21 research outputs found

    Highly corrupted image inpainting through hypoelliptic diffusion

    Get PDF
    We present a new image inpainting algorithm, the Averaging and Hypoelliptic Evolution (AHE) algorithm, inspired by the one presented in [SIAM J. Imaging Sci., vol. 7, no. 2, pp. 669--695, 2014] and based upon a semi-discrete variation of the Citti-Petitot-Sarti model of the primary visual cortex V1. The AHE algorithm is based on a suitable combination of sub-Riemannian hypoelliptic diffusion and ad-hoc local averaging techniques. In particular, we focus on reconstructing highly corrupted images (i.e. where more than the 80% of the image is missing), for which we obtain reconstructions comparable with the state-of-the-art.Comment: 15 pages, 10 figure

    Multiple Birth and Cut Algorithm for Point Process Optimization

    Get PDF
    International audienceIn this paper, we describe a new optimization method which we call Multiple Birth and Cut (MBC). It combines the recently developed Multiple Birth and Death (MBD) algorithm and the Graph-Cut algorithm. MBD and MBC optimization methods are applied to the energy minimization of an object based model, the marked point process. We compare the MBC to the MBD showing the advantages and disadvantages, where the most important advantage is the reduction of the number of parameters. We validated our algorithm on the counting problem of flamingos in colony, where our algorithm outperforms the performance of the MBD algorithm

    Multiple Birth and Cut Algorithm for Multiple Object Detection

    Get PDF
    International audienceIn this paper, we describe a new optimization method which we call Multiple Birth and Cut (MBC). It combines the recently developed Multiple Birth and Death (MBD) algorithm and the Graph-Cut algorithm. MBD and MBC optimization methods are applied to energy minimization of an object based model, the marked point process. We compare the MBC to the MBD showing their respective advantages and drawbacks, where the most important advantage of the MBC is the reduction of number of parameters. We demonstrate that by proposing good candidates throughout the selection phase in the birth step, the speed of convergence is increased. In this selection phase, the best candidates are chosen from object sets by a belief propagation algorithm. We validate our algorithm on the flamingo counting problem in a colony and demonstrate that our algorithm outperforms the MBD algorithm

    Photometric Depth Super-Resolution

    Full text link
    This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019. First three authors contribute equall

    A single-lobe photometric stereo approach for heterogeneous material

    Get PDF
    Shape from shading with multiple light sources is an active research area, and a diverse range of approaches have been proposed in recent decades. However, devising a robust reconstruction technique still remains a challenging goal, as the image acquisition process is highly nonlinear. Recent Photometric Stereo variants rely on simplifying assumptions in order to make the problem solvable: light propagation is still commonly assumed to be uniform, and the Bidirectional Reflectance Distribution Function is assumed to be diffuse, with limited interest for specular materials. In this work, we introduce a well-posed formulation based on partial differential equations (PDEs) for a unified reflectance function that can model both diffuse and specular reflections. We base our derivation on ratio of images, which makes the model independent from photometric invariants and yields a well-posed differential problem based on a system of quasi-linear PDEs with discontinuous coefficients. In addition, we directly solve a differential problem for the unknown depth, thus avoiding the intermediate step of approximating the normal field. A variational approach is presented ensuring robustness to noise and outliers (such as black shadows), and this is confirmed with a wide range of experiments on both synthetic and real data, where we compare favorably to the state of the art.Roberto Mecca is a Marie Curie fellow of the “Istituto Nazionale di Alta Matematica” (Italy) for a project shared with University of Cambridge, Department of Engineering and the Department of Mathematics, University of Bologna

    Unbiased Photometric Stereo for Colored Surfaces: A Variational Approach

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by IEEE.3D shape recovery using photometric stereo (PS) gained increasing attention in the computer vision community in the last three decades due to its ability to recover the thinnest geometric structures. Yet, the reliability of PS for color images is difficult to guarantee, because existing methods are usually formulated as the sequential estimation of the colored albedos, the normals and the depth. Hence, the overall reliability depends on that of each subtask. In this work we propose a new formulation of color photometric stereo, based on image ratios, that makes the technique independent from the albedos. This allows the unbiased 3D- reconstruction of colored surfaces in a single step, by solving a system of linear PDEs using a variational approach

    Combinatorial Solutions for Shape Optimization in Computer Vision

    Get PDF
    This thesis aims at solving so-called shape optimization problems, i.e. problems where the shape of some real-world entity is sought, by applying combinatorial algorithms. I present several advances in this field, all of them based on energy minimization. The addressed problems will become more intricate in the course of the thesis, starting from problems that are solved globally, then turning to problems where so far no global solutions are known. The first two chapters treat segmentation problems where the considered grouping criterion is directly derived from the image data. That is, the respective data terms do not involve any parameters to estimate. These problems will be solved globally. The first of these chapters treats the problem of unsupervised image segmentation where apart from the image there is no other user input. Here I will focus on a contour-based method and show how to integrate curvature regularity into a ratio-based optimization framework. The arising optimization problem is reduced to optimizing over the cycles in a product graph. This problem can be solved globally in polynomial, effectively linear time. As a consequence, the method does not depend on initialization and translational invariance is achieved. This is joint work with Daniel Cremers and Simon Masnou. I will then proceed to the integration of shape knowledge into the framework, while keeping translational invariance. This problem is again reduced to cycle-finding in a product graph. Being based on the alignment of shape points, the method actually uses a more sophisticated shape measure than most local approaches and still provides global optima. It readily extends to tracking problems and allows to solve some of them in real-time. I will present an extension to highly deformable shape models which can be included in the global optimization framework. This method simultaneously allows to decompose a shape into a set of deformable parts, based only on the input images. This is joint work with Daniel Cremers. In the second part segmentation is combined with so-called correspondence problems, i.e. the underlying grouping criterion is now based on correspondences that have to be inferred simultaneously. That is, in addition to inferring the shapes of objects, one now also tries to put into correspondence the points in several images. The arising problems become more intricate and are no longer optimized globally. This part is divided into two chapters. The first chapter treats the topic of real-time motion segmentation where objects are identified based on the observations that the respective points in the video will move coherently. Rather than pre-estimating motion, a single energy functional is minimized via alternating optimization. The main novelty lies in the real-time capability, which is achieved by exploiting a fast combinatorial segmentation algorithm. The results are furthermore improved by employing a probabilistic data term. This is joint work with Daniel Cremers. The final chapter presents a method for high resolution motion layer decomposition and was developed in combination with Daniel Cremers and Thomas Pock. Layer decomposition methods support the notion of a scene model, which allows to model occlusion and enforce temporal consistency. The contributions are twofold: from a practical point of view the proposed method allows to recover fine-detailed layer images by minimizing a single energy. This is achieved by integrating a super-resolution method into the layer decomposition framework. From a theoretical viewpoint the proposed method introduces layer-based regularity terms as well as a graph cut-based scheme to solve for the layer domains. The latter is combined with powerful continuous convex optimization techniques into an alternating minimization scheme. Lastly I want to mention that a significant part of this thesis is devoted to the recent trend of exploiting parallel architectures, in particular graphics cards: many combinatorial algorithms are easily parallelized. In Chapter 3 we will see a case where the standard algorithm is hard to parallelize, but easy for the respective problem instances

    Solder Paste Scooping Detection by Multilevel Visual Inspection of Printed Circuit Boards

    Get PDF
    In this paper we introduce an automated Bayesian visual inspection framework for Printed Circuit Board (PCB) assemblies, which is able to simultaneously deal with various shaped Circuit Elements (CE) on multiple scales. We propose a novel Hierarchical Multi Marked Point Process (HMMPP) model for this purpose, and demonstrate its efficiency on the task of solder paste scooping detection and scoop area estimation, which are important factors regarding the strength of the joints. A global optimization process attempts to find the optimal configuration of circuit entities, considering the observed image data, prior knowledge, and interactions between the neighboring CEs. The computational requirements are kept tractable by a data driven stochastic entity generation scheme. The proposed method is evaluated on real PCB data sets containing 125 images with more than 10.000 splice entities
    corecore