91 research outputs found

    Principal Deformations Modes of Articulated Models for the Analysis of 3D Spine Deformities

    Get PDF
    Articulated models are commonly used for recognition tasks in robotics and in gait analysis, but can also be extremely useful to develop analytical methods targeting spinal deformities studies. The threedimensional analysis of these deformities is critical since they are complex and not restricted to a given plane. Thus, they cannot be assessed as a two-dimensional phenomenon. However, analyzing large databases of 3D spine models is a difficult and time-consuming task. In this context, a method that automatically extracts the most important deformation modes from sets of articulated spine models is proposed. The spine was modeled with two levels of details. In the first level, the global shape of the spine was expressed using a set of rigid transformations that superpose local coordinates systems of neighboring vertebrae. In the second level, anatomical landmarks measured with respect to a vertebra's local coordinate system were used to quantify vertebra shape. These articulated spine models do not naturally belong to a vector space because of the vertebral rotations. The Fréchet mean, which is a generalization of the conventional mean to Riemannian manifolds, was thus used to compute the mean spine shape. Moreover, a generalized covariance computed in the tangent space of the Fréchet mean was used to construct a statistical shape model of the scoliotic spine. The principal deformation modes were then extracted by performing a principal component analysis (PCA) on the generalized covariance matrix. The principal deformations modes were computed for a large database of untreated scoliotic patients. The obtained results indicate that combining rotation, translation and local vertebra shape into a unified framework leads to an effective and meaningful analysis method for articulated anatomical structures. The computed deformation modes also revealed clinically relevant information. For instance, the first mode of deformation is associated with patients' growth, the second is a double thoraco-lumbar curve and the third is a thoracic curve. Other experiments were performed on patients classified by orthopedists with respect to a widely used two-dimensional surgical planning system (the Lenke classification) and patterns relevant to the definition of a new three-dimensional classification were identified. Finally, relationships between local vertebrae shapes and global spine shape (such as vertebra wedging) were demonstrated using a sample of 3D spine reconstructions with 14 anatomical landmarks per vertebra

    Dynamic surface topography and its application to the evaluation of adolescent idiopathic scoliosis

    Get PDF
    Dynamic surface topography is a method to quantify the surface and locations of features acquired from moving and distorting shapes against time. This thesis describes the application of the technique to the potential evaluation of adolescent idiopathic scoliosis patients. Scoliosis or curvature of the spine is one of the major skeletal diseases in adolescents where in the majority of cases the cause is unknown or idiopathic. The progression of the disease occurs in three dimensions with the spine simultaneously curving towards the arms and rotating as it collapses with the first indications usually being changes in body symmetry and back surface shape. Following diagnosis, most children do not exhibit any significant worsening of their condition and are routinely monitored using radiography as frequently as every three months whilst vertebral growth potential remains. In a small number of patients, the lateral curvature can unpredictably worsen requiring, in some cases, surgical intervention to prevent further deterioration and to diminish the deformity. Earlier work by many researchers concentrated on attempting to reduce patient exposure to ionizing radiation by investigating if there was a reliable correlation between progression of the scoliosis and changes in surface topography. The techniques have not gained acceptance as the relational algorithms were found to be insufficiently robust in all cases and measurements acquired from available technologies were prone to artefacts introduced by stance, breathing, 'posture and sway. For many patients the motivation in seeking treatment is for the improvement of their appearance rather than to correct the underlying deformity, so cosmetic concerns and an understanding of the psychosocial and physical impacts of the disease and treatments remain important factors in the clinical decision-making process. In the current environment of evidence based medicine there is a growing need to quantify back surface shape, general body asymmetry and patient capability with the objective of producing an agreed scoring to be used in developing treatment plans and assessing outcomes but to date many clinics continue to rely on qualitative methods to describe cosmetic deformity and ability. The aim of the research was to develop an original, low cost and inherently safe apparatus using well understood video based motion capture technology that overcame the disadvantages of earlier work by simultaneously acquiring multiple samples of back surface shape and the locations of bony landmarks to provide averaged results for a quantitative and reliable analysis of cosmetic defect and physical impairment. 172,650 data samples were acquired from thirty skeletally mature subjects not exhibiting any musculoskeletal disease to define normality limits for Page 2 established morphological measurements and to compare the specificity of the approach with existing single sample techniques. Three novel calculations of back paraspinous volumetric asymmetry were tested of which two were found to be potentially useful clinical indicators of deformity and an index was proposed and tested using simulated data that could offer a single value to describe patient back shape asymmetry. Previous research has found that there is a loss of trunk ranges of motion among postoperative patients that has a direct impact on their quality of life, function and physical capability. Data were acquired from the mature subjects and similar results were observed when compared with published data for preoperative scoliosis patients. This thesis has shown that using averaged tri-dimensional morphological and back shape data combined with measurement of dynamic capability acquired using an inherently safe apparatus have the potential to be clinically useful. The opportunity to routinely and safely quantify the cosmetic defect and trunk ranges of motion of adolescent idiopathic scoliosis patients should stimulate more important research to help improve the quality of life of many affected children throughout the world

    3D registration of MR and X-ray spine images using an articulated model

    Get PDF
    Présentation: Cet article a été publié dans le journal : Computerised medical imaging and graphics (CMIG). Le but de cet article est de recaler les vertèbres extraites à partir d’images RM avec des vertèbres extraites à partir d’images RX pour des patients scoliotiques, en tenant compte des déformations non-rigides due au changement de posture entre ces deux modalités. À ces fins, une méthode de recalage à l’aide d’un modèle articulé est proposée. Cette méthode a été comparée avec un recalage rigide en calculant l’erreur sur des points de repère, ainsi qu’en calculant la différence entre l’angle de Cobb avant et après recalage. Une validation additionelle de la méthode de recalage présentée ici se trouve dans l’annexe A. Ce travail servira de première étape dans la fusion des images RM, RX et TP du tronc complet. Donc, cet article vérifie l’hypothèse 1 décrite dans la section 3.2.1.Abstract This paper presents a magnetic resonance image (MRI)/X-ray spine registration method that compensates for the change in the curvature of the spine between standing and prone positions for scoliotic patients. MRIs in prone position and X-rays in standing position are acquired for 14 patients with scoliosis. The 3D reconstructions of the spine are then aligned using an articulated model which calculates intervertebral transformations. Results show significant decrease in regis- tration error when the proposed articulated model is compared with rigid registration. The method can be used as a basis for full body MRI/X-ray registration incorporating soft tissues for surgical simulation.Canadian Institute of Health Research (CIHR

    Reconstruction 3D personnalisée de la colonne vertébrale à partir d'images radiographiques non-calibrées

    Get PDF
    Les systèmes de reconstruction stéréo-radiographique 3D -- La colonne vertébrale -- La scoliose idiopathique adolescente -- Évolution des systèmes de reconstruction 3D -- Filtres de rehaussement d'images -- Techniques de segmentation -- Les méthodes de calibrage -- Les méthodes de reconstruction 3D -- Problématique, hypothèses, objectifs et méthode générale -- Three-dimensional reconstruction of the scoliotic spine and pelvis from uncalibrated biplanar X-ray images -- A versatile 3D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities -- Simulation experiments -- Clinical validation -- A three-dimensional retrospective analysis of the evolution of spinal instrumentation for the correction of adolescent idiopathic scoliosis -- Auto-calibrage d'un système à rayons-X à partir de primitives de haut niveau -- Segmentation de la colonne vertébrale -- Approche hiérarchique d'auto-calibrage d'un système d'acquisition à rayons-X -- Personalized 3D reconstruction of the scoliotic spine from hybrid statistical and X-ray image-based models -- Validation protocol

    Statistical Shape Analysis for the Human Back

    Full text link
    A thesis submitted to the department of Engineering and Technology in partial fulfilment of the requirements for the degree of Master of Philosophy in Production and Manufacturing Engineering at the University of WolverhamptonIn this research, Procrustes and Euclidean distance matrix analysis (EDMA) have been investigated for analysing the three-dimensional shape and form of the human back. Procrustes analysis is used to distinguish deformed backs from normal backs. EDMA is used to locate the changes occurring on the back surface due to spinal deformity (scoliosis, kyphosis and lordosis) for back deformity patients. A surface topography system, ISIS2 (Integrated Shape Imaging System 2), is available to measure the three-dimensional back surface. The system presents clinical parameters, which are based on distances and angles relative to certain anatomical landmarks on the back surface. Location, rotation and scale definitely influence these parameters. Although the anatomical landmarks are used in the present system to take some account of patient stance, it is still felt that variability in the clinical parameters is increased by the use of length and angle data. Patients also grow and so their back size, shape and form change between appointments with the doctor. Instead of distances and angles, geometric shape that is independent of location, rotation and scale effects could be measured. This research is mainly focusing on the geometric shape and form change in the back surface, thus removing the unwanted effects. Landmarks are used for describing back information and an analysis of the variability in positioning the landmarks has been carried out for repeated measurements. Generalized Procrustes analysis has been applied to all normal backs to calculate a mean Procrustes shape, which is named the standard normal shape (SNS). Each back (normal and deformed) is then translated, rotated and scaled to give a best fit with the SNS using ordinary Procrustes analysis. Riemannian distances are then estimated between the SNS and all individual backs. The highest Riemannian distance value between the normal backs and the SNS is lower than the lowest Riemannian distance value between the deformed backs and the SNS. The results shows that deformed backs can be differentiated from normal backs. EDMA has been used to estimate a mean form, variance-covariance matrix and mean form difference from all the normal backs. This mean form is named the standard normal form (SNF). The influence of individual landmarks for form difference between each deformed back and the SNF is estimated. A high value indicates high deformity on the location of that landmark and a low value close to 1 indicates less deformity. The result is displayed in a graph that provides information regarding the degree and location of the deformity. The novel aspects of this research lie in the development of an effective method for assessing the three-dimensional back shape; extracting automatic landmarks; visualizing back shape and back form differences

    Dynamic surface topography and its application to the evaluation of adolescent idiopathic scoliosis

    Get PDF
    Dynamic surface topography is a method to quantify the surface and locations of features acquired from moving and distorting shapes against time. This thesis describes the application of the technique to the potential evaluation of adolescent idiopathic scoliosis patients. Scoliosis or curvature of the spine is one of the major skeletal diseases in adolescents where in the majority of cases the cause is unknown or idiopathic. The progression of the disease occurs in three dimensions with the spine simultaneously curving towards the arms and rotating as it collapses with the first indications usually being changes in body symmetry and back surface shape. Following diagnosis, most children do not exhibit any significant worsening of their condition and are routinely monitored using radiography as frequently as every three months whilst vertebral growth potential remains. In a small number of patients, the lateral curvature can unpredictably worsen requiring, in some cases, surgical intervention to prevent further deterioration and to diminish the deformity. Earlier work by many researchers concentrated on attempting to reduce patient exposure to ionizing radiation by investigating if there was a reliable correlation between progression of the scoliosis and changes in surface topography. The techniques have not gained acceptance as the relational algorithms were found to be insufficiently robust in all cases and measurements acquired from available technologies were prone to artefacts introduced by stance, breathing, 'posture and sway. For many patients the motivation in seeking treatment is for the improvement of their appearance rather than to correct the underlying deformity, so cosmetic concerns and an understanding of the psychosocial and physical impacts of the disease and treatments remain important factors in the clinical decision-making process. In the current environment of evidence based medicine there is a growing need to quantify back surface shape, general body asymmetry and patient capability with the objective of producing an agreed scoring to be used in developing treatment plans and assessing outcomes but to date many clinics continue to rely on qualitative methods to describe cosmetic deformity and ability. The aim of the research was to develop an original, low cost and inherently safe apparatus using well understood video based motion capture technology that overcame the disadvantages of earlier work by simultaneously acquiring multiple samples of back surface shape and the locations of bony landmarks to provide averaged results for a quantitative and reliable analysis of cosmetic defect and physical impairment. 172,650 data samples were acquired from thirty skeletally mature subjects not exhibiting any musculoskeletal disease to define normality limits for Page 2 established morphological measurements and to compare the specificity of the approach with existing single sample techniques. Three novel calculations of back paraspinous volumetric asymmetry were tested of which two were found to be potentially useful clinical indicators of deformity and an index was proposed and tested using simulated data that could offer a single value to describe patient back shape asymmetry. Previous research has found that there is a loss of trunk ranges of motion among postoperative patients that has a direct impact on their quality of life, function and physical capability. Data were acquired from the mature subjects and similar results were observed when compared with published data for preoperative scoliosis patients. This thesis has shown that using averaged tri-dimensional morphological and back shape data combined with measurement of dynamic capability acquired using an inherently safe apparatus have the potential to be clinically useful. The opportunity to routinely and safely quantify the cosmetic defect and trunk ranges of motion of adolescent idiopathic scoliosis patients should stimulate more important research to help improve the quality of life of many affected children throughout the world.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Design, Optimization, and Evaluation of a Fusionless Device to Induce Growth Modulation and Correct Spinal Curvatures in Adolescent Idiopathic Scoliosis

    Get PDF
    RÉSUMÉ La scoliose est une déformation musculo-squelettique complexe et tridimensionnelle de la colonne vertébrale. Les mécanismes de progression de la scoliose sont liés au principe de Hueter-Volkmann. Selon cette théorie, les chargements asymétriques des plaques de croissance altèrent la croissance du rachis (cunéiformisation des vertèbres). Une courbure scoliotique présentant un angle de Cobb supérieur à 50° nécessite généralement une intervention chirurgicale avec fusion rachidienne. Cette chirurgie implique des procédures particulièrement invasives et coûteuses, ce qui a incité plusieurs chercheurs à tenter de développer d‘autres alternatives. Des techniques minimalement invasives et sans fusion ont ainsi été élaborées pour contrôler et corriger un mauvais alignement de la colonne vertébrale avant qu'une progression trop importante des déformations scoliotiques ne se produise. Ces techniques tentent d'exploiter la croissance vertébrale résiduelle afin de corriger la cunéiformisation locale et d‘aboutir à un réalignement progressif du rachis. Les traitements sans fusion semblent également mettre en péril la santé du disque intervertébral à long terme et se limitent à une correction 2D (plan frontal) de déformations intrinsèquement 3D. Mieux comprendre biomécaniquement la progression des déformations scoliotiques permettrait de développer des dispositifs sans fusion plus efficaces. Cela serait une contribution importante et innovatrice à l'amélioration du traitement de la scoliose idiopathique adolescente (SIA). L'objectif global de cette thèse était le développement, l‘optimisation, et l‘évaluation expérimentale d'implants sans fusion afin de moduler la croissance et de corriger les déformations scoliotiques. Les objectifs spécifiques étaient de 1) développer un modèle par éléments finis (MEF) de la colonne vertébrale intégrant une modélisation de la croissance; 2) exploiter ce MEF pour étudier les facteurs biomécaniques impliqués dans les mécanismes de progression de la SIA; 3) exploiter le MEF pour analyser la biomécanique des dispositifs sans fusion existant actuellement et repérer les améliorations pouvant être apportées à ces dispositifs; et 4) exploiter la plate-forme de conception conçue (analyses in silico, in situ, et in vivo) pour développer, optimiser, et valider de nouveaux dispositifs sans fusion modulateurs de croissance pour la correction des déformations de la SIA.----------ABSTRACT Scoliosis is a spinal musculoskeletal deformity defined by a 3D deformity of the spine. The pathomechanism of scoliotic progression may be in part explained by the Hueter-Volkmann principle. This theory describes how increased loading of growth plates will reduce regular growth rates while the converse is also accurate. Further, when extended to the pathogenesis of scoliosis, it defines how asymmetric loading of the vertebral bodies leads to the progression of the deformity via vertebral wedging. Currently, a scoliotic curve reaching a magnitude of 50° Cobb deformation requires surgical intervention involving instrumentation and spinal fusion. The process of fusion is among the most invasive and expensive procedures, which has motivated several researchers to develop other alternatives. The development of a less invasive technique, to control and correct a spinal misalignment before undesirable progression occurs, has subsequently been explored. Several fusionless devices have been developed that attempt to manipulate vertebral growth to correct vertebral wedging and, consequently, realign the spine. However, to date, these approaches have yet to be adopted in a clinical context. Moreover, devices actively pursued seemed to imperil the long term health of the intervertebral disc while corrective attempts are restricted to the unilateral manipulation of a 3D deformity. Therefore, enhanced biomechanical understanding of AIS pathomechanism in conjunction with the development of early and less invasive interventions would offer an important contribution to the improved treatment of AIS. The global objective of this thesis was to design, optimize, and evaluated experimentally fusionless device concepts to induce growth modulation and correct spinal curvatures in adolescent idiopathic scoliosis (AIS). The specific objectives were to: 1) develop a FEM of the spine with integrated growth dynamics; 2) exploit the FEM to explore biomechanical factors involved in the pathomechanism of AIS; 3) exploit the FEM to analyze biomechanically current fusionless growth sparring devices to identify available avenues of improvement; and 4) exploit the devised developmental platform (in silico, in situ, and in vivo analyses) to develop, optimize, and validate novel and improved fusionless growth modulating devices for AIS

    Modélisation physique des tissus mous du tronc scoliotique pour la simulation de l'apparence post-chirurgicale

    Get PDF
    RÉSUMÉ La scoliose idiopathique de l'adolescence (SIA) est une déformation tridimensionnelle complexe de la colonne vertébrale et de la cage thoracique. Dans le cas de déformation sévère, le recours à la chirurgie correctrice de la colonne vertébrale est requis comme moyen de traitement. Environ un patient sur mille atteint de SIA aura à subir une chirurgie correctrice de la colonne vertébrale. Cependant, dans la plupart des cas, une correction optimale de la colonne vertébrale n'entraine pas nécessairement une correction optimale de l'apparence externe. Une asymétrie du tronc peut persister à l'issue de la chirurgie et cela est difficile à prédire par les chirurgiens. Cela est problématique, car l'apparence externe est un facteur important de satisfaction pour les patients. Il serait intéressant de disposer d'outils d'assistance à la planification de chirurgie pour la scoliose prenant en compte les attentes du patient concernant l'esthétique de l'apparence du tronc. La simulation médicale sur ordinateur est devenue un outil important d'assistance à la prise de décision clinique. Elle est utilisée pour permettre de prédire et analyser les effets de traitements médicaux, ainsi que la prédiction de changements anatomiques dus à l'évolution d'une pathologie. Dans le contexte de la chirurgie pour la scoliose, des simulateurs de chirurgie correctrice de la colonne vertébrale existent. Des modèles biomécaniques pour la simulation de l'instrumentation de la colonne vertébrale en chirurgie de la scoliose ont été développés par différents chercheurs. Toutefois, ceux-ci ne prédisent pas la forme externe du tronc après chirurgie. De cet état des choses, découle la problématique et les objectifs de cette thèse: modéliser le tronc scoliotique en vue de la simulation de la forme postopératoire du tronc, et améliorer la précision des prédictions afin de proposer une stratégie opératoire optimale. La question de recherche abordée dans cette thèse concerne le développement de méthodes pour la simulation et la prédiction de la forme post-opératoire du tronc en chirurgie pour la scoliose. Quatre objectifs spécifiques de recherche ont été définis. La première partie du travail (traitant du premier objectif) a consisté à développer un modèle physique de déformation pour le tronc scoliotique. Contrairement au modèle existant, un nouveau modèle physique de déformation incrémentale est proposé pour tenir compte des grandes déformations du tronc. L'inspection qualitative des surfaces de tronc simulées et réelles montre une bonne approximation de la correction de la gibbosité. L'évaluation quantitative de la simulation est basée sur l'indice de rotation de la surface du dos (indice BSR). Il se définit comme l'angle formé par la double tangente du côté postérieur de chaque section horizontale de la surface du tronc et l'axe passant par les épines iliaques antéro-supérieures (ASIS) projeté sur le plan frontal. Les valeurs d'indices BSR, mesurées à différents niveaux vertébraux, montrent une erreur moyenne de 1.20º (± 0.73) à 3.20º (± 0.83) dans la région thoracique, indiquant un accord entre les troncs prédits et les données réelles. La deuxième partie (regroupant les trois autres objectifs spécifiques) a consisté à améliorer la précision des prédictions. Nous proposons deux méthodes de détermination de formes à priori de tronc postopératoire (soit basé sur une prédiction statistique, soit basé sur une prédiction de type proche voisin). Ces outils exploitent l'intuition de choisir la restriction du champ de déplacement à la frontière du domaine du tronc (la surface externe) comme une première approximation de la déformation du tronc. La réalisation des objectifs de cette recherche est à l'origine de contributions originales à l'état de l'art aussi bien en simulation physique de tissus mous qu'en apprentissage machine pour l'analyse de formes. Ce projet propose une nouvelle méthode de modélisation des déformations de tissus mous du tronc scoliotique pour la simulation de l'apparence postopératoire. Cette méthode présente, ainsi, l'avantage de constituer un outil pour les systèmes de planification par ordinateur de traitement chirurgical de la scoliose. En perspective, des études complémentaires sont suggérées pour surmonter certaines limitations des méthodes proposées. En particulier, l'incorporation d'un modèle du tronc obtenu par une fusion multimodale d'images (IRM/RX/TOPO) de patients scoliotiques, pour une meilleure personnalisation géométrique, devrait conduire à une amélioration de la précision de la simulation.----------ABSTRACT Adolescent Idiopathic scoliosis (AIS) is a complex three-dimensional deformation of the spine and rib cage. In case of severe spine deformity, a spine surgery is required as a treatment. Approximately one in a thousand patients suffering from AIS will have a spine surgery. However, in most cases, an optimal correction of the spine does not necessarily results in an optimal correction of the external appearance. A trunk asymmetry may persist after surgery and it is difficult to predict by surgeons. This is problematic because the external appearance is one of the most important factor for the patient satisfaction. It would be interesting to have available computer based scoliosis surgery planning assistance tools that takes into account the expectation of the patient regarding the aesthetics of the trunk appearance. Computer based medical simulation is becoming an important tool to support clinical decision making. It is used to predict and analyze the effects of treatments, as well as the predictions of changes due to pathology evolution. In the context of scoliosis surgery, spine correction surgery simulators exist. Biomechanical models for the simulation of the spine instrumentation in scoliosis surgery have been developed by different researchers. However, they do not simulate the postoperative appearance of the trunk. From this observation arise the problem and objectives of this thesis: modeling the scoliotic trunk in order to simulate the postoperative trunk shape, and improve predictions accuracy in order to propose an optimal surgery strategy. The research question of this thesis concerns the development of methods for the simulation and the prediction of the trunk postoperative shape in scoliosis surgery. Four research objectives have been defined. The first part of this work (dealing with the first objective) consisted in developing a physically based deformation model of the scoliotic trunk. Unlike the existing model, a novel incremental approach is proposed to take into account large deformations of the trunk. The qualitative visual inspection of the simulated and actual trunk surfaces show a good approximation of the correction of the rib hump. The quantitative evaluation of the simulation is based on the back surface rotation index (BSR index). It is defined as the angle formed by the dual tangent to the posterior side of each section of the trunk surface and the axis passing through the patient's anterior superior iliac spines (ASIS), projected onto the axial plane. The BSR indices, measured at different vertebral levels, shows an average error in the range of 1.20º (± 0.73) to 3.20º (± 0.83$) in the thoracic region, indicating a good agreement between the predicted and actual trunk surfaces. The second part (dealing with the remaining three objectives) addressed the prediction accuracy improvement. In this regard, two tools have been developed: one for predicting 3D trunk shapes based on a statistical approach, and the other being a prediction tool based on nearest neighbor methods. These tools make use of the intuition of choosing the restriction of the displacement field on the trunk domain boundary (the external surface) as a first approximation of the trunk deformation. The achievement of the research objectives has resulted in original contributions to the state of the art in physical simulation of soft tissues as well as in machine learning for shape analysis. This project proposes a novel method for modeling scoliotic trunk soft tissue deformation for the simulation of the postoperative appearance. This method has, thus, the advantage of being a potential tool for computer based scoliosis surgery planning systems. As perspectives, further research studies may be suggested in order to overcome the limitations of the proposed methods. In particular, the incorporation of a trunk model obtained from a multimodal image fusion (MRI / RX / TOPO) for a better personalization of the physical constants may lead to the improvement of the simulation accuracy

    Analyse de la relation entre les déformations scoliotiques du tronc et celles des structures osseuses sous-jacentes

    Get PDF
    RÉSUMÉ La scoliose idiopathique adolescente est une déformation tridimensionnelle complexe de la colonne vertébrale et de la cage thoracique qui entraine des déformations visibles à la surface du tronc. On remarque généralement une asymétrie des épaules, des omoplates, de la taille et du bassin ainsi qu’une bosse dans le dos. Ces déformations esthétiques constituent, d’une part, les premiers signes d’une scoliose, et d’autre part, la principale préoccupation des jeunes patients qui voient leur corps se développer différemment des jeunes de leur âge. Les outils cliniques utilisés pour quantifier les déformations du tronc, comme le scoliomètre ou le fil à plomb, sont peu fiables. C’est pourquoi, aujourd’hui, l’évaluation de la scoliose repose principalement sur des radiographies de face et de profil du tronc complet. Celles-ci permettent d’apprécier le type de courbure rachidienne et de quantifier son degré de sévérité, en fonction de quoi une stratégie de traitement sera décidée. Cependant, une exposition répétée des patients aux rayons X peut entrainer des effets indésirables sur leur santé. De plus, ces paramètres radiographiques ne permettent pas de documenter les déformations esthétiques. Cette différence notable entre ce que le patient perçoit, et ce que le clinicien est capable d’évaluer, peut mener à l’insatisfaction des patients suite au traitement. Comparativement aux radiographies, la surface du tronc reconstruite par les systèmes de numériseurs optiques 3D représente mieux les déformations que les patients observent et dont ils se soucient principalement, comme la gibbosité. De plus, l’absence de rayonnement ionisant est un avantage majeur de ces systèmes optiques, qui favorise une évaluation aussi fréquente que souhaité. Toutefois, l’absence de consensus sur un ensemble de mesures des déformations de la surface du tronc fait en sorte qu’elles restent encore considérées comme secondaires dans l’évaluation clinique; pourtant elles sont au coeur des préoccupations des patients. De cette double problématique, découle la question de recherche globale de cette thèse : comment compléter, voire remplacer, les évaluations clinique et radiographique actuelles de la scoliose par de l’information quantitative obtenue de manière non irradiante et qui permet de prendre davantage en considération les préoccupations des patients par rapport à leurs déformations esthétiques du tronc ? Parmi les premiers signes de scoliose, la gibbosité est une déformation esthétique qui ne peut être évaluée sur des radiographies, ni sur une reconstruction 3D de la colonne vertébrale.----------ABSTRACT Adolescent idiopathic scoliosis is a complex three-dimensional deformation of the spine and rib cage which leads to visible deformations at the trunk surface. The first signs of scoliosis include a hump on the back, a lateral shift of the trunk and asymmetries of the shoulders, the scapula, the waist and the hips. These esthetic deformities constitute major concern of patients and the reason for which they seek treatment. Currently, the tools available in clinical practice to quantify trunk deformations have limited reliability. For this reason, current scoliosis assessment is mainly based on frontal and lateral radiographs of the entire spine. These images allow clinicians to determine the type of the spinal curvature and its severity, according to which the treatment strategy is decided. However, the repeated exposure of patients to X-ray radiation can be harmful. Moreover, these radiographic measures do not give an indication as to the esthetic deformities of the trunk. This significant difference between what patients perceive and what clinicians are able to evaluate can lead to patient dissatisfaction following treatment. Compared to X-rays, the trunk surface acquired and reconstructed in 3D using optical digitizers better represents the deformations that patients observe and are primarily concerned with, such as the rib hump. In addition, the major advantage of these optical systems is their lack of ionizing radiation, thus allowing for a more frequent scoliosis assessment when compared to X-rays. However, there is currently no consensus on a set of indices that optimally quantifies trunk surface deformations. For this reason, trunk surface indices are still considered as secondary in the clinical evaluation, even though they are at the heart of the patients’ preoccupations. These problems lead to the main research question of this thesis: How can we complete, or even replace, the current clinical and radiographic evaluations of scoliosis with quantitative information obtained without ionizing radiation that takes more into account the patients’ concerns about their cosmetic trunk deformities? Among the first signs of scoliosis, the rib hump is a cosmetic deformity that cannot be assessed on radiographs, nor on a 3D reconstruction of the spine. It is mainly associated with rib cage deformity. It is therefore intuitive to suppose that the axial rotations of the ribs and of the back surface are highly correlated. Nevertheless, previous works have failed to demonstrate a strong relationship between these measurements. This might be explained by the limited accuracy of the technique used for the 3D reconstruction of the ribs. Consequently, in this work, a novel metho

    Méthode de mesure automatique intraopératoire des déformations du rachis scoliotique

    Get PDF
    RÉSUMÉ La scoliose idiopathique de l'adolescence est une pathologie complexe et évolutive entraînant une déformation tridimensionnelle du rachis, de la cage thoracique et du bassin. Cette pathologie affecte 2 à 4% de la population adolescente. Dans le cas de scolioses sévères, un traitement chirurgical est recommandé. L’imagerie radiographique est la technique la plus répandue pour le diagnostic et le suivi des effets de cette pathologie. De plus, des outils de reconstruction 3D du rachis à partir de radiographies du patient sont actuellement disponibles avant la chirurgie pour permettre une caractérisation bi- et tridimensionnelle des déformations scoliotiques ainsi que la planification des manoeuvres d'instrumentation. Les modèles 3D préopératoires ne sont pas directement utilisables pendant la chirurgie puisqu'il y existe un changement des courbures scoliotiques dû à la position allongée, à l'exposition chirurgicale et à l'anesthésie. Plusieurs systèmes de suivi ont été testés pour suivre le changement de forme du rachis et le mouvement des vertèbres en intraopératoire : mécaniques, optoélectroniques, électromagnétiques, ultrasons, radiographiques. Ces systèmes permettent de détecter la position des vertèbres pendant la chirurgie et peuvent être utilisés pour la mise à jour de modèles 3D préopératoires. Pour ce faire, ils requièrent l'installation de marqueurs sur les vertèbres ou l'identification manuelle de points anatomiques pendant la chirurgie, ce qui peut interférer avec la procédure chirurgicale. Ainsi, des systèmes d'imagerie et de navigation intraopératoires sont actuellement disponibles pour visualiser les déformations 3D du rachis et guider les manoeuvres d'instrumentation de façon sûre et précise. Cependant, à partir de ces systèmes, il n'est pas encore possible de quantifier en intraopératoire les déformations scoliotiques et la correction résultant des manoeuvres d'instrumentation. Ce projet de maîtrise visait à développer une technique permettant la mesure intraopératoire automatique des déformations scoliotiques afin de fournir au chirurgien des données quantitatives exploitables pour évaluer et améliorer la stratégie chirurgicale. Globalement, le calcul des déformations scoliotiques 3D a été effectué grâce à la mise à jour d'un modèle géométrique préopératoire à partir d'images fluoroscopiques 3D intraopératoires. De façon plus précise, un modèle géométrique préopératoire a été construit à partir de 28 repères anatomiques vertébraux identifiés manuellement par un opérateur sur des radiographies biplanaires en position érigée avant la chirurgie. Ces points ont été utilisés pour obtenir un modèle----------ABSTRACT Adolescent idiopathic scoliosis (AIS) is a complex and progressive pathology leading to threedimensional deformities of the spine, rib cage and pelvis. This pathology affects 2 to 4% of the adolescent population. In the case of severe scoliosis, a surgical treatment is required. Radiographic imaging is mostly used for the diagnosis and the monitoring of scoliosis. 3D reconstruction of the spine from patient’s radiographs is currently available to enable the twoand three-dimensional characterization of scoliotic deformities and planning of the instrumentation maneuvers. The 3D preoperative models can’t be directly used during surgery since there is a change in the scoliotic curvature caused by the prone positioning, the surgical exposure and the anesthesia. Several tracking systems have been tested to monitor the spinal shape changes and follow the intraoperative motion of the vertebrae: optoelectronics or electromagnetics systems, ultrasounds, radiographs. These systems enable the tracking of the intraoperative positioning of the vertebrae, and can be used to update 3D preoperative models. This requires the installation of external markers on vertebrae or the manual identification of anatomic points during surgery, which can interfere with the surgical procedure. Imaging and navigation systems are then currently available to visualize the 3D deformities of the spine and to safely and precisely guide the instrumentation maneuvers. Nevertheless, these systems do not enable the quantification of the intraoperative scoliotic deformities and the correction resulting from instrumentation maneuvers. This project aimed to develop a technique that enables the automatic intraoperative measurement of the scoliotic deformities, in order to provide the surgeon with quantitative feedback to evaluate and improve the surgical strategy. The 3D scoliotic deformities were computed by registering a preoperative geometric model with intraoperative 3D fluoroscopic images of the spine. More precisely, a preoperative geometric model was constructed from 28 vertebral landmarks manually identified by an operator on biplanar radiographs acquired preoperatively in standing position. These landmarks were used to obtain a surface model of each vertebra though a dual kriging interpolation technique. The intraoperative model was computed by the registration between this preoperative geometric model and the intraoperative data, composed of a voxelized model obtained from 3D fluoroscopic images. Each vertebra of the voxelized model was segmented and manually identified on intraoperative 3D fluoroscopic images. A rigid registratio
    • …
    corecore