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1. Introduction     
 

The traditional control problems of trajectory-tracking and regulation have been extensively 
studied in the field of mobile robotics. In particular, the differential and the omnidirectional 
mobile robots, also known, respectively, as the (2,0) and the (3,0) robots (see (Bétourné & 
Campion, 1996), (Campion et al., 1996), have attracted the interest of many control 
researchers. 
It is a common practice in mobile robotics to address control problems taking into account 
only a kinematic representation. In (Canudas et al., 1996) and (Campion et al., 1996) the 
kinematic models for diverse types of mobile robots are presented. 
From a kinematic perspective, the trajectory-tracking control problem of (2,0)-type robot has 
been addressed and solved for example in (D’Andrea-Novel et al., 1992) following a 
dynamic feedback linearization approach. In (Oriolo et al., 2002) a real time implementation 
of a dynamic feedback linearization tracking-controller is presented. For the same class of 
robot, a discrete time approach is considered in (Niño-Suárez et al., 2006) where a path-
tracking controller based on a sliding mode control technique is presented. 
The regulation and trajectory-tracking problems for the omnidirectional mobile robot (3,0), 
have also received sustained attention. Considering, only its kinematic model, several 
control strategies have been proposed. In (Liu et al., 2003), it is designed a nonlinear 
controller based on a Trajectory Linearization strategy and in (Velasco-Villa et al., 2007), the 
remote control of the (3,0) mobile robot is developed based on a discrete-time strategy 
assuming a time-lag model of the robot. In (Velasco-Villa et al., 2007b) the trajectory-
tracking problem is solved by means of an estimation strategy that predicts the future 
values of the system based on the exact nonlinear discrete-time model of the robot. 
A more reduced number of contributions have been focused on the dynamic representation 
of the omnidirectional mobile robot. For example, in (Carter et al., 2001), it is described the 
mechanical design of a (3,0) robot and based on its dynamic model it is proposed a PID 
control for each robot wheel. Authors in (Bétourné & Campion, 1996) consider an Euler-
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Lagrange model formulation and present an output feedback controller that solves the 
trajectory-tracking problem. In the same spirit, in (Williams et al., 2002) the dynamic model 
of the mobile robot is considered in order to study the slipping effects between the wheels of 
the vehicle and the working surface. In (Chung et al., 2003), the mobile robot is analyzed in 
the case of a vehicle supporting castor wheels. In (Vázquez & Velasco-Villa, 2008) the 
trajectory tracking problem is addressed and solved by considering a modification of the 
well known Computed-Torque strategy. Finally, in (Kalmár-nagy et al. 2004) the time-
optimization problem of a desired trajectory is considered for a mobile robot subject to 
admissible input limits in order to obtain feedback laws that are based on the kinematic and 
dynamic models. 
The analysis of Euler-Lagrange systems has produced several feedback strategies that have 
been developed mainly in the area of robot manipulators and, lately, in the area of power 
electronics. In particular, passivity-based control approaches that consider the energy 
managing structure of the system, for instance: the interconnection and damping 
assignment technique developed in (Ortega et al., 2001), and passivity-based approaches 
that exploit the passivity properties of the exact tracking error dynamics and its natural 
passive output are taken in (Ortega et al., 1998), (Sira-Ramírez & Rodríguez-Cortés, 2008), 
(Sira-Ramrez, 2005) and (Sira-Ramrez & Silva-Ortigoza, 2006). 
We address and solve the trajectory-tracking problem of an omnidirectional mobile robot 
taking into account its dynamic model. Contrary to the differential case, the considered 
mobile robot it is not affected by non-holonomics constraints. Following ideas developed in 
the field of power electronics, in this work, we consider a passivity based control technique 
that exploit the passivity properties of the exact tracking error addressed as: Exact Tracking 
Error Dynamics Passive Output Feedback (ETEDPOF), (Sira-Ramrez, 2005), (Sira-Ramrez & 
Silva-Ortigoza, 2006). The performance of the proposed control strategy is contrasted 
through numerical simulations with the well-known Computed-Torque Control (Vázquez & 
Velasco-Villa, 2008) for a desired circular trajectory. 
This paper is organized as follows: Section 2 presents the dynamic model of the 
omnidirectional mobile robot and some structural properties are stated. A brief recall of the 
Computed-Torque solution is also provided. Immediately, in Section 3 the trajectory-
tracking problem is solved by the Exact Tracking Error Dynamics Passive Output Feedback. 
Closed loop stability is formally proven. In Section 4, the performance of the developed 
strategy is evaluated by means of numerical simulations and compared with the solution 
obtained by the Computed-Torque control technique. Section 5 presents some conclusions. 

 
2. Omnidirectional Mobile Robot 
 

A top view of the configuration of a (3,0) mobile robot is depicted in Figure 1. The mobile 
reference frame mm YX   is located at the center of mass of the vehicle with the mX  axis 
aligned with respect to the wheel 3. Wheels 1 and 2 are placed symmetrically with an angle 

30=  with respect to the mY  axis. The fixed reference frame YX   provides the absolute 
localization of the vehicle on the workspace. The mobile robot is of the type (Canudas et al., 
1996) (3,0)=),( sm  , this is, it has three degrees of mobility and zero degrees of 
steerability allowing the displacements of the vehicle in all directions instantaneously.  
 

 

2.1 Dynamic Model 
Mobile robot velocity expressed in YX   coordinates is defined as (Campion et al., 1996), 
 

            uRq T )(=   (1) 
 with, 
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Fig. 1. Omnidirectional Mobile Robot 
 
The point ),( yx  is the position of the center of mass of the robot on the plane YX   and   
is the robot orientation with respect to the X -axis. 1u , 2u  are the mobile robot linear 
velocity expressed in the mobile reference system and 3u  is the rotational velocity measured 
in the mobile reference system. 
A simple analysis of the velocity constrains on Figure 1 produces,  
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Fig. 1. Omnidirectional Mobile Robot 
 
The point ),( yx  is the position of the center of mass of the robot on the plane YX   and   
is the robot orientation with respect to the X -axis. 1u , 2u  are the mobile robot linear 
velocity expressed in the mobile reference system and 3u  is the rotational velocity measured 
in the mobile reference system. 
A simple analysis of the velocity constrains on Figure 1 produces,  
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 321=  , where 1 , 2 , 3  represent the angular displacements of wheels one, 
two and three, respectively;   is the orientation of the i -wheel with respect to its 
longitudinal axis; L  is the distance between the center of each wheel and the center of the 
vehicle and r  is the radius of each wheel. 
Following (Campion et al., 1996)-(Canudas et al., 1996), the kinetic energy of the robot is 
given by the wheel rotational energy plus the translational and rotational energy of the 
robot. Therefore, the Lagrangian of the system is obtained as, 
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 with ),,(= ppp IMMdiagM  and ),,(=  IIIdiagIr . pM  is the vehicle mass pI  the 

moment of inertia about the Z  axis of the vehicle and I  is the moment of inertia of each 
wheel about its rotation axis. 
Considering that the kinematics restrictions (2) are satisfied for all t , it is possible to neglect 
the friction and slipping effects between the wheels and the working surface. Then, the 
Euler-Lagrange formulation produces the system representation, 
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where  321=  , with i  the input torque of each wheel and 1
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Equivalently 
 

       ,=)( BqqCqD    (4) 
 where, 
 

   
    ,sincoscos

cossinsin
1=

,
000
00
00

=)(,
00

00
00

=

3

1

1




















































LLL
r

B

aqC
d

d
d

D












 

 

 

with 21 2
3=
r
IMd r

p  , 2

2

3
3=
r
LIId r

p   and 22
3=
r
Ia r . 

 
2.2 Structural properties 
In what follows, some structural properties of the dynamic model (4) are stated. These 
properties will be necessary to synthesize the proposed control strategy. 

 
Property 1 The vector qqC )(  does not possess a unique representation, in particular, for the 
development of the feedback law, the following alternative parametrization will be considered, 
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Property 2 The structure of matrix )(qCa   is such that, 
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 where it is easy to show that 
2
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2.3 Computed-Torque Control Solution 
Before presenting the main result of the paper we briefly recalled the solution obtained by 
considering a modified version of the well know Computed-Torque control strategy. 
Following (Vázquez & Velasco-Villa, 2008), it is possible to consider for system (4) a 
feedback law of the form, 
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 where dq  is the desired trajectory and dqqq =~  is the tracking error. pK  and dK  are 

diagonal and positive definite  matrices of proportional and derivative gains and matrix 
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Feedback (6) in closed loop loop with system (4) produces, 
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0,=)(~~)()(~ qqCqKqKqqCqqCqD drdpdd     

for which, it is possible to formally proof asymptotic closed loop stability. In what follows, it 
will be presented an alternative feedback control law that solves the same problem. 

 
3. Control design. 
 

Consider the following general model of physical systems (Sira-Ramirez et al., 2006;  
Sira-Ramírez et al., 2008).  
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)(tE  is a n -dimensional smooth vector function of t  or sometimes, a constant vector. The 
input matrix )(xB  is a mn  matrix and the output vector y  is an m  dimensional vector. 
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 where )(= txx  . Straightforward computations show that the error dynamics reads as,  
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with  
 

).()()( ttt   LMP   

We refer to (10) as the exact open loop error dynamics. 
Following Sira-Ramirez et al., 2006; Sira-Ramírez et al., 2008 we have, 
 
Assumption 3 Given a feasible smooth bounded reference trajectory nRtx  )( , there exists a 

smooth open loop control input mRtu  )( , such that for all trajectories starting at )(=)( 00 txtx  , 

the tracking error )()(=)( txtxte   is identically zero for all 0tt  .  
 
Assumption 4 For any constant positive definite symmetric matrix K  the following relation is 
uniformly satisfied  
 

0.>),(),(),,(   txKtxtux BBR   

 
Theorem 5 Consider the system (7)-(8) in closed loop with the controller,  
 

.),()(= etxKtuu   B  (12) 

Then, under Assumptions 3 and 4, the tracking error )(te  is globally asymptotically stabilized to 
zero.  
 
Proof.  Take now the following Lyapunov function candidate,  
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 whose time derivative is given by,  
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Introducing (11) into the above equation, we have  
 

,]),(),(),,(= etxKtxtuxeV   BB[R   

By Assumption 4, the proof is completed.   

 
3.1 Omnidirectional mobile robot case 
In the following we apply a slightly modified version of the result given in Theorem 5 to 
solve the trajectory-tracking control problem of the omnidirectional mobile robot. For this 
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purpose, we express the dynamic model of the mobile robot (4) in terms of (7). Defining 
initially the feedback, 
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and I  a 33  unity matrix. Now, we obtain the dynamics of the tracking error. Straight 
forward computations show that, 
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Hence, the trajectory-tracking error dynamics is described by, 
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3.2 Trajectory-tracking solution: Initial proposal 
From the previous developments, it is possible now to state a preliminary solution of the 
trajectory-tracking problem associated with the considered mobile robot. 
 
Proposition 6  Consider the dynamic model of the omnidirectional mobile robot (4) in closed loop 
with the controller, 
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 Then, the closed-loop system (4)-(22) renders the equilibrium point 0== 111
 xxe , 

0== 222
 xxe  asymptotically stable.  

 
Proof. The proof of this result can be seen as a particular case of the solution given in the 
next subsection and it is left to the interested reader.  
 
Remark 7 It is possible to see that by defining controller (22) as a function only of the velocity error 
the convergence of 1e  is slow. This affects the overall performance of the controller. 

 
3.3 Main trajectory-tracking solution 
In order to improve the controller convergence produced by the feedback law (22), consider 
now,  
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To show the convergence of the tracking error notice first that (0,0)=),( 21 ee  is an 
equilibrium point of system (25). Consider, now a candidate Lyapunov function of the form, 
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It is not difficult to see that this function is positive definite for sufficiently small  . Taking 
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It is clear now, from equation (28), that the system will be asymptotically stable for a 
sufficiently small  . Notice that when 0  the required stability condition is reduced to 

0>3  that can be easily obtained by an adequate selection of the control gains together 
with a bounded desired velocity. Hence, we have shown: 
 
Proposition 8  Consider the dynamic model of the omnidirectional mobile robot (4) in closed loop 
with the controller  
 

])([= 221121
1 eKeKtvRxxBa    (29) 

 where 1K  and 2K  are symmetric positive definite matrices. Assume that )(1 tx , )(2 tx  and 
)(tv  satisfy Assumption 3 and 0>3 . Then, the closed-loop system (4)-(22) renders the 

equilibrium point 0=1e , 0=2e  asymptotically stable.  

 
4. Numerical simulations 
 

We carried out numerical simulations to assess the performance of the controller given in 
Proposition 8. The values of the parameters correspond to a laboratory prototype built in 
our institution and they are 9.58=pM Kg, 0.52=rI Kgm 2 , 0.1877=L m, 0.03812=r m 

and o30= . The initial conditions of the mobile robot are  1.50,0,=(0)1x  and 

 00,0,=(0)2x . Finally, the controller parameters are summarized in Table 1.  
 

Parameter Value Parameter Value 

11k  200 21k  200 

12k  200 22k  200 

13k  200 23k  100 

21,rr  200 3r  30 

Table 1. Feedback control law parameters 
 
It is desired to follow a circular trajectory or radius 0.5 m centered at the origin with initial 

conditions  2/0,0.5,=(0)1 dx . 
Figure 2 shows the evolution on the plane of the mobile robot when it is considered the 
control strategy proposed on this paper (P) and the one obtained when the Computed-
Torque control (CT) (6) is considered. The torque input signals are shown on Figure 3 for the 
passive approach and on Figure 4 for the Computed-Torque control. It is clear that by 
selecting the control gains under the restriction of equivalent torque magnitude, the control 
strategy proposed in this work has a better performance than the one obtained by the 
Computed-Torque scheme. Finally, the evolution of the position and velocity errors for the 
passivity control strategy are shown on Figures 5 and 6 respectively.  
 

 

 

  
Fig. 2. Evolution on the plane of the mobile robot. 
 

  
Fig.  3. Evolution of the applied torque for the passive strategy. 
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Fig. 4. Evolution of the applied torque for the Computed-Torque strategy. 

 

  
Fig. 5. Evolution of the position errors. 

 

 

  
Fig. 6. Velocity errors. 

 
5. Conclusions 
 

The trajectory-tracking problem for the omnidirectional mobile robot considering its 
dynamic model has been addressed and solved by means of a full state information time 
varying feedback based on a methodology that exploits the passivity properties of the exact 
tracking error dynamics. The asymptotic stability of the closed loop system is formally 
proved. Numerical simulations are proposed to illustrate the properties of the closed-loop 
system showing a better performance than the control obtained by the well known 
Computed-Torque approach. 
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