate corresponding up and down signals. Up and down signal are fed into

time to digital converter (TDC) to produce digital code. After passive proportional

integral (PPI) filter, the digital code is used to control DCO output. On the feedback

path, a multi-modulus divider with a second order delta sigma modulator divides the
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DCO output signal to produce the feedback signal. Once the ADPLL is locked, on chip

jitter measurement function block starts to collect the information of DCO control

code and calculate DCO control code variance. The variance of DCO control code can

be translated to jitter performance by given output frequency, loop bandwidth, divider

value, DCO gain and PFD resolution. Then, the result from jitter measurement block

is compared with the preset threshold to determine to turn on or turn off the jitter

calibration block. In jitter calibration process, digital low pass filter coefficients are

preset to a large value to reduce PLL settling time, and then its value will be adjusted

according to the jitter measurement result. Based on the theoretical analysis, the

design schemes for measuring and adjusting ADPLL jitter performance are presented

and verified by simulation.

Figure 1.6: The block diagram of proposed wide band ADPLL with self jitter calibration.
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Chapter 2

Multi-band ADPLL Design

2.1 Introduction

Nowadays, the ADPLL has become more attractive due to the increasing perfor-

mance requirement and decreasing cost of VLSI technology. The ADPLL provides

a faster locking time and better programmability, testability, stability, and smaller

chip size over different processes [69-71]. The ADPLL avoids analog components such

as charge pump and analog loop filter and takes the advantage of nanometer-scale

CMOS process. Since all signals in the ADPLL are digital, the ADPLL is immune to

the digital switching noise in a system-on-chip (SOC) environment. Table 2.1 presents

the comparisons between the ADPLL and the traditional charge pump analog PLL.

The ADPLL is comprised of time to digital converter (TDC) based phase fre-

quency detector (PFD), digital loop filter (DLF), digitally controlled oscillator (DCO)

and frequency divider (DIV). In the ADPLL design, there are two major issues needed

to be carefully considered. One is how to design a digitally-controlled oscillator (DCO)

with wide operating range and high resolution. The other one is how to speed up
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Table 2.1: Comparison between the performance of ADPLLs and charge pump analog PLL

ADPLL Analog PLL
Stability Good Poor

Programmability Good Poor
Scalability Good Poor

Frequency Resolution Limited Unlimited
Frequency Tuning Discrete Continuous
Frequency Control Digital Code Voltage
Locking Range Limited Wide

Phase Noise/Jitter Predictive Sensitive
Simplicity Good Poor

Immune to variations in PVT variations Good Poor

the locking process, and reduce the clock jitter and phase noise. As shown in Fig.

2.1, the second order negative feedback system which has a fast locking time and a

limited locking range is widely used in the ADPLL.

Figure 2.1: The second order negative feedback ADPLL structure.

In this chapter, we present a novel multi-band LC-tank DCO with wide frequency

tuning range. Six different resonants are obtained by tuning corresponding varactor

values. Such approach increases the frequency tuning range of the LC-tank DCO.

The proposed DCO can cover GSM, UMTS, WiMAX, bluetooth and Wi-Fi frequency
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bands. Then, we describe architectures and circuit implements of the key blocks such

as digitally controlled oscillator (DCO), time-to-digital converter (TDC) based phase

frequency detector (PFD), digital loop filter (DLF) and frequency divider with ∆Σ

modulator. At last, the proposed ADPLL is implemented in IBM 0.13µm CMOS

technology and simulated in Cadence Spectre. Simulation results show the proposed

ADPLL meet all requirements including frequency range, frequency resolution and

phase noise requirements.

2.2 Digitally Controlled Oscillator De-

sign

Digitally controlled oscillator (DCO) is a key function block in the ADPLL. The

function of DCO is to generate an oscillator signal whose frequency is determined

by digital control code. It is more flexible and more robust than voltage controlled

oscillator (VCO) in the conventional charge pump PLL. Frequency tuning range,

frequency resolution, phase noise performance and jitter performance are important

characteristics in DCO design. Traditionally, there are two main kinds of DCOs, ring

oscillator and LC-tank DCO. Compared to ring oscillator [55-58], LC-tank DCO has

superior phase noise performance [72-73]. Therefore, LC-tank DCO is more suitable

for wireless communication applications. In order to obtain fine tuning resolution, a

main technique in LC-tank DCO design is adopting varactor array to tune capacitance

loading as shown in Fig. 2.2 [1-2].

In LC-tank DCO design, the ratio of the maximum output frequency to the min-
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Figure 2.2: LC tank DCO with varactor array.

imum output frequency is:

Rf = fmax
fmin

=
1

2π
√
LCmin
1

2π
√
LCmax

=
√
Cmax
Cmin

(2.1)

The frequency tuning range is:

TRf = fmax − fmin
fmax+fmin

2
× 100% = 2Rffmin − fmin

Rffmin + fmin
× 100% = 2Rf − 1

Rf + 1 × 100% (2.2)

Practically, the varactor has limited tuning range. For example, the varactor tuning

range is around 5 in IBM 8rf technology. The minimum capacitance of varactor and

MOSFETs’ parasitic capacitances can not be ignored. So, there is a trade off between

the maximum output frequency and the operating frequency range. The increasing

of the operating frequency range by adding more varactors will lower the maximum
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frequency.

The single LC resonator has limited frequency tuning range due to the limited

varactor tuning range. The frequency tuning ranges of single LC resonator DCOs in

reference [10, 18-22] are less than 30%. Recently, there are some researches focused on

increasing the operating frequency range of LC-tank DCO. In reference [1], authors

present a tunable active inductor to obtain a wide frequency coverage. However, the

active inductor usually doesn’t result in low phase noise performance. In reference [2],

authors present a dual-mode LC-tank oscillator, where the frequency ranging from

3.14GHz to 6.44GHz is achieved from the core LC-tank oscillator? while the lower

frequency band, from 0.25MHz to 3.22GHz, is achieved by a frequency divider chain.

Although such design can achieve a wide frequency range, it is not power efficient.

In [23], a switched inductor LC oscillator has been proposed to increase frequency

tuning capability. However, switch devices employed in the LC-tank degrade the

phase noise performance. In addition, even though large size switches can be utilized

to reduce their resistive loss, the DCO frequency tuning range will be decreased due

to their large parasitic capacitances. In reference [24], authors present a triple-mode

oscillator using three coupled inductors. Each inductor has vertical dimensions to

save chip area. However, vertical dimensions result in extra resistance loss and the

quality factor for inductors is degraded [2].

In this research, we extend our previous research of quad-mode LC-tank DCO

and propose a multi-mode LC-tank DCO. The multi-mode LC-tank DCO has five

inductors and three varactor banks. Six different resonators are obtained to increase

the frequency tuning range. The proposed DCO covers GSM, UMTS, WiMAX, blue-

tooth and Wi-Fi frequency bands, whose frequency tuning range, channel bandwidth
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and phase noise performance requirements are listed in Table 2.2. Then we apply the

proposed DCO in the ADPLL for muilti-band wireless communication application.

In this section, we first review the mathematical analysis and circuit topology of the

quad-mode LC-tank DCO. Then, we present the multi-mode LC-tank DCO which has

wide output frequency tuning range. At last, we provide the detailed circuit topology

and simulation results by using Cadence Spectre simulator and IBM 0.13µm CMOS

process design kit (PDK).

Table 2.2: Output frequency and phase noise performance requirements of multi-band DCO.

Standard Frequency range Channel Phase noise requirements
GSM 880MHz-960MHz 4MHz -105dBc/Hz@1MHz
UMTS 1.92GHz-2.17GHz 4MHz -100dBc/Hz@5MHz
WiMAX 2.3GHz-2.7GHz 20MHz -100dBc/Hz@1MHz

3.3GHz-3.8GHz 20MHz -105dBc/Hz@1MHz
Bluetooth 2.4GHz-2.48GHz 20MHz -109dBc/Hz@1MHz
Wi-Fi 2.412GHz-2.472GHz 20MHz -102dBc/Hz@1MHz

5.15GHz-5.35GHz 20MHz -102dBc/Hz@1MHz
5.65GHz-5.85GHz 20MHz -102dBc/Hz@1MHz

2.2.1 Quad-mode DCO Design Review

In our previous work, a quad-mode DCO is presented in reference [25]. The DCO

employs three inductors and two varactor arrays (V ar1, V ar2 ) as shown in Fig. 2.3.

By alternatively turning on two pairs of switches SW1N and SW1P , or SW2N and

SW2P , the circuit can be converted into two different structures as shown in Fig.

2.3 (b) and (c), respectively. In structure-I, L2, V ar2 branch features capacitive or

inductive through V ar2 tuning. In structure-II, L1, V ar1 shunt shows capacitive or

inductive by setting V ar1 values. Thus, there are two different modes in each structure
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producing two different frequency bands. Combining these two structures and four

operation modes, the output operating frequency range covers GPS, bluetooth, Wi-Fi

802.11a/b/g frequency bands. Moveover, as the DCO eliminates the need of switches

in the LC-tank, the resistive loss and phase noise effects are greatly alleviated.

Figure 2.3: DCO models for (a) Quad-mode DCO; (b) Structure-I, (c) Structure-II.

The DCO structure-I model is shown in Fig. 2.3 (b) when SW1 (SW1N and

SW1P ) is off and SW2 (SW2N and SW2P ) is on. Assuming the capacitances of two

varactors V ar1 and V ar2 are Cv1 and Cv2 respectively. The corresponding tank

resonant frequency is fosc. The resonant frequency fs for series connected L1 and

V ar1 sub-branch is:

fs = 1
2π
√
L1Cv1

(2.3)

By tuning the varactor V ar2, fosc can be made lower than or higher than the DCO
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output frequency fs respectively. The L2, V ar2 branch is inductive when fosc > fs

(Mode-I). The equivalent inductance is:

L′2 = 2L2 +
1

jωoscCv2

jωosc
= 2L2 −

1
4π2f 2

oscCv2
(2.4)

where ωosc is DCO radial frequency. In mode-I, the DCO output frequency fosc equals:

fosc1 = 1
2π

√
(L1||L′2) · Cv1

(2.5)

The L2, V ar2 branch is capacitive when fosc < fs (Mode-II). The equivalent

capacitance is:

C ′2 = 1/jωosc
(2jωoscL2 + 1

jωoscCv2
) = Cv2

1− 8π2f 2
oscL2Cv2

(2.6)

In this mode, the DCO output frequency fosc is:

fosc2 = 1
2π

√
L1 · (Cv1 + C ′2)

(2.7)

By manipulating equations (2.5) and (2.7), equations (2.8) and (2.9) can be ob-

tained, which characterize the DCO output frequency in each mode. Apparent to see

that the DCO can produce higher output frequency in mode-I than in mode-II.

fosc1,(3) =

√√√√L1Cv1 + L1Cv2 + 2L2Cv2 +
√

(L1Cv1 + L1Cv2 + 2L2Cv2)2 − 8L1L2Cv1Cv2

16π2L1L2Cv1Cv2

(2.8)

18



fosc2,(4) =

√√√√L1Cv1 + L1Cv2 + 2L2Cv2 −
√

(L1Cv1 + L1Cv2 + 2L2Cv2)2 − 8L1L2Cv1Cv2

16π2L1L2Cv1Cv2

(2.9)

Fig. 2.4 shows DCO output frequency in mode-I and mode-II when Cvar1 is

changed from 0.5pF to 2.5pF . Other circuit parameters are: L1 = 2.5nH; L2 =

1.25nH; Cvar2 equals 5pF in mode-I, and 0.5pF in mode-II. From Fig. 2.4, it can

be observed that two different frequency bands are produced in these two operating

modes. In mode-I, the DCO frequency band spans from 3.5GHz to 6.5GHz, while in

mode-II, the DCO frequency band spans from 1.8GHz to 2.8GHz.

Figure 2.4: DCO output frequency fosc (a) Mode-I; (b) Mode-II.

The DCO structure-II model is shown in Fig. 2.3 (c) when SW1 is on and SW2

is off. L2 and V ar2 sub-branch resonant frequency equals:

f ′s = 1
2π
√

2L2Cvar2
(2.10)
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By tuning the capacitance of V ar1, f ′s can be made lower than or higher than the

DCO output frequency fosc respectively. L1 and V ar1 branch impedance is capacitive

when fosc > f ′s (Mode-III). The equivalent capacitance is:

C ′1 = 1/jωosc
jωoscL1|| 1

jωoscCv1

= Cv1 −
1

4π2f 2
oscL1

(2.11)

The resulting DCO output frequency fosc is:

fosc3 = 1
2π

√
(2L2 − L1

4π2f2
oscL1Cv1−1) · Cv2

(2.12)

L1 and V ar1 branch impedance becomes inductive when fosc < f ′s through V ar1

tuning. The equivalent inductance is:

L′1 =
jωoscL1|| 1

jωoscCv1

jωosc
= L1

1− 4π2f 2
oscL1Cv1

(2.13)

The corresponding DCO output frequency is:

fosc4 = 1
2π

√
(2L2 + L1

1−4π2f2
oscL1Cv1

) · Cv2
(2.14)

By manipulating equations (2.13) and (2.14), the same equations (2.8) and (2.9) are

obtained, which imply that the DCO output frequency is higher in mode-III than in

mode-IV.

Fig. 2.5 shows the DCO output frequency in mode-III and mode-IV when Cvar2

is changed from 0.5pF to 2.5pF . Other circuit parameters are L1 = 2.5nH, L2 =

1.25nH, Cvar1 equals 2.5pF in mode-III and 0.5pF in mode-IV. As shown in Fig. 2.5,
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in mode-III, when Cvar2 is tuned from 0.5pF to 2.5pF , the DCO output frequency is

produced from 4.5GHz to 5.5GHz, while in mode-IV, the frequency is from 1.5GHz

to 3GHz.

Figure 2.5: DCO output frequency fosc (a) Mode-III; (b) Mode-IV.

The DCO output frequency and the frequency tuning range in each mode are also

dependent on inductor ratio RL = L2/L1. Fig. 2.6 shows DCO output frequencies

versus different RL in each mode by applying different L2 values. The DCO output

frequency is decreased with the raising of RL value in all operation modes. In mode-II

and mode-III, the DCO output frequency tuning range is reduced with the increasing

of RL value. From Fig. 2.6, when RL = 0.5, the DCO output frequency from

3.5GHz-6.5GHz, 1.8GHz-2.8GHz, 4.5GHz-5.5GHz and 1.5GHz-3GHz can be obtained

in mode-I, II, III and IV, respectively.

The quad-mode DCO circuit is implemented and simulated in IBM 0.13µm CMOS

technology. The simulation tool is Cadence SpectreRF. The circuit operates under a
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1.5V supply voltage.

Fig. 2.7 shows the detailed schematic of the proposed multi-band DCO. Circuit

parameters are: L1 = 2.5nH, L2 = 1.25nH, V ar1 is tuned from 0.4pF -2pF and

V ar2 tuning range is 0.66pF -3pF . Transistors’ sizes are listed in Table. 2.3. The

structure selection is achieved by controlling power supply switches SW1 and SW2.

The structure-I is utilized to generate higher frequency that covers Wi-Fi 802.11a

frequency band, whose bandwidth is 200MHz spanning from 5.15GHz to 5.35GHz

and 5.65GHz to 5.85GHz. To meet such requirement, V ar1 consists of a 4-bit coarse

tuning and an 11-bit fine tuning including a 5-bit digital to analog converter (DAC)

controlled tuning. The coarse tuning varactor value is 0.38pF -1.85pF , which makes

coarse tuning resolution to be 200MHz per step when output frequency is in 5GHz−

6GHz range. The fine tuning varactor value is 60fF -180fF results in 120KHz

frequency resolution in higher frequency band. The structure-II is applied to generate

lower frequency that covers GPS, bluetooth and Wi-Fi 802.11b and Wi-Fi 802.11g,

whose frequency range is from 1.56GHz to 2.48GHz. The maximum bandwidth

among those standards is 80MHz. Therefore, V ar2 is configured with a 5-bit coarse

tuning and an 11-bit fine tuning including a 5-bit DAC controlled tuning. The coarse

tuning varactor value is 0.66pF -3pF , which makes coarse tuning resolution to be

25MHz. The fine tuning varactor value is 60fF -180fF which produces 15KHz

resolution in lower frequency band.

Fig. 2.8 shows the transient signal of the DCO output at 5.6GHz (Mode-I) and

2.4GHz (Mode-II). Fig. 2.9 shows the output frequency with the control code and

phase noise performance. Circuit parameters, output frequency tuning range, DCO

gain KDCO and phase noise performances of each mode are summarized in Table. 2.3.
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Table 2.3: Proposed DCO circuit parameters.

L1/L2 Var. Mode Freq. Phase Noise Q KDCO

pF GHz dBc/Hz@1MHz Hz
V ar1 I 4.3-6.24 -112@5.6GHz 3.3 120K

2.5nH/ =0.4-2 II 2.21-2.56 -117@2.4GHz 2.4 35K
1.25nH V ar2 III 4.91-5.48 -114@5GHz 6.2 50K

0.66-3 IV 1.49-2.52 -124@1.5GHz 8.1 15K
MOS. P1/P2/N3/N4: 100µm/0.13µm;
(W/L) P3/P4/P5/P6: 70µm/0.13µm;

N1/N2: 40µm/0.13µm; N5/N6: 30µm/0.13µm

FOMT is calculated to evaluate frequency tuning range along with phase noise

[26].

FOMT = L(foffset)− 20log(fosc · FTR10foffset
) + 10log( P

1mW ) (2.15)

where L(foffset) is phase noise at offset frequency foffset. P is power consumption.

FTR is frequency tuning range in percentage. Table. 2.4 summarizes the comparison

against other published wideband VCOs/DCOs. In addition, the simulation shows

that the DCO power consumption is within the range from 7.6 mW to 11.5 mW.

Table 2.4: Comparison between wideband VCOs/DCOs

Ref. Tech. Power Phase Noise DCO Freq. Range FOMT

NO. µm mW dBc/Hz@1MHz GHz % dBc/Hz
[1] 0.18 6-28 -102@2.9GHz 0.5-3 143 -180
[2] 0.18 7.1-16.3 -120@4.4GHz 3.14-6.44 69 -197
[24] 0.13 4.4-9.4 -114@5.6GHz 1.3-6 128 -201
[27] 0.18 4.6-6 -132@1.5GHz 2.4-2.52 4.9 -187

-125@5.0GHz 4.65-5.12 9.6 -191
This 0.13 7.6-11.5 -124@1.5GHz 1.49-2.56 53 -197
work -112@5.6GHz 4.3-6.24 37 -187
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Figure 2.6: Frequency output under different L2 to L1 ratio. L1 = 2.5nH; L2 =
0.625nH; 1.25nH; 2.5nH. (a) Mode-I, (b) Mode-II, (c) Mode-III, (d)Mode-IV.
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Figure 2.7: Detailed schematic of quad-mode DCO.
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Figure 2.8: Transient signal of DCO output, (a) 5.6GHz; (b) 2.4GHz.

Figure 2.9: (a) Output frequency with control code in Mode-I, (b) Phase noise at frequency
5.6GHz and 2.4GHz.
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2.2.2 Proposed Multi-mode DCO Design

In order to further increase the DCO frequency tuning range, we employ five in-

ductors and three varactor arrays to achieve the multi-mode DCO to cover more

frequency bands. As shown in Fig. 2.10, by alternatively turning on three pairs of

switches SW1N and SW1P , or SW2N and SW2P , or SW3N and SW3P the circuit can

be converted into three different structures as shown in Fig. 2.10 (b), (c) and (d)

respectively.

Figure 2.10: DCO models for (a) Multi-mode DCO; (b) Structure-I, (c) Structure-II, (d)
Structure-III
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Structure-I

The DCO structure-I model is shown in Fig. 2.10 (b) when SW1 is on and SW2,

SW3 are off. Assuming the capacitances of varactors V ar1, V ar2 and V ar3 are Cv1,

Cv2 and Cv3 respectively. The corresponding tank resonant frequency is fosc. The

impedance I1 for complex connected L2, L3, V ar2 and V ar3 sub-branch is:

I1 = 2jωL2 + 1
jωCv2

||(2jωL3 + 1
jωCv3

) (2.16)

The resonant frequency fsI for L1 and V ar1 is:

fsI = 1/(2π
√
L1Cv1) (2.17)

By tuning the varactor V ar2, fosc can be made lower than or higher than frequency

fs. I1 is inductive when fosc > fsI (Mode-I). The equivalent inductance is:

L′I1 = 2L2 + 1− 2ω2
oscCv3L3

2ω4
oscCv2Cv3L3 − ω2

osc(Cv2 + Cv3) (2.18)

where ωosc = 2πfosc is DCO radial frequency. In mode-I, the DCO output frequency

foscI equals:

foscI = 1/[2π
√

(L1||L′I1) · Cv1] (2.19)

By manipulating equations (2.18) and (2.19), the Mode-I DCO output frequency
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ωoscI = 2πfoscI can be obtained.

4Cv1Cv2Cv3L1L2L3ω
6
oscI − 2(Cv1Cv2L1L2 + Cv1Cv3L1L2 + Cv1Cv3L1L3

+ Cv2Cv3L1L3 + 2Cv2Cv3L2L3)ω4
oscI + (Cv1L1 + Cv2L1 + Cv3L1 + 2Cv2L2

+ 2Cv3L2 + 2Cv3L3)ω2
oscI − 1 = 0

(2.20)

When fosc ≤ fsI (Mode-II), I1 is capacitive.The equivalent capacitance is:

C ′I1 = Cv2 + Cv3 − ω2
oscCv2Cv3L3

2ω2
oscL2(ω2

oscCv2Cv3L3 − Cv2 − Cv3) (2.21)

In mode-II, the DCO output frequency foscII equals:

foscII = 1/[2π
√

(L1 · (Cv1 + C ′I1)] (2.22)

By manipulating equations (2.21) and (2.22), the Mode-II DCO output frequency

ωoscII = 2πfoscII equals:

2Cv1Cv2Cv3L1L2L3ω
6
oscII − 2(Cv1Cv2L1L2 + Cv1Cv3L1L2 + Cv2Cv3L1L3

+ Cv2Cv3L2L3)ω4
oscII + (Cv2L1 + Cv3L1 + 2Cv2L2 + 2Cv3L2)ω2

oscII = 0
(2.23)

Structure-II

The DCO structure-II model is shown in Fig. 2.10 (c) when SW2 is on and SW1,

SW3 are off. The impedance I2 for series connected L3 and V ar3 sub-branch is:

I2 = 2jωL3 + 1
jωCv3

(2.24)
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The equivalent inductor of L2, L1 and V ar1 is

L′2 = 2L2 + L1

1− ω2L1Cv1
(2.25)

The resonant frequency fsII for L′2 and V ar2 is:

fsII = 1/(2π
√
L′2Cv2) (2.26)

By tuning the varactor V ar3, fosc can be made lower than or higher than frequency

fsII . I2 is inductive when fosc > fsII (Mode-III). The equivalent inductance is:

L′I2 = 2L3 −
1

ω2Cv3
(2.27)

In mode-III, the DCO output frequency foscIII equals:

foscIII = 1/[2π
√

(L′2||L′I2) · Cv2] (2.28)

By manipulating equations (2.27) and (2.28), the Mode-III DCO output frequency

ωoscIII = 2πfoscIII is:

4Cv1Cv2Cv3L1L2L3ω
6
oscIII − 2(Cv1Cv2L1L2 + Cv1Cv3L1L2 + Cv1Cv3L1L3

+ Cv2Cv3L1L3 + 2Cv2Cv3L2L3)ω4
oscIII + (Cv1L1 + Cv2L1 + Cv3L1 + 2Cv2L2

+ 2Cv3L2 + 2Cv3L3)ω2
oscIII − 1 = 0

(2.29)
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When fosc ≤ fsII (Mode-IV), I2 is capacitive.The equivalent capacitance is:

C ′I2 = Cv3

1− 2ω2Cv3L3
(2.30)

In mode-IV, the DCO output frequency foscIV equals:

foscIV = 1/[2π
√

(L′2 · (Cv2 + C ′I2)] (2.31)

By manipulating equations (2.30) and (2.31), the Mode-IV DCO output frequency

ωoscIV = 2πfoscIV equals:

2Cv1Cv2Cv3L1L2L3ω
6
oscIV − 2(Cv1Cv2L1L2 + Cv1Cv3L1L2 + Cv2Cv3L1L3

+ Cv2Cv3L2L3)ω4
oscIV + (Cv2L1 + Cv3L1 + 2Cv2L2 + 2Cv3L2)ω2

oscIV = 0
(2.32)

Structure-III

The DCO structure-III model is shown in Fig. 2.10 (d) when SW3 is on and SW1,

SW2 are off. The equivalent inductance is:

L′3 = L1 + 2(1− 4π2f 2
oscL1Cv1)L2

(1− 8π2f 2
oscL2Cv2)(1− 4π2f 2

oscL1Cv1)− 4π2f 2
oscL1Cv2

+ 2L3 (2.33)

The DCO output frequency foscV equals:

foscV = 1
2π

√
L′3 · Cv3

(2.34)
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The resulting DCO output frequency foscV is:

foscV = 1

2π
√

[ L1+2(1−4π2f2
oscL1Cv1)L2

(1−8π2f2
oscL2Cv2)(1−4π2f2

oscL1Cv1)−4π2f2
oscL1Cv2

+ 2L3]Cv3

(2.35)

Structure select block

Fig. 2.11 shows the circuit for DCO structure selecting. The 2-bit structure select

code MS<1:0> has four different codes. Once MS<1:0> is "11" or "10", SW1 turns

on, SW2 and SW3 are turned off. While MS<1:0> is "01", SW2 turns on, SW1 and

SW3 are turned off. While MS<1:0> is "00", SW3 turns on, SW1 and SW2 are turn

off. The simplified circuits of inverter and 2-input OR gate are shown in Fig. 2.12.

Figure 2.11: 2-bit DCO structure select circuit

The corresponding detailed transistor level circuits are shown in Fig. 2.13. Detail

transistors’ sizes are listed in Table 2.5

The true table of structure selecting block is shown as Table 2.6.

Varactor array

In the IBM 0.13µm CMOS technology, the minimum size of varactor is 1µm/240nm

(W/L). We use varactor array as capacitance tuning block. We apply 5-bit coarse
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Figure 2.12: Simplified circuits of (a) Inverter (b) 2-input OR gate.

Table 2.5: Transistors’ sizes in structure selector

W L
Inverter T0 PMOS 10µm 130nm
INV T1 NMOS 5µm 130nm

2-input OR gate T0-T1 NMOS 5µm 130nm
OR2 T2-T3 PMOS 10µm 130nm

tuning blocks in both structure-I and structure-II and a 6-bit coarse tuning block in

structure-III. For fine tune, we have a 6-bit fine tuning block. The simplified circuit of

5-bit coarse tune, 6-bit coarse tune and 6-bit fine tune are shown in Fig. 2.14 Detailed

transistor level circuits of varactor arrays are shown in Fig. 2.15. The varactors’ sizes

are listed in Table 2.7.

As shown in Table 2.7, the capacitance tuning ranges of 5-bit coarse tuning, 6-

bit coarse tuning and 6-bit fine tuning are 0.86pF ∼ 5.48pF , 1.73pF ∼ 11.1pF and

29fF ∼ 173fF , respectively. The 3-bit fine tune controlled by the third order delta
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Figure 2.13: Transistor level circuits of (a) Inverter (b) 2-input OR gate.

Table 2.6: DCO structure select true table

Structure select code Structure select switch Frequency
MS<1> MS<0> S1P S1N S2P S2N S3P S3N (GHz)

1 1 0 1 1 0 1 0 5.0-6.0
1 0 0 1 1 0 1 0 3.2-4.0
0 1 1 0 0 1 1 0 1.9-2.8
0 0 1 0 1 0 0 1 0.8-1.1

sigma modulator is shown in Fig.2.16. The transistors’ sizes and capacitances are

listed in Table 2.8.

Fig. 2.17 shows a 3:1 multiplexer to chose the DCO output.
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Figure 2.14: Simplified circuits of (a) 5-bit coarse tune (b) 6-bit coarse tune (c) 6-bit fine
tune.

Figure 2.15: Transistor level circuits of (a) 5-bit coarse tune (b) 6-bit coarse tune (c) 6-bit
fine tune.
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Table 2.7: Varactors’ sizes in varactor banks

W L No. Min. Max. Min.(1.2V) Max.(0V)
of Cap. Datasheet Cap. Measured

(µm) (µm) Gates (fF) (fF) (fF) (fF)
5-bit C0-C1 16 1 1 37.7 176.2 27.5 176.6
Coarse C2-C3 16 1 2 75.3 352.3 57.0 353.9
Tune C4-C5 16 1 4 150.7 704.6 112.4 708.2

C6-C7 16 1 8 301.3 1409 237.5 1415
C8-C9 16 1 16 602.7 2819 426.5 2829

6-bit C0-C1 16 1 1 37.7 176.2 27.5 176.6
Coarse C2-C3 16 1 2 75.3 352.3 57.0 353.9
Tune C4-C5 16 1 4 150.7 704.6 112.4 708.2

C6-C7 16 1 8 301.3 1409 237.5 1415
C8-C9 16 1 16 602.7 2819 426.5 2829
C10-C11 16 1 32 1205 5637 869 5657

6-bit C0-C1 1 0.24 1 0.89 2.70 0.77 2.69
Fine C2-C3 1 0.5 1 1.49 5.52 1.21 5.53
Tune C4-C5 1 1 1 2.65 10.95 2.08 10.98

C6-C7 2 1 1 4.99 21.96 3.75 22.08
C8-C9 4 1 1 9.66 43.99 7.34 44.24
C10-C11 8 1 1 19.0 88.0 13.8 88.2

Figure 2.16: Transistor level circuits of the 3-bit fine tune.
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Table 2.8: Transistors’ sizes in 3-bit fine tune

W L Min. Cap. (1.2V) Max. Cap. (0V)
(nm) (nm) (fF) (fF)

3-bit T0-T1 1200 130 0.85 1.53
Fine tune T2-T3 700 130 0.49 0.89

T4-T5 400 130 0.27 0.50

Figure 2.17: 3:1 multiplexer for DCO output selection.
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2.2.3 Experimental Results

The proposed multi-mode DCO is implemented and simulated in the IBM 0.13µm

CMOS technology. The simulation tool is Cadence SpectreRF. The circuit operates

under a 1.2V supply voltage. Fig. 2.18 shows the detailed schematic of the proposed

multi-band DCO.

Figure 2.18: Detailed schematic of proposed DCO.
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Circuit parameters including inductances, varactor arrays’ capacitances and tran-

sistors’ sizes are listed in Table. 2.9

Table 2.9: Proposed LC tank DCO parameters

Str. L Varactor WN WP WNS WPS
(nH) (pF) (W/L) (W/L) (W/L) (W/L)

(µm/µm) (µm/µm) (µm/µm) (µm/µm)
1 1.6 1.1-5.4 WN1-2: 75/0.13 WP1-2:75/0.13 50/0.13 100/0.13
2 1.4 1.2-5.6 WN3-4: 75/0.13 WP3-4:75/0.13 75/0.13 100/0.13
3 3.4 2.4-11 WN5-6: 35/0.13 WP5-6:50/0.13 35/0.13 100/0.13

The detailed transistor level circuit schematic of the proposed DCO is shown in

Fig. 2.19.

The structure selection is achieved by controlling power supply switches SW1,

SW2 and SW3. The mode-I of structure-I is utilized to generate higher frequency

that covers Wi-Fi 802.11a frequency band, whose bandwidth is 200MHz spanning

from 5.15GHz to 5.35GHz and 5.65GHz to 5.85GHz. To meet such requirement,

V ar1 consists of a 5-bit coarse tuning and V ar2 consists of a 5-bit coarse tuning

and an 11-bit fine tuning including the third order delta sigma modulator (5-bit

input/3-bit output) controlled tuning. The coarse tuning resolution is 35MHz per

step when output frequency is in 5GHz − 6GHz. The fine tuning results in 30KHz

frequency resolution in higher frequency band. Fig. 2.20 shows the 5.6GHz DCO

output transient signal and its phase noise performance. Fig. 2.21 shows the phase

noise performance at 1MHz offset of DCO in mode-I. The worst case of phase noise

at 1MHz offset is −106.6dBc/Hz when the output frequency is 6GHz.

The mode-II of structure-I generates frequency that covers WiMAX frequency

band, whose bandwidth is 50MHz spanning from 3.3GHz to 3.8GHz. The coarse
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Figure 2.19: Detailed transistor level circuit of proposed DCO in Cadence.

tuning resolution is 30MHz per step when output frequency is in 3.2GHz-4GHz.

The fine tuning results in 15KHz frequency resolution in such frequency band. Fig.

2.22 shows the 3.6GHz DCO output transient signal and its phase noise performance.

Fig. 2.23 shows the phase noise performance at 1MHz offset of DCO in mode-II.

The worst case of phase noise at 1MHz offset is −109.6dBc/Hz when the output

frequency is 4GHz.

The structure-II is applied to generate frequency that covers UMTS, WiMAX

2.3GHz − 2.7GHz, bluetooth, Wi-Fi 802.11b and Wi-Fi 802.11g, whose frequency

range is from 1.92GHz to 2.7GHz. The maximum bandwidth among those stan-

dards is 80MHz. Therefore, V ar2 is configured with a 5-bit and an 11-bit fine tuning

including the third order delta sigma modulator controlled tuning. The output fre-
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Figure 2.20: Transient signal and phase noise of DCO output at 5.6GHz.

quency range is 1.9GHz − 2.8GHz. The coarse tuning resolution is 30MHz. The

fine tuning resolution is 15KHz. Fig. 2.24 shows the 2.4GHz DCO output transient

signal and its phase noise performance. Fig. 2.25 shows the phase noise performance

at 1MHz offset of DCO in structure-II. The worst case of phase noise at 1MHz offset

is −110.3dBc/Hz when the output frequency is 2.8GHz.

The structure-III is applied to generate lower frequency that covers GSM, whose

frequency range is from 880MHz to 960MHz. The bandwidth is 4MHz. Therefore,

V ar3 is configured with 6-bit. The fine tuning is accomplished by V ar2. The coarse

tuning resolution is 5MHz. The fine tuning resolution is 3KHz. Fig. 2.26 shows

925MHz DCO output transient signal and its phase noise performance. Fig. 2.27

shows the phase noise performance at 1MHz offset of DCO in structure-III. The worst

case of phase noise at 1MHz offset is −118.5dBc/Hz when the output frequency is

1.1GHz.

Since the DCO output frequency is varied according to the digital control code.

The linear characteristic of digital control code to frequency of the DCO is essential

for the ADPLL. The linearity of the proposed DCO is presented in Figure.
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Figure 2.21: Phase noise at 1MHz offset of DCO output at 5-6GHz.

The power consumption is very important in VLSI systems. In the ADPLL, the

DCO power consumption is one of the most important issues. The simulation shows

that the proposed DCO power consumption ranges from 8.2 mW to 12.3 mW. This is

a reasonable power consumption for the multi-band ADPLL. In the worst case: 12.3

mW when DCO has the highest frequency (6GHz) and the best case: 8.2 mW when

DCO has the lowest frequency (850MHz). The proposed DCO is more power efficient

than the conventional wide band DCOs in many research papers.
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Figure 2.22: Transient signal and phase noise of DCO output at 3.6GHz.

Figure 2.23: Phase noise at 1MHz offset of DCO output at 3.2-4GHz.
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Figure 2.24: Transient signal and phase noise of DCO output at 2.4GHz.

Figure 2.25: Phase noise at 1MHz offset of DCO output at 1.9-2.8GHz.
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Figure 2.26: Transient signal and phase noise of DCO output at 925MHz.

Figure 2.27: Phase noise at 1MHz offset of DCO output at 0.8-1.1GHz.
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2.3 Time to Digital Converter based Phase

Frequency Detector Design

A phase frequency detector (PFD) is a function block which compares the phase of

reference signal and feedback signal. Fig. 2.28 shows a traditional implementation

of PFD. A PFD is basically consists of two D-type flip flops. It has two outputs

including UP and DOWN signals. One Q output enables the UP signal, and the

other Q output enables the DOWN signal.

Figure 2.28: PFD with 2-D flip flops.

The minimum pulse-width of the PFD output called dead zone as shown in Fig.

2.29 is the most important problem of PFD. In order to mitigate the dead zone

problem, the reset signal should be designed as the trigger pulses with a constant

width at the PFD outputs. However, the PFD has the blind zone during the reset

process, where the PFD can not work any transitions on the input signals. If the
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phase difference is in the blind zone during the frequency acquisition, the PFD delivers

wrong phase difference information.

Figure 2.29: PFD dead zone.

Due to the existence of blind zone, the chance of cycle for comparisons the phase

and frequency differences and PLL frequency acquisition time are increased. In order

to reduce the blind zone, an extra delay cell is added in most designs. Our approach

reduces the blind zone close to the theoretical limit imposed by PVT variations.

Fig. 2.30 shows the phase frequency detector (PFD) employed in our design. The

PFD is composed of four inverters, four 2-input NAND gates, three 3-input NAND

gates and one 4-input NAND gate.

The simplified circuits and transistor level circuits of 2-input , 3-input, and 4-

input NAND gates are shown in following. The detailed transistors’ sizes are listed

in Table. 2.10.
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Figure 2.30: Gate level phase frequency detector.

Table 2.10: Transistors’ sizes in NAND gates

W L
2-input T0-T1 NMOS 10µm 130nm

NAND gate T2-T3 PMOS 10µm 130nm
3-input T0-T2 NMOS 15µm 130nm

NAND gate T3-T5 PMOS 10µm 130nm
4-input T0-T3 NMOS 20µm 130nm

NAND gate T4-T7 PMOS 10µm 130nm

When the phase of reference signal equals the phase of feedback signal, the up

(UP) and down (DN) signals are zero as shown in Fig. 2.33. While the reference

leads feedback signal, UP signal is high and DN signal is low as shown in Fig. 2.34.

While the reference lags feedback signal, UP signal is low and DN signal is high as

shown in Fig. 2.35.
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Figure 2.31: The simplified circuits of NAND gate (a) 2-input (b) 3-input, (c) 4-input.

Figure 2.32: The transistor level circuits of NAND gate (a) 2-input (b) 3-input, (c) 4-input.
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Figure 2.33: PFD simulation results when phase of reference and feedback signal is same.

Figure 2.34: PFD simulation results when reference leads feedback signal.
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Figure 2.35: PFD simulation results when reference lags feedback signal.
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2.3.1 Basic delay line based TDC

Fig. 2.36 shows an implementation of the basic delay-line based TDC.

Figure 2.36: Implementation of a basic delay-line based TDC.

Fig. 2.37 shows a 3-bit inverter chain based TDC schematic by using IBM 8rf

technology.

Figure 2.37: Implementation of 3 bit inverter based TDC.

It is hard to further reduce the delay value in inverter based delay cell. The TDC

resolution is 400ps
23 = 50ps. Fig. 2.38 shows the linearity of such 3-bit inverter chain

based TDC.
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Figure 2.38: The linearity of 3 bit inverter based TDC.

2.3.2 Vernier TDC

Fig. 2.39 shows a vernier delay line TDC. The basic concept of the vernier delay

chain technique is that the timing resolution is determined by the difference between

two propagation delay values. A vernier delay chain structure consists of a pair of

delay lines with a D-flip flop at each corresponding pair of delay cell. A stop signal

propagates through the faster delay chain, while the start signal propagates through

the other chain, clocking the flip flop at each stage. The difference between the stop

and start propagation delays calculates the timing between adjacent stages.

The dynamic range of the TDC based on vernier delay chain is limited to

tDR = n · (τ1 − τ2) (2.36)
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Figure 2.39: Implementation of a vernier TDC.

where n is the number of delay cells of the delay line.

Fig. 2.40 shows a 3-bit vernier delay line TDC schematic by using IBM 8rf tech-

nology. The resolution equals 4ps and the dynamic range is 28ps. Fig. 2.41 shows its

Figure 2.40: Implementation of a 3 bit vernier TDC.

linearity.

The variation is an important problem of the performance and behavior of TDCs
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Figure 2.41: The linearity of 3 bit vernier delay chain TDC.

due to the process variation and environmental noise. In the TDC, the gate delays

in the delay cell are changed by variations. Therefore, the variation of TDC should

be considered.

2.3.3 Proposed Time to Digital Converter based

Phase Frequency Detector Design

In order to increase the dynamic range of vernier TDC. A 6-bit vernier TDC is

presented as shown in Fig. 2.42. It is composed of 63 pairs of delay cells and 63

D-flip flops.

The Fig. 2.43 shows the detailed TDC schematic of vernier TDC and fat tree

encoder [74]. The resolution equals 4ps and the dynamic range is 252ps. The linearity
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Figure 2.42: Implementation of a 6 bit vernier TDC.

of proposed vernier TDC is shown in Fig. 2.44
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Figure 2.43: The detailed TDC schematic of vernier TDC and fat tree encoder.

Figure 2.44: The linearity of 6 bit vernier TDC.
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2.4 Digital Loop Filter

The traditional loop filter (analog loop filter) is consisted of resistors and capacitors.

It has large size area and its output is quite noisy. In this design, we replace the bulky

passive loop filter by a more flexible digital loop filter. As a basic building block in

digital systems, digital loop filter has advantages including higher programmability,

less size area and lower power consumption. Digital filter frequency response depends

on the value of its coefficients. The values of the coefficients can be obtained based

on the desired frequency response or phase noise, locking time requirements [12].

Typically, digital filters are categorized as finite impulse response (FIR) filters and

infinite impulse response (IIR) filters.

2.4.1 FIR Filter

A finite impulse response (FIR) filter whose impulse response is of finite duration.

Fig. 2.45 shows the basic architecture of FIR filter. For a causal discrete-time FIR

Figure 2.45: The basic architecture of FIR filter.

filter of order N , each value of the output is a summation of the most recent input
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values:

y[n] = a0x[n] + a1x[n− 1] + · · ·+ aNx[n−N ] = ΣN
i=0ai · x[n− i] (2.37)

where x[n] is the input signal, y[n] is the output signal, N is filter order and ai is the

value of the impulse response at the corresponding ith instant for 0 ≤ i ≤ N of an

Nth order FIR. The transform function of a typical FIR filter can be expressed as

a polynomial of z−1. All the poles of FIR transfer function are located at origins so

that FIR filter always stable. In FIR filter, the output depends only on the previous

inputs.

The advantages of FIR filter including linear phase response, simply design, bounded

input bounded output (BIBO) stability and low sensitivity to filter coefficient quan-

tization errors.

2.4.2 IIR Filter

IIR filters are digital filters with infinite impulse response. IIR filters have the feed-

back and are known as recursive digital filters. Fig. 2.46 shows the basic architecture

of IIR filter. IIR filters are often described and implemented as following:

y[n] = 1
a0

(b0x[n]+b1x[n−1]+ · · ·+bPx[n−P ]−a1y[n−1]−· · ·−aQy[n−Q]) (2.38)

where P , Q are the filter order of feed forward and feedback, respectively. bi are feed

forward filter coefficients and ai are feedback filter coefficients. The transfer function
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Figure 2.46: The basic architecture of IIR filter.

of IIR filter is generally expressed as following equation:

H(z) = Y (z)
X(z) = ΣP

i=0biz
−i

1 + ΣQ
j=1ajz

−j
(2.39)

where a0 equals 1 in most IIR filter designs.

The main advantage of IIR filters is efficiency in implementation. In order to meet

specifications such as passband, stop band and ripple, IIR filter can have lower order

than FIR filter. It implies that IIR filter occupies less chip area.

2.4.3 Proposed Digital Loop Filter

There are many different digital low pass filters used in different ADPLL designs.

The passive proportional integral (PPI) filter is widely used in the ADPLL. Fig. 2.47

shows the basic architecture of PPI filter. The z-domain transfer function of the PPI
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Figure 2.47: The basic architecture of PPI filter.

filter is:

HDLF (z) = α + β

1− z−1 (2.40)

In ref. [28], the author gives a method to calculate coefficients α and β. For the

selected damping ratio (ζ), natural frequency (ωn), the coefficients α and β are:

α = 1− e−2ζωnTref

GL

(2.41)

β = e−2ζωnTref − 2e−2ζωnTref cos(ωnTref
√

1− ζ2) + 1
GL

(2.42)

where Tref is reference clock period and GL is ADPLL close loop gain. In digital sys-

tem, the limited bit number of coefficient generates the error between the calculated

coefficient value and real coefficient used in digital loop filter. However, the coeffi-

cient noise can be neglected because the accuracy of loop bandwidth is not highly

restricted. Hence, in the approximation method, the DLF coefficients are changed to

simple expression in a binary mode. The approximation method uses a shift register
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instead of a multiplier. The coefficients for both proportional and integral paths are

calculated as α = 2−3 and β = 2−5 by the equations of the relation loop parameters.

The proportional and integral block for proposed DLF are presented in Fig. 2.48 and

Fig. 2.49.

Figure 2.48: The basic architecture of proportional path.

Figure 2.49: The basic architecture of integral path.

Fig. 2.50 shows the detailed schematic of the proposed digital loop filter. The

detailed half adder and full adder circuits are shown in Fig. 2.51 and Fig. 2.52.
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Figure 2.50: The behavior model of proposed digital loop filter.

Figure 2.51: Half adder.

2.5 Fractional Divider with Delta Sigma

Modulator

In modern wireless transceivers operating at radio frequencies, the frequency divider

chain of the PLL frequency synthesizer is one of the most critical function blocks.

The issue of actual implementation of the frequency divider at several GHz is a non

trivial one. Traditionally, different approaches of divider can be used depending on
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Figure 2.52: Full adder.

the PLL output frequency. The simplest way to implement a clock frequency division

is to design a digital counter, with a digital logic resetting the counter after a number

of input clock cycles equal to the division ratio have been counted.

2.5.1 Delta Sigma Modulator

In the North American wireless system, frequency resolution/step size is 30 kHz. In

China, Japan and the Far East it is 25 kHz. In Europe, the system requires a 200

kHz step. In our project, the step size is designed less than 5KHz.

In traditional integer PLL, the frequency resolution FR equals the desired output

frequency, fout, divided by integer divider number NI .

FR = fout
NI

= fref (2.43)
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In such a system, in order to meet frequency resolution requirement, the reference sig-

nal should be 25KHz and divider number NI equals 2000000 when output frequency

is 5GHz. An unavoidable occurrence in such integer PLL synthesis is that frequency

multiplication, raises the signal’s phase noise by 20 log(NI) = 20 log(2000000) =

126dB. It would seem that we could radically reduce the close-in phase noise by

reducing the value of NI but unfortunately the channel spacing of an integer PLL is

dependent on the value of NI . Due to this dependence, the phase detectors typically

operate at a frequency equal to the channel spacing of the communication system.

Compare to integer PLLs, fractional PLLs allow better resolution and performance

by allowing the integer counter to support fractional values. In our design, the ref-

erence clock signal equals 13MHz. The integer part range is 67 ∼ 450 which raises

the signal’s phase noise approximately 36 ∼ 53dB. The bit number of the fractional

part of divider number is 12 which results in the frequency resolution equals

FR = fref
212 = 13MHz

212 ≈ 3.2KHz (2.44)

Delta sigma modulator is widely used in the fractional PLL. Table 2.11 shows

examples of delta sigma modulator in different orders.

Table 2.11: Delta sigma modulator examples in different orders

Modulator order Range Sample divider number sequence
First 0, 1 20, 21
Second -1, 0, 1, 2 19, 20, 21, 22
Third -3, -2, ..., 3, 4 17, 18, 19, 20, 21, 22, 23, 24
Fourth -7, -6, ..., 7, 8 13, ..., 19, 20, 21, 22, ..., 28

In our proposed ADPLL, the second order MASH delta sigma modulator is applied
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in the divider block. The detail of the second order MASH ∆Σ modulator is shown in

Fig. 2.53. The noise caused by delta sigma modulator and fractional spur is analyzed

in Chapter 3.

Figure 2.53: Details of the second order MASH ∆Σ modulator.

The high frequency divider by 2 is composed of a single D-flip flop as shown in

Fig. 2.54. Fig. 2.55 shows the simulation results of divider by 2 signal. The top

Figure 2.54: High frequency divide by 2.

curve is DCO output with frequency equals 6GHz. The middle curve is output after

3:1 multiplexer. The bottom signal is divider by 2 output signal. It is clear that, a

single D-flip flop is applicable for divide by 2 function.
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Figure 2.55: DCO output signal divider by 2.

2.5.2 Proposed Frequency divider with Delta Sigma

Modulator

Since the reference clock is 13MHz, we can calculate the divider value of PLL. Table

2.12 shows the integer part of divider value of each wireless standard in proposed

PLL design.

Fig. 2.60 shows behavior model of proposed programmable fractional divider.

The high frequency divider is a divide-by-2 function block. It is implemented

using a simple D-Flip flop with the negative output fed back to the data input.

Its maximum operating speed will set the maximum frequency that the D-FF can

divide. In order to achieve the maximum possible operating frequency (up to 6GHz
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Table 2.12: Integer part of Divider value in proposed PLL.

Standard Frequency range Divider Number
GSM 880MHz-960MHz 67-74
UMTS 1.92GHz-2.17GHz 147-167
WiMAX 2.3GHz-2.7GHz 176-208

3.3GHz-3.8GHz 253-293(126-147)
Bluetooth 2.4GHz-2.48GHz 184-191

WiFi 2.412GHz-2.472GHz 185-191
5.15GHz-5.35GHz 396-412(198-206)
5.65GHz-5.85GHz 434-450(217-225)

Figure 2.56: Behavior model of proposed programmable divider.

in proposed PLL), it is necessary to select the appropriate implementation for the

D-FF.

Compare to static D-FF, dynamic D-FF provides very high speed of operation.

For the purposes of this high frequency divider, the selected D-FF topology is shown

in Fig. 2.57. The detailed transistors’ sizes are listed in Table .

Fig. 2.58 shows the detailed schematic of frequency divider with the second order

delta sigma modulator. Fig. 2.59 shows the 8-bit counter applied in the proposed
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Figure 2.57: D flip flop implement.

frequency divider.
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Table 2.13: Transistors’ sizes of D flip flop in divide-by-2 block

Transistor Type W/L(µm/µm) Transistor Type W/L(µm/µm)
T0 10/0.13 T6 5/0.13
T1 10/0.13 T7 5/0.13
T2 PMOS 10/0.13 T8 NMOS 10/0.13
T3 10/0.13 T9 5/0.13
T4 10/0.13 T10 5/0.13
T5 NMOS 5/0.13 T11 5/0.13

Figure 2.58: Frequency divider.

Figure 2.59: 8-bit counter.
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2.6 The Proposed Multi-band ADPLL Sim-

ulation Results

In previous sections, we have presented each block of proposed ADPLL. In this section,

we connect each blocks and provide coder, decoder and connection functional blocks

as shown in following. The reference clock signal frequency is 13MHz.

Figure 2.60: Proposed wide band ADPLL.

To further confirm ADPLL behavior, the proposed ADPLL is implemented in

IBM8rf 0.13µm Model with 1.2V supply voltage and simulated using Cadence spec-

tre. The simulation results including frequency response, phase noise performance

and power consumption are presented at the end of this section which proves the

advantages of the proposed ADPLL.

The low pass filter coefficients values are determined by phase noise performance,

locking time and damping ratio, which is analyzed in Chapter 3.5. α = 20 and β = 2−5
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is selected and corresponding bandwidth, damping ratio and locking time values in

different output frequencies are listed in Table. 2.14

Table 2.14: Loop bandwidth and damping ratio

Frequency Bandwidth Damping ratio Locking Time
920MHz 63KHz 0.72 0.6µs
2.4GHz 41KHz 0.99 0.6µs
3.6GHz 54KHz 0.81 0.6µs
5.6GHz 46KHz 0.92 0.6µs

2.6.1 Frequency Response

Fig. 2.61 shows the frequency responses under 1GHz, 2.4GHz, 3.6GHz and 5.6GHz.

The lock-in time is less than 13 cycles of the reference signal, equivalently less than

1µs. When ADPLL is locking, the frequency variation is less than 0.05%.
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Figure 2.61: Frequency response of (a) 1GHz; (b) 2.4GHz; (c) 3.6GHz; (d) 5.6GHz.
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2.6.2 Phase Noise Performance

Phase noise is a specification that characterizes spectral purity. The detailed analysis

of ADPLL phase noise performance and noise characterization are presented in next

chapter. In this section, the phase noise performance of the proposed wide band

ADPLL in each frequency range is analyzed. Fig. 2.62 (a) shows output phase noise

performance projected by the method in Chapter 3. Fig. 2.62 (b) shows the tran-

sistor level simulation result of ADPLL output phase noise when output frequency is

920MHz. The phase noise at 1MHz frequency offset is −117dBc/Hz. The estimated

fractional spur by using equation (3.24) is −99dBc at 10MHz. The simulation re-

sult of fractional spur is −94dBc at 10MHz. When output frequency ranges from

Figure 2.62: ADPLL output phase noise at 920MHz (a) Projected; (b) simulated.

0.8GHz to 1.1GHz, the loop bandwidth is 50KHz. The output phase noise at 1MHz

frequency offset is less than −116dBc/Hz.

Fig. 2.63 (a) shows the projected output phase noise performance when output

frequency is 2.4GHz. Fig. 2.63 (a) shows the transistor level simulation result. The

phase noise at 1MHz frequency offset is −110.2dBc/Hz. The estimated fractional
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spur is −102dBc at 8MHz. The simulation result of fractional spur is −104dBc at

8MHz. When output frequency is from 1.9GHz to 2.8GHz, the loop bandwidth is

50KHz. The output phase noise at 1MHz frequency offset is less than −110dBc/Hz.

Figure 2.63: ADPLL output phase noise at 2.4GHz (a) Projected; (b) simulated.

Fig. 2.64 (a) and (b) show the projected and simulated output phase noise per-

formance when output frequency is 3.6GHz. The phase noise at 1MHz frequency

offset is −110dBc/Hz. The estimated fractional spur is −113dBc at 12MHz. The

simulation result of fractional spur is −115dBc at 12MHz. Once output frequency

is from 3.2GHz to 4GHz, the loop bandwidth is 50KHz. The output phase noise at

1MHz frequency offset is less than −105dBc/Hz.

Fig. 2.65 (a) and (b) show the projected and simulated output phase noise per-

formance when output frequency is 5.6GHz. The phase noise at 1MHz frequency

offset is −105.6dBc/Hz. The estimated fractional spur is −113dBc at 10MHz. The

simulation result of fractional spur is −115dBc at 10MHz. Once output frequency

is from 5GHz to 6GHz, the loop bandwidth is 50KHz. The output phase noise at
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Figure 2.64: ADPLL output phase noise at 3.6GHz (a) Projected; (b) simulated.

1MHz frequency offset is less than −104dBc/Hz.

Figure 2.65: ADPLL output phase noise at 5.6GHz (a) Projected; (b) simulated.

2.6.3 Power Consumption

The power consumption is one of the most important issues for VLSI systems. Here

we list the power consumption of each block and total power consumption of ADPLL
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under different wireless communication standards.

Table 2.15: Multi-band ADPLL power consumption

Standard Frequency PFD LPF DIV DCO Total
Hz mW mW mW mW mW

GSM 1G 0.01 4.8 7.3 8.3 20.4
GMTS 2G 0.01 4.9 8 8.9 21.8
WiMAX 2.4G 0.01 4.9 8.4 9.1 22.4
WiMAX 3.6G 0.01 5.1 8.8 10.3 24.2
Bluetooth 2.4G 0.01 4.9 8.4 9.1 22.4
Wi-Fi 2.45G 0.01 4.9 8.4 9.1 22.4
Wi-Fi 5.7G 0.01 5.3 9.6 12.2 27.1

2.7 Conclusion

In this chapter, we first review quad-mode digitally controlled oscillator based on

switched frequency resonant LC-tank DCO. Then, we extend our previous design

and present a multi-mode digitally controlled LC-tank DCO. Based on the proposed

DCO, a multi-band ADPLL is developed which is able to operate from 800MHz

to 1.1GHz, 1.9GHz to 2.8GHz, 3.2GHz to 4GHz and 5GHz to 6GHz. Next,

we analyze different kinds of time to digital converter and propose a vernier TDC

based phase frequency detector. Then, PLL function blocks including digital low

pass filter and delta sigma modulator fractional frequency divider are developed.

Finally, the proposed wide band ADPLL is built and simulated in Cadence SpectreRF

simulation program. The results show that the proposed ADPLL is applicable for

wireless communication including GSM, UMTS, GPS, WiMAX and Wi-Fi.
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Chapter 3

ADPLL Design Parameters Deter-

minations through Noise Modeling

Phase noise is one of the key characteristics of ADPLL frequency synthesizer. In the

literature, there are numerous studies analyzing analog PLLs [29-34], [68]. However,

due to its unique structure, there are new variables in ADPLL that must be carefully

configured in order to meet performance requirements. These variables include TDC

resolution, bit-width of each digital unit, DLF coefficients and digitally controlled

oscillator (DCO) resolution. In ADPLL, besides oscillator noise, quantization noise

is the other major noise source that may deteriorate performance on account of the

limited bit-width of different digital units. Therefore, the traditional analog PLL’s

analytic model cannot be applied directly for ADPLL design characterizations. Cur-

rently, there are limited researches dedicated to analyzing the relationship between

performance and variables that are applicable to both architectures of ADPLLs. In

[35], TDC noise and DCO noise are analyzed for architecture-II ADPLL. In [36],

authors present a z-domain model of architecture-II ADPLL without noise analy-
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sis. In [37], authors develop a z-domain model for analyzing DCO noise and TDC

noise for architecture-II ADPLL. In [38]-[40], authors develop time domain models

for ADPLL. In [41], authors propose a linear discrete time multi-rate model for AD-

PLL. However, the study of circuit variables and performance that are applicable

for both architecture-I and architecture-II ADPLLs is lacking. Moreover, those an-

alytical models study ADPLL noise only and do not determine variables based on

performance specifications.

3.1 Definition of Phase Noise

Phase noise is a specification that characterizes spectral purity. For example, in the

frequency domain, an oscillator output should ideally be a pure sinusoid represented

as a vertical line. However, in reality, there are noise sources in the oscillator that can

cause the output frequency to deviate from its ideal position. As shown in Fig. 3.1,

phase noise is usually specified as the ratio of a noise power at an offset frequency

away from the carrier to the carrier power, in a 1Hz bandwidth.

3.2 Phase Noise Model

In order to evaluate phase noise, fractional spur and locking time, an ADPLL behavior

model is developed. The s-domain model as shown in Fig. 3.2 and the z-domain of

architecture-II ADPLL are discussed in [35] and [37], respectively.

In this paper, comprehensive analytical models of both architecture-I and architecture-

II ADPLL are presented as shown in Fig. 3.3. Type-I ADPLL as shown in Fig. 3.3
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Figure 3.1: Phase noise definition.

(a) replaces the standard phase frequency detector (PFD), charge pump with time-

to-digital converter (TDC) which quantizes the phase difference between reference

clock and the feedback signal. The resulted phase difference is fed into the digital

loop filter (DLF) instead of the analog filter to eliminate high frequency noise. And

a programmable divider with ∆Σ modulator is used in the feedback path to set up

the fractional divide ratio. In the type-II ADPLL, as shown in Fig. Fig. 3.3 (b),

the phase detection (PD) is performed by the combination of a counter and the TDC

which compares the difference between reference clock frequency control word and the

feedback frequency control word without a frequency divider in the feedback loop.
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Figure 3.2: The s-domain phase noise model of phase-domain ADPLL [35].

3.2.1 Noise Sources in An ADPLL

For both architectures of ADPLLs, there are five dominant noise sources, which are

input reference clock noise ηref , TDC noise ηTDC , DCO oscillator noise ηDCO, DCO

quantization noise ηDQN and delta sigma modulator noise ηDSM . Generally, domi-

nant noise of ADPLLs can be categorized as oscillator noise or quantization noise.

Reference signal noise is oscillator noise. DCO noise is composed of oscillator noise

and quantization noise. TDC quantization noise caused by TDC resolution is the

dominant noise source in PFD block. DCO quantization noise is caused by the lim-

ited bit number of DCO control number. ∆Σ modulator also generates quantization

noise due to limited output bit number. Table 3.1 summarizes the noise sources and

their types.

ADPLL phase noise spectrum density equals the summation of noise spectrum

density caused by each noise source at the output node.

Sout(f) = ΣSi(f) · |Hi(z)|2 (3.1)
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Figure 3.3: The z-domain phase noise model of phase-domain ADPLL. (a) Architecture-I
ADPLL; (b) Architecture-II ADPLL.

Table 3.1: Noise sources of ADPLLs

Noise Source Noise Type
Reference signal Oscillator noise

PFD-TDC Quantization noise
DQN Quantization noise
DCO Oscillator noise

∆Σ modulator Quantization noise

where Si(f) and Hi(z) represent the noise spectrum density and the corresponding

closed loop transfer function of each noise source in ADPLL.

3.2.2 ADPLL Noise Transfer Function

The second-order block diagram of an ADPLL is shown in Fig. 3.3. The transfer

function of the reference signal features a low pass filter characteristic in ADPLL. For

noise frequencies below the loop bandwidth, reference signal noise causes a significant

effect on the total phase noise. For noise frequencies above the loop bandwidth, the
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effect of reference signal noise is attenuated. The phase domain transfer function of

the reference signal noise is:

HηREF (z)I = NGI(αz + βz − α)
(z − 1)2 +GI(αz + βz − α) (3.2)

HηREF (z)II = NGII(αz + βz − α)
(z − 1)2 +GII(αz + βz − α) (3.3)

where GI = 2πGTKDCOTref/N , GII = 2πGTKDCOTref/FCW and Tref is reference

clock period. GT is TDC gain.

Fig. 3.3 shows that the transfer function of the DCO features a high pass fil-

ter characteristic. The phase domain transfer function of the DCO noise of each

architecture ADPLL can be expressed as:

HηDCO(z)I = (z − 1)2

(z − 1)2 +GI(αz + βz − α) (3.4)

HηDCO(z)II = (z − 1)2

(z − 1)2 +GII(αz + βz − α) (3.5)

In architecture-I ADPLL, the transfer function of the DCO quantization noise in

phase domain equals:

HηDQN (z)I = NGI(z − 1)/GT

(z − 1)2 +GI(αz + βz − α) (3.6)

In architecture-II ADPLL, it can be deduced as:

HηDQN (z)II = NGII(z − 1)/GT

(z − 1)2 +GII(αz + βz − α) (3.7)
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Here, the phase domain transfer function of the TDC noise in architecture-I AD-

PLL is derived as:

HηTDC (z)I = NGI(αz + βz − α)/GT

(z − 1)2 +GI(αz + βz − α) (3.8)

In architecture-II ADPLL, it is:

HηTDC (z)II = − GII(αz + βz − α)/GT

(z − 1)2 +GII(αz + βz − α) (3.9)

∆Σ modulator can be deployed not only in divider function block but also in

DCO block. When used in divider block, it generates fractional part of divider value.

When used in DCO input, it is to dither fine tuning of DCO. The transfer functions

of digital ∆Σ modulator in DCO block HηDSM1
(z)I and in divider block HηDSM2

(z)I

in architecture-I ADPLL are shown below:

HηDSM1
(z)I = 2−N∆Σ ·N ·GI(z − 1)/GT

(z − 1)2 +GI(αz + βz − α) (3.10)

HηDSM2
(z)I = 2−N∆Σ/N

(z − 1)2 +GI(αz + βz − α) (3.11)

Since there is no divider function block in architecture-II ADPLL, the transfer func-

tion of ∆Σ modulator in DCO block is:

HηDSM1
(z)II = 2−N∆ΣKDCO(z − 1)

(z − 1)2 +GII(αz + βz − α) (3.12)

where N∆Σ is the input bit number of ∆Σ modulator.
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3.3 Output Phase Noise of ADPLL

3.3.1 Phase Noise due to Input Reference Sig-

nal

Reference clock noise is categorized as oscillator noise. The phase noise spectrum

density of the reference clock SREF (f) can be described using oscillator phase noise

model. According to the prototype of phase noise spectrum density as shown in Fig.

3.4, the oscillator phase noise spectrum density can be expressed as [59]:

SOSC(f) = k0 + k1

f
+ k2

f 2 + k3

f 3 (3.13)

where k0, k1
f
, k2
f2 and k3

f3 represent thermal noise, flicker noise, carrier noise and inter-

modulation of both carrier and transistor noise, respectively.

As an example, a typical 13MHz crystal oscillator phase noise curve is shown in

Fig. 3.5. The noise floor of such reference signal is -150dBc/Hz. The flicker corner of

buffer stage is around 5KHz and flicker corner of oscillator transistor is around 12Hz.

According to Eq. (3.13), the phase noise of such reference signal can be expressed by

Eq. (3.14) by performing curve fitting.

SREF (f) = 10−15.0 + 10−11.2

f
+ 10−9.4

f 2 + 10−7.0

f 3 (3.14)

Another example of phase noise spectrum of 12.3MHz reference signal can be
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Figure 3.4: Prototype of oscillator phase noise spectrum density.

derived as [66]:

SREF (f) = 10−15.0 + 10−11.1

f
+ 10−9.8

f 2 + 10−7.1

f 3 (3.15)
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Figure 3.5: Phase noise of 13MHz crystal oscillator. (a)Measured, (b)Modeled.
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3.3.2 Phase Noise due to DCO

DCO noise is composed of oscillator and quantization noise [42]-[43]. The DCO

oscillator noise SDCO(f) can be described using Eq. (3.13). An example of phase

noise spectrum of 2.45GHz DCO noise can be derived as [67]:

SDCO(f) = 10−15 + 10−0.7

f 2 + 104.7

f 3 (3.16)

The DCO quantization noise is determined by the bit number of DCO control

code. When DCO dithering resolution bit is NDCO, DCO quantization noise σ2
DQN

equals (2−NDCO)2

12 . The DCO quantization noise power spectrum density(PSD) equals:

SDQN = 1
12 · (2NDCO)2 · fr

(3.17)

where fr is reference signal frequency and KDCO is DCO gain.

3.3.3 Phase Noise due to Delta Sigma Modula-

tor

The multi-stage noise shaping (MASH) ∆Σ modulator is widely used in fractional-

N ADPLLs. The quantization noise contributed by ∆Σ modulator is treated as an

additive noise source [44]. For a ∆Σ modulator with transfer function H∆Σ(z), the

power spectrum density (PSD) of phase fluctuations equals π2|H∆Σ|
3fs∆|1−z−1|2 . fs∆ represents

the sampling frequency of ∆Σ modulator. The z-domain transfer function of the mth-

order MASH ∆Σ modulator isH∆Σ(z) = (1−z−1)m. The quantization noise spectrum
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density of an mth-order MASH ∆Σ modulator is deduced as [44]:

SDSM =
π2[2sin( πf

fs∆
)]2(m−1)

3fs∆
(3.18)

3.3.4 Phase Noise due to TDC-PFD

Time to digital converter (TDC) quantization noise is the dominant noise source in

phase detector. Fig. 3.6 shows a widely used N-bit TDC, where the input phase

error goes through a delay chain. Flip-flops are connected to the outputs of inverters

and sample the state of the delay chain. By using an edge detector and an encode

function block, the phase difference is encoded to digital codes.

Figure 3.6: Traditional N-bit TDC in ADPLL.

TDC’s resolution equals single inverter delay τT . For an ADPLL, the gain of

TDC GT is the ratio of TDC output code and input phase difference between the

reference clock and the feedback signal.

GT = 1
2πτTfr

(3.19)
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where fr is the reference signal frequency. For a BT -bit TDC, the maximum phase

detection range is:

Pmax = 2BT − 1
GT

(3.20)

The standard deviation of TDC quantization noise σ2
TDC equals τ2

T

12 . Normalizing τTDC

by ADPLL output signal period Tout and converting it to phase in radians results in

σTDCφ = 2πσTDC
Tout

. Thus the TDC quantization noise PSD equals [35]:

STDC =
σ2
TDCφ

fr
= (πτTfout)2

3fr
(3.21)

where fout is ADPLL output signal frequency. From this equation, it is clear that

STDC can be reduced by increasing TDC resolution with a smaller τT . For instance,

for given fr and fout to fr ratio N , reducing τT by half will reduce STDC by 3dB.

3.4 ADPLL Fractional Spur

Spurious level of ADPLL output is another important parameter. In fractional-N

ADPLL, one important spur specification is the fractional spur. The digital ∆Σ

modulator is the fundamental source of fractional spurious tones in fractional-N AD-

PLL while the limited TDC output bit-width can further increase fractional spur

level. For an mth-order MASH DSM applied in ADPLL, in locking state, the phase

difference varies from − (2m−2)π
N

to 2mπ
N

. In order to minimize the fractional spur level,

TDC output should cover the phase difference range. Thus, we need to ensure:

Pmax ≥
(2m+1 − 2)π

N
⇒ 2BT − 1 ≥ 2m − 1

N · fr · τT
(3.22)
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The primary frequency of the fractional spur is fspur = Ffrac ·fref . Ffrac represents

the fractional part of divider value N . The PSD of fractional spur in dB can be

deduced as [45]:

Sspur = 20log(∆fmax
2fspur

) + rolloff(fspur) = 20log(∆Cmax ·KDCO

2fspur
) + rolloff(fspur)

(3.23)

where ∆Cmax is the maximum control code variation and rolloff(f) is defined as

the magnitude of the closed loop transfer equation of reference signal subtracting the

factor of 20 logN .

rolloff(f) = 20 log(|Hcl(z)|z=ej2πfTr )− 20 logN (3.24)

It is clear that ∆Cmax = 2m − 1 when ∆Σ modulator is in DCO function block.

For ADPLL with ∆Σ modulator only existing in divider block, the maximum phase

variation φdr in locking state equals 2π(2m−1)fr
fout

. Thus ∆Cmax equals:

∆Cmax = φdrGT (α + β) = 2πfrGT (α + β)(2m − 1)
fout

(3.25)

In order to verify equation (3.23), we compare the fractional spur PSD calcu-

lated from equation (3.23) and from measurement in [46]. The ADPLL in [46] is an

architecture-I APDLL with a 1st order and a 2nd order modulators in divider and

DCO block, respectively. The parameters are listed as follows: reference signal fre-

quency equals 40MHz, TDC resolution τT = 1ps, DCO gain KDCO = KHz/LSB,

divider value N = 90.27195, DLF coefficients α = 2−3 and β = 2−6. The bandwidth

of the PLL is 500KHz. Fractional spur measurement from [46] is shown in Fig. 3.7.

91



In this paper, we only focus on the primary fractional spur. The primary fractional

spur occurs at frequency fspur = Ffrac · fr = 0.27195 × 40MHz = 10.88MHz. The

fractional spur PSD from measurement equals -118dBc while from direct calculation

equals -118.7dBc. The difference is 0.7dB.

Figure 3.7: Fractional spur of ADPLL in [46].

To make further validations, we also choose ADPLL circuits from [47] and [48]. In

[47], an architecture-I ADPLL with the 1st order ∆Σ modulator in DCO is designed.

In [48], an architecture-II ADPLL with the order 2nd modulator in DCO is presented.

The simulation and measurement results are summarized in Table 3.2. The maximum

fractional spur PSD difference between simulation projection and measurement is less

than 7.7dB.
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Table 3.2: Output phase noise differences between simulation and measurement at some
typical frequencies.

Fractional Spur Output ADPLL
Prim. Freq. Prim. PSD Frequency Arch.

(Hz) (dBc) (GHz) Arch.
REF Simu. 10.88M -118.7 3.610878 I
[46] Meas. 10M -118
REF Simu. 15M -145.8 1.5 I
[47] Meas. 15M -42.5
REF Simu. 21.8K -52.7 5.37602183 II
[48] Meas. 20K -45

3.5 ADPLL Design with Adjustable Loop

Parameters

DLF coefficients are important parameters in ADPLL design. In the literature, there

have been considerable researches investigating ADPLL DLF designs [49]-[50]. Nearly

all of them focus on accomplishing bandwidth and stability. None have included phase

noise into design considerations. In reference [64], author presents a method to cal-

culate the DLF variables in architecture-II ADPLL according to ADPLL bandwidth

and phase margin. In reference [65], ADPLL DLF variables are determined by given

loop bandwidth and damping ratio. However, no design procedure for determining

ADPLL variables based on given required phase noise performance and locking time

is provided in these publications. In this paper, an analytic approach will be devel-

oped to determine DLF coefficients by considering more comprehensive performance

constraints, basically adding phase noise into design consideration in conjunction with

bandwidth and loop stability.
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Equation (3.2) and equation (3.3) are z-domain closed loop transfer functions

of architecture-I and architecture-II ADPLLs. Although a discrete-time system is

naturally described by z-transform, it is common to approximate it with a linear

continuous-time system and describe it in the s-domain when PLL bandwidth is much

lower than the sampling frequency. In ADPLL design, the sampling frequency equals

the reference signal frequency. ADPLL bandwidth fBW is usually 10 times lower

than the reference signal frequency to ensure system stability with a sufficient phase

margin. Therefore, within the bandwidth when fBW � fr, the bilinear transform

can be applied [37]:

z = esTr ≈ 1 + sTr (3.26)

Thus, s-domain closed loop transfer functions of reference signal can be approximated

as:

Hcl(s) = N · (α′ + β′)frs+ β′f 2
r

s2 + (α′ + β′)frs+ β′f 2
r

(3.27)

where α′ = GLα, β′ = GLβ. In architecture-I ADPLL GL = GI , and in architecture-

II ADPLL GL = GII . Comparing Eq. (3.27) with a classic 2nd order s-domain transfer

function:

H(s) = N · 2ζωns+ ω2
n

s2 + 2ζωns+ ω2
n

(3.28)

where ωn is natural frequency and ζ is damping ratio, we get:

(α′ + β′)fr = 2ζωn; β′f 2
r = ω2

n (3.29)

The natural frequency and damping ratio can be calculated from Eq. (3.30) and
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(3.31):

fn = ωn
2π =

√
GLβ · fr

2π (3.30)

ζ =

√
GLβ(α + β)

2β (3.31)

Locking time TS and loop bandwidth fBW for both architecture-I and architecture-II

ADPLLs can be calculated by the following equations [50]:

TS = 4
ωnζ

= 8Tr
GL(α + β) (3.32)

fBW = fn

√
(1− 2ζ2) +

√
4ζ4 − 4ζ2 + 2 (3.33)

Assuming the locking time and phase noise constraints are:

TS ≤ TL (3.34)

0.45 ≤ ζ ≤ 1.5 (3.35)

where TL is locking time constrains.

Regarding the phase noise, it is usually evaluated at a selected frequency offset

(i.e. 1MHz) from the central frequency. Additionally, for an under damped (ζ <

1) PLL system, its closed loop transfer function has a peak value at the natural

frequency, which will lead to an increased phase noise at this particular frequency

point. Therefore, in the design analysis, we choose to analyze ADPLL output phase

noise at frequency points fn and 1MHz offset respectively for phase noise constraint

characterizations. The output phase noise constraints are: phase noise at natural
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frequency Sout(fn) and 1MHz Sout(1M) not exceeding Sfn and S1M , respectively.

Sout(fn) ≤ Sfn (3.36)

Sout(1M) ≤ S1M (3.37)

By plugging Eq. (3.30) and (3.31) into formulas (3.34) and (3.35) upon manipulations,

we have:
8Tr
GLTL

≤ α + β (3.38)

0.45 ≤

√
GLβ(α + β)

2β ≤ 1.5 (3.39)

To demonstrate the model, an architecture-I ADPLL with the following param-

eters has been simulated: reference clock frequency fr = 13MHz, feedback divider

N = 100.25, TDC resolution τT = 50ps, the 2nd order MASH DSM with sampling

frequency fs∆ is in divider block, dithering resolution bit NDCO = 11, KDCO =

100KHz/LSB. The performance constraints are TL ≤ 200µs, Sfn = −75dBc/Hz,

S1M ≤ −110dBc/Hz. Table 3.3 shows phase noise of each functional block. Ac-

cordingly, the total ADPLL output phase noise can be computed using Eq. (3.1).

Table 3.3: Phase noise of each functional unit.

REF SREF (f) = 10−15 + 10−11.2

f
+ 10−9.4

f2 + 10−7.0

f3 Eq. (3.14)
PFD ST = 1.075× 10−9 Eq. (3.21)
DCO SDQN = 1.53× 10−15 Eq. (3.17)

SDCO(f) = 100.33

f2 + 106

f3 Ref.[46]
DSM SDSM = π2[2 sin( πf

fs∆
)]2/(3fs∆) Eq. (3.18)
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Fig. 3.8 illustrates the relationship between ADPLL locking time and DLF coef-

ficients. According to formula (3.38), for the locking time to be less than a design

Figure 3.8: ADPLL locking time with different DLF coefficients.

specification, for instance, the DLF coefficients should meet the requirement specified

by following formula:

8Tr
GL(α + β) ≤ 200µs⇒ α + β ≥ 0.026 (3.40)

After substituting ADPLL parameters into formula (3.39) we have:

2.64
√
β − β ≤ α ≤ 8.82

√
β − β (3.41)

By plugging phase noise performance constraints, phase noise from each noise
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source equations in Table 3.3 and close loop transfer functions of each noise source

into formulas (3.36) and (3.37) respectively, we can derive:

1.7β0.5 + 1.1 + 87β1.5[0.12β(β + 2α) + β + α]
0.34
√
β[0.12(α + β) + 2 cos(0.34

√
β)− 2]2 ≤ 3.16× 105 (3.42)

3.25α2 + 14.12β2 + 0.24α + 2.06β + 0.07αβ ≤ 1 (3.43)

Based on formulas (3.40)-(3.43), we can plot the boundary condition lines as shown

in Fig. 3.9. The shadow area specifies the possible DLF coefficient values for α and

β that can meet all the requirements including locking time, phase noise and system

stability.

Figure 3.9: DLF coefficients determination.

Fig. 3.10 plots ADPLL output phase noise with different DLF coefficients. As
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illustrated, when α = 2−1 and β = 2−5, the maximum in band phase noise is -

89dBc/Hz, the phase noise at 1MHz frequency offset is -110dBc/Hz. Accordingly,

the locking time is calculated to be 9.8µs. When α = 2−2 and β = 2−7, the maximum

in band phase noise is −82dBc/Hz, the phase noise at 1MHz frequency offset is

−111dBc/Hz and the locking time is 20.2µs. Apparently, there is a trade off among

ADPLL locking time, maximum in band phase noise and phase noise at the specific

frequency offset (i.e. frequency offset at 1MHz). Lower phase noise requires smaller

DLF coefficients, while faster locking speed needs larger DLF coefficients. Therefore,

it is important to set proper DLF coefficient values to achieve performance balance.

In another word, to obtain lower phase noise, DLF coefficients should be selected

from the left lower corner of the shadow area in Fig. 3.9. While to achieve a faster

locking speed, DLF coefficients should be selected from the right upper corner of the

shadow area in Fig. 3.9. Compared to the infinite frequency resolution in VCO, DCO

resolution is determined by the last significant bit of DCO input control code. The

limited frequency resolution causes DCO quantization noise. We have to consider the

DCO resolution when DCO quantization noise is comparable to DCO oscillator noise.

We use NDCO = 6, KDCO = 100KHz/LSB in previous case study. The quantization

noise of DCO is −151dBc which is at least 12dB smaller than DCO oscillator noise

at frequency offset range from 1KHz to 5MHz. Hence, the quantization noise of

DCO in this case study can be neglected.
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Figure 3.10: Output phase noise with different DLF coefficients.

3.6 Experimental Results

In order to verify the developed ADPLL analytical model, we select ADPLLs in

references [47] and [48] as study cases. We develop models based on ADPLL topology

presented in these papers and perform noise simulations. By comparing simulation

results and measurement data provided in the original manuscripts, we are able to

evaluate the proposed phase noise model effectiveness.

3.6.1 Architecture-I ADPLL

In [47], a 1.5GHz ADPLL is developed. The loop bandwidth is 20KHz. Other param-

eters are listed as follows: reference signal frequency fr is 45MHz. Output frequency

is 1.5GHz. Divider ratio N is 33.33. KDCO equals 577Hz/LSB. DCO dithering
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resolution bit number is 5. TDC resolution equals 10ps. The order number and bit

number of ∆Σ modulator in DCO block is 1. The sampling frequency of ∆Σ modu-

lator is fS∆ = fr. The DLF coefficients α = 22 and β = 2−6 are computed from loop

bandwidth and phase margin. A 45MHz crystal oscillator [51] phase noise equals:

Sr(f) = 10−16.1 + 10−10.2

f
+ 10−7.6

f 2 + 10−6.1

f 3 (3.44)

The free running DCO oscillator phase noise characteristic at 1.5GHz in [47, 60] is

approximated as:

SDCO(f) = 10−15.5 + 10−8.2

f
+ 10−4.2

f 2 + 100.9

f 3 (3.45)

By using the analytical modeling method developed in proceeding sections, we

are able to characterize the noise contributions of different noise sources as shown

in Fig. 3.11. As can be seen clearly, the in band phase noise is mainly contributed

by the reference clock and PFD function block. In out-of-band frequency range, the

total phase noise is mainly affected by PFD, DCO and ∆Σ modulator. The primary

fractional spur occurs at the frequency fspur = Ffrac · fr = 15MHz. From Eq. (3.24),

rolloff(fspur) equals −48.5dB. The primary fractional spur PSD equals:

Sspur = 20 log[(2
1 − 1) · 577

2× 15MHz
]− 48.5dB = −142.8dBc (3.46)

For result validation, we obtain ADPLL circuit hardware measurement results. The

difference between the simulated and measured total phase noise at different frequency

points are listed in Table 3.4. It shows that our model simulation is in a good
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agreement with hardware results.

Figure 3.11: Simulated phase noise of each noise source and total phase noise at 1.5GHz
output frequency.

Table 3.4: Output phase noise differences between simulation and measurement at some
typical frequencies.

Phase Noise (dBc/Hz) at Spur
frequency offset

10KHz 100KHz 1MHz 10MHz Frequency PSD
Simulation -92.4 -124.7 -140.4 -150.1 15MHz -142.8dBc

Measurement -96.3 -124.8 -141.5 -149.5 15MHz -142.5dBc
Error 3.9dB 0.1dB 1.1dB -0.6dB 0 0.3dB

3.6.2 Architecture-II ADPLL

In [48], a 4.9GHz-6.9GHz fractional-N ADPLL for radio telecommunication is pre-

sented. The loop bandwidth of ADPLL is 200KHz. Other important parameters
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are: reference clock frequency fr = 48MHz, output frequency is 5.376021831GHz,

FCW is 112.0004548125. KDCO = 26KHz. TDC-PD resolution τT = 15ps. TDC

output bit-width is 9 and the 2nd order MASH ∆Σ modulator in DCO block with

sampling frequency fS∆ = fr is employed. There is an extra 9-bit fine tuning code

in DCO block. The DLF coefficients are α = 2−5 and β = 2−10. Phase noise PSD

of the 48MHz reference clock and LC-tank DCO at 5.3GH output are approximated

as follows, which are in agreements with the similar oscillators in references [51] and

[52].

Sr(f) = 10−14.7 + 10−10.3

f
+ 10−8.3

f 2 + 10−4.8

f 3 (3.47)

SDCO(f) = 10−13.8 + 10−0.2

f 2 (3.48)

From our model analysis, the contribution of each noise source to the total output

phase noise is shown in Fig. 3.12. The in band phase noise is mainly contributed by

the reference clock noise and TDC-PD noise. In high noise frequency range, the total

noise is affected by the TDC-PD, DCO and ∆Σ modulator. The primary fractional

spur occurs at the frequency fspur = Ffrac · fr = 21.8KHz. Since the fractional spur

locates within loop bandwidth, the rolloff(fspur) equals 0dB. The primary fractional

spur PSD equals

Sspur = 20 log[(2
2 − 1) · 26KHz/29

2× 21.8KHz ] + 0dB = −49.1dBc (3.49)

The difference between the simulated and measured total phase noise at different

frequency points are listed in Table 3.5. Also, the simulation results from proposed

model for architecture-II ADPLL show good agreement with hardware results.

In the presented phase noise model, other noise sources such as power supply
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Figure 3.12: Simulated phase noise of each noise source and total phase noise at
5.376021831GHz output frequency.

noise and thermal noise are not considered, which is the major cause of the deviation

between the simulation results and the measurement results. Those noises heavily

depend on the operating conditions of the system that ADPLL is embedded in, such

as the on-chip power grid signal integrity etc, whose noise characterizations are not

available in the work presented in this paper. Actually, if that noise data is provided,

its effect on ADPLL output phase noise can also be projected. Some other compar-

isons at typical frequency offsets of ADPLLs in references [61-63] are listed in Table

3.6.
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Table 3.5: Output phase noise differences between simulation and measurement at some
typical frequencies.

Phase Noise (dBc/Hz) at Spur
frequency offset

10KHz 100KHz 1MHz 10MHz Frequency PSD
Simulation -95.2 -92.1 -116.7 -134 21.8KHz -49.1dBc

Measurement -96.9 -90.7 -116.4 -137 20KHz -45dBc
Error 1.7dB -1.4dB -0.3dB 3dB 1.8KHz -4.1dB

Table 3.6: Simulation and measurement of output phase noise and fractional spur .

Ref. Phase Noise (dBc/Hz) at Spur
frequency offset

10KHz 100KHz 1MHz 10MHz Frequency PSD
[61] Simu. -98 -103 -111 -120 10.88MHz -117dBc

Meas. -99 -101 -111 -121 10MHz -118.5dBc
[62] Simu. -98 -108 -109 -110 Integer Divider

Meas. -99 -106 -107 -111
[63] Simu. -87 -98 -123 NA Integer Divider

Meas. -85 -97 -123 NA

3.7 Conclusions

In this chapter, an analytical noise model for both architecture-I and architecture-

II ADPLLs is developed. By analyzing noise contribution and transfer function of

each function block in ADPLL, the total phase noise can be projected. The total

phase noise and primary fractional spur between simulation results and measurement

data in the literature show reasonable agreements. Furthermore, we plot boundary

condition lines according to phase noise, locking time and damping ratio constrains

in order to determine proper DLF coefficients. This method can be used to project

ADPLL phase noise and fractional spur and to guide ADPLL variables design.
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Chapter 4

ADPLL On Chip Jitter Measure-

ment

In the application such as time recovery, jitter performance is very important in

the ADPLL. The data set-up and hold time are crucial issues. Jitter is the timing

variation of a set of signal edges from their ideal values. It is typically caused by

noise or other disturbances. In this research, we focus on period jitter which is time

difference between an ideal cycle period and measured cycle period.

JitterPER = Tmearsured − Tideal (4.1)

Figure 4.1 shows a graphical definition of period jitter. The period jitter is measured

as peak to peak jitter by the root of mean square (RMS).

In PLL, jitter performance can be improved by adjusting loop parameters includ-

ing loop bandwidth and damping ratio. Generally, better jitter performance requires

a small loop bandwidth. However, faster locking time needs a large bandwidth. In
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Figure 4.1: Period jitter.[15]

traditional ADPLL design, it is a trade off among loop bandwidth, jitter or phase

noise performance and locking time. In our design, the circuit is applied a larger loop

bandwidth to obtain a fast locking time. Then on-chip jitter measurement and self

calibration block is used to make sure ADPLL jitter performance meet the require-

ment.

Traditional jitter measurement requires a spectrum analyzer. The previous jitter

estimation methods include dead-zone algorithm [15] and variance metric algorithm.

In the dead-zone algorithm shown in Fig. 4.2, it finds boundaries of jitter distribution

for tail probability P . In variance metric jitter estimation as shown in Fig. 4.3, it

combines measurements along jitter histogram to compute variance metric. However,

the results from those methods are not accurate enough. Moreover, a spectrum

analyzer is also needed in those methods which increases the measurement cost.

In this chapter, we first review the relationship among period jitter, phase noise

and DCO control code. Then, we derive the equation to calculate jitter performance

from DCO control code. We develop a mathematical model to calculate the PLL

jitter performance by obtaining standard deviation of DCO control code, loop band-
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Figure 4.2: Dead zone method [15].

width, DCO gain, damping ratio and TDC resolution. According to the calculated

jitter value, if jitter performance does not meet requirement, the loop bandwidth is

adjusted by tuning loop filter coefficients value. At last, we propose the on chip jitter

measurement circuit implemented at the transistor level. Both the behavior level sim-

ulation in Matlab and transistor level simulation in Cadence show good agreements

with the mathematical analysis.
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Figure 4.3: Variance metric jitter estimation [15].

4.1 Relationship among Jitter, Phase Noise

and DCO Control Code

4.1.1 Relationship between Period Jitter and

Phase Noise

We first review the period jitter calculation as follows. A periodic square wave is

expressed as:

f(x) = {
0 if −π ≤ x < 0

1 if 0 ≤ x < π
(4.2)

and

f(x+ 2π) = f(x) (4.3)
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The Fourier series of f(x) is therefore:

f(x) = 1
2 + 2

π
sin x+ 2

3π sin 3x+ 2
5π sin 5x+ · · · (4.4)

It shows that the square-wave clock signal has the same jitter behavior as baseband

harmonic sinusoid signal. Hence, PLL output signal with phase noise can be written

as:

fout(t) = A sin[2πf0t+ θ(t)] = A sin{2πf0[t+ θ(t)
2πf0

]} (4.5)

where f0 is the central frequency and θ(t) denotes the phase jitter. The period jitter

is:

JPER = θ(t)
2πf0

(4.6)

Since the phase jitter magnitude is usually very small, we have

fout(t) = A sin[2πf0t+ θ(t)]

= A sin(ω0t) cos θ(t) + A cos(ω0t) sin θ(t)

' A sin(ω0t) + Aθ(t) cos(ω0t) (4.7)

where cos θ(t) ' 1 and sin θ(t) ' θ(t).

The spectrum of fout(t) is:

Sf (f) = A2

4 [δ(f − f0) + δ(f + f0)] + A2

4 [Sθ(f − f0) + Sθ(f + f0)] (4.8)
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where Sθ(f) is the spectrum of phase θ(t). We have:

L(f − f0) = 10 log[ Sf (f)
Sf (f0) ] (4.9)

= 10 log[Sθ(f − f0)]

The traditional phase noise measurement is shown as Fig. 4.4 [54]. The signal

Figure 4.4: Traditional phase noise measurement [54].

fout(t) is mixed with cos(2πf0t) and filtered by the low pass filter. Thus, we can

express the signal n(t) at the input of the spectrum analyzer as:

n(t) = A

2 θ(t) (4.10)

The signal spectrum on the spectrum analyzer is:

Ssa(f) =
∫ ∞
−∞

n(t)e−2πftdt (4.11)

= A2

4 Sθ(f)
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After being scaled down by A2

4 , the L(f) can be read in dBc directly from the spectrum

analyzer. The relationship between phase spectrum Sθ(t) and phase noise L(f) is:

Sθ(f) = 4
A2

∫ ∞
−∞

n(t)e−2πftdt (4.12)

= 4
A2Sn(f) = 10

L(f)
10

Therefore, the mean square value of θ(t) can be calculated by:

〈θ2(t)〉 = 2
∫ ∞

0
Sθ(f)df = 2

∫ ∞
0

4
A2Sn(f)df

= 2
∫ ∞

0
10

L(f)
10 df (4.13)

Above all, we can derive the relationship between the period jitter, JPER, and the

phase noise spectrum, L(f) as [75]:

RMS JPER =

√
〈θ2(t)〉
2πf0

=

√
2

∫∞
0 10

L(f)
10 df

2πf0
(4.14)

In chapter 2, Table 2.2 lists the phase noise requirements of each wireless stan-

dards. Once PLL phase noise sloped is projected, the jitter requirement can be

calculated by given loop bandwidth (BW), output signal frequency (fout) and phase

noise requirement including phase noise (pndBc) and frequency offset (freos) [53]. Fig.

4.5 shows an example of phase noise slope of an ADPLL.

From Fig. 4.5, it is clear that PN2 = PN1 − 20dB and PN3 = PN1 − 30dB.
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Figure 4.5: Behavior model of ADPLL on chip jitter measurement block.

PN1 can be calculated by given BW , pndBc and freos.

PN1 = {

pndBc if freos < BW

pndBC + 20× log10(freos
BW

) if BW < freos < 10BW

pndBC + 20dB + 10× log10( freos10BW ) if 10BW < freos < 100BW

pndBC + 30dB if 100BW < freos

(4.15)

The noise A1, A2, A3, A4 can be calculated by:

A1 = PN1 + 10 log10(BW − 0) (4.16)

A2 = PN1 + PN2
2 + 10 log10(10BW −BW ) (4.17)

A3 = PN2 + PN3
2 + 10 log10(100BW − 10BW ) (4.18)

A4 = PN3 + 10 log10(2fout − 100BW ) (4.19)
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By using Eqn. (4.14), the RMS jitter is:

RMS JPER =

√
2 · 10A1

10 +
√

2 · 10A2
10 +

√
2 · 10A3

10 +
√

2 · 10A4
10

2πfout
(4.20)

Tabel 4.1 lists the jitter requirements of each wireless communication standard by

using Matlab function [A.1.3].

Table 4.1: Jitter requirements of each wireless communication standard

Standards Output Phase noise Bandwidth Jitter
frequency requirement requirement

GSM 920MHz -105dBc/Hz@1MHz 50KHz 4.4ps
UMTS 2GHz -100dBc/Hz@5MHz 50KHz 90.9ps
WiMAX 2.4GHz -90dBc/Hz@100KHz 50KHz 16.3ps
WiMAX 3.5GHz -95dBc/Hz@100KHz 50KHz 7.3ps
Bluetooth 2.4GHz -109dBc/Hz@1MHz 50KHz 12.9ps
Wi-Fi 2.45GHz -102dBc/Hz@1MHz 50KHz 28.6ps
Wi-Fi 5.2GHz -102dBc/Hz@1MHz 50KHz 13.8ps
Wi-Fi 5.7GHz -102dBc/Hz@1MHz 50KHz 13.0ps

4.1.2 Relationship between ADPLL Jitter and

DCO Control Code

In the ADPLL, the DCO control code code[n] is updated every reference clock time

Tref . The mean value of DCO control code (MC) is calculated as:

MC = ΣNc
n=1code[n]
Nc

(4.21)
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Therefore, the DCO control code can be expressed as:

code[n] = MC + ηc[n] (4.22)

where ηc[n] is the difference between mean value of DCO control code (MC) and DCO

control code code[n]. Assuming DCO gain (KDCO) remains the constant when DCO

output is in a small tuning range. We have:

fout(t) = A sin[2πMCKDCOt+ 2πηc[n]KDCOt] (4.23)

Hence, the RMS jitter can be calculated:

RMS JPER =

√
〈code[n]2〉KDCO

2πf 2
0

(4.24)

where
√
〈code[n]2〉 is the standard deviation of DCO control code.

Above all, it is clear that, the ADPLL RMS period jitter can be estimated with

the value of the standard deviation of DCO control code, DCO gain and central

frequency of output signal.
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4.2 On Chip Jitter Measurement Circuit

Design

4.2.1 Behavior Model

Fig. 4.6 shows the behavior model of the proposed ADPLL on-chip jitter measurement

circuit which only measures and calcultes the standard deviation of DCO control code√
〈code[n]2〉. For a given DCO gain and the central frequency of output signal, the

jitter can be calculated using equation (4.24).

Figure 4.6: Behavior model of ADPLL on chip jitter measurement block.

The detail model of on-chip jitter measurement block is shown in Fig. 4.7.

In our ADPLL, the output frequency variation ∆f/fout · 100% is less than 1%

when the circuit is locked. The output frequency variation (FV) can be estimated by:

FV = code[n] · res
fout

· 100% (4.25)
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Figure 4.7: Detail model of ADPLL on chip jitter measurement block.

where res means the corresponding resolution. Table 4.2 summarizes the relationship

between bit number of code[n] and frequency variation of the ADPLL output in

presented ADPLL design. From table 4.2, it is clear that the bit number of code[n]

Table 4.2: DCO control code variation vs DCO output frequency variation

Bit number of Frequency Variation
jitter measurement Structure Structure Structure

input I II III
4 bits ≈ 0.26% ≈ 0.22% ≈ 0.2%
3 bits ≈ 0.13% ≈ 0.11% ≈ 0.1%
2 bits ≈ 0.07% ≈ 0.06% ≈ 0.05%

should be 3 to minimized the circuit complexity.

4.2.2 Matlab Simulation

In this subsection, a Matlab model is developed to compare the simulation result

obtained from the jitter measurement block and the results obtained from the direct

measurement. Also, the accuracy influenced by the bit length of jitter measurement

input is analyzed. Fig. 4.8 shows the ADPLL simulation model in MATLAB. In

Fig. 4.8, the frequency of reference signal is 13MHz. The PFD compares the phase

difference of reference signal and feedback signal. The detailed PFD and TDC are
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Figure 4.8: ADPLL simulation model in MATLAB.

shown in Fig. 4.9 and Fig. 4.10. The embedded functions in PFD and TDC are

y = u · v and y = u, respectively. The phase difference signal goes through digital

Figure 4.9: PFD model in MATLAB.

low pass filter and then generates DCO control code signal. The detailed Matlab

model of LPF is shown in Fig. 4.11. There is a single tone frequency estimator

to calculate the DCO output signal’s frequency. In the feedback path, there is a

fractional frequency divider with a delta sigma modulator as shown in Fig. 4.12. We

use 256 reference cycles to calculate the standard deviation of DCO control code and
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Figure 4.10: TDC model in MATLAB.

Figure 4.11: LPF model in MATLAB.

the ADPLL jitter performance [76].

Table 4.3 summarizes the calculated STD of DCO control code and both calculated

and simulated jitter performances under different output frequencies. The KDCO

represents the resolution of 6-bit fine tune.

According to Table 4.1, the preset STD of DCO control code values can be deter-

mined by equation (4.24). The threshold values are the first 8-bit of STD values of

DCO control code and listed in Table 4.4.
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Figure 4.12: Divider with delta sigma modulato model in MATLAB.

Table 4.3: Simulated standard deviation of DCO control code and measured jitter results

Standard Output KDCO STD of Jitter
frequency KHz DCO code Calculated Simulated

GSM 880MHz 96 162 3.2ps 2.7ps
GMTS 2GHz 480 272 5.2ps 2.1ps
WiMAX 2.4GHz 480 279 3.7ps 1.8ps
WiMAX 3.6GHz 480 593 3.5ps 1.3ps
Bluetooth 2.4GHz 480 279 3.7ps 1.8ps
Wi-Fi 2.45GHz 480 283 3.6ps 1.7ps
Wi-Fi 5.7GHz 960 595 2.8ps 0.9ps

Table 4.4: Preset threshold value of STD of DCO control code

Frequency band Jitter requirement STD of DCO code Threshold value
800MHz-1.1GHz 4.4ps 223 66
1.9GHz-2.8GHz 12.9ps 609 152
3.2GHz-4GHz 7.3ps 978 244
5GHz-6GHz 130ps 276 69
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4.2.3 Circuit Topology

Fig. 4.13 shows the detailed schematic of the proposed on-chip jitter measurement

behavior model. The mean value calculate block is shown in Fig. 4.14.

Figure 4.13: Schematic of the proposed on-chip jitter measurement.

Comparing to Fig. 4.7, the square root block is removed to reduce operation time

and chip size. In the presented design, one reference cycle time could be saved by

removing the square root block. The jitter measurement output is compared against

a preset threshold code. If the output is larger than the threshold code, it means jitter

performance does not meet the requirement. Then the comparison block generates

DLF adjustment signal ’1’ to tune the DLF coefficients. If the output is smaller than

the threshold code, the comparison block generates signal ’0’ to stop the adjustment,

and DLF values remain unchanged.

Fig. 4.15 shows the detailed circuits of 8-bit comparator in the on-chip jitter

measurement block.

Fig. 4.16-Fig. 4.19 show the histograms of 256 number of DCO control codes

when output frequency is 920MHz, 2.4GHz, 3.6GHz and 5.6GHz, respectively.
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Figure 4.14: Schematic of mean value calculation block.
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Figure 4.15: 8-bit digital comparator.
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Figure 4.16: Histogram of 256 DCO control code when output frequency is 920MHz.

Figure 4.17: Histogram of 256 DCO control code when output frequency is 2.4GHz.
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Figure 4.18: Histogram of 256 DCO control code when output frequency is 3.6GHz.

Figure 4.19: Histogram of 256 DCO control code when output frequency is 5.65GHz.
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4.2.4 Experimental Results

In order to verify the presented ADPLL on-chip jitter measurement block. The

proposed ADPLL with on-chip jitter measurement is implemented and simulated in

the IBM 0.13µm CMOS technology. The simulation tool is Cadence SpectreRF. The

calculated jitter performance is calculated from on-chip jitter measurement block.

The simulated jitter performance is obtained directly from ADPLL output. The

jitter requirement is converted by phase noise performance requirement. Table 4.5

summarizes all jitter performance results under different wireless standards.

Fig. 4.20 shows the example of simulated jitter measurement. The jitter is simu-

lated in Cadence of the actual ADPLL output. The RMS jitter is 3.6ps when output

signal frequency is 920MHz.

Figure 4.20: Jitter measurement simulation at 1GHz.
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Table 4.5: Simulated jitter resultes VS. measured jitter results

Standard Output Jitter
frequency Calculated Simulated Requirement

GSM 920MHz 3.8ps 3.6ps 4.4ps
GMTS 2GHz 4.8ps 2.1ps 90.9ps
WiMAX 2.4GHz 4.2ps 1.8ps 16.3ps
WiMAX 3.6GHz 3.7ps 1.3ps 7ps
Bluetooth 2.4GHz 4.3ps 1.8ps 12.9ps
Wi-Fi 2.45GHz 3.9ps 1.7ps 29ps
Wi-Fi 5.7GHz 2.6ps 0.9ps 13ps

4.3 Conclusion

In this chapter, we analyze the relationship among ADPLL jitter, phase noise perfor-

mance and DCO control code and present the behavior model of jitter measurement

to calculate the jitter by using DCO control code. According to the mathematical

analysis, the jitter can be estimated by calculating the standard deviation of DCO

control code. At last, we develop the on-chip jitter measurement circuit. The simu-

lation results show the good agreement with analytical results.
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Chapter 5

Wide band ADPLL with Self Jit-

ter Measurement and Calibration

Design

Based on the multi-band ADPLL design in chapter 2 and the on-chip jitter mea-

surement design in chapter 4, the wide band ADPLL with self-jitter calibration is

proposed. In this chapter, we first present an adjustable digtal low pass filter. The

low pass filter coefficients can be adjusted based on DLF adjust signal. So that,

the loop bandwidth is adjusted and the ADPLL jitter performance is improved to

meet requirements. Then, the whole ADPLL circuit topology of wide band ADPLL

with self-jitter measurement and calibration is presented. The ADPLL structure is

designed and simulated using 0.13µm CMOS technology in Cadence. At last, We

adopt an external noise to test jitter calibration function. The simulation results

show that, jitter measurement block works after PLL is locking. Then jitter calibra-

tion function block works once jitter performance does not meet requirements. The

128



jitter performance is significantly improved with jitter calibration block.

5.1 Digital Loop Filter with Self Jit-

ter Calibration Design

5.1.1 Coefficients adjustable PPI filter

Once the jitter performance does not meet the jitter requirement, jitter measurement

block will generate the control signal to the digital loop filter to adjust DLF coeffi-

cients. Hence, the DLF circuit should be adaptive. We improved the DLF design in

Chapter 2. The adjustable proportional and integral circuit blocks for the proposed

DLF are presented in Fig. 5.1 and Fig. 5.2. In Fig. 5.1, the proportional path coeffi-

cient α is controlled by a 3-bit control code. The range of α is from 2−3 to 20 − 2−3.

The corresponding resolution is 2−3. In Fig. 5.2, the integral path coefficient β is also

controlled by a 3-bit control code. β ranges from 2−7 to 2−4−2−7. The corresponding

resolution is 2−7.

The top level model of the adjustable low pass filter is shown as Fig. 5.3. The

low pass filter coefficients can be adjusted based on LPF adjustment signal. Once

jitter measurement block generates DLF control signal ’1’, the DLF coefficients are

reduced by the minimum step.

DLF coefficients affect the loop band-width and phase margin of the designed

ADPLL. The ADPLL bandwidth fBW is usually 10 times lower than the reference

signal frequency to ensure system stability with a sufficient damping ratio. Table

5.1 summarizes ADPLL loop bandwidths and damping ratio for different output
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Figure 5.1: The architecture of adjustable proportional path.

frequencies by tuning the DLF coefficients.

Table 5.1: Loop band-width and phase margin in different frequency with different pair of
DLF coefficients

Frequency α β Bandwidth Damping ratio
(Hz) (Hz)
1G 2−3 ∼ 20 − 2−3 2−7 ∼ 2−4 − 2−7 8K∼157K 0.52∼1.3
2.4G 2−3 ∼ 20 − 2−3 2−7 ∼ 2−4 − 2−7 5.4K∼124K 0.7∼1.5
3.6G 2−3 ∼ 20 − 2−3 2−7 ∼ 2−4 − 2−7 6.9K∼147K 0.5∼1.5
5.6G 2−3 ∼ 20 − 2−3 2−7 ∼ 2−4 − 2−7 5.9K∼133K 0.7∼1.5
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Figure 5.2: The architecture of adjustable integral path.

Figure 5.3: Top level model of adjustable low pass filter.
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5.1.2 Circuit topology

Fig. 5.4 shows the detailed circuit topology of adjustable digital low pass filter.

Figure 5.4: The adjustable low pass filter.

The adjustable function is controlled by a delay cell block. After 256 cycles of

reference signal, the values of DLF coefficients can be adjusted. Once the alpha or

beta control code equals "001", the adjust function is not available and generates a

warning signal. The detailed schematic of DLF coefficients adjustment is shown in

Fig. 5.5.
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Figure 5.5: The adjustable DLF coefficients.
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5.2 Wide band ADPLL with Self Jitter

Measurement and Calibration Cir-

cuit Topology

In chapter 2 and chapter 4, we have presented each block of the proposed wide band

ADPLL and on-chip jitter measurement block. In previous section, we have also

presented an adjustable digital low pass filter. In this section, we connect the on-chip

measurement block and the adjustable digital low pass filter block to the wide band

ADPLL as shown in the following.

Figure 5.6: Wide band ADPLL with on chip jitter measurement and self jitter calibration.

The overall measurement results such as frequency response and phase noise per-

formance of the proposed ADPLL are shown in chapter 2. In this section, we list
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the comparisons between ADPLL phase noise and jitter performance with and with-

out self-jitter calibration block. External noise is added to the proposed ADPLL as

shown in Fig. 5.7. The external Gaussian noise is generated by using MATLAB

Gaussian noise generate function. The mean values of the noises are all ’0’ and the

variances of the noises are 1.5, 5.6, 6.5 and 1.2 in 920MHz, 2.4GHz, 3.6GHz and

5.6GHz, respectively.

Figure 5.7: Wide band adaptive ADPLL with external noise model.

Fig. 5.8-Fig.5.11 show the histograms of DCO control code (Code<7:5>) without

and with jitter calibration block when output frequency are 920MHz, 2.4GHz, 3.6GHz

and 5.6GHz, respectively. It is clear that, the standard deviations of Code<7:5>

are reduced with the self jitter calibration block.
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Figure 5.8: Histogram of Code<7:5> with noise in 920MHz (a) without jitter calibration
(b) with jitter calibration.

Figure 5.9: Histogram of Code<7:5> with noise in 2.4GHz (a) without jitter calibration (b)
with jitter calibration.
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Figure 5.10: Histogram of Code<7:5> with noise in 3.6GHz (a) without jitter calibration
(b) with jitter calibration.

Figure 5.11: Histogram of Code<7:5> with noise in 5.6GHz (a) without jitter calibration
(b) with jitter calibration.
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5.2.1 Phase noise and jitter performance

Figure 5.12: Phase noise performance at 920MHz output (a) without calibration block; (b)
with calibration block.

Figure 5.13: Phase noise performance at 2.4GHz output (a) without calibration block; (b)
with calibration block.
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Figure 5.14: Phase noise performance at 3.6GHz output (a) without calibration block; (b)
with calibration block.

Figure 5.15: Phase noise performance at 5.6GHz output (a) without calibration block; (b)
with calibration block.
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Fig. 5.12- 5.15 show phase noise performance with and without jitter calibration

block. In Fig. 5.12, the fractional spur is −91dBc without jitter calibration and is

−104dBc with jitter calibration. In Fig. 5.13, the fractional spur is −94dBc without

jitter calibration and is −97dBc with jitter calibration. In Fig. 5.14, the fractional

spur is −100dBc without jitter calibration and is −113dBc with jitter calibration.

In Fig. 5.15, the fractional spur is −94dBc without jitter calibration and is −97dBc

with jitter calibration.

The corresponding jitter performance and loop bandwidth are listed in Table 5.2.

Table 5.2: Phase noise and jitter performance w/o jitter calibration block

Without jitter calibration With jitter calibration
Frequency Phase noise Jitter Bandwidth Phase noise Jitter Bandwidth
(GHz) @1MHz @1MHz

(dBc/Hz) (ps) KHz (dBc/Hz) (ps) KHz
920MHz -100 6.9 157 -112 3.8 49.5
2.4GHz -104 18.9 124 -109 11.6 51.5
3.6GHz -100 9.8 147 -105 6.5 67.0
5.6GHz -97 14.9 133 -102 11.5 81.6

It is clear that, the self-jitter calibration block can effectively detect and adjust

ADPLL when the jitter performance does not meet the requirement. With the self-

jitter calibration block, the loop bandwidth is reduced and phase noise and jitter

performance are improved.
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5.2.2 Power consumption

The power consumption is a very important issue for on-chip micro systems. We have

listed power consumption value of each block of wide band ADPLL in chapter 2. In

this section, we focus on the power consumptions of adjustable low pass filter, on-chip

jitter measurement and the overall ADPLL system.

The power consumption values of all function blocks of the wide band ADPLL

with self-jitter calibration are summarized in Table 5.3.

Table 5.3: Multi-band ADPLL with self jitter calibration power consumption

Standard Frequency PFD LPF DIV DCO Jitter Meas. Total
Hz mW mW mW mW mW mW

GSM 1G 0.01 7.0 7.3 8.3 2.3 24.9
GMTS 2G 0.01 7.1 8 8.9 2.3 26.3
WiMAX 2.4G 0.01 7.1 8.4 9.1 2.3 26.9
WiMAX 3.6G 0.01 7.3 8.8 10.3 2.3 28.7
Bluetooth 2.4G 0.01 7.1 8.4 9.1 2.3 26.9
Wi-Fi 2.45G 0.01 7.1 8.4 9.1 2.3 26.9
Wi-Fi 5.7G 0.01 7.5 9.6 12.2 2.3 31.6

The ADPLL has the lowest power 24.9mW when output frequency is 880MHz

and the highest power 31.6mW when output frequency is 5.8GHz. Fig. 5.16 and Fig.

5.17 show the current of the ADPLL when the system is locked. Fig. 5.16 shows the

minimum current whose average value is 20.75mA and Fig. 5.17 shows the maximum

current whose average value is 26.33mA.
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Figure 5.16: The minimum current of the ADPLL.

Figure 5.17: The maximum current of the ADPLL.
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5.2.3 Measurement of ADPLL

The overall measurements of the proposed ADPLL are shown in Table 5.4. The

proposed ADPLL is designed and simulated using Cadence IC design tools. The

proposed ADPLL with a novel multi-band LC tank DCO provides wide frequency

tuning range, less power consumption, and lower jitter values in various frequency

ranges.

The range of frequency of the proposed ADPLL is from 850MHz to 1.1GHz,

1.8GHz to 2.8GHz, 3.2GHz to 3.8GHz and 5GHz to 6GHz. The linearity of output

frequency of the proposed ADPLL is presented in the section of DCO. The detailed

resolution is analyzed in chapter 2. The jitter is measured through the output of dig-

itally controlled oscillator (DCO). The phase noise performance is calculated through

the DCO output by developing a MATLAB script which is included in the appendix

section (A.1.2).

5.3 Conclusions

This chapter focuses on the wide band ADPLL with self-jitter calibration design.

A compact multi-band fractional frequency synthesizer covering GSM, GMTS, blue-

tooth, WiMAX and Wi-Fi is presented in this work. An on-chip jitter measurement

technique is proposed to monitor PLL jitter performance. By calculating standard

deviation of DCO control code, the RMS jitter value can be obtained with loop band-

width, output frequency and DCO gain parameter values. Also, an adjustable low

pass filter (LPF) is presented. The LPF coefficients are controlled with the codes
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Table 5.4: Overall measurements for the proposed ADPLL

Proposed ADPLL
Process 0.13µm

Locking Time < 1µs
Frequency Range 0.8GHz-1.1GHz 1.9GHz-2.8GHz

3.2GHz-4GHz 5GHz-6GHz
Resolution 3KHz@0.8-1.1GHz 15KHz@1.9-2.8GHz

15KHz@3.2-4GHz 30KHz@5-6GHz
-116.6@1MHz offset@1GHz output
-112.4@1MHz offset@2GHz output

Phase Noise Performance -110.2@1MHz offset@2.4GHz output
-105.8@1MHz offset@3.6GHz output
-105.6@1MHz offset@5.6GHz output

24.9mW@1GHz
26.3mW@2GHz

Power Consumption 26.9mW@2.4GHz
28.7mW@3.6GHz
31.6mW@5.7GHz

generated from the on-chip jitter measurement block. It also has the advantage of re-

ducing ADPLL locking time when LPF coefficients are pre-setted with large numbers.

We provide the whole circuit topology and transistor level simulation of proposed AD-

PLL. At last, we summarize the comparisons of proposed ADPLL with conventional

wide band ADPLLs.

144



Chapter 6

Conclusion

This research focused on the analysis and design of a wide tuning range, low noise and

self noise calibration all digital phase-locked loop. Using the theory and developed

circuits, an all-digital phase-locked loop with multi-band frequency range based on

a multi-mode LC tank DCO designed. Efforts concentrated on the design of the

new multi-band digitally controlled oscillator, phase noise analysis, on-chip jitter

measurement circuit, adjustable low pass filter and self jitter calibration circuit. The

key research contributions are highlighted as below:

1. The proposed multi-band ADPLL is able to operate in frequency of 800MHz-

1.1GHz, 1.9GHz-2.8GHz, 3.2GHz-4GHz and 5GHz-6GHz. A unique multi-mode digi-

tally controlled oscillator based on multi-resonant LC tank is presented. The proposed

ADPLL is able to cover multiple wireless communication standards including GSM,

UMTS, bluetooth, WiMAX and Wi-Fi.

2. An analytic noise model for ADPLLs is developed. A z-domain model of

ADPLL and the transfer function of each function block are derived. Utilizing the

analytical model, the total phase noise can be projected by analyzing the noise con-
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tributions and the transfer function of each function block. Also, the fractional spur

in the fraction ADPLL is analyzed. Furthermore, the boundary condition lines are

derived accordance with phase noise, locking time and damping ratio constrains in

order to determine proper DLF coefficients. Finally, ADPLL parameter including

TDC resolution, LPF coefficients can be pre-determined by phase noise, locking time

and damping ratio requirements.

3: The relationship between ADPLL jitter performance and DCO control code

is analyzed. The jitter can be estimated by calculating the standard deviation of

DCO control code. Based on this mathematical analysis, an on-chip jitter measure-

ment function block is developed, which is accomplished by using standard deviation

calculation of DCO control code block.

4: A self-jitter calibration block is presented to adjust the ADPLL jitter perfor-

mance. We develop an adjustable low pass filter in this research. Once the on-chip

jitter measurement detects that the jitter performance does not meet the requirement,

the loop filter coefficients will be adjusted to improve the jitter of ADPLL.

5: A multi-band ADPLL with self-jitter calibration is presented based on the

proposed wide band ADPLL, on-chip jitter measurement and self-jitter calibration

block. The circuit is simulated by using Cadence Spectre and IBM8rf 0.13µm CMOS

process develop kits. Comparing the proposed ADPLL with conventional ADPLLs,

the advantages of this work include: wider tuning range, better phase noise/jitter

performance, lower power consumption and adjustable loop bandwidth.

146



Appendix A

Matlab Codes

A.1 Matlab Codes for Case Studies in

Chapter 3

Phase noise caused by reference signal

Matlab file: "phasenoise_ref_cal.m"
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This function is used to estimate PLL phase noise caused by
3 %reference signal
4 %please provide following parameters:
5 %k0ref,k1ref,k2ref,k3ref,loop gain (GL); Divider value or FCW (N);
6 %low pass filter coeffients (alpha, beta)
7 %The output is reference phase noise in dB
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 function phasenoise_ref=phasenoise_ref_cal(k0ref,k1ref,k2ref,k3ref,N,GL,alpha,
beta)

11 %%%Z transform%%%
12 Zres=50; %z transform resolution
13 f=logspace(2,7.7,Zres); %z transform frequency
14 omega=2*pi*f; %radius frequency
15 z=tf('z',ts);
16
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17 sref=k0ref+k1ref./f+k2ref./(f.^2)+k3ref./(f.^3);
18 %z domain reference noise signal
19 Href=N*GL*(alpha*(z-1)+beta*z)/((z-1)^2+GL*(alpha*(z-1)+beta*z));
20 %Transferfunction of reference noise signal
21

22 [magref,phaseref]=bode(Href,omega); %bode function
23

24 for i=1:1:Zres
25 phirefx(i)=magref(:,:,i);
26 end;
27

28 srefout=sref.*(phirefx.^2); %phase noise caused by reference signal
29 phasenoise_ref=10.*log10(srefout); %reference phase noise in dB

Phase noise caused by DCO

Matlab file: "phasenoise_dco_cal.m"
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This function is used to estimate PLL phase noise caused by DCO
3 %please provide following parameters:
4 %k0dco,k1dco,k2dco,k3dco,loop gain (GL);
5 %low pass filter coeffients (alpha, beta)
6 %The output is DCO phase noise in dB
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8

9 function phasenoise_dco=phasenoise_dco_cal(k0dco,k1dco,k2dco,k3dco,GL,alpha,beta
)

10 %%%Z transform%%%
11 Zres=50; %z transform resolution
12 f=logspace(2,7.7,Zres); %z transform frequency
13 omega=2*pi*f; %radius frequency
14 z=tf('z',ts);
15

16 sdco=k0dco+k1dco./f+k2dco./(f.^2)+k3dco./(f.^3);
17 %z domain DCO noise signal
18 Hdco=(z-1)^2/((z-1)^2+GL*(alpha*(z-1)+beta*z));
19 %Transferfunction of DCO noise signal
20

21 [magdco,phasedco]=bode(Hdco,omega); %bode function
22

23 for i=1:1:Zres
24 phidcox(i)=magdco(:,:,i);
25 end;
26

27 sdcoout=sdco.*(phidcox.^2); %phase noise caused by DCO
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28 phasenoise_dco=10.*log10(sdcoout); %DCO phase noise in dB

Phase noise caused by DCO quantization noise

Matlab file: "phasenoise_dqn_cal.m"
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This function is used to estimate PLL phase noise caused by
3 %DCO quantization noise
4 %please provide following parameters:
5 %Divider value (N),loop gain (GL); TDC gain (GT)
6 %low pass filter coeffients (alpha, beta)
7 %The output is DQN phase noise in dB
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 function phasenoise_dqn=phasenoise_dqn_cal(Ndco,N,GL,GT,alpha,beta)
11 %%%Z transform%%%
12 Zres=50; %z transform resolution
13 f=logspace(2,7.7,Zres); %z transform frequency
14 omega=2*pi*f; %radius frequency
15 z=tf('z',ts);
16

17 sdqn=1/(12*(2^Ndco)^2*fref); %z domain DQN signal
18 Hdqn=(N*GL/GT)*(z-1)/((z-1)^2+GL*(alpha*(z-1)+beta*z));
19 %Transferfunction of DQN signal
20

21 [magdqn,phasedqn]=bode(Hdqn,omega); %bode function
22

23 for i=1:1:Zres
24 phidqnx(i)=magdqn(:,:,i);
25 end;
26

27 sdqnout=sdqn.*(phidqnx.^2); %phase noise caused by DQN
28 phasenoise_dqn=10.*log10(sdqnout); %DQN phase noise in dB

Phase noise caused by TDC-PFD architecture-I

Matlab file: "phasenoise_pfdI_cal.m"
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This function is used to estimate PLL phase noise caused by
3 %TDC-PFD noise Architecture-I
4 %please provide following parameters:
5 %TDC resolution (tauT), reference freuqncy (fref);
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6 %Output signal freuqency (fout);
7 %Divider value (N),loop gain (GL); TDC gain (GT)
8 %low pass filter coeffients (alpha, beta)
9 %The output is PFD architecture-I phase noise in dB

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11

12 function phasenoise_pfdI=phasenoise_pfdI_cal(tauT,fref,fout,N,GL,GT,alpha,beta)
13 %%%Z transform%%%
14 Zres=50; %z transform resolution
15 f=logspace(2,7.7,Zres); %z transform frequency
16 omega=2*pi*f; %radius frequency
17 z=tf('z',ts);
18

19 spfdI=(pi*tauT*fout)^2/(3*fref); %z domain PFD architecture-I
20 HpfdI=(N*GL/GT*(alpha*(z-1)+beta*z))/((z-1)^2+GL*(alpha*(z-1)+beta*z));
21 %Transferfunction of PFD architecture-I signal
22

23 [magpfdI,phasepfdI]=bode(HpfdI,omega); %bode function
24

25 for i=1:1:Zres
26 phipfdIx(i)=magpfdI(:,:,i);
27 end;
28

29 spfdIout=spfdI.*(phipfdIx.^2); %phase noise caused by PFD
architecture-I

30 phasenoise_pfdI=10.*log10(spfdIout); %PFD architecture-I phase noise in dB

Phase noise caused by TDC-PFD architecture-II

Matlab file: "phasenoise_pfdII_cal.m"
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This function is used to estimate PLL phase noise caused by
3 %TDC-PFD noise Architecture-II
4 %please provide following parameters:
5 %TDC resolution (tauT), reference freuqncy (fref);
6 %Output signal freuqency (fout);
7 %loop gain (GL); TDC gain (GT)
8 %low pass filter coeffients (alpha, beta)
9 %The output is PFD architecture-II phase noise in dB

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11

12 function phasenoise_pfdII=phasenoise_pfdII_cal(tauT,fref,fout,GL,GT,alpha,beta)
13 %%%Z transform%%%
14 Zres=50; %z transform resolution
15 f=logspace(2,7.7,Zres); %z transform frequency
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16 omega=2*pi*f; %radius frequency
17 z=tf('z',ts);
18

19 spfdII=(pi*tauT*fout)^2/(3*fref); %z domain PFD architecture-II
20 HpfdII=-(GL/GT*(alpha*(z-1)+beta*z))/((z-1)^2+GL*(alpha*(z-1)+beta*z));
21 %Transferfunction of PFD architecture-II signal
22

23 [magpfdII,phasepfdII]=bode(HpfdII,omega); %bode function
24 for i=1:1:Zres
25 phipfdIIx(i)=magpfdII(:,:,i);
26 end;
27 spfdIIout=spfdII.*(phipfdIIx.^2); %phase noise caused by PFD

architecture-II
28 phasenoise_pfdII=10.*log10(spfdIIout); %PFD architecture-II phase noise in

dB

Phase noise caused by DSM in DCO block architecture-I

Matlab file: "phasenoise_dsm1I_cal.m"
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This function is used to estimate PLL phase noise caused by
3 %DSM noise Architecture-I in DCO block
4 %please provide following parameters:
5 %DSM order (m), DSM sampling freuqncy (fdsm); DSM bit number (Ndsm)
6 %Divider value (N), loop gain (GL); TDC gain (GT)
7 %low pass filter coeffients (alpha, beta)
8 %The output is DSM Architecture-I in DCO block phase noise in dB
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 function phasenoise_dsm1I=phasenoise_dsm1I_cal(m,fdsm,Ndsm,N,GL,GT,alpha,beta)
12 %%%Z transform%%%
13 Zres=50; %z transform resolution
14 f=logspace(2,7.7,Zres); %z transform frequency
15 omega=2*pi*f; %radius frequency
16 z=tf('z',ts);
17

18 sdsm1I=(pi^2/(3*fdsm))*((2*sin(pi*f./(fdsm))).^(2*(m-1)));
19 %z domain DSM Architecture-I in DCO block
20 Hdsm1I=(2^(-Ndsm)*N*GL*(z-1)/GT)/((z-1)^2+GL*(alpha*(z-1)+beta*z));
21 %Transferfunction of DSM Architecture-I in DCO block
22

23 [magdsm1I,phasedsm1I]=bode(Hdsm1I,omega); %bode function
24 for i=1:1:Zres
25 phidsm1Ix(i)=magdsm1I(:,:,i);
26 end;

151



27 sdsm1Iout=sdsm1I.*(phidsm1Ix.^2); %phase noise caused by DSM Architecture-I in
DCO block

28 phasenoise_dsm1I=10.*log10(sdsm1Iout); %DSM Architecture-I in DCO block phase
noise in dB

Phase noise caused by DSM in DIV block architecture-I

Matlab file: "phasenoise_dsm2I_cal.m"
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This function is used to estimate PLL phase noise caused by
3 %DSM noise Architecture-I in divider block
4 %please provide following parameters:
5 %DSM order (m), DSM sampling freuqncy (fdsm); DSM bit number (Ndsm)
6 %Divider value (N), loop gain (GL);
7 %low pass filter coeffients (alpha, beta)
8 %The output is DSM Architecture-I in DIV block phase noise in dB
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 function phasenoise_dsm2I=phasenoise_dsm2I_cal(m,fdsm,Ndsm,N,GL,alpha,beta)
12 %%%Z transform%%%
13 Zres=50; %z transform resolution
14 f=logspace(2,7.7,Zres); %z transform frequency
15 omega=2*pi*f; %radius frequency
16 z=tf('z',ts);
17

18 sdsm2I=(pi^2/(3*fdsm))*((2*sin(pi*f./(fdsm))).^(2*(m-1)));
19 %z domain DSM Architecture-I in DIV block
20 Hdsm2I=(2^(-Ndsm)/N)/((z-1)^2+GL*(alpha*(z-1)+beta*z));
21 %Transferfunction of DSM Architecture-I in DIV block
22

23 [magdsm2I,phasedsm2I]=bode(Hdsm2I,omega); %bode function
24 for i=1:1:Zres
25 phidsm2Ix(i)=magdsm2I(:,:,i);
26 end;
27 sdsm2Iout=sdsm2I.*(phidsm2Ix.^2); %phase noise caused by DSM Architecture-I in

DIV block
28 phasenoise_dsm2I=10.*log10(sdsm2Iout); %DSM Architecture-I in DIV block phase

noise in dB

Phase noise caused by DSM in DCO block architecture-II

Matlab file: "phasenoise_dsm1II_cal.m"
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This function is used to estimate PLL phase noise caused by
3 %DSM noise Architecture-II in DCO block
4 %please provide following parameters:
5 %DSM order (m), DSM sampling freuqncy (fdsm); DSM bit number (Ndsm)
6 %Divider value (N), loop gain (GL); DCO gain (kdco)
7 %low pass filter coeffients (alpha, beta)
8 %The output is DSM Architecture-II in DCO block phase noise in dB
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 function phasenoise_dsm1II=phasenoise_dsm1II_cal(m,fdsm,Ndsm,GL,kdco,alpha,beta)
12 %%%Z transform%%%
13 Zres=50; %z transform resolution
14 f=logspace(2,7.7,Zres); %z transform frequency
15 omega=2*pi*f; %radius frequency
16 z=tf('z',ts);
17

18 sdsm1II=(pi^2/(3*fdsm))*((2*sin(pi*f./(fdsm))).^(2*(m-1)));
19 %z domain DSM Architecture-II in DCO block
20 Hdsm1II=(2^(-Ndsm)*kdco*(z-1))/((z-1)^2+GL*(alpha*(z-1)+beta*z));
21 %Transferfunction of DSM Architecture-II in DCO block
22

23 [magdsm1II,phasedsm1II]=bode(Hdsm1II,omega); %bode function
24 for i=1:1:Zres
25 phidsm1IIx(i)=magdsm1II(:,:,i);
26 end;
27 sdsm1IIout=sdsm1II.*(phidsm1IIx.^2); %phase noise caused by DSM Architecture-II

in DCO
28 phasenoise_dsm1II=10.*log10(sdsm1IIout); %DSM Architecture-II in DCO phase noise

in dB

Matlab example for Case 1

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This program is used as an example to calculate phase noise of the
3 %architecture-I ADPLL in Chapter 3
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 clear;
6 clc;
7 %%%Please provide following parameters%%%
8 fref=45e6; %reference frequency 45MHz
9 fout=1.5e9; %output frequency 1.5GHz

10 kdco=577; %DCO gain 577Hz/LSB
11 tauT=10e-12; %TDC resolution
12 fdsm=45e6; %DSM sampling frequency equals fref
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13 m=1; %DSM in DCO, the order is 1
14 Ndsm=5; %DSM in DCO, the bit number is 5
15 alpha=2^2; %DLF coefficient alpha
16 beta=2^(-6); %DLF coefficient beta
17 k0ref=10^(-16.1); %Reference noise coefficient
18 k1ref=10^(-10.2); %Reference noise coefficient
19 k2ref=10^(-7.6); %Reference noise coefficient
20 k3ref=10^(-6.1); %Reference noise coefficient
21 k0dco=10^(-15.5); %DCO noise coefficient
22 k1dco=10^(-8.2); %DCO noise coefficient
23 k2dco=10^(-4.2); %DCO noise coefficient
24 k3dco=10^(0.9); %DCO noise coefficient
25 Ndco=5; %DCO dithering bit number
26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27

28 N=fout/fref; %Divider value 33.33
29 GT=1/(2*pi*tauT*fref); %TDC gain
30 GL=2*pi*GT*kdco/(N*fref);%Loop gain
31

32 %%%Z transform%%%
33 Zres=50; %z transform resolution
34 f=logspace(2,7.7,Zres); %z transform frequency
35

36 %%%Call functions%%%
37 phasenoise_ref_cal(k0ref,k1ref,k2ref,k3ref,N,GL,alpha,beta);
38 phasenoise_dco_cal(k0dco,k1dco,k2dco,k3dco,GL,alpha,beta);
39 phasenoise_dqn_cal(Ndco,GL,GT,alpha,beta);
40 phasenoise_pfdI_cal(tauT,fref,fout,N,GL,GT,alpha,beta);
41 phasenoise_dsm1I_cal(m,fdsm,Ndsm,N,GL,GT,alpha,beta);
42

43 %%%Calculate total phase nosie%%%
44 stotal=10.^(phasenoise_ref/10)+10.^(phasenoise_dco/10) +10.^(phasenoise_dqn/10)

+10.^(phasenoise_pfdI/10) +10.^(phasenoise_dsm1I/10);
45 logstotal=10.*log10(stotal); %Total phase noise in dB
46

47 %%%Figure plot%%%
48 semilogx(f,phasenoise_ref,'r');
49 hold on;
50 semilogx(f,phasenoise_dco);
51 semilogx(f,phasenoise_dqn,'k');
52 semilogx(f,phasenoise_pfdI,'g');
53 semilogx(f,phasenoise_dsm1I,'p');
54 semilogx(f,logstotal);
55

56 %%%Plot measured phase noise%%%
57 Frequency=[1e3 2e3 4e3 7e3 1e4 2e4 4e4 7e4 1e5 2e5 4e5 7e5 1e6 2e6 4e6 7e6 1e7 2

e7];
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58 PhaseNoise_measured=[-92 -93 -95 -96 -96.3 -101 -110 -120 -124.8 -132 -138 -139
-141.5 -143 -146 -147.5 -149.5 -152];

59 semilogx(Frequency,PhaseNoise_measured,'o');
60 grid;

Matlab example for Case 2

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This program is used as an example to calculate phase noise of the
3 %architecture-II ADPLL in Chapter 3
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 clear;
6 clc;
7 %%%Please provide following parameters%%%
8 fref=48e6; %reference frequency 48MHz
9 fout=5.376021831e9; %output frequency 5.376021831GHz

10 kdco=26e3; %DCO gain 26KHz/LSB
11 tauT=15e-12; %TDC resolution 15ps
12 fdsm=48e6; %DSM sampling frequency equals fref
13 m=2; %DSM in DCO, the order is 2
14 Ndsm=9; %DSM in DCO, the bit number is 9
15 alpha=2^(-5); %DLF coefficient alpha
16 beta=2^(-10); %DLF coefficient beta
17 k0ref=10^(-14.7); %Reference noise coefficient
18 k1ref=10^(-10.3); %Reference noise coefficient
19 k2ref=10^(-8.3); %Reference noise coefficient
20 k3ref=10^(-4.8); %Reference noise coefficient
21 k0dco=10^(-13.8); %DCO noise coefficient
22 k1dco=0; %DCO noise coefficient
23 k2dco=10^(-0.2); %DCO noise coefficient
24 k3dco=0; %DCO noise coefficient
25 Ndco=9; %DCO dithering bit number
26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27

28 N=fout/fref; %FCW value
29 GT=1/(2*pi*tauT*fref); %TDC gain
30 GL=2*pi*GT*kdco/(N*fref);%Loop gain
31

32 %%%Z transform%%%
33 Zres=50; %z transform resolution
34 f=logspace(2,7.7,Zres); %z transform frequency
35

36 %%%Call functions%%%
37 phasenoise_ref_cal(k0ref,k1ref,k2ref,k3ref,N,GL,alpha,beta);
38 phasenoise_dco_cal(k0dco,k1dco,k2dco,k3dco,GL,alpha,beta);
39 phasenoise_dqn_cal(Ndco,GL,GT,alpha,beta);
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40 phasenoise_pfdII_cal(tauT,fref,fout,N,GL,GT,alpha,beta);
41 phasenoise_dsm1II_cal(m,fdsm,Ndsm,N,GL,GT,alpha,beta);
42

43 %%%Calculate total phase nosie%%%
44 stotal=10.^(phasenoise_ref/10)+10.^(phasenoise_dco/10) +10.^(phasenoise_dqn/10)

+10.^(phasenoise_pfdII/10) +10.^(phasenoise_dsm1II/10);
45 logstotal=10.*log10(stotal); %Total phase noise in dB
46

47 %%%Figure plot%%%
48 semilogx(f,phasenoise_ref,'r');
49 hold on;
50 semilogx(f,phasenoise_dco);
51 semilogx(f,phasenoise_dqn,'k');
52 semilogx(f,phasenoise_pfdII,'g');
53 semilogx(f,phasenoise_dsm1II,'p');
54 semilogx(f,logstotal);
55

56 %%%Plot measured phase noise%%%
57 Frequency=[2e3 4e3 7e3 1e4 2e4 4e4 7e4 1e5 2e5 4e5 7e5 1e6 2e6 4e6 7e6 1e7];
58 PhaseNoise_measured=[-95 -95.5 -96 -96.9 -96.5 -96 -93 -90.7 -97 -104 -110

-116.4 -122 -128 -134 -137];
59 semilogx(Frequency,PhaseNoise_measured,'o');
60 grid;

A.2 Matlab Code for Phase Noise Cal-

culation
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This function is used to calculate PLL phase noise.
3 %Please provide following parameters:
4 %DCO output signal(DCOout);
5 %DCO frequency (fdco);Sampling frequency (fs); Settling time (tset);
6 %The output of this function is phase noise.
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8

9 function phasenoise=phasenoise_cal(DCOout,fdco,fs,tset)
10 DCOout_length=length(DCOout); %DCOout length;
11 DCOout_settle=DCOout(ceil(tset*fs+1):DCOout_length); %DCO data when it is

locked
12 DCOout_settle_length=length(DCOout_settle); %length of DCOout_settle
13 DCOout_calcul=DCOout_settle(1:2^(floor(log2(DCOout_settle_length))));
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14 %2^N data is used to calculte phase noise
15

16 %%%Fourier Transform%%%
17 Per=1/fs; %Sampling period;
18 Ndco=length(DCOout_calcul); %length of DCO data in calculation
19 Tend=(Ndco-1)*Per; %end Time
20 fftsig=fft(DCOout_calcul); %fourier transform
21 mag_fftsig=abs(fftshift(fftsig)); %magnitude
22 fre=(0:Ndco-1)*fs/Ndco-fs/2; %frequency
23

24 phasenoise=20*log10(mag_fftsig/max(mag_fftsig))+20*log10(Tend);
25 %phase noise in log scale
26

27 %%%Figure plot%%%
28 semilogx(fre-fdco,phasenoise);
29 grid;

A.3 Matlab Code for Phase Noise to

Jitter Conversion
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This program is used to calculate RMS jitter requirement based on
3 %phase noise requirement
4 %Please provide parameters: loop bandwidth (BW);
5 %Output frequency (fout);offset freuqncy (fre_os);
6 %Phase noise at offset frequency (pn_dBc) in dBc/Hz.
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8

9 function jitter_conv=phasenoise_to_jitter(BW,fout,fre_os,pn_dBc)
10 %Calculate PN1
11 if fre_os<=BW
12 PN1=pn_dBc;
13 elseif fre_os<=10*BW
14 PN1=pn_dBc+20*log10(fre_os/BW);
15 elseif fre_os<=100*BW
16 PN1=pn_dBc+20+10*log10(fre_os/(10*BW));
17 else
18 PN1=pn_dBc+30;
19 end;
20 PN2=PN1-20; %Calculate PN2
21 PN3=PN1-30; %Calculate PN3
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22

23 A1=PN1+10*log10(BW-0); %Calculate A1
24 A2=(PN1+PN2)/2+10*log10(10*BW-BW); %Calculate A2
25 A3=(PN2+PN3)/2+10*log10(100*BW-10*BW); %Calculate A3
26 A4=PN3+10*log10(2*fout-100*BW); %Calculate A4
27

28 jitter_conv=(sqrt(2*10^(A1/10))+sqrt(2*10^(A2/10))+sqrt(2*10^(A3/10))+sqrt
(2*10^(A4/10)))/(2*pi*fout); %Calculate JMS jitter

A.4 Matlab Code for Jitter Calcula-

tion from DCO Control Code
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %This program is used to calculate RMS jitter based on
3 %DCO control code
4 %Please provide parameters:
5 %DCO control code (Dcode),Sampling frequency (fs);
6 %Number of code in one calculation period (Np), locking time (TL).
7 %DCO gain (Kdco) and output frequency (fout).
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 function RMS_jitter=RMS_jitter_cal(Dcode, fs, Np, TL, Kdco,fout)
11 Dcode_length=length(Dcode); %DCO control code length;
12 Dcode_settle=Dcode(ceil(TL*fs+1):Dcode_length); %DCO control code when it is

locked
13

14 if Np>=length(Dcode_settle)
15 %Make sure the number of DCO control code is larger or equal to Np
16 Dcode_cal=Dcode_settle(1:Np); %DCO control code for calculation
17 STD_Dcode=std(Dcode_cal); %Standard deviation of DCO control code for

calculation
18 RMS_jitter=STD_Dcode*Kdco/(2*pi*fout^2); %RMS jitter result
19 else disp(' Please provide more DCO control codes.');
20 end;
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