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Abstract

Making rational decisions is one of the key elements in the design of autonomous agents

with successful behavior. Even though there have been many proposals for the support of

decision making, most of them can be described either as descriptive or prescriptive. The

main goal of our work is to establish the relationship between two of these models, namely

bdi and mdps, in order to gain further understanding of how decisions in one model are

viewed from the point of view of the other. This goal is important for the development

of agent design strategies that unite the best of both worlds.

1 Introduction and Background

The key to implementing successful behavior in autonomous agents is deciding what to do next;

this is true for softbots playing computer games [1], or robots playing soccer [7, 2]. This problem

has been widely studied, and a number of models that carry the name of architectures have

been formulated. Most of these approaches fall into the following categorization:

• Descriptive approaches, which are based on analyzing the way that people or animals
make decisions. These approaches include, for instance, the belief/desire/intention (bdi)

approach [5] and the behavior-based approach [3]. For example, the prs [8] model can

be considered an architecture for bdi decision making, and the subsumption architecture

[6] as an architecture for behavior-based decision making.
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• Prescriptive approaches, which attempt to identify the optimal decision. They are typi-
cally based on decision theory [12], and one family of approaches within this class, which is

currently the subject of much research interest, is the family of Markov decision processes

(mdps) [11].

Since bdi, and implementations thereof, have been widely used by agent developers, it is

interesting to ask about the quality of the decisions that the model makes. It seems natural

that this will depend upon the exact nature of the task, and this was experimentally validated

by Kinny and Georgeff [9]. In particular Kinny and Georgeff showed that the performance of an

agent depended upon the speed with which its environment changed, the amount of information

the agent has at its disposal, and the likelihood of its actions having their intended effect.

Another of Kinny and Georgeff’s findings was that the performance of the agent depended

upon how often, broadly speaking, it considered whether it had made the right decision (its

commitment strategy in the language of the bdi model). Following up on this, Schut and

Wooldridge [13, 14, 16] considered a range of models for making this meta-level decision about

whether the last decision was still a good one, even using an mdp model [15] to optimize it.

All of this work, however, has only been able to compare different commitment strategies

with one another using a metric of how well the agent performs on the task rather than with any

notion of what the optimum performance is. All that we know is that, as a heuristic approach,

the bdi model is likely to be sub-optimal. We just don’t know how sub-optimal. The trade-off,

the reason we may be prepared to accept this sub-optimality, is that the bdi model is much

more tractable than prescriptive approaches like mdps. As we have shown [17], mdps can be

intractable even for rather small problems.

2 Heuristics vs. Decision-Theoretic Optimality

Our work builds on that of [15], which focuses on understanding the relationship between the

bdi model and mdps. One way we are investigating this is by examining how good a solution

the bdi model produces in comparison with mdps on the same testbed used first by Kinny and

Georgeff and then by Schut and Wooldridge. It turns out that to apply mdps on the testbed,

we have to resort to some novel approximations [17]. In this section, we will briefly describe the

TileWorld domain, and some of the results we have obtained from the comparison of models.

2.1 The tileworld Domain

The tileworld testbed [10] is a grid environment occupied by agents, tiles, holes, and obsta-

cles. The agent’s objective is to score as many points as possible by filling up holes, which can

be done by pushing the tiles into them. The agent can move in any direction (even diagonally);

the only restriction is that the obstacles must be avoided. This environment is dynamic, so



holes may appear and disappear randomly in accordance to a series of world parameters, which

can be varied by the experimenter.

Because this environment, though simple to describe, is too complex for most experiments,

we adopted the simplified testbed used in [9, 13]. The simplifications to the model are: tiles are

omitted, so an agent can score points simply by moving to a hole; agents have perfect, zero-cost

knowledge of the state of the world; and agents build correct and complete plans for visiting

a single hole (they do not plan tours for visiting more than one hole). This domain, although

simplistic, is useful in the evaluation of the effectiveness of situated agents. One of its main

advantages is that it can be easily scaled up to provide difficult and unsolvable problems.

2.2 A Comparison of Models

In an mdp, the world can be modelled by taking into account every possible action in every

possible state. For the simplified tileworld, this means that for a world of size n (that is,

an n× n grid) there is a set of 8 actions, n2 possible positions for the agent, and 2n2 possible
configurations of holes. This leads to a set of 1, 048, 576 states for a 4 × 4 TileWorld, and
838, 860, 800 in the case of a 5× 5 grid. With this rate of growth, the limit for the tractability
of direct calculation seems to be at n = 4, which is well below what is possible in the bdi

model. Even with the many techniques that have been proposed for solving mdps (for example

[4]) that are more efficient than direct calculation, intractability is going to be an issue, and

this is one reason why the bdi model is interesting–it can easily handle much larger versions

of the tileworld with little problem.

However, these tractability issues don’t mean that the mdp model cannot be used at all.

The “explosion” in the number of states, as we have seen, depends largely on the amount of

holes that can be present at a given moment, and this gives us a means of approximating the

solution by pretending that there are fewer holes than there really are. In [17], we present a

series of simplifications that allow us to implement mdp agents for a 7× 7 tileworld, which
permits a more adequate comparison against bdi agents. Current work is being dedicated to

obtain performance measures that reflect how good the bdi model’s decisions are with respect

to those of the mdp agent. Preliminary results show that the approximations to the mdp

model outperform bdi; however, extensions to these approximations for a 20 × 20 grid are in
fact outperformed by bdi. Even though further results are required, our initial conclusions

are that the bdi model will, in general, outperform the mdp model because the latter will

have to resort to simplifications in the face of the complexity inherent to most environments.

The strength of the bdi model lies in its use of heuristics, which attacks the complexity of

the problem with domain-independent strategies that allow it to make decisions with as much

information as possible given the resources that are available.



3 Future Work

As mentioned above, current work is being dedicated to establishing an adequate comparison

of the performance of both models in order to gain a better understanding of their relative

strengths and weaknesses. We are also currently devoting reasearch in order to establish a rela-

tionship between bdi and mdps. Our goal is to find a way in which the individual components

of each model relate to each other, which will enable us to specify one model in terms of the

other. Our preliminary research has shown that this is indeed possible, although these early

results are primarily of formal interest.

Future work involves establishing formal relationships between both models that allow us

to fully understand how the decision making process of one model is seen from the perspective

of the other. This is the first step in finding algorithms that, applied to agent specifications in

terms of mdps, obtain specifications in terms of bdi, and vice versa. These algorithms would

go a long way in bringing the decision-theoretic optimality and ease of specification of mdps,

and the heuristic and intuitive nature of bdi together, aiding the design of autonomous agents

by providing the best of both worlds.
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