459 research outputs found

    A SURVEY ON OUTDOOR WATER HAZARD DETECTION

    Get PDF
    Many research to detect the water bodies have been done. But, until quite recently, there still has been very little work on detecting bodies of water that could be navigation hazards. Beside that, the robust water hazards detection is a critical requirement for autonomous off-road navigation and the nature environment is another challenge for this research. The famous mechanism to identify water object can be done by the reflection light analysis or light absorption analysis on water suspect object. For it,

    STEREO as a "Planetary Hazards" Mission

    Get PDF
    NASA's twin STEREO probes, launched in 2006, have advanced the art and science of space weather forecasting more than any other spacecraft or solar observatory. By surrounding the Sun, they provide previously-impossible early warnings of threats approaching Earth as they develop on the solar far side. They have also revealed the 3D shape and inner structure of CMEs-massive solar storms that can trigger geomagnetic storms when they collide with Earth. This improves the ability of forecasters to anticipate the timing and severity of such events. Moreover, the unique capability of STEREO to track CMEs in three dimensions allows forecasters to make predictions for other planets, giving rise to the possibility of interplanetary space weather forecasting too. STEREO is one of those rare missions for which "planetary hazards" refers to more than one world. The STEREO probes also hold promise for the study of comets and potentially hazardous asteroids

    Unifying terrain awareness for the visually impaired through real-time semantic segmentation.

    Get PDF
    Navigational assistance aims to help visually-impaired people to ambulate the environment safely and independently. This topic becomes challenging as it requires detecting a wide variety of scenes to provide higher level assistive awareness. Vision-based technologies with monocular detectors or depth sensors have sprung up within several years of research. These separate approaches have achieved remarkable results with relatively low processing time and have improved the mobility of impaired people to a large extent. However, running all detectors jointly increases the latency and burdens the computational resources. In this paper, we put forward seizing pixel-wise semantic segmentation to cover navigation-related perception needs in a unified way. This is critical not only for the terrain awareness regarding traversable areas, sidewalks, stairs and water hazards, but also for the avoidance of short-range obstacles, fast-approaching pedestrians and vehicles. The core of our unification proposal is a deep architecture, aimed at attaining efficient semantic understanding. We have integrated the approach in a wearable navigation system by incorporating robust depth segmentation. A comprehensive set of experiments prove the qualified accuracy over state-of-the-art methods while maintaining real-time speed. We also present a closed-loop field test involving real visually-impaired users, demonstrating the effectivity and versatility of the assistive framework

    A review of the internet of floods : near real-time detection of a flood event and its impact

    Get PDF
    Worldwide, flood events frequently have a dramatic impact on urban societies. Time is key during a flood event in order to evacuate vulnerable people at risk, minimize the socio-economic, ecologic and cultural impact of the event and restore a society from this hazard as quickly as possible. Therefore, detecting a flood in near real-time and assessing the risks relating to these flood events on the fly is of great importance. Therefore, there is a need to search for the optimal way to collect data in order to detect floods in real time. Internet of Things (IoT) is the ideal method to bring together data of sensing equipment or identifying tools with networking and processing capabilities, allow them to communicate with one another and with other devices and services over the Internet to accomplish the detection of floods in near real-time. The main objective of this paper is to report on the current state of research on the IoT in the domain of flood detection. Current trends in IoT are identified, and academic literature is examined. The integration of IoT would greatly enhance disaster management and, therefore, will be of greater importance into the future

    Combining omnidirectional vision with polarization vision for robot navigation

    Get PDF
    La polarisation est le phénomène qui décrit les orientations des oscillations des ondes lumineuses qui sont limitées en direction. La lumière polarisée est largement utilisée dans le règne animal,à partir de la recherche de nourriture, la défense et la communication et la navigation. Le chapitre (1) aborde brièvement certains aspects importants de la polarisation et explique notre problématique de recherche. Nous visons à utiliser un capteur polarimétrique-catadioptrique car il existe de nombreuses applications qui peuvent bénéficier d'une telle combinaison en vision par ordinateur et en robotique, en particulier pour l'estimation d'attitude et les applications de navigation. Le chapitre (2) couvre essentiellement l'état de l'art de l'estimation d'attitude basée sur la vision.Quand la lumière non-polarisée du soleil pénètre dans l'atmosphère, l'air entraine une diffusion de Rayleigh, et la lumière devient partiellement linéairement polarisée. Le chapitre (3) présente les motifs de polarisation de la lumière naturelle et couvre l'état de l'art des méthodes d'acquisition des motifs de polarisation de la lumière naturelle utilisant des capteurs omnidirectionnels (par exemple fisheye et capteurs catadioptriques). Nous expliquons également les caractéristiques de polarisation de la lumière naturelle et donnons une nouvelle dérivation théorique de son angle de polarisation.Notre objectif est d'obtenir une vue omnidirectionnelle à 360 associée aux caractéristiques de polarisation. Pour ce faire, ce travail est basé sur des capteurs catadioptriques qui sont composées de surfaces réfléchissantes et de lentilles. Généralement, la surface réfléchissante est métallique et donc l'état de polarisation de la lumière incidente, qui est le plus souvent partiellement linéairement polarisée, est modifiée pour être polarisée elliptiquement après réflexion. A partir de la mesure de l'état de polarisation de la lumière réfléchie, nous voulons obtenir l'état de polarisation incident. Le chapitre (4) propose une nouvelle méthode pour mesurer les paramètres de polarisation de la lumière en utilisant un capteur catadioptrique. La possibilité de mesurer le vecteur de Stokes du rayon incident est démontré à partir de trois composants du vecteur de Stokes du rayon réfléchi sur les quatre existants.Lorsque les motifs de polarisation incidents sont disponibles, les angles zénithal et azimutal du soleil peuvent être directement estimés à l'aide de ces modèles. Le chapitre (5) traite de l'orientation et de la navigation de robot basées sur la polarisation et différents algorithmes sont proposés pour estimer ces angles dans ce chapitre. A notre connaissance, l'angle zénithal du soleil est pour la première fois estimé dans ce travail à partir des schémas de polarisation incidents. Nous proposons également d'estimer l'orientation d'un véhicule à partir de ces motifs de polarisation.Enfin, le travail est conclu et les possibles perspectives de recherche sont discutées dans le chapitre (6). D'autres exemples de schémas de polarisation de la lumière naturelle, leur calibrage et des applications sont proposées en annexe (B).Notre travail pourrait ouvrir un accès au monde de la vision polarimétrique omnidirectionnelle en plus des approches conventionnelles. Cela inclut l'orientation bio-inspirée des robots, des applications de navigation, ou bien la localisation en plein air pour laquelle les motifs de polarisation de la lumière naturelle associés à l'orientation du soleil à une heure précise peuvent aboutir à la localisation géographique d'un véhiculePolarization is the phenomenon that describes the oscillations orientations of the light waves which are restricted in direction. Polarized light has multiple uses in the animal kingdom ranging from foraging, defense and communication to orientation and navigation. Chapter (1) briefly covers some important aspects of polarization and explains our research problem. We are aiming to use a polarimetric-catadioptric sensor since there are many applications which can benefit from such combination in computer vision and robotics specially robot orientation (attitude estimation) and navigation applications. Chapter (2) mainly covers the state of art of visual based attitude estimation.As the unpolarized sunlight enters the Earth s atmosphere, it is Rayleigh-scattered by air, and it becomes partially linearly polarized. This skylight polarization provides a signi cant clue to understanding the environment. Its state conveys the information for obtaining the sun orientation. Robot navigation, sensor planning, and many other applications may bene t from using this navigation clue. Chapter (3) covers the state of art in capturing the skylight polarization patterns using omnidirectional sensors (e.g fisheye and catadioptric sensors). It also explains the skylight polarization characteristics and gives a new theoretical derivation of the skylight angle of polarization pattern. Our aim is to obtain an omnidirectional 360 view combined with polarization characteristics. Hence, this work is based on catadioptric sensors which are composed of reflective surfaces and lenses. Usually the reflective surface is metallic and hence the incident skylight polarization state, which is mostly partially linearly polarized, is changed to be elliptically polarized after reflection. Given the measured reflected polarization state, we want to obtain the incident polarization state. Chapter (4) proposes a method to measure the light polarization parameters using a catadioptric sensor. The possibility to measure the incident Stokes is proved given three Stokes out of the four reflected Stokes. Once the incident polarization patterns are available, the solar angles can be directly estimated using these patterns. Chapter (5) discusses polarization based robot orientation and navigation and proposes new algorithms to estimate these solar angles where, to the best of our knowledge, the sun zenith angle is firstly estimated in this work given these incident polarization patterns. We also propose to estimate any vehicle orientation given these polarization patterns. Finally the work is concluded and possible future research directions are discussed in chapter (6). More examples of skylight polarization patterns, their calibration, and the proposed applications are given in appendix (B). Our work may pave the way to move from the conventional polarization vision world to the omnidirectional one. It enables bio-inspired robot orientation and navigation applications and possible outdoor localization based on the skylight polarization patterns where given the solar angles at a certain date and instant of time may infer the current vehicle geographical location.DIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    A comparative study in real-time scene sonification for visually impaired people

    Get PDF
    In recent years, with the development of depth cameras and scene detection algorithms, a wide variety of electronic travel aids for visually impaired people have been proposed. However, it is still challenging to convey scene information to visually impaired people efficiently. In this paper, we propose three different auditory-based interaction methods, i.e., depth image sonification, obstacle sonification as well as path sonification, which convey raw depth images, obstacle information and path information respectively to visually impaired people. Three sonification methods are compared comprehensively through a field experiment attended by twelve visually impaired participants. The results show that the sonification of high-level scene information, such as the direction of pathway, is easier to learn and adapt, and is more suitable for point-to-point navigation. In contrast, through the sonification of low-level scene information, such as raw depth images, visually impaired people can understand the surrounding environment more comprehensively. Furthermore, there is no interaction method that is best suited for all participants in the experiment, and visually impaired individuals need a period of time to find the most suitable interaction method. Our findings highlight the features and the differences of three scene detection algorithms and the corresponding sonification methods. The results provide insights into the design of electronic travel aids, and the conclusions can also be applied in other fields, such as the sound feedback of virtual reality applications

    NASA Tech Briefs, September 2010

    Get PDF
    Topics covered include: Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures; Multi-Axis Accelerometer Calibration System; Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems; Autonomous System for Monitoring the Integrity of Composite Fan Housings; A Safe, Self-Calibrating, Wireless System for Measuring Volume of Any Fuel at Non-Horizontal Orientation; Adaptation of the Camera Link Interface for Flight-Instrument Applications; High-Performance CCSDS Encapsulation Service Implementation in FPGA; High-Performance CCSDS AOS Protocol Implementation in FPGA; Advanced Flip Chips in Extreme Temperature Environments; Diffuse-Illumination Systems for Growing Plants; Microwave Plasma Hydrogen Recovery System; Producing Hydrogen by Plasma Pyrolysis of Methane; Self-Deployable Membrane Structures; Reactivation of a Tin-Oxide-Containing Catalys; Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation; Miniature Piezoelectric Macro-Mass Balance; Acoustic Liner for Turbomachinery Applications; Metering Gas Strut for Separating Rocket Stages; Large-Flow-Area Flow-Selective Liquid/Gas Separator; Counterflowing Jet Subsystem Design; Water Tank with Capillary Air/Liquid Separation; True Shear Parallel Plate Viscometer; Focusing Diffraction Grating Element with Aberration Control; Universal Millimeter-Wave Radar Front End; Mode Selection for a Single-Frequency Fiber Laser; Qualification and Selection of Flight Diode Lasers for Space Applications; Plenoptic Imager for Automated Surface Navigation; Maglev Facility for Simulating Variable Gravity; Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection; High-Speed Operation of Interband Cascade Lasers; 3D GeoWall Analysis System for Shuttle External Tank Foreign Object Debris Events; Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates; Hidden Statistics Approach to Quantum Simulations; Reconstituted Three-Dimensional Interactive Imaging; Determining Atmospheric-Density Profile of Titan; Digital Microfluidics Sample Analyzer; Radiation Protection Using Carbon Nanotube Derivatives; Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells; and TEAMS Model Analyzer

    High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms

    Get PDF
    Crop yields need to be improved in a sustainable manner to meet the expected worldwide increase in population over the coming decades as well as the effects of anticipated climate change. Recently, genomics-assisted breeding has become a popular approach to food security; in this regard, the crop breeding community must better link the relationships between the phenotype and the genotype. While high-throughput genotyping is feasible at a low cost, highthroughput crop phenotyping methods and data analytical capacities need to be improved. High-throughput phenotyping offers a powerful way to assess particular phenotypes in large-scale experiments, using high-tech sensors, advanced robotics, and imageprocessing systems to monitor and quantify plants in breeding nurseries and field experiments at multiple scales. In addition, new bioinformatics platforms are able to embrace large-scale, multidimensional phenotypic datasets. Through the combined analysis of phenotyping and genotyping data, environmental responses and gene functions can now be dissected at unprecedented resolution. This will aid in finding solutions to currently limited and incremental improvements in crop yields
    corecore