258 research outputs found

    ROAZ Autonomous Surface Vehicle Design and Implementation

    Get PDF
    The design of an Autonomous Surface Vehicle for operation in river and estuarine scenarios is presented. Multiple operations with autonomous underwater vehicles and support to AUV missions are one of the main design goals in the ROAZ system. The mechanical design issues are discussed. Hardware, software and implementation status are described along with the control and navigation system architecture. Some preliminary test results concerning a custom developed thruster are presented along with hydrodynamic drag calculations by the use of computer fluid dynamic methods

    Rational decision making in autonomous agents

    Get PDF
    Making rational decisions is one of the key elements in the design of autonomous agents with successful behavior. Even though there have been many proposals for the support of decision making, most of them can be described either as descriptive or prescriptive. The main goal of our work is to establish the relationship between two of these models, namely bdi and mdps, in order to gain further understanding of how decisions in one model are viewed from the point of view of the other. This goal is important for the development of agent design strategies that unite the best of both worlds.Eje: Inteligencia artificial distribuida, aspectos teóricos de la inteligencia artificial y teoría de computaciónRed de Universidades con Carreras en Informática (RedUNCI

    Design an evaluation of RoboCup humanoid goalie

    Get PDF
    P. 19-26In this article we describe the ethological inspired architecture we have developed and how it has been used to implement a humanoid goalkeeper according to the regulations of the two-legged Standard Platform League of the RoboCup Federation. We present relevant concepts borrowed from ethology that we have successfully used for generating autonomous behaviours in mobile robotics, such as the use of ethograms in robotic pets or the ideas of schemata, or the use of fixed actions patterns to implement reactivity. Then we discuss the implementation of this architecture on the Nao biped robot. Finally, we propose a method for its evaluation and validation and analyse the results obtained during RoboCup real competition, which allowed us to test first hand how it worked in a real environmentS

    ABC2 an agenda based multi-agent model for robots control and cooperation

    Get PDF
    This paper presents a model for the control of autonomous robots that allows cooperation among them. The control structure is based on a general purpose multi-agent architecture using a hybrid approach made up by two levels. One level is composed of reactive skills capable of achieving simple actions by their own. The other one uses an agenda used as an opportunistic planning mechanism to compound, activate and coordinate the basic skills. This agenda handles actions both from the internal goals of the robot or from other robots. This two level approach allows the integration of real-time response of reactive systems needed for robot low-level behavior, with a classical high level planning component that permits a goal oriented behavior. The paper describes the architecture itself, and its use in three different domains, including real robots, as well as the issues arising from its adaptation to the RoboCup simulator domai

    Transferring knowledge as heuristics in reinforcement learning: A case-based approach

    Get PDF
    The goal of this paper is to propose and analyse a transfer learning meta-algorithm that allows the implementation of distinct methods using heuristics to accelerate a Reinforcement Learning procedure in one domain (the target) that are obtained from another (simpler) domain (the source domain). This meta-algorithm works in three stages: first, it uses a Reinforcement Learning step to learn a task on the source domain, storing the knowledge thus obtained in a case base; second, it does an unsupervised mapping of the source-domain actions to the target-domain actions; and, third, the case base obtained in the first stage is used as heuristics to speed up the learning process in the target domain. A set of empirical evaluations were conducted in two target domains: the 3D mountain car (using a learned case base from a 2D simulation) and stability learning for a humanoid robot in the Robocup 3D Soccer Simulator (that uses knowledge learned from the Acrobot domain). The results attest that our transfer learning algorithm outperforms recent heuristically-accelerated reinforcement learning and transfer learning algorithms. © 2015 Elsevier B.V.Luiz Celiberto Jr. and Reinaldo Bianchi acknowledge the support of FAPESP (grants 2012/14010-5 and 2011/19280-8). Paulo E. Santos acknowledges support from FAPESP (grant 2012/04089-3) and CNPq (grant PQ2 -303331/2011-9).Peer Reviewe

    Rational decision making in autonomous agents

    Get PDF
    Making rational decisions is one of the key elements in the design of autonomous agents with successful behavior. Even though there have been many proposals for the support of decision making, most of them can be described either as descriptive or prescriptive. The main goal of our work is to establish the relationship between two of these models, namely bdi and mdps, in order to gain further understanding of how decisions in one model are viewed from the point of view of the other. This goal is important for the development of agent design strategies that unite the best of both worlds.Eje: Inteligencia artificial distribuida, aspectos teóricos de la inteligencia artificial y teoría de computaciónRed de Universidades con Carreras en Informática (RedUNCI

    Coordinated multi-robot formation control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201
    corecore