17 research outputs found

    A Theory of Networks for Appxoimation and Learning

    Get PDF
    Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data

    Adaptive construction of surrogate functions for various computational mechanics models

    Get PDF
    In most science and engineering fields, numerical simulation models are often used to replicate physical systems. An attempt to imitate the true behavior of complex systems results in computationally expensive simulation models. The models are more often than not associated with a number of parameters that may be uncertain or variable. Propagation of variability from the input parameters in a simulation model to the output quantities is important for better understanding the system behavior. Variability propagation of complex systems requires repeated runs of costly simulation models with different inputs, which can be prohibitively expensive. Thus for efficient propagation, the total number of model evaluations needs to be as few as possible. An efficient way to account for the variations in the output of interest with respect to these parameters in such situations is to develop black-box surrogates. It involves replacing the expensive high-fidelity simulation model by a much cheaper model (surrogate) using a limited number of the high-fidelity simulations on a set of points called the design of experiments (DoE). The obvious challenge in surrogate modeling is to efficiently deal with simulation models that are expensive and contains a large number of uncertain parameters. Also, replication of different types of physical systems results in simulation models that vary based on the type of output (discrete or continuous models), extent of model output information (knowledge of output or output gradients or both), and whether the model is stochastic or deterministic in nature. All these variations in information from one model to the other demand development of different surrogate modeling algorithms for maximum efficiency. In this dissertation, simulation models related to application problems in the field of solid mechanics are considered that belong to each one of the above-mentioned classes of models. Different surrogate modeling strategies are proposed to deal with these models and their performance is demonstrated and compared with existing surrogate modeling algorithms. The developed algorithms, because of their non-intrusive nature, can be easily extended to simulation models of similar classes, pertaining to any other field of application

    A Hybrid intelligent system for diagnosing and solving financial problems

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnologico. Programa de Pós-Graduação em Engenharia de Produção2012-10-16T09:55:39

    Sensors for Vital Signs Monitoring

    Get PDF
    Sensor technology for monitoring vital signs is an important topic for various service applications, such as entertainment and personalization platforms and Internet of Things (IoT) systems, as well as traditional medical purposes, such as disease indication judgments and predictions. Vital signs for monitoring include respiration and heart rates, body temperature, blood pressure, oxygen saturation, electrocardiogram, blood glucose concentration, brain waves, etc. Gait and walking length can also be regarded as vital signs because they can indirectly indicate human activity and status. Sensing technologies include contact sensors such as electrocardiogram (ECG), electroencephalogram (EEG), photoplethysmogram (PPG), non-contact sensors such as ballistocardiography (BCG), and invasive/non-invasive sensors for diagnoses of variations in blood characteristics or body fluids. Radar, vision, and infrared sensors can also be useful technologies for detecting vital signs from the movement of humans or organs. Signal processing, extraction, and analysis techniques are important in industrial applications along with hardware implementation techniques. Battery management and wireless power transmission technologies, the design and optimization of low-power circuits, and systems for continuous monitoring and data collection/transmission should also be considered with sensor technologies. In addition, machine-learning-based diagnostic technology can be used for extracting meaningful information from continuous monitoring data

    Neighborhood Defined Feature Selection Strategy for Improved Face Recognition in Different Sensor Modalitie

    Get PDF
    A novel feature selection strategy for improved face recognition in images with variations due to illumination conditions, facial expressions, and partial occlusions is presented in this dissertation. A hybrid face recognition system that uses feature maps of phase congruency and modular kernel spaces is developed. Phase congruency provides a measure that is independent of the overall magnitude of a signal, making it invariant to variations in image illumination and contrast. A novel modular kernel spaces approach is developed and implemented on the phase congruency feature maps. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The unique modularization procedure developed in this research takes into consideration that the facial variations in a real world scenario are confined to local regions. The additional pixel dependencies that are considered based on their importance help in providing additional information for classification. This procedure also helps in robust localization of the variations, further improving classification accuracy. The effectiveness of the new feature selection strategy has been demonstrated by employing it in two specific applications via face authentication in low resolution cameras and face recognition using multiple sensors (visible and infrared). The face authentication system uses low quality images captured by a web camera. The optical sensor of the web camera is very sensitive to environmental illumination variations. It is observed that the feature selection policy overcomes the facial and environmental variations. A methodology based on multiple training images and clustering is also incorporated to overcome the additional challenges of computational efficiency and the subject\u27s non involvement. A multi-sensor image fusion based face recognition methodology that uses the proposed feature selection technique is presented in this dissertation. Research studies have indicated that complementary information from different sensors helps in improving the recognition accuracy compared to individual modalities. A decision level fusion methodology is also developed which provides better performance compared to individual as well as data level fusion modalities. The new decision level fusion technique is also robust to registration discrepancies, which is a very important factor in operational scenarios. Research work is progressing to use the new face recognition technique in multi-view images by employing independent systems for separate views and integrating the results with an appropriate voting procedure

    Advanced machine learning approaches for target detection, tracking and recognition

    Get PDF
    This dissertation addresses the key technical components of an Automatic Target Recognition (ATR) system namely: target detection, tracking, learning and recognition. Novel solutions are proposed for each component of the ATR system based on several new advances in the field of computer vision and machine learning. Firstly, we introduce a simple and elegant feature, RelCom, and a boosted feature selection method to achieve a very low computational complexity target detector. Secondly, we present a particle filter based target tracking algorithm that uses a quad histogram based appearance model along with online feature selection. Further, we improve the tracking performance by means of online appearance learning where appearance learning is cast as an Adaptive Kalman filtering (AKF) problem which we formulate using both covariance matching and, for the first time in a visual tracking application, the recent autocovariance least-squares (ALS) method. Then, we introduce an integrated tracking and recognition system that uses two generative models to accommodate the pose variations and maneuverability of different ground targets. Specifically, a tensor-based generative model is used for multi-view target representation that can synthesize unseen poses, and can be trained from a small set of signatures. In addition, a target-dependent kinematic model is invoked to characterize the target dynamics. Both generative models are integrated in a graphical framework for joint estimation of the target's kinematics, pose, and discrete valued identity. Finally, for target recognition we advocate the concept of a continuous identity manifold that captures both inter-class and intra-class shape variability among training targets. A hemispherical view manifold is used for modeling the view-dependent appearance. In addition to being able to deal with arbitrary view variations, this model can determine the target identity at both class and sub-class levels, for targets not present in the training data. The proposed components of the ATR system enable us to perform low computational complexity target detection with low false alarm rates, robust tracking of targets under challenging circumstances and recognition of target identities at both class and sub-class levels. Experiments on real and simulated data confirm the performance of the proposed components with promising results

    3D Human Motion Tracking and Pose Estimation using Probabilistic Activity Models

    Get PDF
    This thesis presents work on generative approaches to human motion tracking and pose estimation where a geometric model of the human body is used for comparison with observations. The existing generative tracking literature can be quite clearly divided between two groups. First, approaches that attempt to solve a difficult high-dimensional inference problem in the body model’s full or ambient pose space, recovering freeform or unknown activity. Second, approaches that restrict inference to a low-dimensional latent embedding of the full pose space, recovering activity for which training data is available or known activity. Significant advances have been made in each of these subgroups. Given sufficiently rich multiocular observations and plentiful computational resources, highdimensional approaches have been proven to track fast and complex unknown activities robustly. Conversely, low-dimensional approaches have been able to support monocular tracking and to significantly reduce computational costs for the recovery of known activity. However, their competing advantages have – although complementary – remained disjoint. The central aim of this thesis is to combine low- and high-dimensional generative tracking techniques to benefit from the best of both approaches. First, a simple generative tracking approach is proposed for tracking known activities in a latent pose space using only monocular or binocular observations. A hidden Markov model (HMM) is used to provide dynamics and constrain a particle-based search for poses. The ability of the HMM to classify as well as synthesise poses means that the approach naturally extends to the modelling of a number of different known activities in a single joint-activity latent space. Second, an additional low-dimensional approach is introduced to permit transitions between segmented known activity training data by allowing particles to move between activity manifolds. Both low-dimensional approaches are then fairly and efficiently combined with a simultaneous high-dimensional generative tracking task in the ambient pose space. This combination allows for the recovery of sequences containing multiple known and unknown human activities at an appropriate (dynamic) computational cost. Finally, a rich hierarchical embedding of the ambient pose space is investigated. This representation allows inference to progress from a single full-body or global non-linear latent pose space, through a number of gradually smaller part-based latent models, to the full ambient pose space. By preserving long-range correlations present in training data, the positions of occluded limbs can be inferred during tracking. Alternatively, by breaking the implied coordination between part-based models novel activity combinations, or composite activity, may be recovered

    Corrections in clinical Magnetic Resonance Spectroscopy and SPECT:Motion correction in MR spectroscopy Downscatter correction in SPECT

    Get PDF
    The quality of medical scanner data is often compromised by several mechanisms. This can be caused by both the subject to be measured and the scanning principles themselves. In this PhD project the problem of subject motion was addressed for Single Voxel MR Spectroscopy in a cohort study of preterm infants. In Iodine-123 SPECT the problem of downscatter was addressed. This thesis is based on two papers. Paper I deals with the problem of motion in Single Voxel Spectroscopy. Two novel methods for the identification of outliers in the set of repeated measurements were implemented and compared to the known mean and median filtering. The data comes from non-anesthetized preterm infants, where motion during scanning is a common problem. Both the novel outlier identification and the independent component analysis (ICA) perform satisfactory and better than the common mean and median filtering. ICA performed best in the sense that it recovered most of the lost peak height in the spectra. The ICA motion correction algorithm described in paper I and in this thesis was applied to a quantitative analysis of the Single Voxel Spectroscopy data from the cohort study of preterm infants. This analysis revealed that differences between term and preterm infants are not to be found in the concentrations of Lactate (caused by inflammation or hypoxia-ischemia) and/or NAA (caused by hypoxia-ischemia) as hypothesized before the cohort study. Instead choline levels were decreased in the preterm infants, which might indicate a detrimental effect of the extra-uterine environment on brain development. Paper II describes a method to correct for downscatter in low count Iodine-123 SPECT with a broad energy window above the normal imaging window. Both spatial dependency and weight factors were measured. As expected, the implicitly assumed weight factor of one for energy windows with equal width is slightly too low, due the presence of a backscatter peak in the energy spectrum coming from high-energy photons. The effect on the contrast was tested in 10 subjects and revealed a 20% increase in the specific binding ratio of the striatum due to downscatter correction. This makes the difference between healthy subjects and patients more profound. Downscatter in Iodine-123 SPECT is not the only deteriorating mechanism. Normal scatter compromises the images quality as well. Since scatter correction of SPECT-images also can be performed by the subtraction of an energy window, a method was developed to perform scatter and downscatter correction simultaneously. A phantom study has been performed, where the in paper II described downscatter correction was extended with scatter correction. This new combined correction was compared to the known Triple Energy Window (TEW) correction method. Results were satisfying and indicate that TEW is more correct from the physics point of view, while the in paper II described method extended with scatter correction gives reasonable results, but is far less noise sensitive than TEW
    corecore