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RÉSUMÉ 

La scoliose est une déformation musculo-squelettique complexe et tridimensionnelle de la 

colonne vertébrale.  Les mécanismes de progression de la scoliose sont liés au principe de 

Hueter-Volkmann.  Selon cette théorie, les chargements asymétriques des plaques de croissance 

altèrent la croissance du rachis (cunéiformisation des vertèbres). Une courbure scoliotique 

présentant un angle de Cobb supérieur à 50° nécessite généralement une intervention chirurgicale 

avec fusion rachidienne.  Cette chirurgie implique des procédures particulièrement invasives et 

coûteuses, ce qui a incité plusieurs chercheurs à tenter de développer d’autres alternatives.  

Des techniques minimalement invasives et sans fusion ont ainsi été élaborées pour contrôler et 

corriger un mauvais alignement de la colonne vertébrale avant qu'une progression trop 

importante des déformations scoliotiques ne se produise. Ces techniques tentent d'exploiter la 

croissance vertébrale résiduelle afin de corriger la cunéiformisation locale et d’aboutir à un 

réalignement progressif du rachis.  Les traitements sans fusion semblent également mettre en 

péril la santé du disque intervertébral à long terme et se limitent à une correction 2D (plan 

frontal) de déformations intrinsèquement 3D.  Mieux comprendre biomécaniquement la 

progression des déformations scoliotiques permettrait de développer des dispositifs sans fusion 

plus efficaces. Cela serait une contribution importante et innovatrice à l'amélioration du 

traitement de la scoliose idiopathique adolescente (SIA). 

L'objectif global de cette thèse était le développement, l’optimisation, et l’évaluation 

expérimentale d'implants sans fusion afin de moduler la croissance et de corriger les 

déformations scoliotiques.   

Les objectifs spécifiques étaient de 1) développer un modèle par éléments finis (MEF) de la 

colonne vertébrale intégrant une modélisation de la croissance; 2) exploiter ce MEF pour étudier 

les facteurs biomécaniques impliqués dans les mécanismes de progression de la SIA; 3) exploiter 

le MEF pour analyser la biomécanique des dispositifs sans fusion existant actuellement et repérer 

les améliorations pouvant être apportées à ces dispositifs; et 4) exploiter la plate-forme de 

conception conçue (analyses in silico, in situ, et in vivo) pour développer, optimiser, et valider de 

nouveaux dispositifs sans fusion modulateurs de croissance pour la correction des déformations 

de la SIA. 
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L’idée centrale de cette thèse est que le développement de nouveaux traitements sans fusion plus 

performants peut être réalisé en comprenant mieux les facteurs biomécaniques impliqués dans les 

mécanismes pathologiques de la SIA, en identifiant les lacunes des dispositifs sans fusion utilisés 

actuellement et en utilisant une plate-forme de conception complète incluant des analyses in 

silico, in situ et in vivo. 

Cette idée centrale a été divisée suivant les hypothèses suivantes:  

1) Des facteurs biomécaniques (différence des propriétés mécaniques entre la concavité et la 

convexité de la colonne scoliotique) augmentent les contraintes asymétriques sur les plaques de 

croissance épiphysaires de la vertèbre apicale de 25% et de ce fait augmentent la progression de 

la cunéiformisation vertébrale de 1° (soit 10%) sur un an de croissance à l'adolescence; 2) les 

dispositifs sans fusion modulateurs de croissance actuels (agrafes à mémoire de forme, agrafes 

en acier inox, et attaches souples) réduisent les chargement asymétriques sur les plaques de 

croissance de la vertèbre apicale de 35% et limitent la progression scoliotique à 10% sur deux 

ans de croissance adolescente; 3) un dispositif intravertébral épiphysaire amélioré permet de 

modifier la cunéiformisation vertébrale de 4° sans modifier la physiologie du disque 

intervertébral dans un modèle porcin après 12 semaines; et 4) une attache souple 3D permet de 

modifier la cunéiformisation vertébrale de 4° et la rotation axiale de 5° dans un modèle porcin 

après 12 semaines. 

Afin de répondre à ces objectifs et d’évaluer ces hypothèses, un MEF a été conçu pour être 

utilisé comme plate-forme initiale de développement.  A ce MEF a été intégré un système de 

contrôle itératif permettant de simuler la croissance physiologique en fonction de la variation de 

contraintes en se basant sur des données obtenues in vivo. 

Premièrement, le MEF a étudié l’influence de facteurs biomécaniques (différences entre la 

concavité et la convexité des courbures scoliotiques: migration du nucléus vers la convexité, 

augmentation de la densité minérale osseuse et dégénérescence des disques sur la concavité) sur 

la progression de la SIA.  Cette modélisation suggère que ces différences concavité-convexité 

augmentent les contraintes asymétriques de 37% et, par conséquent, augmentent la 

cunéiformisation vertébrale de 1 (10-20%) en moyenne.  Les méthodes et découvertes 
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expérimentales de cette étude ont ensuite été étendues à l’analyse des dispositifs sans fusion 

actuellement utilisés. 

Deuxièmement, le MEF a été utilisé pour explorer de façon critique les dispositifs sans fusion 

modulateur de croissance actuellement utilisés pour le traitement de la SIA.  Les résultats de 

cette analyse ont démontré que ces dispositifs permettaient de réduire les chargements 

asymétriques sur la plaque de croissance à l’apex de la courbe de près de 50% (attache souple) et 

permettaient de réduire la progression scoliotique à 11% (agrafes inox et ancrage flexible).  Cette 

analyse a également mis en évidence plusieurs limites qui pourraient être dépassées.  Les 

concepts explorés réduisent seulement la croissance au niveau de la convexité des courbures, 

réduisent l'espace du disque, et négligent les déformations scoliotiques sagittales et transverses. 

Suite à cette analyse, deux nouveaux dispositifs ont été proposés: un dispositif intravertébral 

épiphysaire (dispositif rigide qui stoppe localement la croissance sans réduire l'espace des 

disques) et une attache souple 3D permettant un contrôle de la scoliose dans les plans frontaux et 

sagittaux mais aussi une correction dans le plan transverse. 

Le dispositif intravertébral épiphysaire a réussi à moduler la croissance sans fusion tout en 

conservant l'espace du disque.  En outre, la santé du disque intervertébral est sauvegardée si le 

dispositif est inséré de façon appropriée. Les porcs utilisés dans nos expériences ont présenté une 

cunéiformisation vertébrale de 4.1°±3.6°, ce qui a permis d'obtenir une déformation vertébrale 

cumulative allant jusqu’à 25° sur seulement quatre niveaux instrumentés.  Au niveau du point 

d'insertion du dispositif, la hauteur du disque a augmenté de 0,8 mm ± 0,2. La zone 

hypertrophique de la plaque de croissance et la hauteur de ses cellules ont été réduites par un 

facteur deux.  La viabilité du disque a été confirmée par des classifications radiographique et 

histologique et via l’absence de collagène type X.  Ce dispositif est le premier du genre à obtenir 

une modulation de croissance dans un modèle animal avec des dimensions de vertèbres 

semblables à ceux des adolescents sans réduire l'espace du disque intervertébral. 

L’attache souple 3D a également entraîné une modulation de croissance locale dans les modèles 

porcins. Elle a produit une cunéiformisation des vertèbres de 3° et une correction dans le plan 

coronal allant jusqu’à 10°.  Les effets dans les plans transverses et sagittaux ont été confirmés en 

utilisant des plateformes in silico et in situ, mais les limites expérimentales n'ont pas permis de 
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confirmer ces effets in vivo en toute objectivité.  Ce dispositif sans fusion est le premier à tenter 

activement de fournir une correction dans les trois plans anatomiques. 

Plusieurs avancées notables ont été réalisées dans le cadre de cette thèse.  Le MEF développé 

offre un moyen novateur d'explorer différentes hypothèses biomécaniques liées à la progression 

de la SIA.  En outre, dans le cadre de la conception d'un dispositif modulateur de croissance sans 

fusion, ce MEF a permis de réaliser des analyses préliminaires avant de poursuivre avec des 

essais in situ et in vivo coûteux. Deux nouveaux dispositifs sans fusion avec modulation de 

croissance (dispositif intravertébral épiphysaire et attache souple 3D) ont été développés et 

optimisés selon une approche de conception utilisant des analyses successives in silico, in situ et 

in vivo.  Le MEF, les éléments biomécaniques associés à la progression de la SIA qui ont pu être 

identifiés, et enfin les instruments chirurgicaux conçus au cours de cette thèse constituent un pas 

prometteur vers l'amélioration des traitements des adolescents atteints de scoliose idiopathique. 
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ABSTRACT 

Scoliosis is a spinal musculoskeletal deformity defined by a 3D deformity of the spine.  The 

pathomechanism of scoliotic progression may be in part explained by the Hueter-Volkmann 

principle.  This theory describes how increased loading of growth plates will reduce regular 

growth rates while the converse is also accurate.  Further, when extended to the pathogenesis of 

scoliosis, it defines how asymmetric loading of the vertebral bodies leads to the progression of 

the deformity via vertebral wedging.  Currently, a scoliotic curve reaching a magnitude of 50° 

Cobb deformation requires surgical intervention involving instrumentation and spinal fusion.  

The process of fusion is among the most invasive and expensive procedures, which has 

motivated several researchers to develop other alternatives. 

The development of a less invasive technique, to control and correct a spinal misalignment 

before undesirable progression occurs, has subsequently been explored.  Several fusionless 

devices have been developed that attempt to manipulate vertebral growth to correct vertebral 

wedging and, consequently, realign the spine.   However, to date, these approaches have yet to 

be adopted in a clinical context.  Moreover, devices actively pursued seemed to imperil the long 

term health of the intervertebral disc while corrective attempts are restricted to the unilateral 

manipulation of a 3D deformity.  Therefore, enhanced biomechanical understanding of AIS 

pathomechanism in conjunction with the development of early and less invasive interventions 

would offer an important contribution to the improved treatment of AIS. 

The global objective of this thesis was to design, optimize, and evaluated experimentally 

fusionless device concepts to induce growth modulation and correct spinal curvatures in 

adolescent idiopathic scoliosis (AIS).  The specific objectives were to: 1) develop a FEM of the 

spine with integrated growth dynamics; 2) exploit the FEM to explore biomechanical factors 

involved in the pathomechanism of AIS; 3) exploit the FEM to analyze biomechanically current 

fusionless growth sparring devices to identify available avenues of improvement; and 4) exploit 

the devised developmental platform (in silico, in situ, and in vivo analyses) to develop, optimize, 

and validate novel and improved fusionless growth modulating devices for AIS. 

The central theme addressed in this thesis is that: improved fusionless treatments for AIS may be 

developed subsequently to understanding biomechanical factors in its pathomechanism, 
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identifying shortcomings of previous fusionless devices, and utilizing a comprehensive design 

platform that include in silico, in situ, and in vivo analyses.  This central theme was divided into 

the following hypotheses: 

This doctoral thesis aims to verify the hypothesizes that: 1) biomechanical factors (concave-

convex mechanical biases) of the scoliotic spine increases apical asymmetrical growth plate 

loading by 25% and, concomitantly, augment coronal vertebral wedge progression by 1° (10%) 

over 1 year of adolescent growth in a scoliotic spine; 2) current fusionless growth sparring 

methods (shape memory alloy staple, stainless staple, and flexible tether) reduce asymmetrical 

growth plate loading by 35% and restrict coronal scoliotic progression to 10% over 2 years of 

adolescent growth; 3) a refined intravertebral epiphyseal device will modify vertebral wedging 

by 4° without altering the intervertebral disc in a porcine model after 12 weeks; and 4) a 3D 

tether will modify vertebral wedging by 4° and axial rotation by 5° in a porcine model after 12 

weeks. 

The foremost undertaking of this thesis was the FEM platform development.  This self-adjusting 

computer model was integrated with an iterative control system that simulated physiological 

growth as a function of stress variation respecting in vivo correlations.  First, the FEM explored 

biomechanical factors (physiological stress shielding in the form of concave-convex mechanical 

biases: migration of nucleus to convexity and increased bone mineral density and local disc 

degeneration on concavity) in the pathomechanism of AIS.  This interpretation suggests that 

concave-convex mechanical biases increased apical asymmetrical stress distribution by 37% and 

effectively augmented vertebral wedging by up to 1 (10-20%).  Deductions and experimental 

methods were then extended towards the biomechanical analysis of current fusionless methods.  

Second, the FEM was utilized to critically explore current fusionless growth modulation devices 

tailored to AIS.  Results from this analysis demonstrated the biomechanical ability of these 

devices to reduce asymmetrical growth plate loading by up to 50% (flexible tether) and decrease 

scoliotic progression to 11% (stainless steel staple and flexible tether).  Conversely, this analysis 

highlighted several limitations that could be improved.  The explored concepts simply reduce 

convex growth, span the disc space, and neglect sagittal and axial implications of the scoliotic 

deformity. 
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Two devices were proposed for development: an improved intravertebral epiphyseal device 

(rigid device that locally halts growth without spanning the disc space – feasibility reported in a 

previous in-house study using a rat tail) and a 3D tether (tethered configuration that targets axial 

correction in addition to coronal and sagittal control). 

The intravertebral epiphyseal device successfully demonstrated its ability to provide fusionless 

growth modulation without the need to cross the disc space.  Moreover, its influence on 

intervertebral disc health is insignificant pending accurate insertion of the device.  Experimental 

pigs achieved vertebral wedging of 4.1°±3.6°, resulting in a cumulative vertebral deformity of up 

to 25° over only 4 instrumented levels.  Adjacent to device, disc height increased 0.8mm±0.2 and 

growth plate hypertrophic zone and cell height reduced by a factor of two.  Positive disc viability 

was confirmed by radiographic and histological grading and the lack of collagen type X.  This 

device is the first of its kind to achieve growth modulation in an animal model with vertebral 

dimensions similar to adolescents without spanning the disc space. 

The 3D tether also achieved local growth modulation resulting in vertebral wedging of up to 4° 

and coronal manipulation of up to 10° in porcine models.  Axial and sagittal manipulations were 

confirmed using in silico and in situ platforms but experimental limitations restricted their 

objective in vivo confirmation.  This is the first fusionless device to seek and demonstrate 3D 

correction of AIS. 

Several notable advances have been achieved in the context of this thesis.  The developed finite 

element platform provides an innovative way to explore biomechanical factors involved in the 

progression of AIS.  In addition, in the context of device design, this FEM platform allows 

preliminary analyses and optimization to be performed prior to moving forth with expensive in 

situ and in vivo testing.  Two novel fusionless growth modulating devices (intravertebral 

epiphyseal device and 3D tether) were refined and developed using a complete engineering 

design approach making use of in silico, in situ, and in vivo analyses.  The developed FEM, the 

identified biomechanical factor in AIS pathomechanism, and the surgical devices conceived over 

the course of this thesis provide a hopeful step towards the improved management of adolescents 

with idiopathic scoliosis. 



xi 

CONDENSÉ EN FRANÇAIS 

La scoliose est une déformation musculo-squelettique caractérisée par une déviation latérale et 

une torsion de la colonne vertébrale. Elle affecte 3 à 4% de la population et 80% des cas de 

scoliose sont idiopathiques. Il existe plusieurs théories tentant de décrire son étiologie [1], mais 

aucune n’est encore prouvée. 

Les mécanismes pathologiques impliqués dans la progression des déformations scoliotiques sont 

en partie reliés au principe de Hueter-Volkmann [2]. Selon cette théorie, une augmentation de la 

compression sur les plaques de croissance aboutit à une diminution du taux de croissance. Dans 

le cadre de la pathogenèse de la scoliose, cette théorie explique que le chargement asymétrique 

des corps vertébraux dû à la présence des courbures scoliotiques entraîne la progression des 

déformations scoliotiques [3]. 

Lorsque l'angle de Cobb est inférieur à 20°, les patients scoliotiques sont habituellement 

considérés en observation. Pour un angle de Cobb compris entre 20° et 50°, un traitement par 

corset est généralement appliqué. Des controverses existent encore sur l'efficacité de ce 

traitement [4].  Pour un angle de Cobb supérieur à 50°, une intervention chirurgicale consistant 

en une fusion rachidienne est nécessaire. Toutefois, cette intervention est particulièrement 

invasive et coûteuse et n'est donc réalisée qu'en cas d'absolue nécessité. 

Le développement de techniques minimalement invasives et sans fusion permettant de contrôler 

et de corriger les déformations scoliotiques ou d'empêcher leur progression, offre des 

perspectives intéressantes pour éviter de réaliser ces interventions chirurgicales avec fusion qui 

sont particulièrement lourdes de conséquences. Cette perception, en parallèle avec le succès de 

l'agrafage des plaques de croissance des os longs, a conduit à l'élaboration de plusieurs 

dispositifs qui tentent de faire usage de la croissance vertébrale résiduelle pour corriger la 

cunéiformisation locale et donc de rétablir l’alignement de la colonne vertébrale. Certains 

dispositifs de ce type avaient déjà été développés dès les années 1950, avec toutefois un succès 

très limité. Les progrès réalisés depuis au niveau des techniques chirurgicales et des matériaux 

ont récemment permis de développer de nouveaux et prometteurs dispositifs de traitement 

dénommés ‘dispositifs de modulation de croissance sans fusion’. Toutefois, à ce jour, ces 

approches n'ont pas encore été validées dans un contexte clinique. Il est enfin clair que mieux 
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comprendre biomécaniquement la progression des déformations scoliotiques permettrait de 

développer des dispositifs sans fusion plus efficaces. Cela serait une contribution importante et 

innovatrice à l'amélioration du traitement de la SIA. 

L'objectif global de cette thèse était donc le développement, l’optimisation, et l’évaluation 

expérimentale d'implants sans fusion afin de moduler la croissance et de corriger les 

déformations scoliotiques 

Les objectifs spécifiques étaient de : 

Objectif 1: développer un modèle par éléments finis (MEF) de la colonne vertébrale intégrant 

une modélisation de la croissance;  

Objectif 2: exploiter ce MEF pour étudier les facteurs biomécaniques impliqués dans les 

mécanismes de progression de la SIA;  

Objectif 3: exploiter le MEF pour analyser la biomécanique des dispositifs sans fusion existant 

actuellement et repérer les améliorations pouvant être apportées à ces dispositifs; 

Objectif 4: exploiter la plate-forme de conception conçue (analyses in silico, in situ, et in vivo) 

pour développer, optimiser et valider de nouveaux dispositifs sans fusion modulateurs de 

croissance pour la correction des déformations de la SIA. 

L’idée centrale de cette thèse est que le développement de nouveaux traitements sans fusion plus 

performants peut être réalisé en comprenant mieux les facteurs biomécaniques impliqués dans les 

mécanismes pathologiques de la SIA, en identifiant les lacunes des dispositifs sans fusion utilisés 

actuellement et en utilisant une plate-forme de conception complète incluant des analyses in 

silico, in situ, et in vivo. 

Cette idée centrale a été divisée suivant les hypothèses suivantes:  

Hypothèse 1: Des facteurs biomécaniques (différence des propriétés mécaniques entre la 

concavité et la convexité de la colonne scoliotique) augmentent les contraintes asymétriques sur 

les plaques de croissance épiphysaires de la vertèbre apicale de 25% et de ce fait augmentent la 
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progression de la cunéiformisation vertébrale de 1° (soit 10%) sur un an de croissance à 

l'adolescence; 

Hypothèse 2: Les dispositifs sans fusion modulateurs de croissance actuels (agrafes à mémoire 

de forme, agrafes en acier inox et attaches souples) réduisent les chargements asymétriques sur 

les plaques de croissance de la vertèbre apicale de 35% et limitent la progression scoliotique à 

10% sur deux ans de croissance adolescente; 

Hypothèse 3: Un dispositif intravertébral épiphysaire amélioré permet de modifier la 

cunéiformisation vertébrale de 4° sans modifier la physiologie du disque intervertébral dans un 

modèle porcin après 12 semaines;  

Hypothèse 4: Une attache souple 3D permet de modifier la cunéiformisation vertébrale de 4° et 

la rotation axiale de 5° dans un modèle porcin après 12 semaines. 

Les objectifs et les hypothèses de cette thèse de doctorat ont été examinés et résolus suivant la 

séquence décrite à la figure 0.1.  Le développement de la plateforme in silico (MEF) a permis de 

réaliser les objectifs 1, 2 et 3 et de confirmer les hypothèses 1 et 2. Les analyses 

complémentaires in situ et in vivo ont permis d’atteindre l'objectif 4 et de confirmer les 

hypothèses 3 et 4.  Par conséquent, quatre articles ont été soumis et publiés dans des revues 

scientifiques.  Une étude de faisabilité supplémentaire est présentée ainsi qu’une discussion 

générale de ces études et les conclusions. 
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Figure 0.1: Schéma méthodologique 

 

Objectif 1: Développement du MEF 

Un modèle par éléments finis (MEF) volumique de la colonne vertébrale thoracique et lombaire 

antérieure a été développé. La géométrie du modèle correspond aux caractéristiques spécifiques 

du patient obtenues selon une technique de reconstruction stéréo-radiographique [5]. Une 

géométrie paramétrique a également été introduite afin de modéliser différentes configurations 

de colonne vertébrale. Les divisions physiologiques internes du modèle respectent les données 

provenant d’études publiées (Fig. 0.2). 
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Figure 0.2: Vue éclatée du MEF d’un niveau vertébral (modifié de [6]) 

Analyse de contraintes (O1a) 

Les mesures de contraintes sur les plaques de croissance des vertèbres sont d'un grand intérêt 

dans le cadre de l’analyse de la progression de la SIA mais aussi pour l'analyse des implants sans 

fusion qui cherchent à corriger les déformations scoliotiques. Pour analyser et quantifier ces 

contraintes, la zone sensible (couche supérieure de la plaque de croissance qui répond au 

chargement) a été divisée en différentes zones d'intérêt. Les contraintes longitudinales moyennes 

sur chaque zone sont calculées pour les modèles de scoliose, que ce soit avec le facteur de risque 

étudié ou avec les implants analysés.  Par la suite, ces mesures sont comparées et les différences 

relatives ont permis de tirer des conclusions pertinentes. 

 

Figure 0.3: Plaque de croissance divisée en zone d’intérêt (A: antérieure, ALD: antérieure latérale droite, 

LD: latérale droite, PLD: postérieure latérale droite, P: postérieure, PLG: postérieure latérale gauche, LG: 

latérale gauche, et ALG: antérieure latérale gauche) 

Analyse de la croissance (O1b) 
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L'évolution à long terme de la scoliose liée à un facteur biomécanique ou à un implant particulier 

a été mesurée en termes de modifications de l'angle de Cobb dans les plans frontaux et sagittaux. 

La croissance de la colonne vertébrale a été simulée sur une période comprenant une à trois 

année(s). Le système de contrôle itératif commence par l'analyse des contraintes résultant d'un 

chargement physiologique. La réponse en termes de modulation de croissance est ensuite 

calculée pour la couche d'os nouvellement formée au niveau des plaques de croissance.  Par la 

suite, la géométrie du modèle est mise à jour. Ce processus en boucle prend place durant le 

nombre d’années simulées. Cette technique provient d'études publiées avec d'autres modèles [7, 

8].  L'équation régulant le taux de croissance longitudinale des os en fonction des contraintes est 

basée sur des corrélations in vivo acquises en quantifiant les taux de croissance dépendamment 

des forces externes pour différentes espèces animales [9].  En bref, l'équation fournit les taux de 

croissance longitudinale en fonction de la variation de l'ampleur des contraintes par rapport aux 

conditions physiologiques ordinaires. 

 

Figure 0.4: Exemple de simulation de correction initiale et à long terme dans une colonne scoliotique 

instrumentée 

Diverses améliorations sur les modèles de croissance précédemment développés [7, 10-12] ont 

été introduites. Une approche plus détaillée pour la plaque de croissance a été incluse. Les 
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dimensions proviennent désormais d’études in vivo. Les variations cumulées de la taille de la 

plaque de croissance sont prises en considération lorsque la réponse en termes de croissance est 

calculée. L’algorithme pour déterminer la correspondance entre les éléments de la zone sensible 

et la couche d'os nouvellement formée a été amélioré. L'efficacité de l'algorithme de croissance a 

été optimisée afin de réduire le temps de calcul par un facteur 5. Enfin, la simulation de 

croissance a été effectuée pour un modèle volumétrique des régions thoraciques et lombaires 

complètes, modèle composé de 34 plaques de croissance fonctionnelles. 

Validation (O1c) 

Bien qu'il soit très difficile de valider un tel modèle, les mesures suivantes ont été prises pour 

assurer à la fois une corroboration qualitative et quantitative avec les valeurs expérimentales 

publiées. Puisque le MEF développé fournit une plate-forme pour prédire la répartition des 

contraintes dans la colonne vertébrale antérieure, les mesures de contraintes disponibles au sein 

de la littérature ont été comparées aux résultats du MEF (contraintes entre 0.15 et 0.8 MPa, 

tableau 1.4). 

Le comportement du modèle de croissance développé a été comparé à d'autres simulations 

utilisant un algorithme similaire pour prédire la progression scoliotique [7, 13]. Plusieurs 

dossiers cliniques présentant des types de colonnes scoliotiques différents (Lenke Type 1A, Type 

2A and Type 3C) ont été sélectionnés pour simuler les profils progressifs observés. Les critères 

de sélection pour cette phase étaient les suivants: le traitement par corset du patient n'a montré 

aucune influence sur la progression de la courbure scoliotique et le patient avait une progression 

négligeable dans le plan sagittal.  Les résultats de cette étape de validation ont permis de prédire 

la géométrie des colonnes scoliotiques progressives à 5 degrés d'angle de Cobb près (Fig. 0.5). 
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Figure 0.5: Exemple de validation du MEF prédictif (modifier de [6]) 

Il est toutefois important de noter qu'environ 80% des cas de scoliose ne progressent pas. Il est 

donc impossible de prédire avec précision les niveaux de progression en utilisant un algorithme 

basé sur des valeurs moyennes. En raison de cette limitation, la sensibilité des modèles (β 

équation 1.1) doit être ajustée pour que la progression scoliotique issue de l'interprétation 

numérique corresponde à celle des patients. Par conséquent, il est nécessaire de commencer par 

simuler un cas idéal où la progression scoliotique pose un problème clinique. Un MEF spécifique 

a donc été développé pour une patiente immature présentant une colonne thoracique de type 1 

selon la classification Lenke [14] avec un angle de Cobb initial dans le plan coronal de 28 

degrés. La courbure thoracique de cette patiente a progressé d'environ 10 degrés par année. Une 
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instrumentation postérieure impliquant la fusion est intervenue après deux ans de suivi. Selon les 

études publiées, ce cas clinique aboutit à une intervention chirurgicale dans 100% des cas [15]. 

Cela en fait une candidate idéale. 

Objectif 2: Exploiter le modèle pour analyser divers facteurs biomécaniques (chapitre 3, 

article 1) 

Cette partie de la thèse vise à analyser l’influence d’un facteur biomécanique dans le mécanisme 

pathologique de progression de la SIA. Essentiellement, l'hypothèse suggère que le remodelage 

des tissus dans les colonnes scoliotiques (au niveau des régions situées dans la concavité et la 

convexité des courbures scoliotiques Fig. 0.6) influence la distribution des contraintes internes 

et, par conséquent, encourage la progression scoliotique selon le principe de Hueter-Volkmann. 

Trois MEF ont été développés: un modèle sain et des modèles scoliotiques incluant et excluant 

des différences entre les régions concave et convexe (augmentation de la rigidité de l'os 

trabéculaire et de l’annulus fibrosus, migration du noyau vers la convexité de la courbure dans le 

plan frontal). La croissance de la colonne a été simulée pour les deux modèles et les profils 

progressifs à long terme ont été comparés. 

 

Figure 0.6: Facteur de risque analysé 

Les résultats de cette interprétation suggèrent que ces différences mécaniques, entre les régions 

concave et convexe de la colonne, ont légèrement modifié la répartition des contraintes sur les 

plaques de croissance et ont modifié efficacement la progression de la déformation scoliotique. 

La quantification de ces paramètres chez un patient avec une scoliose pourra fournir une 

meilleure évaluation clinique du risque de progression. 

Objectif 3: Exploiter le modèle pour explorer les dispositifs sans fusion modulateur de 

croissance existant actuellement (chapitre 4, article 2) 
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Cette section de la thèse a comparé les dispositifs sans fusion existant actuellement dans le 

traitement de la SIA. L’objectif implicite de cette tâche est d'identifier les défauts des concepts 

existant, afin de proposer de nouveaux dispositifs sans fusion améliorés. Ces dispositifs seront 

ensuite étudiés dans des modèles in situ et in vivo. 

Trois implants (agrafe en acier inoxydable, agrafe en alliage à mémoire de forme, et attache 

souple en polyéthylène) ont été analysés avec le MEF. Ces implants ont été modélisés selon les 

descriptions fournies dans les brevets [16-18] et les études publiées [19, 20] (Fig. 0.7).  Les 

implants ont été installés dans la modélisation au niveau des cinq corps vertébraux entourant 

l'apex (T7), couvrant ainsi quatre disques intervertébraux. 

 

Figure 0.7: Dispositifs analysés 

Deux années de croissance ont été simulées avec et sans la présence des implants décrits. La 

capacité des implants à altérer les contraintes (au niveau de la partie sensible de la plaque de 

croissance) a été quantifiée et comparée. L’effet initial et à long terme des différent implants sur 

les configurations scoliotiques a également été évalué. 

Les résultats de cette analyse ont démontré que ces dispositifs permettaient de réduire les 

chargements asymétriques sur les plaques de croissance jusqu'à 50% et d’obtenir une modulation 

de croissance aboutissant à un réalignement du rachis. Cette analyse a aussi mis en évidence 

plusieurs faiblesses qui pourraient être améliorées. Tout d'abord, les implants analysés réduisent 

seulement la croissance dans les régions situées dans la convexité des courbures scoliotiques. La 

croissance n’est pas arrêtée ce qui serait souhaitable pour davantage réduire la cunéiformisation. 
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Deuxièmement, les implants analysés agissent purement dans le plan frontal et ne corrigent pas 

les déformations scoliotiques dans les plans sagittaux et transverses. Enfin, ces implants 

réduisent systématiquement l’espace du disque. 

Objectif 4: Développement et évaluation de nouveaux dispositifs sans fusion modulateurs 

de croissance (chapitres 5 et 6, articles 3 et 4) 

Tests in silico(O4a) 

Comme mentionné précédemment, les analyses réalisées ont permis d’identifier certaines 

lacunes des méthodes sans fusion existant actuellement. Cette interprétation a permis la 

conception de nouveaux dispositifs améliorés visant un traitement précoce de la SIA. Ces 

nouveaux concepts ont été analysés avec la plate-forme numérique décrite précédemment selon 

des méthodes identiques (analyse de la capacité des dispositifs à corriger le chargement 

asymétrique des plaques de croissance, à induire une correction initiale, et à générer une 

correction à long terme par modulation de croissance). Tous les dispositifs explorés ont été 

comparés selon ces méthodes. Dix concepts originaux sans fusion ont été simulés à l'aide de la 

plate-forme MEF. Les deux les plus prometteurs ont été sélectionnés. Une optimisation in silico 

a été effectuée et des tests supplémentaires via des analyses in situ et in vivo ont été réalisés. 

Tests in situ (O4b) 

Une colonne vertébrale synthétique (Sawbones) a été utilisée afin d'analyser les dispositifs 

choisis. Ceci constitue une étape intermédiaire avant de réaliser des expérimentations in vivo. 

Cela a permis d’obtenir un aperçu qualitatif de la correction initiale et de l'amplitude des 

mouvements de la colonne vertébrale après introduction de l'implant. La région thoracique du 

modèle physique (dimensions similaires à la région thoracique d’un modèle porcin immature et 

d’un adolescent humain) a été instrumentée avec les dispositifs et différentes conditions de 

chargement ont été qualitativement analysées. Cette méthode d'investigation a permis de 

développer, de vérifier et d’améliorer la procédure d'instrumentation et les outils chirurgicaux, 

cela dans le but de faciliter la chirurgie in vivo. 

Tests in vivo (O4c) 
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Des porcs femelles immatures (âgés de 3 mois) de race Landrace/Yorkshire ont été utilisés pour 

tester la faisabilité des implants. Tous les groupes de porcs ont été suivis pendant 12 semaines 

suivant les chirurgies. Des radiographie postéro-antérieures (en position de décubitus ventral 

avec les pattes postérieures repliées et les pattes antérieures étirées vers l'extérieur) et latérales 

(position de décubitus latéral) ont été prises immédiatement après la chirurgie, puis toutes les 

deux semaines jusqu'à l’euthanasie sous anesthésie générale. Après sacrifice, les colonnes de 

porc ont été soumises à des analyses immunohistochimiques. Cette plateforme d’analyse a 

permis l’évaluation complète du dispositif intravertébral épiphysaire et l’analyse préliminaire du 

dispositif souple 3D (pas de groupes sham ni témoin). 

Dispositif intravertébral épiphysaire 

 

Figure 0.8: Conception du dispositif épiphysaire intravertébral 

Tous les animaux ont pu subir l'analyse post-opératoire sans complications. Les groupes de 

témoin et de sham n’ont montré aucun changement significatif dans l'alignement des vertèbres. 

Le groupe test a montré un angle de Cobb frontal final de 6.5°±3.5° et une cunéiformisation 

cumulative allant jusqu’à 25° (limitée à 4 niveaux instrumentés). Aucune modification 

significative du profil sagittal n’a eu lieu. Le groupe expérimental a montré une cunéiformisation 

des vertèbres de 4.1°±3.6° et une différence de hauteur (hauteur droite vs gauche) de 

1,24mm±1.86 dans le plan frontal. Aucune cunéiformisation ou différence de hauteur n’a été 

détectée dans les groupes témoin et sham. 
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Les données radiographiques ont montré une cunéiformisation des disques inverse à celle des 

vertèbres (hauteur du disque supérieure du côté du dispositif) dans les segments instrumentés. 

Les études histologiques ont confirmé que le dispositif générait une modulation de croissance via 

une réduction significative de hauteur de la zone hypertrophique et des cellules de cette zone. La 

santé du disque était variable et fonction de l'emplacement d'insertion de l’implant. 

Dispositif attache souple 3D 

 

Figure 0.9: Conception du dispositif souple 3D 

Les analyses in silico et in situ ont clairement démontré la capacité de ce dispositif à corriger les 

déformations scoliotiques rachidiennes dans les trois plans anatomiques. De plus, ces 

investigations ont confirmé la capacité de ce dispositif à agir sur les vertèbres adjacentes de 

façon indépendante. Le dispositif n’a causé aucun problème dans les quatre porcs instrumentés 

durant le suivi de 12 semaines.  Cette étude in vivo a montré une cunéiformisation des vertèbres 

jusqu’à 4° (3°1.5) et des corrections dans le plan coronal allant jusqu'à 10°.  Cependant, les 

limitations expérimentales (méthodes inadéquates pour la quantification de la rotation axiale et 

problèmes de fixation des vis à long terme) rendent difficile une confirmation objective de 

l’action dans les trois plans comme démontré dans les analyses in silico et in vivo.  Ce dispositif 

sans fusion est le premier à tenter activement de fournir une correction dans les trois plans 

anatomiques. 

Conclusions et recommandations 
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Cette thèse apporte une meilleure compréhension biomécanique des mécanismes de progression 

de la SIA et des méthodes correctives à l’œuvre dans les dispositifs sans fusion.  Deux nouveaux 

dispositifs sans fusion ont été élaborés et optimisés en utilisant des analyses in silico, in situ et in 

vivo. 

Le MEF développé a permis l’analyse de facteurs biomécaniques impliqués dans la progression 

scoliotique. La présence d'un biais mécanique entre les régions concaves et convexes de la 

colonne vertébrale augmente le chargement asymétrique et par conséquent encourage la 

progression scoliotique. Ces facteurs biomécaniques sont considérés comme un facteur de risque 

secondaire impliqué dans la progression scoliotique. Des études supplémentaires utilisant une 

analyse prospective de patients scoliotiques devra être menée afin d’étayer ces conclusions et, au 

besoin, de concevoir des méthodes de dépistage clinique. 

Le MEF élaboré confirme la capacité des dispositifs sans fusion actuels (agrafe en alliage à 

mémoire de forme, agrafe en acier inoxydable, et attache flexible en polyéthylène) à réduire le 

chargement asymétrique des plaques de croissance dans un rachis scoliotique et à réduire la 

progression scoliotique via une modulation de croissance convexe unilatérale Plusieurs 

améliorations potentielles restent toutefois à prendre en considération. Cette plate-forme MEF et 

des méthodes expérimentales constituent un moyen efficace d'explorer, de critiquer, et 

d'améliorer les dispositifs sans fusion pour le traitement de la SIA. 

Le dispositif intravertébral épiphysaire a été optimisé via des analyses in silico et in situ. Le 

dispositif amélioré a permis de manipuler l’alignement du rachis en réalisant une modulation de 

croissance locale sans inclure le disque intervertébral dans le montage de fixation dans un 

modèle porcin. En outre, des analyses de la morphologie et de la santé du disque intervertébral et 

de la plaque de croissance ont montré que ces structures physiologiques restaient saines si un 

positionnement précis du dispositif était effectué. Un dernier essai préclinique est conseillé afin 

d'inclure des améliorations sur le dispositif et la technique chirurgicale. Le dispositif pourra 

ensuite éventuellement être adapté à l’être humain et un essai clinique pourra être effectué. 

Le dispositif attache souple 3D a démontré des résultats prometteurs qui confirment son potentiel 

comme méthode de correction efficace pour la SIA. Sa capacité à corriger les déformations 

scoliotiques dans tous les plans anatomiques a été démontré à l'aide d’analyses in silico et in situ. 
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Les limitations expérimentales ont cependant amoindri la portée de l'évaluation in vivo. 

Néanmoins, la correction obtenue dans les trois plans anatomiques constitue une innovation 

importante et des expérimentations in vivo supplémentaires méritent d’être poursuivies. 

Les deux dispositifs ‘intravertébral épiphysaire’ et ‘attache souple 3D’ offrent un espoir 

d’amélioration du traitement précoce de la SIA. Les essais précliniques ont été réussis et les 

inconvénients mineurs semblent pouvoir être résolus. Le dispositif intravertébral épiphysaire 

fournit une méthode intéressante pour atteindre une correction sans fusion sans inclure le disque 

intervertébral dans le montage de fixation. Le dispositif d'attache souple 3D offre un meilleur 

contrôle dans les trois plans anatomiques. Les deux dispositifs présentent des nouveautés par 

rapport aux traitements disponibles et répondent aux exigences des nouveaux traitements sans 

fusion adaptés aux patients avec la scoliose idiopathique adolescente progressive. 
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INTRODUCTION 

Scoliosis is a three dimensional deformity of the spine which may progress and necessitate 

treatment.  Conventional management successively includes bracing of moderate deformities and 

surgical instrumentation involving fusion of advanced spinal curvatures.  The influence of 

orthotics on the natural history of scoliosis seldom results in deformity reduction while its utility 

continues to be debatable irrespective of optimal compliance.  Scoliotic surgery is amongst the 

most invasive and expensive procedures.  Spinal instrumentation coupled with fusion realigns 

the spine while concurrently sacrificing spinal flexibility and intrinsic segmental function.  Thus, 

these shortcomings continue to inspire researchers to develop and explore improved alternative 

treatments. 

Fusionless growth modulation proposes an early treatment of spinal deformities by making use 

of residual spinal growth in order to manipulate local vertebral morphology and, consequently, 

realign the spine over time.  More specifically, this method exploits the Hueter-Volkmann 

principle of bone growth.  This principle distinguishes how non physiological loading over 

vertebrae will alter regular growth rates.  Therefore, fusionless devices seek to locally 

manipulate vertebral loading in an attempt to impede of reverse scoliotic progression.  

Consequently, fusionless treatment offers the benefit of preserving axial growth, spinal motion, 

and function.  Initially proposed and evaluated in the 1950s, fusionless treatments of spinal 

curvatures were abandoned as a result of poor performance and device fixation problems.  

Refinements of surgical techniques and material sciences have reaffirmed fusionless growth 

modulation techniques as a promising alternative treatment of AIS over the last ten years.  

Notwithstanding, to date, fusionless devices are neither approved for use nor adopted in a clinical 

context; however, the current consistent emergence of registered patents, scientific publications, 

and preclinical and clinical trials insinuate its inevitable implementation. 

Conceivably, fusionless treatments for scoliosis may be improved subsequently to gaining 

improved understanding of biomechanical factors involved in its pathomechanism, 

characterizing limitations of previously attempted fusionless devices, and utilizing a 

comprehensive design platform that include in silico, in situ, and in vivo analyses. 
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The general objective of this doctoral project is to design, optimize, and experimentally evaluate 

novel fusionless devices to induce growth modulation and correct spinal curvatures in adolescent 

idiopathic scoliosis.  To achieve this endeavour, spinal anatomy, spine biomechanics and 

numerical modeling, scoliosis, and fusionless treatments was methodically reviewed and 

evaluated. 

This thesis is composed of eight chapters represented in figure 0.10.  Following a review of 

relevant literature, research objectives and corresponding hypotheses were systematically 

devised.  Completion of the former and investigation of the latter led to four scientific 

manuscripts found in chapter’s three to five.  Chapter six reports the details of an important 

unpublished study.  Chapter seven binds the explored themes under a general discussion while 

chapter eight closes with this dissertations conclusions and perspectives. 
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Figure 0.10: Thesis organization 
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CHAPTER 1 : LITERATURE REVIEW 

1.1 Spinal Anatomy 

The spinal column is a multifaceted structure whose morphology is uniquely defined in all three 

anatomical planes.  Such complexity allows the spine to provide adequate support while 

remaining flexible under a plethora of configurations.  Everything considered the spines main 

functions are to: provide support while bearing loads that arise from the upper body and active 

musculature, offer degrees of freedom in all anatomical planes and, perhaps most importantly, 

house and protect the spinal cord and provide a passage for nerve rootlets.  In order to effectively 

perform the aforementioned tasks, the spine has evolved while adopting different physiological 

entities which are easily differentiated by their distinct characteristics. 

The first and most superior division is described as the cervical spine and consists of seven 

vertebrae labelled C1 – C7.  Due to reduced loading, when compared to its inferior members, the 

cervical spine is smaller than the other vertebrae in the spinal column.  The shape of the cervical 

section is defined by an anterior convex curve in the sagittal plane which ends at the second 

thoracic vertebra, also known as lordosis. 

The second section within the spinal column is titled the thoracic spine and is generally 

composed of 12 vertebrae labelled T1 – T12.  The thoracic spine is coupled with the rib cage by 

costal facets which permit the articulation originating at the rib heads.  The curvature of the 

thoracic spine is defined by a natural forward concave curvature from the middle of T2 until the 

middle of T12 – a geometry also referred to as a kyphotic profile in the sagittal plane. 

The most inferior section is known as the lumbar spine and is generally comprised of five large 

vertebrae from L1 – L5.  The lumbar curve runs from the midline of T12 until the sacrovertebral 

angle.  Similar to the cervical spine, it assumes an anterior convexity that leads into the concave 

pelvic curve.  Following the lumbar spine, the spinal column inferiorly ends with five fused 

vertebrae that make up the sacral elements (S1 – S5) leading into four more fused vertebrae (Co1 

– Co4) of the coccygeal. 
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Figure 1.1: Spinal Column (obtained on January 25
th

 2011 from 

http://commons.wikimedia.org/wiki/File:Gray_111_-_Vertebral_column.png) 

1.1.1 Vertebrae 

Although the morphology of the vertebral bodies varies throughout the spine, they possess the 

same structured landmarks (excluding the atlas and axis due to their specific functions while the 

rib facets are implicitly reserved to the thoracic region).  The vertebral bodies moulded into a 

complex geometry in order to effectively integrate nerve pathways, muscle insertion sites and 

ligaments attachments while providing sufficient load bearing. 

http://commons.wikimedia.org/wiki/File:Gray_111_-_Vertebral_column.png
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Figure 1.2: Thoracic vertebral landmarks (obtained on January 25
th
 2011 from 

http://commons.wikimedia.org/wiki/File:Gray90.png) 

The structure of the vertebral body is enclosed by a thin cortical shell of about 0.64 mm in 

thickness [21] while the interior of the vertebral body is made up of cancellous bone (otherwise 

known as trabecular or spongy bone) defined by trabecular columns oriented towards the axial 

line of loading.  The superior and inferior portions are bordered by endplates (formerly the 

growth plate in immature vertebra) with a thickness of approximately 0.62mm [22].  The 

posterior elements vary in morphology and size throughout the spine as a result of their 

respective functions. 

1.1.2 Epiphyseal plate 

The epiphyseal endplate, also known as the growth plate, is found between the vertebral body 

and the intervertebral discs in the spine.  It is within this epiphysis that new bone is laid down in 

a successive fashion. 

http://commons.wikimedia.org/wiki/File:Gray90.png
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Figure 1.3: Vertebral growth plate anatomical divisions 

The resting or reserve zone contains disordered chondrocytes that do not proliferate rapidly.  

These cells exist singly or in pairs and are surrounded by an extracellular matrix.  It has been 

shown that this region has a high vacuole and lipid content, suggesting nutritional storage [23].  

The proliferating zone consists of two distinct sections.  The immature and mature portions 

essentially allow for new cartilage growth.  The flattened chondrocytes also show signs of 

multiplication and become arranged in a column configuration.  The hypertrophic zone begins at 

the sign of an abrupt increase in chondrocyte dimension [24].  The metabolic activities of these 

cells increase significantly when compared to the behaviour of the chondrocytes in the 

proliferating zone.  The upper section includes matrix calcification which serves as a scaffold for 

new bone deposition.  Also, this section has been shown to be involved with the synthesis of 

collagen type X and II [25].  The final section is detailed by the junction of the metaphysis and 

the growth plate.  In this section, death of the hypertrophic chondrocytes occurs via apoptosis 

and the lacunae are invaded by blood vessels.  This vascular region is where the osteoblast lay 

down osteiods or unmineralized bone.  In vertebra, vascularisation is reserved below the 

hypertrophic zone.  This leaves the hypertrophic zone avascular as no blood supply crosses into 

this zone of the growth plate [26].  Adjacent to the epiphyseal plates, are the intervertebral discs. 

1.1.3 Intervertebral discs 

The intervertebral discs provide and restrict motion that takes place between functional segments 

of the spine.  As a primary role, the discs act as “shock absorbers” between the vertebrae which, 
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in turn, protects the nerves that span from the spinal cord form being compressed between 

adjoining vertebrae.  The intervertebral discs are composed of two distinguishable structures.  

The inner structure, named the nucleus pulposus, is responsible for resisting compression via 

hydrostatic forces.  Such important near incompressibility is achieved by the constraints offered 

by the surrounding annulus fibrosus combined with the inferior and superior endplates.  The 

nucleus makes up roughly 45% of the discs cross sectional area upon analysis in the transverse 

plane [27].  In contrast to the disorderly composition of the nucleus, the outer annulus is a highly 

organized dense structure of collagen fibrils.  The intervertebral discs are considered avascular 

and they must derive their nutrients via diffusion through the enclosing endplates or surrounding 

solution.  These discs play an essential role in maintaining the integrity of the spinal column.  

Conversely,  under a distorted environment, they may become paralysing and problematic [28].  

Degeneration of the intervertebral disc can be induced in two ways: by overloading or through 

immobilization.  The development and the associated biological alterations that arise from these 

two criteria are well defined in a review performed by Stokes [29].  In short, degenerative 

alterations within the disc may be linked to cell mediated changes that occur in relation to 

mechanical stimulus.  More specifically the chondrocytes, who are responsible for producing the 

extracellular matrix along with proteoglycans and collagen, are less likely to proliferate under 

altered or non-optimal mechanical conditions (overloading or immobilization).  While the 

intervertebral discs are responsible for providing compression resistance to the spine, the 

ligaments and passive spinal musculature (fascia) are responsible for maintaining stability and 

resisting tensional forces. 

 

Figure 1.4: Intervetebral disc cross section (obtained on January 25
th

 2011 from 

http://commons.wikimedia.org/wiki/File:Gray313.png) 
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1.1.4 Ligaments 

The ligaments implicated in the spinal column are numerous and their heavy presence is justified 

by their important roles.  Their tensional restrictions begins when the range of motion of 

functional spinal segments surpass a certain threshold.  Ligaments are fibrous structures made of 

tough connective tissue composed mainly of collagen type I fibres.  They provide a hyperelastic 

(non-linear) behavior with a near exponential increase in tensional resistance as a vertebral 

segment attempts to move further away from its normal range of motion.  In a similar manner to 

the intervertebral discs, ligaments are essentially avascular therefore upon undergoing injury 

these tissues require extensive recovery time as they derive their nourishment via diffusion 

which is a very slow process.   

 

Figure 1.5: Spinal ligaments (obtained on January 25
th
 2011 from 

http://commons.wikimedia.org/wiki/File:Gray301.png and 

http://commons.wikimedia.org/wiki/File:Gray312.png) 

1.1.5 Spinal muscles 

The primary function of the spinal muscles is to provide adaptive support and stability to the 

vertebral column.  These functions are performed by striated muscles stimulated by nerve 

impulses originating from the brain.  This muscular system is very complex and involves high 

magnitudes of force transitions.  Another purpose of spinal muscles is to provide controlled 

spinal flexion, extension and rotation.  Various muscular activation strategies have been explored 

in order to understand the complexity that governs spinal stability.  The general consensus is that 

http://commons.wikimedia.org/wiki/File:Gray301.png
http://commons.wikimedia.org/wiki/File:Gray312.png
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muscle activation is controlled in a matter to optimize mechanical efficiency (i.e. expend the less 

amount of energy) [30].  This notion explains that stability will be obtained under the most 

energy or stress efficient combinations of muscular stimulation.  Other theories introduced and 

explored the use of a multi-criteria cost functions to explore spinal muscle activation [31].  

Despite these findings, one must keep in mind that attempts to map muscular contributions to 

spinal stability involve several simplifications and assumptions required to solve an otherwise 

redundant problem. 

1.2 Spine biomechanics and numerical modeling 

Spine biomechanics has always been an area of great interest for researchers.  Perhaps 

propagated by the economic burden of back pain, or driven by the importance of the enclosed 

spinal cord, this field has captivated popular interests throughout history while certain 

characteristics continue to elude today’s leading scientists.  The first analyses of human spine 

biomechanics were performed using in vivo and cinematography coupled with electromyography 

(EMG) measurement mechanisms that allowed for preliminary conclusion to be drawn with 

regards to spinal stability, muscular activation, and spinal forces.  Over the years, the 

introduction of improved experimental platforms permitted ex vivo experimentation to be 

performed under “physiological like” conditions. Today, advanced computing power allows for 

the diversity of the spine to be explored under in silico conditions – a format otherwise known as 

numerical modeling or finite element modeling.  The combination of the above mentioned 

methods of spinal investigation allowed for researchers to extract valuable information with 

regards to the following topics: spinal range of motion, mechanical properties, spinal loading, 

spinal growth, spinal growth modulation and spinal bone remodelling. 

1.2.1 Spinal range of motion 

The spine is a complex mechanical structure.  Although locally confined, each vertebral segment 

contains six degrees of freedom consisting of three rotational and three translational.  The spinal 

column is constantly under compressive force even when in a supine position.  These forces 

exceed many times over what may be contributed by body weight alone.  Each spinal segment 

has its own range of motion that is controlled and confined by its unique surroundings.  The 

cervical section contains the largest range of motion followed by the lumbar and finally the 

thoracic region.  The specifics of these varying degrees of freedom are estimated in figure 1.6.  
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Each vertebra possesses a neutral zone which allows movement requiring very little muscular 

input.  This neutral zone has been quantified to be roughly two degrees in lateral bending, 

flexion/extension, and axial rotation [32].  Once this neutral range is surpassed, the motion 

encounters an increased resistance defined as the elastic zone regulated by the surrounding 

tissues. 

 

Figure 1.6: Spinal range of motion (obtained and adapted on June 25
th
 2011 from 

http://wings.buffalo.edu/academic/department/eng/mae/courses/417-

517/Orthopaedic%20Biomechanics/Lecture%2012.pdf) 
 

1.2.2 Mechanical properties 

Spine biomechanics is a complex phenomenon governed by unique mechanical characteristics.  

Its physiological tissues have the distinct characteristic of being anisotropic (mechanical property 

varies with the direction of force), hyper-elastic (mechanical property varies non-linearly 

according to its magnitude of stretch), and visco-elastic (mechanical property will vary 

depending on the speed and history at which it is deformed).  Nevertheless, following several 

justified assumptions one may extract relevant mechanical properties of spinal tissues from the 

available spectrum of values in order to further explore spinal mechanics. 

http://wings.buffalo.edu/academic/department/eng/mae/courses/417-517/Orthopaedic%20Biomechanics/Lecture%2012.pdf
http://wings.buffalo.edu/academic/department/eng/mae/courses/417-517/Orthopaedic%20Biomechanics/Lecture%2012.pdf
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Intervertebral discs clearly behave in a non-linear and viscoelastic manner (annulus [33, 34], 

nucleus [35]).  Nonetheless, as a simplification, this behaviour may be summarized using 

Young’s modulus (mechanical property) with a simplified linear value.  Moreover, stiffness may 

be used to characterize its resistance in a given degree of freedom as summarized in table 1.1.  

These values are generally accepted anisotropic stiffness of the intervertebral discs commonly 

adopted in rigid body models.  It is however important to note that the details of the stress 

distribution within the intervertebral discs are influenced by age, degeneration [36-38], and 

adjacent vertebral health [39]. 

Table 1.1: Material properties of lumbar intervertebral discs 

Direction Stiffness  Reference 

Compression 0.7-2.5 MN/m [40, 41] 

Tension 1.0 MN/m [42]  

Shear 0.26 MN/m [42] 

Torsion 2.0 Nm/deg [41] 

 

Vertebral trabecular bone is a porous structure oriented axially [43] with a mechanical modulus 

that measures between 375-2000 MPa [44].  The outer shell of the vertebrae are made up of solid 

cortical bone which is believed to have a stiffness of around 8-14 GPa in the longitudinal 

direction and 2-8 GPa in the transverse direction [45].  Combination of these two bone types 

provides a mechanically efficient configuration to handle the subjected loads.  In addition to 

mechanical properties, the vertebral size also plays an important role in its structural integrity as 

previously identified during ex vivo experimentation [46]. 

Ligaments of the spine have an important contribution to spinal stability as foreshadowed by its 

dominating presence.  The mechanical implications of each ligament vary due to position, 



13 

morphology and biological makeup. These tissues are made of tough connective tissues with 

varying percentages of collagen and elastin which regulate their non-linear tensile resistance.  

Each ligament demonstrates high resistance to tension and large failure strength.  In addition, 

during ex vivo analyses, it was recorded that ligament strength increases as one moves inferiorly 

within the spinal column [47, 48] - a phenomenon likely due to the increased cumulative forces 

in the lower spine sections. 

As a complementing tool to ex vivo experimentations, attempts to improve understanding of 

spinal biomechanics has been performed via FEMs by various researchers [7, 10, 12, 49-60].  In 

brief, FEMs utilize mechanical properties, geometry, and boundary conditions (forces and 

constraints) in order to calculate the strain (elongation per unit length) and stress (force per unit 

area) of a system.  The ability to extract explicit information about internal stress distribution 

within the spinal column is not possible under ex vivo and in vivo conditions. Thus, FEMs 

provide an attractive method to further the knowledge of spine biomechanics.  However, these 

numerical interpretations include several assumptions regarding the mechanical properties of the 

physiological tissues under consideration.  In order to insure the convergence of numerical 

analyses (difficulties in the computational analysis may arise and solution may diverge from 

reality) it is a great advantage, from a mathematical view point, to use a linear modulus to 

represent the behaviours of the tissue under load.  As described above, such assumptions 

commonly take place to define properties of the intervertebral discs, the bone of the vertebral 

bodies and the spinal ligaments.  Table 1.2 summarises the values most often used in FEMs of 

the spine (missing values represent neglected contribution or the use of non-linear properties) as 

reviewed by Jones and Wilcox [61]. 
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Table 1.2: Summary of published material properties of spine used in numerical modeling ((ALL) 

anterior longitudinal ligament, (PLL) posterior longitudinal ligament, (LF) ligamentum flavum, (CL) 

capsulary ligament, (ISL) interspinous ligament, (SSL) supraspinous ligament, (TL) interspinous 

ligament) 

 
Linear Material Properties (Elastic Modulus in MPa) 

Vertebra 
(compression) 

Intervertebral Disc 
(compression) 

Ligaments  
(tension) 

Author Cortical Trabecular Annulus Fibers Nucleus ALL PLL LF CL ISL SSL TL 

Bellini et 
al. [55] 

12 000 340 8  - 1 -  -  -  -  -  -  - 

De Visser 
et al. [62] 

5 000 74 4 450 1 12 13 2.4 7.7 3.4 3.4 3.4 

Fantigossi 
et al. [63] 

12 000 3 500 4.2 500 1 -  -   - -   -  -  - 

Hato et al. 
[64] 

10 000 750  - 7.5 -  20 20 10 10 10 10   

Ivano et al. 
[65] 

12 000 100 4.2 175 1  -  -  -  -  -  - -  

Kim [66] 
120 
000 

100 4    - 7.8 10 17 7.5 10 8 10 

Lafange et 
al. [67] 

12 000 100 2 500 4 10 10 10 10 10 10 10 

Rohlmann 
et al. [68] 

10 000 200  - -   -  -  -  -  -  -  -  - 

Schmitt et 
al. [69] 

22 000 200  -  -  -  - -  -  -  -   - -  

Sylvestre 
et al. [11] 

8 000 - 
14 000 

375 -     
2000 

8 550 2 20 70 50 20 28 28 50 

Williams et 
al. [30] 

12 000 100 -   -  - -   - -  -   - -  -  

 

1.2.3 Spinal loading 

Spinal loading has yet to be fully understood.  The general consensus is that considerably more 

compressive loads are supported in the anterior spine (vertebral body) when compared to the 

posterior elements.   More specifically, the anterior portion of the spine supports a convincing 

majority (~90%) of compressive loads supported within the spinal column [70, 71]. In addition, 

load allocation within the anterior body was explored and it was demonstrated that roughly 50% 

(34%-64%) of compressive stresses were concentrated in the cortical shell [72].  

Several methods to define spinal loading have been proposed and explored to date.  Villemure 

[7, 12, 73] modeled loading of the spinal elements by using load allocation rations derived from 

works by Schultz [74].  This was achieved by placing 14% of body weight on the superior 

surface of T1 while each inferior vertebra was loaded with an additional 2.6% of body weight.  
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This loading was applied in a perpendicular manner over the center of the superior portion of 

each vertebral body.  Other notable studies have reported similar load allocation rations within 

the spinal column demonstrated in table 1.3. 

Table 1.3: Estimation of load allocation in spinal column 

Vertebra Body weight %[75] Body weight %[74] Body weight %[76] Average [75,74] 

T1 - 14  14 
T2 - 16.6  16.6 

T3 - 19.2  19.2 

T4 - 21.8 15.2 21.8 

T5 21 24.4  22.7 

T6 25 27  26 

T7 29 29.6  29.3 

T8 33 32.2  32.6 

T9 37 34.8  35.9 

T10 40 37.4  38.7 

T11 44 40  42 

T12 47 42.6  44.8 

L1 50 45.2  47.6 

L2 53 47.8  50.4 

L3 56 50.4 61.9 53.2 

L4 58 53  55.5 

L5 60 55.6  57.8 

Another numerical method attempted to integrate respective moments between functional 

elements of the spine to more accurately emulate physiological loading provided by gravity.  

Clin et al. used the same load allocation ratios as defined above (Schultz) but introduced a lateral 

offset of the loading in the sagittal plane.  This was performed to more accurately define the 

geometric center of mass of the patient [77].  This particular model included the ribcage and soft 

tissues (skin) thus allowing for stability and numerical convergence to be obtained more 

effectively. 

Force vectors provided by spinal muscles were not included in the above mentioned models.  In 

1999, Pathwardhan and colleagues pointed out that perpendicular and thus gravitational loading 

of an ex vivo spines continuously provoked buckling if placed under loads of 80-100 Newtons, 

while under physiologic conditions our spine is known to support up to 1000 N.   They then 

demonstrated that if loading of the spinal elements was maintained tangential to the curvature of 

the spine it supported up to 1200 Newtons [78].  Hence, it is suggested that the presence of 
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gravity and muscle  forces ensures that the resulting force vectors within the spine would be 

maintained tangential its natural curvature [79].  Despite such novel findings, only the lumbar 

spine was utilized for these analyses and therefore this theory has yet to be demonstrated on a 

full spinal column. Another restrictive inference of this follower load approach is that this form 

of loading would not trigger alterations that occur in the sagittal plane when moving from a 

standing to a prone position.  This has been quantified to invoke an average kyphosis reduction 

of 11°or 19% or a lordosis decrease of 8°or 12% [80].  A final inconsistency of the follower load 

or pure compression theory is that it does not agree with other research findings is that 

asymmetric spinal stress distribution via pressure transducers [81, 82] and computational 

analysis have been previously quantified suggesting non-congruent local segmental compression 

[76, 83].  Nevertheless, this follower load concept was adopted by Shirazi-Ald and modified to 

further improve the stability of the spine [84].  That is, resulting force vectors were maintained 

tangential to the curve while the location of loading was changed from the center of the vertebral 

bodies, as suggested by Pathwardhan et al., to the sides of the vertebral bodies on a FEM.  

However, as the individual contributions and location of active forces are unknown, it is 

currently a safer assumption to impose vertebral loading on successive endplates when using 

numerical modeling to represent a loaded spine as performed by several authors [7, 12, 31, 73, 

77-79, 85]. 

There are several methods used to estimate the in vivo loads experienced within the spine.  The 

first uses a free body diagram with the necessary assumptions to make the solution possible.  

These assumptions, as previously stated, include a level of ignorance that jeopardizes the 

accuracy of this method.  Nevertheless, results that include quasi-static forces show that a 

compressive force of up to 10 times body weight is present in the spine.  Another method uses 

EMG to measure muscle activity to determine their contribution to this dynamic environment.  

Results suggest that magnitudes of up to 50 times one’s body weight may be present within the 

spine.  The last and most accurate method requires an invasive procedure.  This consists of 

inserting micro pressure transducers into the intervertebral discs in order to get a direct reading 

from its native environment [86]. 

The results of several experimental methods to quantify the forces present in the intervertebral 

disc are summarized in the table 1.4.  This table includes in silico (computational), in situ, and in 
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vivo results.  Although findings vary, they complement each other and give a general consensus 

of what magnitude of compressive stresses (FEM) or hydrostatic pressure (in vivo and ex vivo) 

are present within the intervertebral discs. 

 

Table 1.4: Intervertebral disc stress distribution 

Author Method Disc Section 
Mean Stress 

(MPa) 

Adams 1996 

[13] 
Ex vivo L4-5 

Nucleus 1.6 

Anterior 2 

Posterior 2.6 

Wilke 1999 

[14] 
In vivo standing L4-5 Nucleus 0.5 

Schultz 1982 

[15] 
In vivo standing L4-5 Nucleus 0.27 

Nachemson 

1964 [16] 
In vivo standing L4-5 Nucleus 0.87 

Andersson 

1974 [17] 
Computational L4-5 Nucleus 0.3-0.5 

Meir 2007 

[18] 

In vivo lateral 

decubitus 
Apex 

Concave 0.8-0.4 

Convex 0.15 

Sato 1999 

[19] 
In vivo prone L4-5 Nucleus 0.15 

Shrzypiec 

2007 [20] 
Ex vivo C7-T1 

Nucleus 1 

Anterior 1.35 

Posterior 1.1 

Steffen 1998 

[21] 
Ex vivo L3-4 Nucleus 0.8 

Schroeder 

2006 [22] 
FEM L4-5 

Nucleus 0.6-0.85 

Anterior 0.6-1 

Posterior 0.8-1.2 

1.2.4 Spinal growth   

Ossification Centers 

Several ossification centers are present in vertebral bodies (Fig. 1.7).  Each center contributes to 

a unique aspect of spinal growth.  Further, each growth center fuses at different stages during 

infantile or adolescent growth while growing at a different rate.  Vertebral growth is composed 

of a complex biological process known as endochondral or intramembrous ossification.  The 

neuro-central canal growth plate consists of a bi-lateral growth plate as it contributes to both 

pedicle and vertebral body growth.  Growth in this region has been shown to take end and thus 
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fuse prior at an average age of 9 years [87].  Expansion and growth of the vertebral processes is 

linked to growth plates located at their anatomical extremities.  Growths in these regions are 

relatively small and have been shown to take end around the age of 12 years.  Appositional 

growth of the vertebral bodies is the only form of intramembrous ossifications in the vertebrae as 

it involves local messemchyme cells that secrete osteoblasts into intracellular spaces on the 

periosteum thus differencing from regular endochondral ossification which is latter defined by a 

more complex phenomenon.  Appositional growth may also be considered as a form of 

remodelling which continues to take place throughout our life.  The final ossification center 

present in the spinal column governs longitudinal growth of the vertebral bodies.  Each vertebra 

has an epiphyseal plate on its superior and inferior portions responsible for vertebral body height. 

 

Figure 1.7: Ossification centers on vertebral bodies (red: neuro-central canal, bleu: vertebral processes, 

yellow: appositional growth, orange: epiphyseal plate) 

Longitudinal Growth 

There are three distinct longitudinal growth periods in the human spine.  These include infantile, 

juvenile, and adolescent growth phases.  At the end of infantile growth, around five years of age, 

sitting height is about 66% of the final value with about 30 cm of growth remaining.  Between 5 

and 10 years of age, there is a small increase of about 2 cm occurs in sitting height.  During 

puberty, around 11 years of age for girls and 13 for boys, the growth rates of the sexes diverge.  

At this moment it is believed that the remaining growth of sitting height is 12 cm for girls and 13 

cm for boys.  A growth peak occurs between 11 and 13 for girls and 13 and 15 for boys.  During 

this period the limb growth essentially comes to an end while the sitting height is left to increase 

about 4.5 cm [88].  Dimieglio and Bonnel performed a more accurate follow up of spinal growth 

[61].  Vertebral growth rates in the thoracic and lumbar regions were measured at six month 
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intervals.  It is estimated by Dimieglio and Ferran that the thoracic and lumbar region growth 0.8 

and 1.1mm per year respectively during adolescence [89].  Based on these measures, it may be 

assumed that a residual vertebral growth around the magnitude of 2mm per vertebra remains 

during adolescent growth. 

Little is known about the growth of the discs.  This process is believed to occur through matrix 

synthesis and cell proliferation.  Taylor measured the growth of both the vertebrae and the 

intervertebral disc in different sections of the spine [90].  Results agreed with those of Stokes 

(Fig. 1.8), which demonstrate disc growth to conclude around 12 years of age [91]. 

 

Figure 1.8: Growth of vertebral body and intervertebral disc (modified from [91]) 

Once bone growth has come to an end, the epiphyseal plate ossifies and fuses leaving an 

epiphyseal line.  This occurs between 12 to 25 years of age (on average occurs at 14 years), 

depending on sex and other hormonal and environmental factors.  The ring apophysis, which 

surrounds the outer portion of the growth plate, first appears about 6 years of age, begins to 

ossify around the age of 13, and after 16 and 18 years it fuses to the vertebral body [92]. 

In order to estimate to onset of peak growth velocities, the iliac crest may be observed via 

radiograph in order to determine the level of ossification and draw a conclusion on remaining 

growth.  A Risser sign of 0-1 would provide knowledge that the growth spurt has yet to occur 
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while, once the Risser sign is between 1 and 5, it is safe to conclude that there is little remaining 

spinal growth [93]. 

1.2.5 Spinal growth modulation 

The elaborate process of bone growth is known to be influenced by several factors which 

include: level of circulating hormones, nutritional intake, disease, and mechanical environment.  

The process of growth is a very difficult phenomenon to study since, at the cellular level, it 

involves a rapid transition between proliferation, hypertrophy and apoptosis.  Nevertheless, 

several in-vitro studies were able to identify various growth factors that play an important role in 

endochondral bone ossification.  The biological implications of bone growth are effectively 

summarized by two well written reviews from which the following interpretations arise [26, 94].  

These include insulin-like growth factors, transforming growth factors, fibroblast growth factors, 

platelet-derived growth factors, and bone morphogenic proteins.  Cytokine concentration has 

also been identified as influencing growth rates, these include interleukins (1, 6, and 8), tumour 

necrosis factors, interferons, colony stimulating factors, parathyroid hormone related peptide, 

and calcitonin gene related peptide.  All of the above constituents have been linked to moderate 

bone proliferation and differentiation at different stages of growth.  Although, to date no in vivo 

studies have effectively isolated and explored these factors, there is a clear biological influence 

regulating bone growth.  What is known with respect to these listed growth rate contributors is 

that the growth plate’s mechanical environment may invoke and, in part, govern their behaviour 

via the appropriate method of mechanotransduction.  Several theories attempt to characterize and 

define the specifics of mechanotransduction (mechanosensitive ion channels as molecular 

transducers, enhanced membrane diffusion, microtubule ruptures, conformational change of 

intracellular proteins, and altered transcription of the stimulated nuclear envelope); however, 

limitations of the above outlined theories include the possibility that cellular response is altered 

by in-vitro growth factors required to maintain cell life and cell isolation procedures. 

A retracted interpretation of growth modulation involves its mechanical input.  The Hueter-

Volkmann principal describes how growth plates under tension or compression respectively 

result in accelerated or hindered growth rates.  Numerous in vivo experiments, which verify this 

theory, have been conducted to show the effect of loading and its ability to regulate bone growth 

[9, 95-105].  Additional studies suggest that dynamic loading further inhibits the growth rate in 
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comparison to static loading [106, 107].  Others have demonstrated that stress, in the form of 

shear (force parallel to surface), affects the direction of growth [103] - a result speculated to be 

the result of forceful realignment of cellular arrangement within the growth plate.  Additionally, 

the longitudinal growth rate in bones has been successfully correlated to the local stresses 

experienced within the growth plate.  These experiments involve both compression and 

extraction forces placed across the growth plates of various species while documenting growth 

[3, 95, 108].  The results from such experiments can be summarized in figure 1.9. 

 

Figure 1.9: Growth response to induced static loads (modified from [9, 109]) 

These experimental findings were then translated into a numerical correlation that defines the 

growth rate as a function of altered stress. 
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Equation 1.1: Correlation between longitudinal bone growth and local stress [3]
 

Where G is the actual growth rate (usually listed in mm per year) on the bone under 

consideration, Gm is the mean baseline growth, σ represents the stress on the growth plate, and 

σm is the mean stress on the growth plate.  Also, the results from this stress input experiments 

seem to be consistent regardless of species, thus making the results extendable, with limits, to 

predict the behaviour of human bone growth under compression and distraction.  A factor that 

varies slightly is the scaled parameter β [0.4 – 1.7 MPa
-1

] depending on the species and growth 

plate location.  This growth/stress correlation does not include a “lazy zone” in a similar manner 

to which bone remodelling is only responsive to abnormally high or low stresses [110].  As 
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speculated by Lerner et al., it would appear that natural selection would favour such a zone in 

order to avoid oversensitive bone growth that may result in potentially harmful or restricting 

morphologies [98].  Nevertheless, the aforementioned correlation is widely accepted and its 

utility has been extended to pose as a leading hypothesis explaining the pathomechanism of 

various musculoskeletal deformities that progress in conjunction with patient growth.  

Growth Plate Modulation numerical modeling 

The first attempt of incorporating the effect of vertebral growth modulation into a computational 

algorithm was to predict scoliotic curvature progression performed by Stokes.  However, the 

results did not represent the behaviour of a true scoliotic curve.  Curvatures of about 3 where 

obtained, but no axial rotations of the vertebrae, a phenomenon often associated with spinal 

deformities, presented themselves in the results [111].  Later, Villemure et al. successfully 

demonstrated similar results that included axial rotation by the use of a FEM using beam 

elements.  This was achieved by anteriorly offsetting the patient’s gravity line and modeling the 

growth plate under the growth/stress correlation previously derived by Stokes.  Also, results 

from these simulations returned the presence of vertebral wedging, from irregular growth 

patterns, in addition to the axial rotation progressing towards the convexity of the curve, two 

concepts observed in the progression of scoliosis [7].  Both the models explored and 

incorporated longitudinal growth of the vertebral body utilizing equation 1.1 without the 

presence of a muscle bias.  Huynh made a model that included the growth modulation in the 

longitudinal direction as well as muscles forces within the control process.  Upon simulating 

asymmetric muscle degeneration at different levels, the weaker muscles found their way onto the 

convex side of the developing scoliotic curvature.  These results emphasized the role of both the 

obliquus internus and the rectus abdominis in maintaining spinal stability [10]. 

1.2.6 Spinal bone remodelling 

Bone is a very dynamic tissue, its ability to restructure as the result of mechanical stimuli has 

been recognized for approximately a century.  However, most of the findings that are widely 

accepted have been reported in the last 30 years.  These accepted discoveries have been verified 

to exhaustion and have thus become second nature in the field of bone biomechanics.  Moreover, 

they acknowledge and highlight the ability of bone to alter its morphology with the objective to 
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handle efficiently local inputs (stresses/strains).  In contrast to bone growth modulation which 

responds to both static and dynamic loading, dynamic inputs are responsible solely for triggering 

bone remodelling.  Further, such dynamic stimuli are only required for short durations in order to 

generate an adaptive response [112].  With this in mind, several authors attempted to derive and 

adequately map the details of this complex process. 

Within the spinal column, bone remodelling may be observed to take place at several locations.  

Vertebral bodies adapt to altered loading conditions in order to adequately handle their 

mechanical environment.  This is observed as the posterior region of the lumbar spine has denser 

cancellous bone than the anterior region [113] leading to the educated hypothesis that this region 

undergoes increased loading.  A similar phenomenon may be observed in scoliotic spines.  

Increase bone mineral density has been quantified in the concave portion of the coronal curve 

[114] corroborating with the understanding that this region is also attributed with increased 

loading.  Furthermore, with regards to anterior and posterior remodelling, it has been 

demonstrated that the posterior endplate in the lumbar spine exhibit increased mechanical 

properties when compared to the anterior portions [115].  It is therefore plausible that the 

irregular mechanics of the endplates are, in a similar fashion to altered cancellous density, due to 

remodelling as a result of increase loading.  Moreover, with regards to scoliotic patients, it has 

been shown that AIS has a persistently lower bone mineral density than age- and sex-matched 

controls suggesting irregular remodelling related abnormal bone metabolism [116]. 

1.3 Scoliosis 

Scoliosis is a spinal musculoskeletal deformity with a prevalence between 2-3% if defined by an 

inclusion criterion of a 20 degrees Cobb angle measured in the coronal plane [117].  Due to the 

vast complexity of this phenotype, several categories have been defined to better describe its 

aetiology and associated side effects.  Such classifications include: congenital, functional, 

neurological and idiopathic scoliosis.  Idiopathic scoliosis, defines approximately 80% of all 

scoliotic cases.  As the name implies, the origin of idiopathic scoliosis continues to elude 

researchers. 
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Clinical measures of scoliosis 

The primary measure is the Cobb angle (Fig. 1.10) following guidelines developed by Dr. Cobb 

in 1948  [118].  Secondary measures include axial rotation of the spine by measuring the 

deviation between transverse plane and the associate angle gained from their back referenced 

from a posterior view as the patient leans forward.  A more accurate means of this axial 

measurement may be achieved using a radiograph and observing the offset of the pedicles from 

the vertebral body center.  Clinical measures may use 2D radiographs to construct 3D models of 

the spine, rib cage, and pelvis in order to better accurately characterize the deformity [5].  

Perhaps the most sophisticated 3 dimensional interpretation of scoliotic deformities are defined 

by the plane of maximum curvature.  Such a measure represents the overall deformity in an easy 

to use radar chart and effectively classifies patients according to their 3 dimensional curves[119]. 

 

Figure 1.10: Measurement of Cobb angle 

Further complicating this 3D deformity is development of a rib hump (Fig. 1.11).  As the 

curvature progresses axial rotation often follows and, in turn, alters ribs alignment.  Rib hump 

often leads to the breast asymmetry discontent in female patients [115].  It has been speculated 

that rib hump correction would limit AIS progression [120].  Moreover, rib length modulations 

have been shown to be capable both inducing  and correcting scoliosis in animals [121].  In an 

attempt to better understand the biomechanical impact of this possible correctional avenue, 

FEMs were utilized.  Results supported and confirmed the potential applicability of this method 



25 

as a means to correct scoliosis [50, 51]; however, it has yet to be adopted as a conventional 

intervention suggesting such reluctance must be justified. 

 

Figure 1.11: Scoliotic rib deformation (obtained and modified on January 25th 2011 from 

http://www.rad.washington.edu/staticpix/mskbook/RibHump.gif) 

1.3.1 Etiology of idiopathic scoliosis 

Over the years several scientists and clinicians have proposed various hypotheses related to 

idiopathic scoliosis.  Despite such efforts, to date, most etiological theories are described as 

secondary rather than causative factors. 

 

Figure 1.12: Leading etiological hypotheses of scoliosis 
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Genetics have long been explored as a possible trigger of AIS.  This concept was propagated by 

the observation that 11% of direct siblings of a scoliotic parent had AIS while 2.4% of secondary 

siblings were affected.  Moreover, monozygous twins had a 73% scoliotic correspondence rate 

while dizygous twins had a rate of 36% [122].  Evidently, such observations led to genetic 

linkage analyses and complex segregation analyses in order to obtain the loci responsible for 

AIS.  Nevertheless, these studies are often restricted by complications in family history 

(migration and mating patterns), differing theoretical analyses, and non-negligible environmental 

influences.  Therefore, the general consensus suggests various genetic inheritance patterns while 

the responsible gene(s) has yet to be identified. 

Pinealectomized chickens (removal of pineal gland and elimination of melatonin production) 

develop scoliotic deformities shortly after they hatch [123-125].  This is believed to be the result 

of a melatonin deficiency.  Moreover, when attempted in rats, this method only impacted bipedal 

and not quadruped rats.  In contrast, Cheung reported conflicting evidence as non-human 

primates did not developed any sign of scoliosis [126].  Furthermore, most studies report no 

alterations in melatonin level in AIS patients while melatonin injections in pinealectomized 

chickens did not always counter the onset of scoliosis.  Recently, Moreau showed that melatonin 

signalling impairment was a factor and impaired in osteoblasts cultured from patients with AIS 

[127].  Although some contradictions and further development is required, these findings show 

positive progress in understanding the development of AIS [128]. 

 

Figure 1.13: Influence of melatonin on AIS 

Others explored the shape, size, charge, and function of platelets (thrombocyte influence) in AIS 

patients compared to control groups.  A significant variation was uncovered. Moreover, elevated 

calmodulin (a calcium receptor regulating contractile behavior) was found in progressive 



27 

scoliotic curves when compared to stable curves.  The protein contractile systems of platelet (i.e. 

actin-myosin regulating platelet shape change) and skeletal muscle are related, thus the discovery 

of irregularities within the platelets would suggest a secondary effect from the contractile system. 

Scoliosis is also related to many disorders of connective tissues (ex. Marfan syndrome) thus 

stimulating etiological hypotheses related to this tissue.  This stimulated further research into this 

avenue with findings summarized below (Fig. 1.14).  Despite these findings, altered tissues are 

also believed to be secondary. 

 

Figure 1.14: Altered connective tissue in AIS 

Irregular paravertebral muscle development has also been perceived as a possible etiological 

factor of AIS.  Many findings demonstrated differences between the concave and convex 

portions of the spine.  However, this was quickly identified as a secondary factor.  This offset of 

muscle activity may however be a player in the progression as demonstrated via FEM 

simulations [10, 85].   

 

Figure 1.15: Altered paraspinal muscles in AIS patients 

The central nervous system has also been believed to play a role in the development of scoliosis.  

Damage to the central nervous system in animals provoked scoliotic deformities.  Also, when 

this concept was tested on primates through selective resection of spinal nerves it lead to the 
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formation of curvature with the severed nerves taking to the convex side [129].  As a result, 

balance disruption was believed to be linked to offset of the spinal alignment [130].  Despite 

these findings, progressive forecasting or pre-development diagnosis is not yet possible via 

neurological analysis; however, results lack convincing reproductive significance to support this 

potential prognostic avenue. 

Finally, although speculated as an etiological factor, biomechanical factors are most often 

attributed to the pathomechanism or progression of scoliosis.  Nevertheless, it may still be 

plausible that biomechanical factors have a partial role in its etiology through the same pathways 

used to explain its implication in the pathomechanism of AIS. 

1.3.2 Pathomechanism 

Scoliotic progression, is generally confined during adolescence [131].  More specifically, the 

greatest risk resides during the peak growth velocity occurring between the ages of 11 to 13 in 

girls and 13 to 15 in boys [132].  Curve patterns, curve degree at onset of puberty, curve 

progression velocity, and gender are amongst to most reliable progressive risk factor to date 

[133].  In this retrospective study of 205 patients with idiopathic scoliosis, the more severe the 

deformity at the onset of puberty the greater the progressive risk.  Furthermore, double thoracic 

curves proved to most frequently necessitate surgical intervention as a result of scoliotic 

progression.  Finally, this study confirmed the well accepted notion that females are for more 

susceptible to scoliotic progression when compared to males.  Regardless of these insightful 

prognostic tools, there remains no consistent method to identify patients at risk of progression.  

Nonetheless, biomechanical interpretations offer clarifications to the obscure field of AIS 

progression. 

Under the Hueter-Volkman principle, asymmetric loading over the vertebral growth plates, 

coupled with the phenomenon of growth modulation, leads to the adoption of vertebral wedging.  

Normal pressures acting on a human vertebral endplate is between 0.8 to 0.9 MPa [134], whereas 

in scoliosis the convex pressure is measured at 0.7 MPa and the concave side pressure measured 

at 1.3 MPa under a compressive force of 1010N laterally offset by 2mm [135].  This pressure 

differential applied during a growth phase will induce a vertebral wedging in the coronal plane 

with the greatest influence observable at the apex as shown in figure 1.16.  However, in the 

sagittal plane no presence of significant pathological wedging is observed [136] suggesting that 
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intervertebral disc wedging to be a more dominant player in kyphotic and lordortic curves or 

vertebral forces to be perpendicular to growth plate in sagittal plane.  In turn, this wedging adds 

to the overall deformity of the coronal curve and is believed to partially describe the progression 

of idiopathic scoliosis as described by the “vicious cycle” [3]. 

 

Figure 1.16: Scoliosis progressive cycle from a biomechanical perspective (in part modified from [136]) 

In light of the knowledge spanning from vertebral growth modulation, it was previously 

hypothesised that neurocentral canal growth was a contributor to AIS progression.  Experiments 

on an immature pigs showed that halting growth in one of these posterior regions led to 

convincing scoliotic deformities [137].  Furthermore, this theory was additionally explored by 

implanting pedicle screws in order to restrict its growth locally in an animal model resulting in 

scoliotic curves [138].  However, further investigation of the role of pedicle growth in the 

progression of curvature was performed with finite element analysis and concluded that 

asymmetrical pedicle geometry was not sufficient to produce scoliosis, vertebral wedging, or 

axial rotation [52].  Moreover, neurocentral canal growth ends at 10 years of age [87, 139] and, 

thus, prior to AIS progression.  Consequently, it is more realistic to characterize irregular pedicle 

morphology secondary and resulting from bone remodelling.  The current reflection remains that 

epiphyseal growth modulation is the leading contestant in AIS progression. 
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The manner in which this asymmetrical loading affects the intervertebral disc may also be of 

interest.  As previously noted, intervertebral disc growth ends prior to AIS progression.  

However, discs are compressible and thus assume wedge configurations when placed under 

asymmetrical loading.  The importance of the disc wedging in the progression of scoliotic curves 

was significant in a cross sectional study of 150 patients as it progressed consistently with the 

deformity [140].  However, it is difficult to draw a direct line of causation from disc wedging to 

scoliotic progression. 

With the aforementioned biomechanical alterations in mind, it is no surprise that upon 

developing treatments for AIS, these side effects have been exploited in the attempt to restore 

spinal alignment.  Otherwise said, if one could rectify the phenotypic shortcoming of AIS they 

would, theoretically, solve the problem. 

1.3.3 Conventional treatments 

The treatment of scoliosis sequentially includes: observation, bracing and surgery as defined in 

figure 1.17.  Suggested treatments depend on the maturity of the patient’s bone structure in 

addition to the degree of curvature. 

 

Figure 1.17: Conventional treatment protocol as a function of Cobb's angle 

In the quest to develop the best brace, several models have been developed over the past decades.  

Introduction of the first Milwaukee brace in 1958 seemed to provide a favourable treatment and 

was quickly adopted by clinicians [141]. Variations of this design later came to market under 

Boston [142] and Wilmington braces [143].  In the early 1990’s, this treatment method was well 
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established within the medical community making it difficult to follow sufficient control subjects 

in order to truly test the legitimacy of bracing.  Many have proposed that minimal structural 

corrections gained by bracing are perhaps outweighed by the heavy psychological impact of its 

application [144].  Further studies suggest that the effectiveness of this treatment is limited to 

flexible curves (conventionally identified through bending tests) [145].  Others report that the 

frequency of surgical intervention in braced patients is the same as without bracing [4, 146].  

However, good results from bracing appear to be restricted to, and are frequently observed in, 

children who have advanced in skeletal maturity and possess low Cobb angles [146].  But, upon 

further reflection, these are the cases which should not significantly progress regardless of such 

an intervention, once again bringing to question the true effectiveness of bracing.  Despite these 

limitations, important work in biomechanical interpretation of bracing and its optimization 

provides promise to improve this treatment avenue in the future [77, 147-150]. 

 

Figure 1.18: Cheneau brace management of scoliosis (obtained on January 25
th
 2011 from 

http://commons.wikimedia.org/wiki/File:Scoliosis_patient_in_cheneau_brace_correcting_from_56_to_27

_deg.png) 

Up to the present time, surgical intervention is the last resort of scoliotic treatment.  This method 

leads to an effective curvature correction that may be selectively varied throughout the procedure 

[151].  Rods are used in conjunction with fusion to realign the spine.  Fixed to the vertebrae with 

screws, they provide the forces required to reduce dangerous AIS curves.  Spinal fusion is the 

surgical technique used to join two or more vertebral bodies by introducing supplementary bone 

tissue as to become one solidified structure.  It is recommended that this form of intervention be 

reserved after adolescent growth is terminated.  However, if the identified risk factors suggest 

dangerous progression, intervention may precede skeletal maturity.  In such event, anterior 

growth arrest must be performed in order to avoid the crack shaft phenomenon or a severe 

imbalance caused by potential growth under fixation [152]. 

http://commons.wikimedia.org/wiki/File:Scoliosis_patient_in_cheneau_brace_correcting_from_56_to_27_deg.png
http://commons.wikimedia.org/wiki/File:Scoliosis_patient_in_cheneau_brace_correcting_from_56_to_27_deg.png
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1.4 Scoliosis treatment via fusionless growth modulation 

In the search for effective and attractive means to correct idiopathic scoliosis, several novel 

approaches have been attempted.  Fusionless growth sparring instrumentation in particular has 

received growing attention resulting in a noticeable industrial push, an influx in registered 

patents, and a rise in scientific publications.  This appealing approach consists of using residual 

spinal growth to correct vertebral wedging to realign the spine.  These devices provide an 

alternative to conventional treatments for AIS. 

 

Figure 1.19:  Corrective mechanism of growth sparring devices in AIS 

Despite optimism and theoretical benefits offered by the method, physiological limitations 

somewhat hinder the initial enthusiasm surrounding this approach.  The axial direction on bone 

deposition, via chondrocyte calcification, restricts the possibilities for pressure or tension 

application through mechanical devices.  Furthermore, in order to maintain a minimal level of 

surgical invasiveness, corrective instrumentation should target the anterior portion of the 

vertebral bodies, while avoiding the anterior vasculature and longitudinal ligament along with 

the posterior muscles and nerves.  Nevertheless, over the years several notable approaches have 

been attempted as summarize below in table 1.5. 
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1.4.1 Previous fusionless growth sparring attempts 

Table 1.5: Historical summary of published growth modulation for the treatment of AIS 

Author Year Implant Subject Technique Objective Measures Results 

Wittek H. 

[153] 
1924 - Humans 

Removed 

epiphysis 

plate with a 

chisel 

Correct 

deformity 
Qualitative 

Observed 

realignment of the 

spine 

Nachlas 

and 

Borden 

[154] 

1951 Staple Dogs 

Staple 

spanning 2 

discs 

Inverse 

approach 

(induce 

deformity) 

Qualitative 

X-ray 

analysis 

Successfully 

induced curvature. 

Development of 

secondary curves 

Smith et 

al. [155] 
1954 Staple 3 Humans 

Lateral 

concave 

stapling 

spanning 

disc 

Correct 

deformity 

Qualitative 

X-ray 

analysis 

Progression halted 

but compensation 

curves developed 

Roaf R. 

[102, 156] 
1963 Staple 

188 

Humans 

Lateral 

concave 

stapling 

spanning 

discs 

Correct 

deformity 

Cobb 

angle 

95 required 

second operation;                           

44 improved by ≥ 

20°; 69 improved 

by 10° to 19°; 75 

no improvement 

Carpinter

o and Coll 

[157] 

1997 Cable Rabbits 

Wrapping 

around the 

concave 

transverse 

process and 

the above 

spinous 

processes 

Inverse 

approach 

(induce 

deformity) 

Cobb 

angle 

Induced an 

average Cobb of 

29° after 2 months 

with an associated 

axial rotation 

Rumpf   

[158] 
1999 Laser Foxhounds 

Destroy the 

epiphysis 

plate on one 

side 

Inverse 

approach 

(induce 

deformity) 

Cobb 

angle 

Induced scoliosis 

curvatures in 75% 

of cases with 30° 

max.  Laser 

caused local tissue 

damage. 

Newton 

and Coll 

[159, 160] 

2002 
Flexible 

Tethers 
Cow 

Lateral 

concave 

implant 

spanning 

disc 

Inverse 

approach 

(induce 

deformity) 

Cobb, 

ROM, 

backout, 

and disc 

wedging 

Showed control of 

Cobb but induced 

kyphosis 
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Author Year Implant Subject Technique Objective Measures Results 

Braun 

and 

Olgilvie 

[19, 161] 

2005 

Bone 

anchors 

with 

ligament 

tethers 

Goats 

Lateral 

concave 

implant 

spanning 

disc 

Correct 

deformity on 

progressive 

model 

Cobb, 

backout, 

histology, 

and 

mechanics 

Corrected 

curvature, 

impacted disc.  

Bone density 

concavity drift. 

Betz R. 

[162, 163] 

2003-

2005 

Shape 

memory 

alloy 

staples 

Humans 

Lateral 

concave 

stapling 

spanning the 

disc 

Correct 

deformity 

Complete 

spinal 

alignment 

Fusion required in 

2 of 39 patients; 

80% showed 

control of 

progression
1
 

Wall E. 

[20] 
2005 

Rigid 

stainless 

steel 

staple 

with 

screw 

fixation 

Pig 

Lateral 

concave 

stapling 

spanning 

disc 

Inverse 

approach 

(induce 

deformity) 

Coronal 

and 

sagittal 

curvatures, 

fixation, 

and 

backout 

Steady control of 

Cobb with some 

signs of kyphosis.  

No backout 

problems due to 

screw 

Newton et 

al. [164] 
2008 

Flexible 

Tethers 
Pig 

Lateral 

concave 

tether 

spanning 

disc 

Inverse 

approach 

(induce 

deformity) 

Coronal 

and 

sagittal 

curvatures, 

vertebral 

height, and 

disc health 

1 year post-

operative follow 

up provided 

impressive growth 

modulation and no 

signs of disc 

degeneration 

Schmid et 

al. [165] 
2008 

Mini 

staple 
Rat tail 

Growth plate 

compression 

exclusive of 

disc 

Inverse 

approach 

(induce 

deformity) 

Coronal 

curvature 

and disc 

wedging 

Consistent control 

of vertebral wedge 

and presence of 

deformity 

Newton et 

al. [166] 
2011 

Flexible 

Tethers 
Pig 

Lateral 

concave 

tether 

spanning 

disc 

Inverse 

approach 

(induce 

deformity) 

Coronal 

and 

sagittal 

curvatures, 

vertebral 

height, and 

disc health 

Pre-tensioning had 

no long term 

benefit in 

curvature control 

 

 

                                                 
1
 Progression control defined as scoliotic deformity not progressing by more the 10 degrees 
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Several mechanical avenues have been explored with the purpose of effectively restoring regular 

spinal loading to segmental units.  However, thus far, methods most often undertaken span the 

intervertebral disc whose adjacent vertebrae are showing signs of wedging.  This is achieved by 

introducing a rigid or flexible fixture onto the convexity of the anterior vertebral bodies, thus 

applying pressure on both the caudal section on the superior segment and the cephalad section of 

the inferior segment.  The most recent and most promising methods utilizing this method apply 

corrective pressures directly and indirectly in order to restrict unilateral growth on the convexity 

of the spine.  These include a shape memory alloy (SMA) staple, a stainless steel (SS) staple, and 

a flexible tether. 

The SMA staple consists of two or four prongs which, upon reaching its austenite phase through 

temperature transition, will provide a local compression (Fig. 120).  This was presented by Braun 

and Olgilvie [167] and then later put into practice in a clinical trial by Betz et al. on adolescents 

with idiopathic scoliosis [162, 163].  Although long term results are pending, the performances 

of preliminary results are debatable.  The bar of success was not placed high as the SMA 

declares itself successful if following instrumentation, patient progression is limited to 10 

degrees.  Over the trial, this was achieved in 80% of cases [168] – a statistic very similar to the 

progressive risk of non-instrumented patients. 

 

Figure 1.20: Shape memory alloy staple implant (modified from [162, 163]) 

Braun et al. performs a more complete analysis of the effect of shape memory alloy staples on 

immature goats.  He evaluated the implants Cobb angle effect but also performed backout rate 
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tests, qualitative histology, and biochemical analyses on the intervertebral discs.  This study 

successfully demonstrated the ability of the SMA staple to provide a mild correction of an 

experimentally induced, and otherwise progressive, scoliotic model.  Studies of the intervertebral 

discs returned no significant difference between experimental groups; however, differences in 

disc histology (fibrosis and annulus disorganization) between experimental and control groups 

existed [169]. 

Similarly to the SMA approach, a SS staple was proposed in an attempt to achieve greater 

fixation and perhaps improved correction (Fig. 1.21).  Upon being fixed into the vertebrae with 

the aid of a screw, the inserted wedge is believed to provide an initial pressure while the presence 

of the staple body spanning the disc will provide the passive resistance required to limit vertebral 

growth.  Results from this study demonstrated the ability of the device to induce a spinal 

curvature in the coronal plane of an immature pig and had diverse effect on the sagittal plane.    

Moreover, after 8 weeks the device induced a coronal curvature of 16.4°5.4° using the inverse 

approach (creation of scoliosis) [20].  This was further verified by local measurements of growth 

plate region heights and cell size in various regions of the targeted epiphysis [170].  The device 

succeeded in chondrocyte hypertrophy suppression under the implant indicating growth 

modulation.  To explore the local mechanical influence of this device, experimental studies using 

a Wheatstone bridge (calibrated as a stress sensor) in a porcine model suggest that his method 

increased the local baseline stress by 0.1 MPa immediately post-operatively. However, in 

contrast, this method proved to reduce mean peak dynamic compressive stress [171]. 

 

Figure 1.21: Stainless steel staple with screw (modified from [20]) 
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Newton and later Lowe, explored a similar method, however used tethering over a vertebral 

segment to modify local growth.  This method inserted pre-tensioned tethers fixed to adjacent 

vertebra with bone screws and spanning the corresponding disc (Fig. 1.22).  Included in their 

analysis was the impact on Cobb and kyphosis angles, disc wedging, range of motion, sectional 

vertebral height, and back out rate [159, 160, 172].  Results suggested this method as an effective 

means of manipulating vertebral growth in the coronal plane.  After 12 weeks, the tether induced 

a coronal curvature of 11.6°4.8° via the inverse approach.  Later, analyses of instrumented discs 

returned increased proteoglycan synthesis and collagens II and X were upregulated in 

instrumented segments.  These findings may indicate the occurrence of degenerative changes 

[173]. 

 

Figure 1.22: Bone anchor with tether (modified from [159, 160]) 

Later, Braun et al. performed experiments to analyse the effects of both SMA staples and bone 

anchor tethers.  He defined their efficacy by the ability to control progression of the Cobb angle 

and their integrity as the potential to maintain fixation.  Also, the osseointegration index, bone 

proximity index, bone ingrowths, and pullout strength were examined [19].  The results suggest 

that bone anchor tethering corrects more effectively the initial deformity and controls 

progression when compared to SMA staples [174].  Finally, Newton et al. repeated the tether 

study in a porcine model to find that tether pre-tensioning to provide improved initial correction 

whereas no significant long term correction benefits were achieved [166]. 
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Figure 1.23: Mini staple device in a growing rat tail (modified from [165]) 

Schmid et al. explored a novel fusionless device that does not span the disc space in a rat tail 

model [165].  A maximum coronal Cobb angle of 30 and vertebral wedging of 10 was 

achieved between 23 and 35 days post-operative (Fig. 1.23).  However, problems of device 

fixation and the use of a small animal model with relatively unimportant loads restricted the 

translation of results towards a potential human application. 

Although each of these devices focuses on coronal correction it is worth noting their influence on 

other anatomical planes.  The current consensus amongst authors is that a restriction of coronal 

plane progression would succeed in limiting additional vertebral axial derotation [19, 20, 162, 

173]; however, this hypothesis has yet to be verified.  Moreover, the impact on sagittal spinal 

alignment is not controlled nor does any attempt to manipulate this anatomical plane become 

apparent through the endless claims found in active patents.  The passive influence on this plane 

is described as follows: a stainless steel staple suggested negligible sagittal influence [20], a 

stainless steel tether provided important hyperkyphosing effect (5° to 38° for a double tether) 

[159], a flexible tether and SMA staple produces a mild hypokyphosing or lordotic influence in 

sheep [19], and a SMA staple was speculated to control its impact on the sagittal plane by 

placing the staple more posteriorly or anteriorly with respect to the midline of the anterior 

vertebral body [162]. 

Each of these devices provides an interesting novelty to the early treatment of AIS.  It is no 

surprise, knowing their market value, that a plethora of patents exist that claim to alter spinal 

mechanics in a manner that may provide helpful modification to the spine by means of growth 
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modulation.  Nonetheless, to date, none of these devices have been approved by the Food and 

Drug Administration (USA).  In addition, as these devices target adolescents, there is a residing 

uncertainty of their long term influence on the intervertebral disc. 

1.4.2 Patent review 

The act of registering patents does not require scientific support thus many more concepts have 

been devised that seek to alter vertebral dynamics.  Patents reviewed in table 1.6 claim to alter 

the endplate loading and are therefore relevant to methods that seek to induce local growth 

modulation for AIS treatment. 

Mechanically, many methods exist to alter loads on the vertebral endplates.  These methods 

attempt to manipulate the geometry of the spine in order effectively redistribute body weight and 

spinal loading.  Figure 1.24 summarizes these different attempts of which encompass the forces 

introduced by the selected patents reviewed in table 1.6.  That is, spinal realignment and 

consequential regular spinal load distribution may be achieved by: introducing lateral forces over 

displaced spinal segments, providing compression to the convexity or expansion/distraction 

forces to the concavity of the spine, delivering rotational torque to derotated segments, and 

granting local growth arrest over deformed or wedged vertebrae. 

 

Figure 1.24: Functional attempts to correct scoliosis 
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Table 1.6: Analysis of current patents pertaining to innovative methods to alter loading within the adjacent vertebral bodies 

Patent Type & 

Number [Ref.] 
Date Inventor(s) Assignee(s) Image(s) 

In vivo 

Test 
Summary Critique 

US_5053005_A1 

[175] 
Oct. 1,1991 Gary E. Borodic 

Gary E. 

Borodic, 

Edmund 

Pitcher 

 

Rabbit 

Uses botox 

injections to 

block selective 

muscle 

stimulation and 

alter spinal 

loading 

Attempted to 

integrate with 

bracing treatment 

however interrupts 

regular muscular 

behaviour of patients 

US_5951553_A1     

[176, 177] [177] 
Sept. 14,1999 

Randal Betz, 

Michael Sherman, 

Troy Drewry 

 

SDGI 

Holdings, Inc 

 

Human 

Performs 

vertebral 

osteotomies 

and fixes with 

removable 

rigid rod 

Interruptions of 

nutrient transfer 

within vertebral body 

and creation of 

kyphosis in patients 

US_20030088251_A1 

[178] 
May 8, 2003 

John T. Braun, 

Fred J. Molz,   

Troy Drewry, 

Sherman Michael 

John T. Braun, 

Fred J. Molz, 

Troy Drewry, 

Sherman 

Michael 

 

Goat 

Method to 

correct spinal 

deformities 

without fusion 

via growth 

reduction over 

convexity 

Alters disc 

mechanics and has 

been quantified as 

inducing 

degeneration 

US_20040199219_A1 

[179] 
Oct. 7, 2004 

George R. Dodge, 

Richard Bowen 

George R. 

Dodge, 

Richard Bowen 

 

Rabbit 

A device to 

inhibit local 

bone growth 

using electrical 

currents 

Requires exterior 

power source and 

thus open wounds; 

difficult to induce 

local electric field 
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Patent Type & 

Number [Ref.] 
Date Inventor(s) Assignee(s) Image(s) 

In vivo 

Test 
Summary Critique 

US_20050171539_A1 

[180] 
Aug. 4, 2005 

John T. Braun, 

Fred J. Molz,     

Jeff R. Justis 

 

 

John T. Braun, 

Fred J. Molz, 

Jeff R. Justis 

 

- 

Distract 

vertebrae on 

concave 

portion of 

spine using 

flexible 

implant to 

maintain 

motion 

No in vivo test to 

support claims and 

force would still 

remain on the 

concave portion but 

relocated at bottom 

of fixtures; rigid 

body does not allow 

growth of concave 

spine 

US_20050177240_A1 

[181] 
Aug. 11, 2005 Jason Blain Jason Blain 

 

- 

Replacing 

articular facets 

joint that are 

degenerated 

while 

maintaining a 

degree of 

motion 

No in vivo test to 

support claims and 

would alter balance 

of forces over 

vertebral bodies 

US_20060009767_A1 

[182] 
Jan. 12, 2006 Douglas Kiester 

Douglas 

Kiester 

 

- 

Rod to be 

implanted on 

concavity of 

curve to 

provide 

controlled 

expansive 

forces 

Basis that scoliosis is 

induced by a tight 

ligamentum flavum 

which is an refuted 

hypothesis 
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Patent Type & 

Number [Ref.] 
Date Inventor(s) Assignee(s) Image(s) 

In vivo 

Test 
Summary Critique 

US_20060217714_A1 

[183] 
Sept. 28, 2006 

Hassan Serman, 

Micheal Slivka, 

Methew Hannen, 

Peter Newton, 

Michael Nilson 

 

 

DePuy Spine, 

Inc. 

 

- 

A locking 

mechanism to 

be used with 

tethering of the 

vertebral 

bodies on the 

convexity of 

the curve 

Well-developed 

surgical instruments 

based on using 

tethering method 

which is shown and 

speculated to induce 

disc degeneration 

US_20070055373_A1 

[184] 

March 8, 2007 

 

Robert G. 

Hudgins, Micheal 

E. Lancial,     

Hugh D. Hestad 

 

Zimmer Spine, 

Inc. 

 

- 

Reduce back 

pain by 

reducing 

loading in the 

intervertebral 

discs by 

providing 

spacing 

between 

processes 

Fixations of articular 

facets will 

immobilize the 

instrumented 

segments 

US_20070173832_A1   

WO_2007075788_A2 

[185-187] 

July 26, 2007            

July 5, 2007 

 

Shawn Tebbe,   

Moti Altarac,  

Daniel H. Kim 

 

 

Vertiflex, Inc. 

 

- 

Reduce back 

pain by 

reducing 

loading in the 

intervertebral 

discs by 

spacing 

between 

processes 

No precautions to 

oppose flexion with 

the absence of 

healthy interspinous 

ligament (resected) 
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Patent Type & 

Number [Ref.] 
Date Inventor(s) Assignee(s) Image(s) 

In vivo 

Test 
Summary Critique 

US_20070179493_A1 

[188] 
Aug. 2, 2007 Richard C. Kim 

Richard C. 

Kim 

 

- 

Using 

magnetic force 

to alter 

dynamics with 

the spine 

No studies 

performed to analyse 

impact of magnetic 

field nor do any 

methods exist to 

minimize spread of 

field; loss of 

magnetic power is 

greatly dependent on 

magnet proximity 

US_20070233084_A1 

[189] 

Oct. 4, 2007 

 

Randal R. Betz, 

Edward Miller, 

Rebeccah Brown, 

Guilhem 

Denoziere 

 

 

SpineMedica 

Corporation 

 

- 

Reduce back 

pain by 

reducing 

loading in the 

intervertebral 

discs via 

spacing 

between 

processes 

No precautions to 

oppose flexion with 

the absence of 

healthy interspinous 

ligament 

US_20070270836_A1 

[190] 
Nov. 22, 2007 

Aurelien Bruneau, 

Thomas Carls,   

Eric C. Lange,  

John D. Pond,  

Kent Anderson, 

Henry Bonin 

 

 

SDGI 

Holdings, Inc 

 

- 

Provide 

posterior 

dynamic spinal 

stabilization 

via controled 

forces 

No field testing and 

posterior 

instrumentation will 

alter force 

distribution over 

vertebral bodies 
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Patent Type & 

Number [Ref.] 
Date Inventor(s) Assignee(s) Image(s) 

In vivo 

Test 
Summary Critique 

US_20070276380_A1 

[191] 
Nov. 27, 2007 

Tae-ahn Jahng, 

Jason Yim,      

Brian Bowman 

Tae-ahn Jahng, 

Jason Yim, 

Brian Bowman 

 

- 

Provide 

posterior 

dynamic spinal 

stabilization 

via controled 

forces 

introduced by 

device 

No field testing and 

posterior 

instrumentation will 

alter force 

distribution over 

vertebral bodies 

US_20070276500_A1 

[192] 
Nov. 29, 2007 

James Zucherman,     

Ken Hsu,        

Henry Klyce, 

Charles Winslow, 

John Flyn,     

Steven Mitchell, 

Scott Yerby,     

John Markwart 

 

St. Francis 

Medical 

Technologies, 

Inc. 

 

 

- 

Reduce back 

pain by 

reducing 

loading in the 

intervertebral 

discs by 

spacing 

between 

processes 

No studies 

performed to analyse 

the effect of device 

on segmental 

dynamics 

WO_1990012553_A1 

[193] 
Nov.1, 1990 Robert Campbell 

Robert 

Campbell 

 

Humans 

Provide regular 

pulmonary 

function and 

provide 

corrective 

torque for the 

correction of 

scoliosis via 

costovertebral 

joint 

Because ribs are not 

secured on vertebral 

body forces provided 

by device are in part 

loss through the 

translation of the 

instrumented ribs;  

studies show not 

effective to correct 

scoliosis 
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Patent Type & 

Number [Ref.] 
Date Inventor(s) Assignee(s) Image(s) 

In vivo 

Test 
Summary Critique 

WO_2000064360_A9 

[16, 17] 
Nov. 2, 2000 

James Ogilvie, 

Christoph Hopf, 

Mickael Sherman, 

Troy Drewry,     

Jean Suarat 

 

 

 

SDGI 

Holdings, Inc. 

 

Goat, 

Human 

Method to 

correct spinal 

deformities 

without fusion 

via growth 

reduction on 

convexity of 

spine 

Alters disc 

mechanics and has 

been quantified as 

inducing 

degeneration; 

scoliotic corrections 

are modest an 

irregular 

WO_2001003570_A2 

[18, 194] 
Jan. 18, 2001 

Eric Wall,      

Donita Bylski-

Austrow 

Eric Wall, 

Donita Bylski-

Austrow 

 

Porcine 

Correct 

scoliosis by 

reducing 

growth on 

convexity of 

curve 

Very rigid implant 

alters regular disc 

behaviour and 

restricts motion as in 

conventional 

posterior 

instrumentation with 

rods 

WO_2002043602_A1 

[195] 
June 6, 2002 Robert Gaines Robert Gaines 

 

- 

Anterior rod 

technique less 

invasive than 

posterior 

approach using 

an original 

spinal staple 

that requires 

vertebral body 

modification 

Still requires fusion 

of implicated 

segments 
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Patent Type & 

Number [Ref.] 
Date Inventor(s) Assignee(s) Image(s) 

In vivo 

Test 
Summary Critique 

WO_2002045765_A2 

[196] 
June 13, 2002 

Daryl Sybert, 

Lawrence Shimp, 

Todd Boyce,     

John Boyle 

 

 

 

 

Osteotech, Inc. 

 

- 

Claims to 

correct 

kyphosis, 

scoliosis, 

slipped disc, 

and pain via 

altering 

segments 

dynamics 

No studies to support 

claims; force 

provided by device is 

unidirectional and 

confined to the 

posterior region 

WO_2003003901_A2 

[197] 
Jan. 16,2003 Isador Lieberman 

The Cleveland 

Clinic 

Foundation 

 

- 

Method to 

provide tension 

of convexity of 

spine and the 

option of 

providing a 

corrective 

torque 

Never tested; patent 

covers a concept that 

has no supportive 

research; similar to 

tethers previously 

patented 

(WO2000064360A9) 

WO_2005023090_A2 

[198] 

March 17, 

2005 

 

Hong Zang,   

Charles Johnson, 

William Pierce, 

Richard Ashman 

 

 

Texas Scottish 

Rite Hospital 

for Children 

 

- 

More elaborate 

method of 

spinal fixation 

over several 

site to reduce 

strains placed 

on hardware as 

with regular 

methods 

Even more invasive 

than regular methods 

and its requirement is 

questionable 
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Patent Type & 

Number [Ref.] 
Date Inventor(s) Assignee(s) Image(s) 

In vivo 

Test 
Summary Critique 

WO_2007075788_A2 

[199, 200] 
Feb. 6, 2006 

Alan Carl,          

Dan Sachs,       

Meir Rosenberg 

 

 

 

 

Vertech 

Innovations 

L.L.C. 

 

 

- 

Control 

dynamics of 

posterior spine 

in order to 

provide 

stability and 

reduce pain 

Requires invasive 

penetration of 

posterior muscles 

and no field tests to 

support claims 

WO_2006110767_A1 

[201] 
Oct. 19, 2006 

Roy Lim, Micheal 

Sherman 

 

 

 

SDGI 

Holdings, Inc 

 

 

 

 

- 

Posterior 

spacer that 

spans a 

vertebral 

segment and 

replaces a 

process to 

eliminate pain. 

May halt mobility, 

invoke wear at site, 

and induce a 

kyphotic 

displacement 

WO_2007089979_A1 

[202] 
Aug. 9, 2007 

Aurelien Bruneau, 

Eric Lange,   

Randall Allard,   

Kent Anderson 

Warsaw 

Orthopedic, 

Inc. 

 

- 

Purpose to 

reduce incision 

required to 

insert rod and 

to increase 

loading of 

adjacent 

constructs 

No studies on its 

impact nor to support 

claims and no real 

innovation over 

current methods 
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Patent Type & 

Number [Ref.] 
Date Inventor(s) Assignee(s) Image(s) 

In vivo 

Test 
Summary Critique 

WO_2007090021_A1 

[203] 
Aug. 9, 2007 

Jeff Justis,          

Hai Trieu 

Warsaw 

Orthopedic, 

Inc. 

 

- 

Purpose to 

reduce incision 

required to 

insert rod and 

to increase 

loading of 

adjacent 

constructs 

No studies on its 

impact nor to support 

claims and no real 

innovation over 

current methods 

WO_2007109470_A2 

[204] 
Sept. 27, 2007 John Dawson 

Zimmer Spine, 

Inc. 

 

 

- 

A dynamic 

spine stabilizer 

that provides 

both tensional 

and 

compressive 

resistance 

No studies on its 

impact nor to support 

claims and no real 

innovation over 

current methods 

WO_2007111795_A1 

[205] 
Oct. 4, 2007 

Gene Dipoto,     

Alan Shluzas 

 

 

 

Endius, Inc, 

 

- 

To reduce pain 

by restraining 

motion in a 

segment and/or 

reducing 

loading on 

another 

vertebral body 

No studies; 

supporting a lower 

vertebra from above 

would however 

effectively 

redistribute the load 

over the implicated 

segments 
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Patent Type & 

Number [Ref.] 
Date Inventor(s) Assignee(s) Image(s) 

In vivo 

Test 
Summary Critique 

WO_2007147093_A2 

[206] 
Dec. 21, 2007 

Hugues 

Malandain, Avrain 

Edidin, Andrew 

Kohm 

 

 

 

Kyphon Inc. 

 

- 

Reduce back 

pain by 

reducing 

loading in the 

intervertebral 

discs by 

spacing 

between 

processes 

No precautions to 

oppose flexion with 

the absence of 

healthy interspinous 

ligament 

US_20090030518_A1 
[207] 

Jan 29, 2008 

Carl-Eric Aubin 

John Sawark 

Eliane Schmid 

Stefan Parent 

Carl-Eric 

Aubin 

John Sawark 

Eliane Schmid 

Stefan Parent 

 

Rats 

Provide 

scoliotic 

correction 

without 

spanning the 

intervertebral 

discs 

Preliminary analyses 

in a rat tail model 

proved positive as an 

important curvature 

was induced (reverse 

method) 
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CHAPTER 2 : RESEARCH RATIONAL, OBJECTIVES, AND 

HYPOTHESES 

Surgical treatment including fusion is currently the gold standard employed for the correction of 

scoliotic deformities in adolescents.  A reassessment of spinal anatomy, biomechanics, and 

scoliotic pathomechanism in combination with modern medical device technologies has 

reaffirmed fusionless growth modulation as a plausible alternative treatment for this cohort.  

Fusionless devices involve harnessing residual spinal growth as a means of correction rather than 

progression.  Over the past decade, numerous scientific publications have emerged to support 

fusionless devices for the improved treatment of adolescent idiopathic scoliosis (AIS).  

Moreover, a growing number of registered patents in conjunction with recurrent pre-clinical and 

clinical trials further strengthen their future adoption. 

However, to date, fusionless devices struggle to demonstrate consistent corrections of scoliotic 

deformities.  Moreover, fusionless treatments actively pursued, appear to imperil the long term 

health of the intervertebral disc and are restricted to the unilateral correction of a 3D deformity.  

Improvements in the understanding of scoliotic progressive and corrective biomechanics and the 

consequent development of enhanced fusionless devices would offer a sizable and innovative 

contribution towards the improved treatment of AIS. 

The general objective of this doctoral project was the: Design, optimization, and experimental 

evaluation of a fusionless device to induce growth modulation and correct spinal curvatures in 

adolescent idiopathic scoliosis. 

In order to address this general objective, a finite element model (FEM) was to be devised and 

utilized as the initial developmental platform.  This would allow the investigation of 

biomechanical factors involved in AIS pathomechanism, the analysis of current fusionless 

devices, and the elaboration of improved fusionless devices for the treatment of AIS.  Thereafter, 

realization of this general objective would require supplementary in situ and in vivo 

experimentations.  Thus, a comprehensive device development platform was devised that makes 

use of subsequent in silico, in situ, and in vivo analyses.  Consequently, the general objective was 

divided into the following 4 specific objectives: 

Objective 1: Develop a custom FEM of the spine with integrated growth dynamics; 
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Objective 2: Exploit the FEM to explore new biomechanical factors involved in the 

pathomechanism of AIS; 

Objective 3: Exploit the FEM to analyze biomechanically current fusionless growth modulating 

devices; and 

Objective 4: Exploit the devised developmental platform (in silico, in situ, and in vivo analyses) 

to develop, optimize, and validate novel and improved fusionless growth modulating devices for 

AIS. 

The central theme addressed in this thesis is: 

Improved fusionless treatments for AIS may be developed subsequently to understanding 

biomechanical factors in its pathomechanism, identifying shortcomings of previous fusionless 

devices, and utilizing a comprehensive design platform that include in silico, in situ, and in vivo 

analyses.  This central theme was divided into the following hypotheses: 

Hypothesis 1: Biomechanical factors (concave-convex mechanical biases) in scoliotic spines 

increase apical asymmetrical growth plate loading by 25% and, concomitantly, augment coronal 

vertebral wedge progression by 1 (10%) over 1 year of adolescent growth; 

Hypothesis 2: Current fusionless growth sparring methods (shape memory alloy staple, stainless 

staple, and flexible tether) reduce asymmetrical growth plate loading by 35% and restrict coronal 

scoliotic progression to 10% over 2 years of adolescent growth; 

Hypothesis 3: A refined intravertebral epiphyseal device will modify vertebral wedging by 4° 

without altering the intervertebral disc in a porcine model after 12 weeks; and 

Hypothesis 4: A 3D tether will modify vertebral wedging by 4° and axial rotation by 5° in a 

porcine model after 12 weeks. 

The objectives and corresponding hypotheses of this doctoral thesis were explored and resolved 

in the sequence depicted in figure 2.1.  Development of in silico platform allowed objectives 1 

and 2 to be attained and hypotheses 1 and 2 to be explored.  Complementing in situ and in vivo 

platforms accorded a means to accomplish objective 4 and investigate hypotheses 3 and 4.  As a 

result, 4 manuscripts were submitted and published in peer reviewed journals detailed in chapters 

3 to 5.  An additional feasibility study is reported in Chapter 6.  Finally, to resume and integrate 
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these studies, a general discussion is found in chapter 7 followed by conclusions proclaimed in 

chapter 8. 

 

Figure 2.1: Thesis objectives (O), hypotheses, and associated manuscripts
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CHAPTER 3 : Study of biomechanical factors in the pathomechanism of 

adolescent idiopathic scoliosis  

3.1 Framework of first article 

This study was an important step towards the general objective of this thesis as many features 

discussed herein are reliant on methods adopted in this manuscript while improved 

understanding of scoliotic biomechanics was gained from its conclusions.  Asymmetrical loading 

of vertebral growth plates and consequent growth modulation are the foundations upon which 

biomechanical progression of scoliosis and corrective methods of fusionless devices are 

governed.  This manuscript explores a novel biomechanical factor hypothesized to manipulate 

growth plate stress distribution utilizing detailed measures of asymmetrical vertebral growth 

plate loading and predictions of the long term scoliotic progression.  The realizations of 

objectives 1 and 2 with the exploration of hypothesis 1 are presented in the manuscript entitled 

“The Role of Spinal Concave-Convex Biases in the Progression of Idiopathic Scoliosis,” for 

which the contribution of the first author is considered to be 85%.  This manuscript was 

published in the European Spine Journal on January 8, 2009. 
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3.2 Article 1: The role of spinal concave-convex biases in the progression of 

idiopathic scoliosis 

The Role of Spinal Concave-Convex Biases in the Progression of Idiopathic Scoliosis 

Mark Driscoll, J. Eng.
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3.2.1 Abstract 

Introduction: Inadequate understanding of risk factors involved in the progression of idiopathic 

scoliosis restrains initial treatment to observation until the deformity shows signs of significant 

aggravation.  The purpose of this analysis is to explore whether the concave-convex biases 
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associated with scoliosis (local degeneration of the intervertebral discs, nucleus migration, and 

local increase in trabecular bone-mineral density of vertebral bodies) may be identified as 

progressive risk factors. 

Materials and Methods: Finite element models of a 26° right thoracic scoliotic spine were 

constructed based on experimental and clinical observations that included growth dynamics 

governed by mechanical stimulus.  Stress distribution over the vertebral growth plates, 

progression of Cobb angles, and vertebral wedging were explored in models with and without 

the biases of concave-convex properties. 

Results: The inclusion of the bias of concave-convex properties within the model both 

augmented the asymmetrical loading of the vertebral growth plates by up to 37% and further 

amplified the progression of Cobb angles and vertebral wedging by as much as 5.9° and 0.8° 

respectively. 

Conclusions: Concave-convex biases are factors that influence the progression of scoliotic 

curves.  Quantifying these parameters in a patient with scoliosis may further provide a better 

clinical assessment of the risk of progression. 

 

Keywords: scoliosis, growth modulation, hemiepiphysiodesis, finite element model 

 

3.2.2 Introduction 

Scoliosis is a musculoskeletal deformity defined by a lateral and rotational curvature of the 

spine.  This affects 3% to 4% of the population of which 80% are idiopathic.  There are several 

theories that attempt to describe its etiology, however no individual or exclusive cause has yet to 

emerge from this ongoing investigation.  Notwithstanding, it is generally accepted that an 

important factor in the progression of such deformity is founded on the Hueter-Volkmann 

principle [19].  This principle distinguishes how non physiological loading of epiphyseal plates 

will modify regular growth patterns.  When extended to the pathomechanism of scoliosis, it 

essentially defines how asymmetric loading of the vertebral bodies leads to the progression of the 

deformity.  This phenomenon is further supported by the frequent clinical observation of local 

vertebral deformations in the form of wedging within scoliotic spines [3,26,39]. The dynamics 

responsible for such alteration has been verified by several authors and has been quantified 

through the process of in vivo experimentation on various species [34].  The resulting 
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growth/force relationships have then been integrated into finite element models in order to 

forecast progression of selected spinal configurations [33,38].  The predictive ability of these 

simulations highlights the importance of maintaining physiological loading conditions within the 

spine during pubertal growth. 

Although spinal loads are induced by muscular activity, body weight, and subject dynamics, the 

morphology and mechanical properties of tissues surrounding the vertebral growth plates 

nonetheless manipulate local stress distribution.  More specifically, the health of the 

intervertebral disc, the migration of the nucleus pulposus, and the trabecular bone mineral 

density (BMD) have each been identified as factors involved in local stress elevations [11,14,18].  

Adams et al. have shown that a degenerated disc becomes the main source of load transfer 

against the adjacent endplate (formerly the growth plate in immature vertebra) [1].  Also, they 

have demonstrated that damaged trabecular arcades lead to high stress concentrations in the 

opposing annulus [2].  Keller et al., among others, have shown a close correlation between 

intervertebral disc degeneration and underlying trabecular BMD [15].  Degenerated discs and 

increased trabecular BMD undergo an increase in mechanical modulus [9,21].  These mechanical 

biases may then generate local increase in the stress levels of the surrounding growth plate.  Such 

concept of stress shielding, due to altered mechanical properties, has been recognized to play a 

role in the etiology of posttraumatic osteoarthritis of knee articular cartilage [13].  This is 

propagated by a local increase in BMD, which allows for a greater load support and thus the 

associated increased rate of cartilage wear.  Within the spinal column, the described concave-

convex biases are known to cause elevated risk levels of failure in endplates [25] but their role in 

the progression of idiopathic scoliosis has never been explored. 

The geometric configuration of a scoliotic spine entails remodeling of both the discs and the 

trabecular bone due to unbalanced loading between the concave and convex sides of the curve.  

Elevated levels of BMD have been quantified to occur in the concave side of the curvature when 

compared against measurements taken from the convex side [31].  The annulus of adolescent 

scoliotic spines have been reported to show signs of degeneration on the concave portions 

[10,37].  Also, an offset of the geometric centre of mass in vertebral bodies, due to altered BMD, 

was correlated to the degree of nucleus migration in adolescents with idiopathic scoliosis 

[28,29]. 
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The objective of this article is to test the hypothesis that the lateral concave-convex biases of 

scoliotic spines play a role in the progression of the deformity by altering stress distribution over 

the growth plates. 

3.2.3 Material and methods 

The geometry of two finite element models (FEM) was constructed on the bases of patient 

specific characteristics obtained from a stereo-radiographic reconstruction technique, which 

provided 3D coordinates of seventeen points per vertebra [4].  The patient under consideration 

had a right thoracic curve of 26° Cobb (apex at T7) with a normal sagittal profile.  The resulting 

FEM consisted of approximately 35,000 elements governed by linear elastic behaviour (Fig 1).  

The models were composed of seventeen anterior vertebral bodies from T1 to L5 and 16 

intervertebral discs, while including nine anatomical partitions with material properties that 

reflect findings from published studies (Table 1). These partitions include: the cortical shell; two 

trabecular portions dividing lateral concave and convex sections; two divisions for the annulus 

fibrosus, also with a concave-convex division; nucleus pulposus; and the vertebral growth plates 

constructed in 3 sections, as previously explored [36].  In this study, the zones of the vertebral 

growth plates were constructed in 3 sections, namely a sensitive zone, a newly formed bone 

layer, and a transition zone.  The sensitive zone includes the physiological reserve, proliferative 

and upper hypertrophic regions of the growth plate.  The newly formed bone area includes the 

lower hypertrophic region in which bone calcification occurs.  The rate at which local bone 

growth occurs in this section is governed by the stress levels experienced in the above sensitive 

layer [30].  The transition region links the above sensitive and newly formed bone regions to the 

underlying trabecular bone and its cortical shell (Fig. 1).  The applied spinal forces are based on 

load distribution, as reported by Schultz [32], and defined by a body weight (BW) distribution of 

14% on T1 with an addition of 2.6% on the following vertebral bodies, ending at L5 with 57% of 

BW.  A “follower load” of a magnitude of 20%BW, with force vectors tangential to curvature 

profile, was also added to BW to emulate the forces and stability provided by the surrounding 

muscles [27].  The boundary conditions of the model were provided by a restraint on the inferior 

extremity of L5 in all degrees of freedom during loading and growth simulations. 

The nucleus within the disc remained laterally centered in the model without biases, while its 

position was governed by a correlation derived from MRI analyses that determined the nucleus 

position in patients with idiopathic scoliosis in the model including the discussed concave-
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convex biases [29].  Its displacement from the lateral geometric center was defined as a function 

of its wedge angle.  However, the mechanical properties of the nucleus were homogenous 

throughout the spine in both models.  The Young’s modulus of both the annulus and the 

trabecular regions were uniform in the model without biases whereas different concave-convex 

moduli were programmed to be representative of their location within the curvature of the spine 

in the model with biases.  The elastic modulus distribution within the discs respect experimental 

results from complementing studies [17,42].  The local concave stiffness of the annulus was 

attributed a modulus associated with discs of grade 2 degeneration (Nachemson score) whereas 

the modulus of the convex portion was considered that of a healthy disc.    The modulus of the 

concave section of the trabecular bone was acquired by following correlations describing the 

offset of the geometric center of mass [28], while the convex portion was maintained at 400 

MPa.  Equilibrium relations were then used, while assuming a lateral 50-50 division, to achieve 

the ratio of BMD between the concave and convex regions.  These ratios were then converted 

into BMD magnitudes respecting statistical CT measurements taken from vertebral bodies of 

stage II tanner subjects [6].  Finally, a local modulus bias was achieved by converting the 

difference in BMD to a bias in mechanical properties within the trabecular region using 

correlations obtained from pig vertebrae [24]. 

The analysis of the modulus bias impact was performed in two parts.  The first part was achieved 

by executing a detailed stress analysis of the sensitive layer of the vertebral growth plates of the 

models with and without the concave-convex biases (trabecular bone and annulus moduli with 

nucleus migration). Results were then compared and the differences in growth plate stress 

distribution were quantified.  This interpretation consisted of acquiring the longitudinal stress, 

perpendicular to the growth plate, on the 7000 nodes of the sensitive layers in each spine model.    

Because it is the sensitive layer that responds to stress and regulates the level of growth in the 

vertebra [30], it was divided into 9 zones of interest: flex zone (FZ), lateral left (LL), lateral right 

(LR), anterior (A), posterior (P), anterior lateral left (ALL), anterior lateral right (ALR), posterior 

lateral left (PLL), and posterior lateral right (PLR) (Fig. 1).  The mean stress across each zone of 

the growth plates was determined by taking the average longitudinal stress acting on all nodes 

within the division.  This simulation was then repeated while individually including the nucleus 

migration, annulus stiffness bias, and trabecular bone stiffness bias, in order to interpret the 

influence each factor has on altering stress distribution over the growth plates. 



59 

 

The second part of the analysis performed iterative computations in order to simulate the growth 

of an adolescent spine for both models (Fig. 2).  A progression of one year was simulated at 

three-month intervals where each iteration consisted of four sub-steps.  First, loading was applied 

followed by evaluation of the stress levels (σ) registered in the growth plates’ sensitive zone.  

The scaled (β) difference, between these stress levels (σ) and those measured under regular 

conditions (σm), were converted into a thermal loading and applied on the adjoined elements in 

the newly formed bone layer.  The thermal expansion (G) of the elements in this layer simulated 

the respective mechanical growth modulation as a ratio of the otherwise uniform growth (Gm). 
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Equation 3.1: Article 1 equation 1 Dynamic growth equation and constants 

Stress analysis, which included assessment of sagittal and coronal Cobb angles as well as 

vertebral wedging, was performed after each growth iteration.   

Prior to the analysis, the model was validated through several steps.  The stress profile, measured 

within the intervertebral disc of the L4-L5 functional unit, was compared to the magnitude and 

distribution of those measured in vivo by Wilke in various positions [40].  Also, load sharing 

between the cortical and trabecular regions in the vertebral body, was compared with ratios 

acquired via compression testing of excised thoracic vertebra [16].  In addition, a sensitivity 

analysis was performed in order to explore the relative contribution to the loading assumption 

compared to the explored concave-convex biases.  This was achieved by simulating different 

loading applications (gravitational load, follower load, and a scaled combination of both 

gravitational and follower loads) and quantifying the change in stress distribution relative to 

those imposed by the explored concave-convex biases.  Finally, in order to isolate the influence 

of the concave-convex biases from spinal configuration, the calculated concave-convex 

inequalities (Table 1) for the right-thoracic model were integrated into a third FEM.  This model 

was attributed a normal alignment, thus perfectly aligned in the coronal plane with a sagittal 

profile matching the other models, and the described growth simulation was performed. 
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3.2.4 Results 

The concave-convex biases for the spine model with a right thoracic Cobb of 26° were 

determined to be a 2 MPa increase of the modulus in the concave portion of the annulus, up to 

29.6 MPa increase in the concave section of the trabecular bone when compared to convex 

portion, and a nucleus migration of up to 2 mm towards the convexity of the spine.  Stress 

distribution in the right thoracic model without these biases showed the presence of 

asymmetrical loading on the growth plates.  Figure 3 shows how the coronal curvature creates 

non-uniform stress distribution between the lateral left (concave) and right (convex) 

subdivisions.  The greatest difference occurred in the apex T7 at 0.46 MPa, with the lateral left 

section measuring 0.68 MPa and the lateral right showing 0.22 MPa.  Results from running 

identical simulations, in the model that included the effect of a migrating nucleus and mechanical 

concave-convex biases in the trabecular and annulus, are also displayed in figure 3.  The analysis 

returned very similar stress profiles for the anterior and posterior zones of interest in the growth 

plates.  However, it returned a stress increase on the concavity of the curve (LL) and a stress 

reduction on the convexity (LR) of the thoracic region, while the opposite effect was observed in 

the lumbar region.  This difference is most prominent at the apex of the curvature T7 at 0.63 

MPa, with lateral left and right stresses of 0.78 MPa and 0.15 MPa respectively.  Therefore the 

relative difference at the apex imposed by including the biases was found to be 0.17 MPa or a 

37% increase over regular stress distribution without the presence of the biases.  This increase in 

asymmetric stress caused by the concave-convex biases varied in the thoracic curve between 

18% at T4 and 29% at T9 whereas stress manipulation was less prominent in the lumbar region.  

The individual contribution of the concave-convex biases, to the increase in asymmetrical 

loading of T7, was calculated to be 43% due to annulus stiffness bias, 22% from the trabecular 

stiffness bias, and 35% evolved from nucleus migration. 

Results from growth simulations performed under the above conditions further highlighted the 

influence of concave-convex biases.  There was negligible progression of lordosis and kyphosis 

defined by insignificant vertebral wedging in the sagittal reference plane.  However, the Cobb 

angles and vertebral wedging in the coronal plane progressed over the length of the simulations.  

Figure 4 displays the vertebral wedging in the coronal plane after one year of progression for the 

models with and without the integration of the concave–convex biases.  The wedge angles for 

both cases share the same pattern with a slight discrepancy at T11-T12, which becomes the 
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inflexion point of the new spinal configuration.  The sum of vertebral wedging in the thoracic 

and lumbar regions are 33.0° and –15.3° respectively for the simulation performed with uniform 

mechanical properties, i.e. where no discrepancies between concave and convex portions were 

included.  The same simulation performed with the presence of concave-convex biases yielded 

vertebral wedging sums of 36.6° at the thoracic level and -21.4° in the lumbar region. 

Results from the sensitivity analysis of the concave-convex stress distribution showed prominent 

reliance on the loading condition as expected.  However, for each loading condition the relative 

difference in stress distribution, as a result of including the biases, showed little variation.  

Finally, results from uniquely simulating the concave-convex biases in the spine model without 

the presence of a scoliotic curvature were obtained.  Under a healthy spine configuration these 

biases were responsible in providing an average stress difference of 0.04 MPa between what was 

previously convex and concave sections.  When a growth simulation was performed on this 

model, results included a vertebral wedge sum of 2.7° and –3.1° in the thoracic and lumbar 

regions respectively along with a vertebral wedge pattern that followed results observed in the 

model with a right thoracic curve (Fig. 4). 

3.2.5 Discussion 

The mechanical influence of increased vertebral BMD, annular degeneration, and nucleus 

migration in scoliotic spines was explored.  These biases were included in a finite element model 

and modified stress distribution over the growth plate as well as played a moderate role in the 

progression of scoliotic deformities.  For a spine model with an initial right thoracic Cobb angle 

of 26°, inclusion of these biases increased the difference in concave-convex growth plate stress 

distribution by up to 37% (0.17 MPa) at the apical vertebra.  The recorded differences in lateral 

stress distribution agreed with in vivo measurements taken from the discs of patients with 

scoliosis [20].  Although this reported study obtained hydrostatic pressure measurements from 

patients positioned laterally with loading conditions unlikely simulated in this study, this close 

agreement demonstrates the qualitative corroboration of the model in terms of stress prediction.  

This increase in asymmetrical stresses, caused by the inclusion of the concave-convex biases, 

provoked an additional progression of 3.6° in the thoracic region and 5.9° in the lumbar portion 

when compared with simulations without the integration of the curvature biases. 

These results support the hypothesis that the explored biases alter the force transmission path 

within the spine.  The remodeled and more rigid concave portion assumes dominance over the 
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load distribution and thus increases asymmetrical stresses within the vertebral growth plates.  

This, in a sense, provides stress shielding of the convexity of the vertebral growth plates in 

scoliotic spines.  The notion of this load stress shielding in the spinal column is further supported 

by the close correlation found between local annulus degeneration and elevated levels of 

trabecular BMD in the underlying vertebral body [23].  Grant et al. also demonstrated this 

phenomenon by quantifying increased endplate strength in areas of degenerated discs and 

elevated trabecular BMD [8].  Such correlations demonstrate that these factors complement each 

other by increasing the weight bearing capacity due to internal remodeling.  The bone 

remodeling process, once initiated, becomes a dynamic cycle governed by Wolf’s Law [41], 

where the concave portion becomes stiffer, while the convex portion weakens.  This model does 

not include algorithms that control the level of internal remodeling as a function of stress 

stimulus.  The present model interprets the level of degeneration of the disc and the remodeling 

of the trabecular bone to be constant, as a function of initial configuration.  As mentioned, these 

parameters were obtained by following in vivo correlations derived from adolescents with 

idiopathic scoliosis.  These internal biases would increase with time, and thus the inclusion of 

these adjustments would augment the magnitude of their impact on the progression of the 

deformity. 

The elevated stiffness of the concave annulus accounted for 43% of the increase in asymmetrical 

loading of the vertebral growth plates as compared to 22% for bone remodeling and 35% for 

nucleus migration, suggesting that annulus remodeling primarily contributes to the increase of 

growth plate compressive stresses and consequent growth modulation on the spine.  The 

significance of this factor respects previous predictions by Nachemson [22] and is supported by 

the works of Adams et al. [1], who described that a degenerated disc would entail a transfer of 

compressive stresses from the nucleus to the degenerated annulus.  In a scoliotic spine, it is likely 

that nucleus migration occurs foremost, while degenerative remodeling of the annulus precedes 

trabecular apposition.  Hence, the prominent stress altering role of the annulus (observed in this 

analysis) would have greater impact in the later stages of scoliosis progression.  However, the 

onset and early stages of scoliosis would evolve without the presence or influence of the 

explored biases as they develop as a result of the condition in its advanced stages rather than 

suggest causative factors.  Therefore the investigated biases are not speculated to have a role in 
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the etiology of scoliosis, alternatively their progressive influence on the pathomechanism was 

hypothesized and demonstrated. 

The loading of the spine has been integrated into the model without any prejudice from its 

configuration.  Other authors have explored the impact of muscle activation strategies [35] or 

muscle weakening [12] in the progression of the deformity. However, in this analysis, loading 

was not altered during iterations.  Results from the sensitivity analysis provided evidence of the 

importance of loading conditions on the stress distribution.  However, simulations with and 

without the presence concave-convex biases were performed on identical models in order to 

isolate and explore the role of these biases while excluding the influence of loading techniques 

on the results.  Therefore this study explores the relative difference imposed by the concave-

convex biases and upon examination this difference proved robust under a variety of loading 

conditions.  When the spine model with a healthy configuration, was submitted to the mild bias 

in properties associated with a right thoracic Cobb angle of 26°, progression of the deformity 

prevailed and followed the patterns that would have otherwise occurred in the scoliotic spine.  

These findings further support the unconditional impact that the presence of concave-convex 

biases has on stress distribution over the vertebral growth plate and, in conjunction, longitudinal 

vertebral growth rates in scoliotic progression. 

The model was limited to the anterior portion of the spine as this study aimed to explore the 

variation in axial stress distribution over the growth plate.  Moreover, roughly 90% of axial 

compressive loads are believe to be transmitted within the anterior section of the spine [7] thus 

supporting the models as suitable and relevant platforms for the explored analyses.  The 

correlations used in this analysis represent the mean values of concave-convex biases as a 

function of spinal configuration.  Patient specific values of these parameters, although difficult to 

obtain, would yield a more personalized investigation of the progressive influence of these 

biases.  However, the developed model may be used to identify spinal configurations in which 

the differences in concave-convex properties become significant progressive risk factors. 

3.2.6 Conclusions 

This novel analysis provides evidence that the presence of concave-convex biases is a secondary 

risk factor that influences the progression of established and advanced scoliotic curves by 

augmenting the magnitude of asymmetrical stresses in the vertebral growth plates.  Quantifying 

these parameters in a patient with scoliosis may improve progression forecasting. 
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3.2.8 Figures and tables 

 

Table 3.1: Article 1 table 1 Material properties of different anatomical structures of the FEM 

           

    Model w/out biases Model w/ biases 

Tissue Zone 
Young's 
Modulus 

(MPa) 

Poisson's 
Ratio 

Young's Modulus 
(MPa) Poisson's 

Concave Convex Ratio 

Growth Plate 

Sensitive  12 0.4 12 12 0.4 

Newly Formed 
Bone 

100 0.3 100 100 0.3 

Transition 300 0.3 300 300 0.3 

Intervertebral 
Disc 

Nucleus 2 0.49 2 2 0.49 

Annulus 8 0.45 8 to 10 8 0.45 

Vertebral 
Body 

Cortical Bone 14 500 0.3 14 500 14 500 0.3 

Cancellous 
Bone 

400 0.3 
400 to 
429.6 

400 0.3 
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Figure 3.1: Article 1 figure 1 a) Posterior view of FEM; b) Vertebral body with growth plate divisions; c) 

Stress zones of interest on vertebral growth plate 

 

Figure 3.2: Article 1 figure 2 Block diagram of algorithm pattern controlling growth simulation 
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Figure 3.3: Article 1 figure 3 a) Lateral left and b) lateral right stress distribution across vertebral growth 

plates of spine model with and without concave-convex factors 

 

 

 

Figure 3.4: Article 1 figure 4 Magnitudes of coronal vertebral wedge angles after 1 year scoliotic 

progression with and without biases as well as for a normal spinal configuration with biases 
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3.2.9 Additional studies related to finite element methods 

3.2.9.1 Sensitivity analysis of spinal loading method applied to the FEM 

Additional sensitivity analyses were performed in order to explore the robustness of the reported 

and discussed results in article 1 section 3.2.  These analyses explored three different methods of 

simulating spinal loading in the FEM.  The first method explored is a follower type load which 

relies qualitatively on description provided by early works by Pathwardhan and coworkers [78].  

That is, each new load introduced over the superior endplates of the vertebral bodies is 

maintained tangential to the curvature of the spine in both the coronal and sagittal planes.  This is 

performed without taking into account the cumulative effect from the loads provided on superior 

vertebral bodies.  The second loading method is a gravitational load which solely applies axial 

loading over each successive vertebra.  The third loading application, the one applied in article 1, 

uses a combination of the above techniques illustrated in figure 3.5.  This combination consisted 

of a gravitation load and an additional 20% of segmental load allocations used in article 1 section 

3.2.3 that respected the follower type load described above. 

 

Figure 3.5: Types of spinal loading explored 

As briefly discussed in the above article 1 section 3.2.4, different loading techniques altered the 

absolute difference in asymmetrical loading as one may expect.  However, the relative difference 

imposed by different methods of loading varied lightly [31-42%] but remained comparatively 

robust.   
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Results from this analysis further supported the governing hypothesis that the presence of 

concave-convex biases in mechanical properties would influence internal stress distribution as 

conclusions were derived from relative interpretations.  Thus, reported conclusions are not a 

function of the experimental assumptions regarding spinal loading.  Conclusions of the influence 

of biomechanical factors (concave-convex biases) as a promoter of asymmetrical loading and 

consequent scoliotic progression proved consisted under a variety of loading techniques. 

3.2.9.2 Sensitivity analysis of spinal alignment of FEM 

This sensitivity analysis was to explore the influence of the initial spinal configuration on the 

reported results.  Results reported in article 1 section 3.2.4 arise from a FEM of a scoliotic spine 

with a Cobb angle of 26 degrees.  To further explore the influence of the biomechanical factors 

(concave-convex biases), the mechanical biases used in the scoliotic FEM were translated into a 

healthy model (no curve in coronal plane) with no coronal curvature and an identical sagittal 

profile.  The model was loaded and both asymmetrical stress and scoliotic progression were 

calculated. 

A healthy FEM with no concave-convex biases returned no asymmetrical stresses.  The healthy 

FEM with the biases returned asymmetrical stresses in the curved region of the spine up to 0.016 

MPa.  As a result, this lead to a scoliotic type progression in the spine with a healthy alignment 

with vertebral wedging reaching a cumulative of 2.7 in the thoracic region. 

Therefore, after initiating one year of spinal growth dynamics, the healthy FEM, including 

mechanical biases, developed vertebral wedging in a reduced but similar manner to the scoliotic.  

This meant that even without the presence of any scoliotic curvature the underlying mechanical 

properties of the vertebral segments manipulated local load distributions in a manner that lead to 

asymmetrical loading.  These findings suggest that if a scoliotic spine, which has undergone such 

biomechanical remodelling (local degeneration of the intervertebral discs, nucleus migration, and 

local increase in trabecular bone-mineral density of vertebral bodies), may still undergo 

asymmetrical loading despite being forced into a normal configuration.  Moreover, results 

support conclusions discussed in article 1 section 3.2.6 and are not solely based on the degree of 

deformity in the explored FEM. 
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3.2.9.3 Sensitivity analysis of computational methods FEM analysis 

The third sensitivity analysis explored the assumptions made in the underlying computational 

methods applied to the finite element software.  Two assumptions were made regarding the size 

of elements used in the cancellous bone and the underlying algorithm used to calculate 

deformations that take place in large elements.   

The cancellous bone region made up the largest volume percentage in the FEM and, for this 

reason, it was advantageous to use large elements to reduce computation time.  Other regions in 

the model had a refined mesh and were not further explored.  In order to explore the influence of 

this decision on the results, a refined mesh size was used and results of stress distribution 

comparing asymmetrical levels on concave and convex stress profiles were explored.  The 

second assumption that was explored was the underlying algorithm that deals with large element 

deformation.  This particular model was developed with performance or computational speed in 

mind.  Therefore special characteristics were selected in order to enhance efficiency and reduce 

time required for simulations.  In order to achieve this, the command NLGEOM, OFF was 

introduced into the underlying code.  When set on, this command essentially includes large 

deformations of the element while it will maintain pressure loads perpendicular or normal to the 

elements (i.e. nodal coordinate system is updated).  Selecting the NLGEOM, OFF command 

assumes that element deflections are insignificant to be included a stress stiffening subset into 

the computational methods.  For the purpose of the developed model presented in this 

dissertation such an assumption seemed to be justified by the use of elements that would undergo 

relatively minute deflection. 

 

Figure 3.6: Sensitivity analysis of trabecular bone mesh size 



74 

 

In order to fully address the extent of this sensitivity analysis an inter-coupled study was 

performed as illustrated in figure 3.6. As indicated, the same spinal loading used in article 1 was 

utilized here. 

Results from this sensitivity study are reported in table 3.2. The size of the trabecular mesh did 

not influence the results i.e., comparison of combinations 1,2,4 with 1,3,4 and 1,2,5 with 1,3,5.  

The computational method named NLGEOM proved to influence the results i.e., comparison of 

1,2,4 with 1,2,5 and 1,3,4 with 1,3,5. 

Table 3.2: Results of trabecular mesh size and computational algorithm sensitivity analysis 

Concave-convex stress difference (MPa) 

1,2,4 0,61 

1,2,5 0,47 

1,3,4 0,63 

1,3,5 0,47 

Therefore, although sparse, the trabecular mesh selected in the above study does not significantly 

influence results.  In contrast, the NLGEOM command seemed to increase the measure of 

asymmetrical stresses over the vertebral bodies.  This is intuitive as this command would take 

iterative steps during its computation to rigidify elements that become heavily distorted.  In other 

words, because the stresses over the growth plate would be, in part, dependent on reaction forces 

provided by the intervertebral disc which undergoes the most deformation and an increase in 

rigidity under the NGEOM command.  Further, the elements on the concavity of the discs would 

become more distorted than those on the convexity thus further enhancing the presence of 

asymmetrical stresses.  Although this computational factor proved to be significant it was 

neglected from the published study for three reasons.  First, because the conclusions are drawn 

on comparing identical simulations except for the presence of the mentioned concave-convex 

biases, the inclusion of NLGEOM in both models provided negligible differences with respect to 
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conclusions drawn.  Second, although this command respects stress strengthening of regular 

materials its relevance is somewhat debatable for physiological tissue.  Further, the intervertebral 

disc realistically contains very complicated compression stiffness which are not taken into 

account in this simplified model thus the inclusion of the NLGEOM command would not be 

justified.  Third, was a question of time.  This command forces a non-linear analysis (iterative 

analysis which ANSYS refers to as a non-linear process) which roughly tripled the time required 

to solve the analysis (from 2 minutes to 6 minutes with a Duo core 2.6 GHz Processor with a 

maximum allocated RAM of 4 GB). 

As discussed in article 1 section 3.2.5, the assumptions adopted over the course of the 

computational analyses were explored and verified. These additional studies supported the 

discussed conclusions gained from the developed FEM. 
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CHAPTER 4 : Study of current fusionless growth modulating devices for the 

correction of adolescent idiopathic scoliosis 

4.1 Framework of second article 

The next step of this thesis project was to explore the performance of current fusionless devices 

aimed at the early treatment of AIS.  This was also an integral study to the completion of the 

general objective of this thesis.  This analysis was made possible by utilizing the methods 

devised during the first article i.e., measures of detailed growth plate asymmetrical loading and 

long term scoliotic progression.  The underlying purpose was to acquire improved knowledge of 

the corrective biomechanics offered by current fusionless devices and, of greater interest, to 

identify their shortcomings.  The realization of objectives 1, 2, and 3 and the investigation of 

hypothesis 2 are presented in the manuscript entitled “Biomechanical comparison of fusionless 

growth modulation corrective techniques in pediatric scoliosis”, for which the contribution of the 

first author is considered to be 85%.  This manuscript was submitted to the journal of Medical & 

Biological Engineering & Computing on August 26, 2010 and accepted for publication on July 2, 

2011. 
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4.2 Article 2: Biomechanical comparison of fusionless growth modulation 

corrective techniques in pediatric scoliosis 
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4.2.1 Abstract 

Fusionless growth sparing implants for the treatment of adolescent idiopathic scoliosis (AIS) 

attempt to manipulate vertebral growth to restore spinal alignment.  This study critically explores 
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different implants utilizing a human spine scoliotic finite element model (FEM).  Stainless steel 

(SS) and shape memory alloy (SMA) staples and flexible tethers were modeled and alternatively 

integrated around the apex of the convexity of the scoliotic model.  Stress profiles over vertebral 

growth plates were obtained.  Two years of growth was simulated with non-instrumented and 

instrumented models, as curvature changes were quantified.  Apical asymmetrical stresses in 

non-instrumented and instrumented scoliotic models with SS staple, flexible tether, and SMA 

staple were 0.48, 0.48, 0.23, and 0.33 MPa, respectively.  Patient data and non-instrumented 

model progressed from 28° to 62° of thoracic Cobb angle over two years.  Projected long term 

thoracic Cobb angles of instrumented models are 31° with SS staple, 31° with flexible tether, and 

34° with SMA staple.  Initial implant compression achieved during instrumentation provided a 

significant influence on initial and long term spinal profiles.  The developed FEM provides an 

effective platform with which to explore, critique, and perhaps enhance fusionless growth 

sparing techniques. 

Keywords: scoliosis, growth modulation, finite element model, fusionless 

4.2.2 Introduction 

Adolescent idiopathic scoliosis (AIS) is characterized by a three dimensional (3D) deformity of 

the spine.  Consequently, this results in irregular spinal loading and internal stress distribution.  

These asymmetrical stresses have been quantified in scoliotic afflicted spines [16], as well as 

having been demonstrated utilizing rigid body and finite element models (FEM) under various 

loading techniques [8,11,29,32].  It is generally believed that these irregular forces play a role in 

the pathomechanism of scoliosis under the Hueter-Volkmann principle, which identifies bone 

growth-rate dependence on local stress magnitudes [17].  Further, when a scoliotic deformity is 

coupled with the peak-growth velocity period of adolescents, the severity of the deformation is at 

a high risk of progression [15]. 

These conclusions emphasize growth plate stress distribution and remaining spinal growth as 

important risk factors to identify, and perhaps exploit, as a means to restore regular alignment to 

scoliotic spines.  Bracing has attempted to address this issue, however, thus far, curve 

observation and bracing share similar and troubling inconsistencies in preventing the need for 

surgical intervention involving fusion [7].  In addition, conflicting variability in curvature 
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development continues to limit progressive forecasting, and thus obscures a clinician’s ability to 

adequately select optimal or case-specific treatments.   

Alternatively, new methods of intervention, which may be conceived as a form of internal 

bracing of the spinal column, are being developed for the early treatment of AIS. Fusionless 

hemiepiphysiodesis utilizing growth-sparing instrumentation provides an attractive treatment of 

scoliotic spines.  In particular, scoliotic patients undergoing pubertal growth with Cobb angles 

between 20° and 30° may benefit from this novel approach, as they require surgical intervention 

at a rate of 70.9% or 100%, if the annual progression exceeds 6° or 10°, respectively [5].  

Growth sparing instrumentation attempts to harness remaining spinal growth in order to 

manipulate vertebral body geometry in an effort to reverse vertebral wedging in the coronal 

plane.  Such an approach would, in theory, maintain a degree of segmental mobility, allow for a 

minimally invasive surgery, and effectively impede, halt, or reverse the scoliotic progression. 

There are a growing number of registered patents that document the endeavor to turn these 

theoretical advantages into tangible solutions for the improved treatment of idiopathic scoliosis.  

These patents consist of conceptual prototypes, as well as implants that have undergone rigorous 

animal and/or human experimental trials.  Perhaps the most serious and hopeful amongst them 

consist of a rigid stainless steel (SS) staple [37], a flexible tether
 
[3] and a shape memory alloy 

(SMA) staple [2].  Although these implants vary in rigidity, all are mechanically similar in their 

attempt to restrict unilateral growth on the convexity of the curvature, which is accomplished by 

locally increasing stress over vertebral growth plates.  Preliminary results obtained with such 

implants appear promising.  Notwithstanding such hopefulness, experimental limitations and trial 

differences add significant difficulty in drawing comparative conclusions concerning the various 

implants’ performance, and therefore restrain translation of expectations and optimism for the 

treatment of AIS. 

Thus, the purpose of this biomechanical study is to critically explore methods of fusionless 

growth modulation in a human scoliotic finite element model (FEM) by quantifying a selected 

method’s ability to: manipulate stress distribution over the growth plates, provide immediate 

corrective influence on spinal alignment, and provide long term correction via growth 

modulation. 
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4.2.3 Methods 

A normal and a scoliotic finite element model of 13 year old female anterior spines were 

developed utilizing ANSYS 11.0 (Canonsburg, PA).  Both models possess normal sagittal 

profiles (kyphosis: 34°; lordosis: 44°), however, while the normal model possesses no coronal 

curvatures, the scoliotic model exhibits a right thoracic curve (Cobb angle of 28°).  Anatomical 

landmarks arose from 3D reconstructive techniques using bi-planar radiographs of the two cases 

providing an accuracy of 3.33.8 mm previously validated for mechanical analysis [6].  Internal 

divisions of the models respect physiological proportions from published studies, specifically: 

0.64 mm cortical shell [9]; 0.62 mm growth plate (immature endplate) [24]; and a nucleus cross 

sectional area proportion of 45% [28].  Anterior and posterior longitudinal ligaments cross 

sectional areas are 38 mm
2
 and 20 mm

2
, respectively [22].  Physiologic divisions include cortical 

and cancellous bone, growth plate, annulus fibrosis, nucleus pulposus, and anterior and posterior 

longitudinal ligaments.  Linear mechanical properties attributed to each zone respect mean 

values of respective data from published studies [33] (Table 1).  Growth plates consisted of three 

individual zones conforming to in vivo observation and previously simulated growth models [14, 

33] (Fig 1).  Sensitive zone includes reserve, immature proliferative and upper hypertrophic 

divisions, all of which are responsive to stress sensitivity [23].  Newly formed bone layer 

consists of lower hypertrophic region in which bone apposition and calcification occurs.  

Transition zone represents a gradual increase in rigidities between cartilaginous growth plates 

and cancellous bone. 

The scoliotic model was alternately instrumented with implants over five vertebral bodies 

centered about the apex (T5-T9).  Implant fixation within vertebral bodies was consistently 

maintained between trials providing each with identical insertion sites modeled as rigid beams.  

Stainless steel staples were provided material properties of surgical stainless steel.  Flexible 

tethers were modeled capable of transmitting tensional force only and assigned material 

properties associated with 3.5 mm diameter polyethylene.  Initial strain of the element (20%) was 

selected to mimic forces required to realign each vertebral segment under consideration, as 

practiced under a clinical setting.  SMA staples were assigned mechanical properties respective 

of surgical body temperature Nitinol in its austenite phase.  This staple was modeled using 

weight bearing tensional elements in order to emulate the initial compression force provided by 
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the temperature triggered phase change.  Initial strain utilized (5%) followed experimental results 

for 8 mm staples [34]. 

Analyses were performed utilizing two parts.  The first consisted of acquiring average 

longitudinal stress profiles on various areas of interest in the stress sensitive zone of growth 

plates (Fig 1).  The inferior surface of L5 is constrained in all degrees of freedom while the 

superior surface of T1 is constrained to oppose transverse deflections.  To simulate body loading, 

each vertebral body superior surface is submitted to distributed load magnitudes respecting load 

allocation ratios derived from Schultz [27] and previously employed in scoliotic FEMs of the 

spine [8, 36] (i.e. 14% body weight over T1 with an additional 2.6% per inferior vertebrae 

resulting in a cumulative 55.6% over L5).  Spinal load vectors in the coronal plane respected 

gravitational direction (z-axis of global coordinate system).  Loading in the sagittal plane was 

maintained tangential to the curve of the spine to insure spinal stability as displayed by the 

resultant load vectors at each level in figure 2.  Stress acquisition over these zones was initially 

performed on the normal FEM and the non-instrumented scoliotic FEMs to collect stress profiles 

from which to compare the stress manipulative ability of the explored implants.  Scoliotic FEM 

was then alternatively introduced with implants prior to initiation of loading in order to simulate 

the pre-operative curve reduction obtained in a clinical setting during the lateral decubitus patient 

positioning [13].  As a result, the scoliotic FEM was instrumented while under a thoracic Cobb 

angle of 16º (43% reduction over loaded non-instrumented scoliotic model).  Once instrumented, 

the scoliotic FEM was submitted to the adopted spinal loading while new stress profiles and 

spinal configuration were recorded.  Initial correction provided by the implant was defined by 

the difference in thoracic Cobb angles between the loaded non-instrumented and instrumented 

models. 

The second part of the analysis involved simulating growth over a two year period.  The 

integrated iterative control system begins with application of spinal loading followed by applying 

calculated growth response to the newly formed bone layer of the growth plates, after which the 

geometry of the model is updated.  This process is repeated during the simulated growth phase 

similar to previously explored scoliotic models [8, 35, 36], which is briefly detailed below. 
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The governing equation, which regulates the level of longitudinal bone growth (G), is based on 

in vivo correlations acquired from quantifying growth rates under external forces for various 

animal species [31].  

(1 ( ))[29]m mG G       

Equation 4.1: Article 2 equation 1 Base of growth algorithm  

This equation provides the ratio of expected vertebral longitudinal growth rates (Gm: 0.8 – 1.1 

mm/yr) [25] according to the difference in magnitudes between scoliotic stress (σ) and regular 

physiological stress (σm).  Sensitivity of the growth algorithm (β) was adjusted to 1.3 MPa
-1

 in 

order to simulate the scoliotic progression of the selected patient, who progressed more than 10° 

per year for 2 consecutive years.  Such corroborative calibration ensured patient specific 

progression which, in turn, served as a constant platform to compare devices.  Finally, 2 years of 

spinal growth was simulated for the non-instrumented and instrumented models while changes in 

coronal Cobb angles were recorded.   

The final step of the study consisted of performing several sensitivity analyses in order to 

interpret the influence of the numerical assumption adopted in the spine and implant models.  

This included repeating all simulations under different loading directions (tangential to curve and 

gravitational in both sagittal and coronal planes), initial strains or pre-tension values assigned to 

flexible tethers and SMA staples (modified by ± 25% of their respective values), and implant 

insertion sites (varied superiorly and inferiorly with respect to the intervertebral disc as shown in 

figure 3).  Initially, the influence of these variables on growth plate stress distribution was 

explored.  The variables that posed significant stress differences were further pursued and their 

manipulation of the thoracic Cobb angle following 2 years of simulated growth was investigated. 

4.2.4 Results 

Stress distribution over vertebral growth plate returned unique profiles for each simulation.  The 

apex (T7) provided the most insightful depiction of the variability invoked by the presence of the 

explored implants (Fig 4).  Standard stress profile, obtained from the normal spine model, 

returned symmetric lateral profiles.  Lateral stresses registered in the left (LL) and right (LR) 

areas were 0.35 MPa collectively, while the average anterior (A, ALL, ALR) and posterior (P, 
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PLL, PLR) stresses obtained were 0.41 MPa and 0.16 MPa respectively.  Stress profile of the 

non-instrumented scoliotic right thoracic model returned similar stress profiles to the normal 

model with respect to anterior (A) and posterior (P) zones, whereas concave (LL) and convex 

(LR) profiles demonstrated asymmetrical loading within the scoliotic spine.  More specifically, 

the concave portion of the apical growth plates yielded a stress of 0.60 MPa, whereas stress in 

the convex section measured 0.12 MPa.  This translates into an asymmetrical loading of 0.48 

MPa.  The instrumented right thoracic models consistently shared similar anterior and posterior 

profiles with both the normal and right thoracic models.  In addition, lateral stress profiles (LL & 

LR) in instrumented models clearly displayed the implants’ attempt to return stress distribution 

to regular conditions, as measured in the normal model.  The scoliotic model instrumented with 

the SS staple had little influence on stress profiles, as they were similar to those observed in the 

non-instrumented scoliotic model.  Introduction of the flexible tether into the right thoracic 

model reduced slightly concave stress to 0.53 MPa, and increased significantly convex stress to 

0.30 MPa in comparison to the non-instrumented scoliotic model.  In turn, these alterations 

adjusted the magnitude of asymmetrical loading to 0.23 MPa.  The scoliotic FEM instrumented 

with the SMA staple provided similar but less effective results to the flexible tether.  Apical 

concave and convex stresses were measured at 0.55 MPa and 0.22 MPa, respectively, thereby 

reducing the asymmetrical loading to 0.33 MPa. 

The simulated growth of the non-instrumented scoliotic model corroborated closely with 

progressive sequence of the patient data, as demonstrated in figure 5 and quantitatively 

summarized in figure 6.  The FEM proposed a Cobb angle progression from 28º to 42º in the first 

year, followed by an increase to 62º after 2 years — whereas the selected patient had an initial 

thoracic Cobb angle of 30º, which became 41º and 62º after one and two years respectively as a 

result of inadequate brace treatment.  After this point, the patient underwent posterior fusion 

resulting in a final thoracic curve of 24º. 

The simulated scoliotic model instrumented with the SS staple displayed a negligible initial 

correction over the non-instrumented model; however, growth results show the implant would 

establish a Cobb angle of 29º after one year, followed by 31º after two years.  As a result, the SS 

staple confined progression to 3º (or a relative increase of 11%) over two years of growth.  The 

scoliotic model instrumented with the flexible tether provided an initial correction that resulted 
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in a post-operative curvature of 23º.  This value translates into a 5º (or 18%) initial reduction 

when compared to the original configuration of the non-instrumented model.  After one and two 

years of simulated growth dynamics the tethered model progressed to a curvature of 27º and 31º 

respectively.  Finally, the SMA staple provided a mild initial correction of 3º (or 10%) over the 

non-instrumented scoliotic model.  The long term post-operative influence of this technique 

predicted a thoracic curve of 29º after one year and 34º after two years.  To summarize (Fig 6), 

after 2 years, the curve of the patient under consideration and the non-instrumented scoliotic 

model progressed by 34° (120%) with respect to the initial scoliotic curvature, whereas the 

instrumented scoliotic model progressed by 3° (11%), 3° (11%), and 6° (21%) when 

correspondingly introduced with the SS staple, flexible tether, and SMA staple. 

Results from the sensitivity analyses with regards to the implant insertion site proved to be 

robust and had less than 5% influence on the magnitude of asymmetrical growth plate stress.  On 

the contrary, the direction of loading proved to have important implications on growth plate 

stress profiles.  Namely, the gravitation loading in both planes invoked a 28% greater 

asymmetrical stress than reported above.  However, in order to couple the progression of the 

FEM with the patient data, the sensitivity parameter () was reduced to 0.6.  Due to this 

corroborative modification to the underlying algorithm, the long term influence of the explored 

implants on spinal alignment showed insignificant transformations to spinal configuration when 

compared to those expressed above.  Finally, initial tension attributed to the flexible tether and 

SMA staple revealed conclusive impact in view of their correction of the scoliotic model.  More 

specifically, using β = 1.3 with a tangential loading while varying the initial strains ± 25% led to 

a 2 year thoracic Cobb angle 30.6 ± 8.7º (SD)  with the flexible tether and 33.3 ± 5.2º with the 

SMA staple.  Under similar conditions, using a β = 0.6 and gravity loading, returned 31.6 ± 4.0º 

with the flexible tether and 33.6 ± 3.7º with the SMA staple. 

4.2.5 Discussion 

Fusionless growth sparing approaches for the treatment of AIS were compared utilizing a 

scoliotic FEM of the spine with integrated growth dynamics.  Results suggest these methods as a 

suitable solution to effectively reduce asymmetrical loading of vertebral growth plates and 

provide immediate post-operative correction.  Moreover, the explored methods achieved long 

term growth modulation resulting in reduced scoliotic progression. 
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Fusionless growth sparing implants should seek to eliminate, if not reverse, asymmetrical 

loading of vertebral growth plates.  Introduction of implants into the scoliotic model confirmed 

the ability of the convex lateral approach to reduce asymmetrical loading of vertebral growth 

plates, an attribute of scoliotic spines believed to play an important role in its progressive 

pathomechanism [30].  However, this biomechanical analysis also demonstrated the difficulty of 

the tested implants to establish sufficient control over segmental stresses, which coincides with 

their struggle to achieve convincing long term curvature correction.  In turn, these results may 

account for the inability of these methods to stimulate contralateral growth as previously 

observed during in vivo studies of the flexible tether and the SMA staple [4].  Reversal of 

vertebral wedging, by means of altered loading, has previously been achieved, suggesting 

vertebral growth is not permanently affected by abnormal stress conditions [18].  Therefore, 

adequate control of growth plate stress distribution via fusionless growth sparing methods may 

effectively reverse vertebral wedging, leading to long term and permanent curvature correction. 

Stress predictions, provided by the developed FEM, corroborated with relevant studies.  The 

growth plate stress profile of the normal (non-scoliotic) model in this analysis predicted an 

average of 0.30 MPa,  a value compatible to in vivo human studies measuring mean standing 

lumbar disc (adjacent to the endplate) stresses of 0.5 MPa [38] and 0.27 MPa [27].  Scoliotic 

asymmetrical loading obtained herein also agree with measurements of asymmetrical stress 

distribution around the apical segment of laterally positioned scoliotic patients with mean 

concave/convex differences of 0.38±0.32 MPa [16].  Alternatively, Stokes reported 

concave/convex differences in the order of 0.1 MPa [29] using a rigid-body model of the lumbar 

spine, which may account for the differences. 

The SS staple, flexible tether and SMA staple displayed the ability to significantly reduce 

scoliotic progression that would have otherwise occurred (Fig 6).  The SS staple achieved 

reliable growth modulation through its high rigidity (a characteristic that dictates the passive 

resistance of the device toward expansion granted by vertebral growth).  Similar to in vivo 

porcine trials using SS staples [37] this study reported no immediate post-operative influence on 

spinal curvature.  Such study showed the SS staple’s ability to induce an average coronal Cobb 

angle of 16.4° (±5.4) after 8 weeks following instrumentation.  However, the inverse method 

(creation of scoliosis on a healthy model) was used.  Therefore, no corroborative conclusions of 
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long term influence may be drawn, as this manuscript explored the percentage of correction 

achieved in a scoliotic spine.  In addition to offering a passive resistance to growth, the flexible 

tether provided an initial force aimed at altering local segmental load distributions.  The flexible 

tether and the SMA staple have been previously examined on experimentally induced scoliotic 

goat spines [3].  On average, after 12 to 16 weeks, the flexible tether provided an initial 

correction of 15.5% and a long term change from 73.4° to 69.9°, or a correction of 4.8%.  In the 

same study, the SMA trial led to an average initial correction of 1.5% followed by a long term 

progression from 77.3° to 94.3° or a 22% increase.  In a human clinical trial of the SMA staple, 

13% of instrumented patients having an average pre-operative curves of 33° (20°- 41°) 

progressed by greater than or equal to 10° or 30%, whereas mixed results were achieved with 

respect to the remainder of the group, resulting in moderate or no progression [2]. 

An important difference between these in vivo studies is that, in reference to the induced scoliotic 

goat trial [3], a control group was used to monitor non-instrumented progression.  This control 

group led to an average coronal Cobb angle increase from 79.5° to 96.8°, thus, establishing a 

progressive model upon which to analyze implants that seek to reverse this effect.  Whereas 

human pre-pubertal curves between 21°and 30° have a high progressive variability [5], making 

human clinical trials a difficult platform upon which to judge the long term success of an 

implant.  Therefore, the analysis of such methods on a controlled finite element environment 

provides a suitable platform to derive relative conclusions that may be used to explain previously 

obtained in vivo results and to predict the feasibility of or optimize new concepts prior to in vivo 

testing. 

Limitations of this FEM study include assumptions associated with spinal loading, which is still 

insufficiently understood.  Loading and boundary conditions were selected to best predict the 

resultant force vectors that arise from gravitational and muscular forces.  To address these 

uncertainties, a sensitivity analysis was performed to explore the influence of these assumptions.  

This analysis supported conclusions expressed in this paper, as relative distinctions achieved by 

the implants proved to be consistent under different loading conditions.  Only the vertebral 

bodies were modeled, since it is known to support a convincing majority of compressive loads 

[1].  Further, the relative motion between vertebrae was monitored to ensure segmental motion 

remained within physiologic range. Moreover, it was previously demonstrated that irregular 
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pedicle growth did not produce scoliotic curves in a FEM [12].  Nevertheless, the authors 

recognize that if a contact between posterior elements occurred it may influence local relative 

displacements between adjacent segments. Although the iterative control system governing 

growth dynamics relies on correlation derived from animal species [31], it has been previously 

modeled to predict realistic rates of scoliotic progression [29, 36].  This biomechanical 

comparison study focused on the device’s ability to manipulate coronal profile while scoliotic 

deformities are defined by a 3 dimensional deformity.  To date, fusionless devices focus on the 

coronal plane deformity and, perhaps, they should also seek to fully address the complexity of 

the deformity as observed in intermediate or advanced scoliotic curves.  The reported results of 

this manuscript were obtained by isolating selected variables in order to draw relevant 

comparisons between fusionless methods.  However, the authors recognize that in a clinical 

setting these methods may be subject to mild alterations with respect to insertion sites.  In order 

to address this concern, implant location was varied to represent possible disparity (Fig 3) and 

had a minute influence on the previously reported results.  Conversely, initial strains attributed to 

the flexible tether and SMA staple significantly influenced their impact on curvature progression.  

Nonetheless, the sensitivity of this parameter is not believed to encumber the reported results as 

its influence was mechanically instinctive.  In contrast, recognition of the significance of this 

factor may in part described the variability observed during in vivo trials of these devices or 

perhaps be exploited to further optimize their performance.   

Although not explored in this analysis, the influence on the health of intervertebral discs must 

not be neglected, considering that these concepts are developed for pediatric use. Such 

apprehension is supported by the observation of irregular stress profiles within the growth plates 

– a phenomenon believed to promote disc degeneration.  Implicated researchers have explored 

this issue and found various stress induced or hypomobility related changes in the discs of 

instrumented segments [10, 21].  In an attempt to address this concern, a fusionless growth-

sparing mini staple has subsequently been developed that does not alter the mechanical 

environment of the intervertebral discs [26]. 

The ability to identify patients at risk of progression prior to the onset of peak growth velocity 

(currently being pursued by Moreau et al. [19, 20]) and improved stress/growth control would 

justify and complement this method of early intervention that attempts to correct or limit 
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expected scoliotic progression.  Despite the fact that the pathomechanism of scoliosis is likely 

multi-factorial, fusionless growth-sparing instrumentation provides many biomechanical 

advantages over conventional treatments.  However, several potential improvements remain to 

be considered.  The use of a finite element platform presents a valuable medium to explore, 

compare, and, perhaps, improve upon methods seeking to corrected spinal deformities via 

fusionless growth sparring instrumentation. 
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4.2.7 Figures and tables 

Table 4.1: Article 2 table 1 Mechanical properties of the finite element model 

Young’s 

Modulus (MPa) 

Poisson’s 

Ratio 

Vertebral Body 
Cortical Bone 

Cancellous Bone 

14 500 

400 

0.3 

0.3 

Growth Plate 

Sensitive 

Newly Formed Bone 

Transition 

12 

100 

300 

0.4 

0.3 

0.3 

Intervertebral 

Disc 

Nucleus 

Annulus 

2 

8 

0.49 

0.45 

Ligaments 

Anterior 

Longitudinal 

Posterior 

Longitudinal 

20 

70 

0.3 

0.3 

Implants 

Stainless Steel Staple 

Flexible Tether 

Shape Memory Alloy 

Staple 

190 000 

275 

80 000 

0.4 

0.3 

0.3 
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Figure 4.1: Article 2 figure 1 a) Postero-anterior view of the instrumented scoliotic finite element model 

b) Vertebral body, intervertebral disc, and detailed growth plate with zones of interest (A=anterior, 

P=posterior, LL=lateral left, and LR=lateral right) 

 

Figure 4.2: Article 2 figure 2 Representation of load vectors introduced in model with reference to a) 

coronal and b) sagittal planes 
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Figure 4.3: Article 2 figure 3 Explored implant insertion sites a) adjacent to growth plates, b) short 

distance apart from growth plates and c) superior offset with respect to intervertebral disc 

 

Figure 4.4: Article 2 figure 4 Longitudinal (normal) Stress in MPa profiles over apical vertebral growth 

plate (T7) of normal model, right thoracic scoliotic model and right thoracic scoliotic model with implants 

over anterior (A), anterior lateral right (ALR), lateral right (LR), posterior lateral right (PLR), posterior 

(P), posterior lateral left (PLL), lateral left (LL and anterior lateral left (ALL) 
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Figure 4.5: Article 2 figure 5 Patient radiographs and non-instrumented scoliotic model at a) 13 years b) 

14 years and c) 15 years & post-operative radiograph following posterior fusion 

 

Figure 4.6: Article 2 figure 6 Progressive results of patient, non-instrumented FEM and instrumented 

FEMs 
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4.2.8 Additional studies related to finite element methods 

4.2.8.1 Removal of loads for pre-operative positioning 

Fusionless devices, including those explored in article 2 section 4.2, are subject to a pre-

operative correction offered by patient positioning in a lateral decubitus position.  This has been 

studied previously and demonstrated that, on average, such positioning provides a curvature 

reduction of 44% [208].  Therefore, for simulation purposes it is of interest to alter the FEM to 

provide this pre-operative correction prior to introducing the explored fusionless devices.  In 

order to represent this via finite element analysis several methods were attempted.  To begin, a 

first technique implied removing the expected loading was attempted i.e., reversing the direction 

of gravitational loading.  Following load removal from the scoliotic model, FEM geometry was 

updated and the coronal and sagittal Cobb angles were measured.  A second technique involved 

performing the same actions describe in the first technique but included registering stresses in a 

text file when the spine was stretched following load removal.  Geometry was updated then the 

stored stress file was fed in to the program, which, in theory, should return the spine to its 

original configuration.  

The first loading technique, load removal and reapplication, did not return the FEM to its initial 

geometry.  The second method, that attempted to make use of stresses to return the FEM to 

initial configuration, was also unsuccessful. 

Upon revision the above observations, such geometric disagreement make sense as upon 

elongating the spine to emulate pre-operative positioning, elements are stretched and then 

updated.  Therefore the elements assume a new shape and are giving the same mechanical 

properties as their original shape.  Upon resubmitting to a new force the element will deform but 

not sufficiently to mimic its new configuration as it would have to deform more than it would 

originally.  The same problem is encountered in the second technique that registered stresses.  

Further, the boundary conditions make it difficult to reproduce what is occurring during patient 

positioning.  The mechanics of pre-operative positioning is a complicated phenomenon to mimic 

mechanically.  Further, there are a number a unknown variables that cause additional 

complications.  In order to avoid this time consuming problem the following steps were taken. 
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Because the model developed over the course of this thesis permits a parametric or user specific 

spinal configurations, original geometry does not depend on reconstructions acquired from 

patient specific data.  Thus, methods applied in article 2 section 4.2.3 constructed a spine model 

with a thoracic Cobb of 16 degrees and, when loaded, adopted a scoliotic deformity of 28 

degrees.  Therefore implants are inserted on the scoliotic spine of 16 degrees (43 % correction 

from the 28 degree curve of FEM when under spinal loading).  Once the implant is inserted the 

spine FEM was loaded the initial correction offered by the implant was coupled with pre-

operative correction gained by patient positioning. 

4.2.8.2 Sensitivity analysis involving spinal loading and boundary conditions applied to the 

FEM 

Spinal loading techniques 

As described within this thesis, FEM loading is a sensitive parameter and must be explored with 

care.  Above in article 2 section 4.2.3, a sensitivity analysis regarding spinal loading is briefly 

described.  This analysis relies on repeating the simulations under a variety of loading 

configurations in order to analyze their influence on the results of asymmetrical loading and 

scoliotic progression.  While load allocation ratios remained the same, the force vector directions 

were varied according to their anatomical planes.  Four types of simulated spinal loading was 

attempted (Fig. 4.7) and are described as a follower type load, a gravitational load, a real 

follower load, and a gravitational & follower type load. 

 

Figure 4.7: Sensitivity analysis of loading alternatives 

The follower type load was developed to be representative of Pathwardhan`s first publication on 

the matter [78].  As explained in section 3.2.9.1, each additional force introduced on the vertebral 
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segments was tangential to the curvature of the spine.  This was programed to hold true in both 

the coronal and sagittal profile.  The gravitational loading format explored was strictly a 

gravitational loading  as previously utilized in similar analyses [7, 73].  This loading method 

maintained all vertebral loads perpendicular to the global reference plane in both the coronal and 

sagittal planes.  This holds true as gravity is a constant, thus, this technique neglects the role of 

stabilizing tissues and adopted muscle activation strategies.  The real follower load relies on 

Pathwardhan`s second publication which identifies the cumulative influence of superior loading 

on each vertebral segment [79].  In other words, local muscular and ligament reactions realign 

vertebral force vectors tangential to the curvature in the sagittal plane.  This was programmed as 

direction of each segmental load was attributed two vectors to assure cumulative consistency as 

observable in figure 4.8.  More specifically, the orientation of each segmental load was 

determined as follows. 

 

Figure 4.8: Vector diagram of real follower load 
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Equation 4.2: Derivation of real follower load algorithm 

The final type of loading explored, gravitational & follower type load is a combination of the 

follower type load in the sagittal plane (successive loading is maintain tangential to spinal 

curvature) and a gravitational load (always in the direction of gravity) was programmed to take 

effect in the coronal plane. 

Boundary conditions 

The boundary conditions imposed on the models are another user defined variable that requires 

further exploration.  With regards to the developed model, several boundary conditions methods 

on the superior endplate of T1 were explored while the inferior endplate of L5 remained 

constrained in all degrees of freedom as observed in figure 4.9. 
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Figure 4.9: Explored Boundary Conditions (1. Top fixed in transverse plane 2. Top fixed in transverse 

plane with integrated pivot 3. Top free) 

The first method, spine 1 in figure 4.9, consisted of a fixation in the transverse plane of T1.  

Every node on the superior area of the vertebra is selected and confined in both the XZ (coronal) 

and YZ (sagittal) planes.  This method would, in theory, provide reaction forces that may be 

considered to be due to muscular tension stabilizing this section of the spine.  Under this 

boundary condition such imposed stability would ensure no movement of T1 in the transverse 

plane while restricting its rotation.  The second technique, spine 2 in figure 4.9, was explored 

because the first boundary condition mentioned above provides a restriction in two planes which, 

in turn, restricts 5 /6 (Ux, Uy, Mx, My, and Mz) degrees of freedom due of its geometric nature – 

a factor not believed to be relevant during spinal growth.  In order to overcome this issue, a node 

was introduced slightly above the centroid of the most superior area of T1.  This node was then 

fixed to the areas circumferential nodes.  As a result, 2/6 (Ux, Uy) possible degrees of freedom 

were fixed as this method allows the free rotation of T1.  The third technique, spine 3 in figure 

4.9, imposed no boundary condition on T1. 
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Experimental plan 

Prior to the setup of the experimental plan, independent preliminary analyses of loading and 

boundary condition techniques were performed to explore their realism. Preliminary simulations 

using the real follower load retuned no asymmetrical loading in the scoliotic spine between 

concave and convex portions as measured by others [209].  Such an observation is not 

realistically applied to a scoliotic spine and this method was excluded from further involvement 

in the sensitivity analysis.  Moreover, comparative analyses using the follower type loading was 

also excluded from further interpretation as it was very consistent with the gravitational and 

follower type load.  Boundary conditions that allowed complete freedom to T1 (spine 3 image 

4.9) was also excluded from further analyses as it returned unrealistic asymmetrical stresses and 

spinal deformations when placed under spinal loading.   

Following these preliminary refinements, several user defined assumptions remained to be 

explored interchangeably (Fig. 4.10).  During this process, the growth algorithm remained the 

same except for the input of healthy stress distribution (m: normal stress from healthy spine 

adapted as a function of loading) and the sensitivity parameter (β) in the governing equation 

(Eqn. 4.1). 

 

Figure 4.10: Sensitivity analysis of loading and boundary conditions 

Prior to analysing the influence of the implants a corresponding progressive model was 

established without any instrumentation.  This was achieved by selecting the loading and 

boundary conditions under consideration and simulating 2 years of progressive growth.  Results 

were then compared to the actual values of patient progression from the case study and the 
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sensitivity variable (β) was adjusted appropriately.  As later detailed, this phase of the analysis 

also allowed for the rejection of certain combinations. 

First, the boundary condition fixing top of T1 in the transverse plane during growth was rejected 

as it imposed too many restrictions on the model during the growth phase.  This is because the 

growth phase should only be restricted with reaction forces from the presence of the implants 

and not the boundary conditions.  Another combination that was excluded from the sensitivity 

analysis based on preliminary results was the use of the pivot during the loading phase.  This led 

to an under constrained model since the resulting asymmetrical stresses over the vertebral growth 

plates were not in the physiological range previously reported on scoliotic spines (0.1 – 0.8 MPa) 

[31, 210].  In addition to elevated asymmetrical stresses, this boundary condition allowed for 

exaggerated progression.  That is, the predicted progression from the FEM was much greater 

than that observed in the patient and the sensitivity variable (β) would have to have been reduced 

below acceptable levels (0.4 -1.7 MPa
-1

) [9, 50]. 

Table 4.2: Thoracic Cobb angle (degrees) results over time for the sensitivity analysis of loading and 

boundary conditions 

 

These educated eliminations left two possibilities (1,3,6 and 2,3,6) that were selected and 

explored under the influence of the implants as represented in table 4.2.  Under these two 

different combinations the influence of the explored implants in article 2 described in section 

4.2.3 are found in tables 4.3 and 4.4. 
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Table 4.3: Sensitivity analysis part 1 – influence of spinal loading and boundary condition on thoracic 

Cobb angle of scoliotic spine with fusionless simulated devices 

 

Table 4.4:Sensitivity analysis part 2 – influence of spinal loading and boundary condition on thoracic 

Cobb angle of scoliotic spine with fusionless simulated devices 

 

From these results, one may observe that the magnitude (relative and absolute) of correction 

imposed by the implants, with respect to the predicted rate of progression, varied mildly 

according to the adopted sensitivity parameter (β).  Despite this variation, the differences 

between implant performances, as discussed in article 2 section 4.2.5, remained.  Therefore, the 

sensitivity analysis of spinal loading and boundary conditions did not alter conclusions put forth 

in article 2. 
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4.2.8.3 Sensitivity analysis of fusionless device insertion position 

Another variable that required additional revision was the implants insertion location. The 

various implants were modeled according to descriptions provided in patents [16-18] and, to 

remain objective, the position of the implants within the spine of the scoliotic model were 

maintained consistent although insertion sites described in published studies suggested otherwise 

[19, 20].  The rigid stainless steel staples are described as being fixed into the vertebral bodies 

via screws penetrating posterolaterally next to the position of the rib head attachment.  The bone 

anchors (screws) of the flexible tether construct are inserted into the convex lateral vertebral 

body, while, in a similar manner, the staple was inserted anterolaterally with the prongs 

positioned over the growth plates. 

In order to address the concern that such variations may significantly influence the results 

provided by the FEM, different insertion possibilities were explored: a) standard insertion 

centered on intervertebral disc b) implant spacing between screw (or prong for SMA staple) and 

the growth plate; c) and implant geometric center offset with respect to the midline of the 

intervertebral disc (Fig. 4.11). 

 

Figure 4.11: Sensitivity analysis of implant insertion site a) regular b) large gap c) offset 

This analysis was performed in terms of exploring the stress distribution across the growth 

plates.  This method of interpretation is therefore very sensitive to changes caused by the 

different implant insertion sites.  Therefore, as previously discussed in articles 1 and 2, the 

sensitive zone of the growth plate was divided into 9 zones of interest for each vertebral body.  

In particular, the apex (T7) of the scoliotic curve was selected as it is the most representative of 

the asymmetrical loading that occurs in the spine. 
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Table 4.5:Stress (MPa) results from sensitivity analysis of implant insertion site 

 

From table 4.5, it could be observed that the variation of implants insertion sites did not 

significantly influence the performance of the implant.  Both the SMA and SS staples provide 

near identical stress distributions while the simulation of the tether provides a mild but still 

negligible variation.  Explanation of this source of discrepancy may arise from irregular 

adjustments of the initial strain values assigned to the implant.  Because the strain is a function of 

initial length appropriate adjustments of this value had to be made.  The impact of the flexible 

tether is highly dependent of this variable because of its low Young’s modulus therefore causes 

mild but noticeable alterations at different lengths.  In order to eliminate further concern of the 

initial strain variable another sensitivity analysis was performed. 

4.2.8.4 Sensitivity analysis of pre-tension in fusionless device 

The final variable that led to further analyses was the initial strain programmed into the SMA 

and flexible tether implants.  These approaches utilise this compressive characteristic to achieve 

one or all of the following: increased implant fixation, initial compression of the vertebral 

growth plates, or initial post-operative correction.  However, mechanical insight suggested the 

FEM would be sensitive to the magnitude of programmed initial strain therefore it was varied ± 

25% of the selected values.  Furthermore, it was believed that the influence of the implant would 

be dependent on the sensitivity factor (β).  Therefore, the influence initial strain in fusionless 

devices (SMA staple and flexible tether – SS staple provides passive resistance to growth) was 

explored against previously verified loading conditions and boundary conditions (combinations 

1,3,6 and  2,3,6 from figure 4.10).  These analyses led to the following corrective profiles of the 

thoracic curvature. 
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Table 4.6:Results of thoracic Cobb angles (degrees) from sensitivity analysis of initial implant stain (%) 

part 1 

 

Table 4.7:Results of thoracic Cobb angles (degrees) from sensitivity analysis of initial implant stain (%) 

part 2 

 

The programmed initial strain of both the tether and the SMA staple affected both their simulated 

initial and long term correction.  Tables 4.6 and 4.7 confirm that the larger the initial strain the 

greater the correction while the converse also holds true, somewhat trivial of a conclusion.  

Notwithstanding, the effect of the sensitivity parameter (β) on the thoracic coronal Cobb angle 

may be measured when comparing tables 4.6 and 4.7.  A lower β leads to a more robust model.  

More specifically, using β = 1.3 with a follower type loading while varying the initial strain ± 

25% led to a 2 year thoracic Cobb angle with the following standard deviations: 31º ±8.7º with 

the flexible tether and 34º±5.2º with the SMA staple.  Under similar conditions, using a β = 0.6 

and force (gravity) loading returned the following: 31.6º±4.0º with the flexible tether and 

33.6º±3.7º with the SMA staple.   

This analysis explored the influence of initial strain (compressive forces provided by fusionless 

devices) on the conclusions reported in article 2 section 4.2.  Based on the results in tables 4.6 

and 4.7 one may reasonably derive that the devices initial compression plays an important role 

on its correction of the scoliotic deformity.  The values used in article 2 respect published 
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measured of both the tether and SMA staples.  Nevertheless, it is of great interest to explore 

alternative pre-tensions to attempt to improve implant performance.  Netwon et al. explored this 

in porcine models and found that although augmented initial tension provided additional initial 

correction, over time (12 months), the differences were no longer significant [166].  Perhaps a 

maximum correction exist, as limited by growth modulation, perhaps surrounding tissues restrict 

additional compression imposed by devices, and perhaps compensatory mechanisms exist in in 

vivo models; nonetheless, initial tension in fusionless devices remains a corrective mechanism 

that merits further investigation. 
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CHAPTER 5 : Performance of a novel intravertebral epiphyseal device for 

the treatment of adolescent idiopathic scoliosis 

5.1 Framework of third article 

The final steps of this thesis project were to explore the performance of the developed devices 

for the treatment of AIS.  A previously explored and patented device [207], the intravertebral 

epiphyseal staple, underwent in silico (objectives 1, 2, and 3) and in situ analyses (part of 

objective 4) aimed at refining and optimizing the device for improved function.  Following 

enhancements, device effectiveness was explored using in vivo experimentation using a 

skeletally immature porcine model.  This device was conceived to exclude the intervertebral disc 

while halting local growth modulation and, consequently, would be an improvement over current 

fusionless device which merely impede (slow) growth as identified through the completion of 

objective 2.  This third manuscript explores the intravertebral epiphyseal device’s ability to 

modify vertebral morphology and spinal alignment.  The sequential realization of objectives 1, 2, 

3, and 4 and the investigation of hypothesis 3 are presented in the manuscript entitled “Spinal 

growth modulation using a novel intravertebral epiphyseal device in an immature porcine 

model”, for which the contribution of the first author is considered to be 85%.  This manuscript 

was submitted to the European Spine Journal on February 2, 2011 and minor modifications 

addressing the reviewers concerns were resubmitted to the editor May, 10 2011. 
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5.2 Article 3: Spinal growth modulation using a novel intravertebral 

epiphyseal device in an immature porcine model 
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5.2.1 Abstract 

Purpose: Fusionless growth modulation is an attractive alternative to conventional treatments of 

idiopathic scoliosis.  To date, fusionless devices achieve unilateral growth modulation by 

compressing the intervertebral disc.  This study explores a device to control spinal alignment and 

vertebral morphology via growth modulation while excluding the disc in a porcine model. 

Methods: A device that locally encloses the vertebral growth plate exclusive of the disc was 

introduced anteriorly over T5-T8 in 4 immature pigs (experimental) while 3 underwent surgery 

without instrumentation (sham) and 2 were selected as controls.  Bi-weekly coronal and lateral 

radiographs were taken over the 12 week follow up to document vertebral morphology and 

spinal alignment modifications via an inverse approach (creation of deformity). 

Results: All animals completed the experiment with no post-operative complications.  Control 

and sham groups showed no significant changes in spinal alignment.  Experimental group 

achieved a final coronal Cobb angle of 6.5°±3.5° (constrained to the 4 instrumented levels) and 

no alteration to the sagittal profile was observed.  Only experimental group ended with consistent 

vertebral wedging of 4.1°±3.6° amounting to a cumulative wedging of up to 25° and a 

concurring difference in left/right vertebral height of 1.24±1.86mm in the coronal plane. 

Conclusions: The proposed intravertebral epiphyseal device, for the early treatment of 

progressive idiopathic scoliosis, demonstrated its feasibility by manipulating spinal alignment 

through the realization of local growth modulation exclusive of the intervertebral disc. 

5.2.2 Introduction 

Adolescent idiopathic scoliosis (AIS) is described by a three dimensional spinal deformity that 

involves wedging and shape asymmetry of vertebrae and discs.  Conventional treatment of AIS 

consists of bracing and instrumentation requiring spinal fusion.  While the former has debatable 

effectiveness [1], the reliable corrective appeal of the later is perhaps offset by its high level of 

invasiveness.  Although the etiology of AIS continues to elude researchers, its pathomechanism 

may result from local growth modulation governed by the Hueter-Volkmann principle, which 

identifies bone growth-rate dependence on stress magnitudes
 
[2].  This notion is further 

supported by vertebral wedging observation in scoliotic spines
 
[3] – a result of reduced vertebral 
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growth on the concavity due to increased loading in conjunction with the converse proceeding on 

the convexity.  In an attempt to reverse this phenomenon, restore spinal alignment, and improve 

treatment options for skeletally immature patients with progressive AIS, several fusionless 

growth sparring instrumentation methods have been proposed
 
[4-8].  In brief, these methods 

attempt to locally harness residual vertebral growth with the purpose of spine realignment. 

Mechanical, morphological, kinematic, and physiological complexities of the spinal column set 

challenging hurdles for implicated researchers seeking to address this issue.  Over the last 

decade, few fusionless growth modulating devices for AIS treatment have undergone 

experimental testing.  These include a stainless steel
 
[4] and shape memory alloy staples

 
[5], and 

an anterior tether made from polyethylene
 
[6, 7] and stainless steel

 
[8].  Such devices attempt to 

locally retard convex spinal growth by enclosing and compressing the intervertebral disc and 

adjacent growth plates.  Consequently, local convex growth retardation is believed to prevent 

scoliotic progression and promote spinal realignment.  Feasibility of these treatments to 

manipulate vertebral growth has been demonstrated; however, their modification of spine 

kinematics and possible influence on intervertebral disc health remains an underlying concern.  

Assuming fixation remains, instrumentation montages utilizing rigid constructs may provoke 

disuse atrophy of surrounding bone
 
[4] or ankylosis and biochemical changes in discs are alleged 

to occur
 
[9].  Although no fusion is performed, success of these methods resides within the solid 

fixation of an otherwise mobile segment.  The tether approach allows for a larger degree of 

freedom in instrumented segments (tether provides no compression resistance).  However, this 

instrumentation montage may induce elevated and harmful stress levels in compressed portions 

of intervertebral discs.  Rodent tails placed under static compression encountered accelerated 

degenerative changes in discs indicated by increased proteoglycan content compared to 

immobilized segments that underwent similar but decelerated trends
 
[10].  Although Newton and 

colleagues reported an up-regulation of proteoglycan synthesis and increased collagen type II 

within discs adjacent to instrumented vertebrae in a bovine model, no morphological or water 

content alterations 6 month post-operative was measured
 
[11].  Despite encouraging insight 

suggesting sustainable disc health gathered from this well performed study, a justifiable concern 

remains regarding long term disc health in adolescents submitted to such instrumentation 

techniques. 
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In an attempt to address the aforementioned concerns, a growth sparring intravertebral 

epiphyseal device that locally modifies vertebral growth without spanning the disc space was 

developed.  The device head is inserted between growth plate and adjacent intervertebral disc 

annulus while the body is fixed to the respective vertebra.  Feasibility of this approach was 

previously demonstrated using a rodent tail model
 
[12]. Presence of device over 4 vertebrae 

induced a mean Cobb angle of 30º after 23 days (inverse approach – device applied to the 

convexity of a scoliotic spine in practice).  However, translation and comparison of these results 

to other studies exploring growth modulating devices is encumbered by the use of a small animal 

tail model.  The purpose of this study was to explore the performance of the intravertebral 

epiphyseal staple, a growth sparing device for the treatment of AIS, on an immature porcine 

model to verify its ability to manipulate vertebral growth and alter spinal alignment. 

5.2.3 Materials and Methods 

The intravertebral epiphyseal device was optimized over previous design [12] using finite 

element software (ANSYS, Canonsburg) and constructed through CAD applications (CATIA 

V5r17, Dassault Systèmes, France) (Fig. 1).  Stainless steel 316L (UNS S31603) was used for 

device and bone screw (25mm by 2.8mm).  Device head was designed for position immediately 

below annulus fibrosus and above growth plate (approximately 5mm penetration) and device 

body is secured using bone screw. 

Surgical Protocol 

Nine immature 3 month old hybrid female porcine (ladrace/yorkshire) weighing approximately 

35 kg were utilized.  Based on statistical predictions, pigs were randomly selected into following 

groups: 2 control (no surgery), 3 sham (surgery without instrumentation), and 4 experimental 

(surgery with instrumentation). 

Methods adopted were approved by Institutional Committee for Animal Care in Research 

(ICACR) of Sainte-Justine University Hospital Centre.  Pre-surgical sedation was achieved 

through intramuscular injection of atropine (0.04mg/kg), azaperone (4mg/kg), and ketamine 

(25mg/kg).  Propofol (1.66mg/kg) was injected intravenously prior to intubation with a 6.5mm 

endotracheal tube.  Automatic ventilation was provided to maintain anesthesia through a mix of 
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oxygen and 1-3% isoflurane.  Pig was positioned in a lateral decubitus position.  Insertion site 

was shaved and prepared with a proviodine solution.  Under a sterile environment right side 

thoracotomy was made between 7
th

 and 8
th

 rib providing sufficient access to vertebrae T5 to T8.  

At this time, the pleura over T5-T8 were cauterized at the location of device insertion in the 

sham group and lesions were closed.  Experimental group underwent transpleural insertion of the 

devices over T5-T8 prior to closure.  Device was fixed unto a custom surgical instrument while 

insertion site was guided via fluoroscopic imaging.  Device was inserted and fixed into position 

by means of bone screw accurately guided through custom surgical tool.  Subcutaneous tissue 

and skin sutures were applied followed by film dressing.  All surgeries were performed by the 

same surgeon.  Pig was introduced with a fentanyl patch (7.5 mg) and intramuscular injections of 

antibiotics (Excenel 3 mg/kg) were administered over 3 days post-operative.  All pigs were 

maintained in individual cages until complete healing of surgical wound after which they were 

allowed to interact in a communal area until euthanasia.  Post-operative follow up lasted 85 days 

or 12 weeks. 

Post-operative analysis 

All test subjects underwent bi-weekly radiographs, under pre-surgical sedations, to provide 

coronal (postero-anterior (PA)) and lateral spine views.  Digitized images provided 

measurements of Cobb angles of interest.  Constrained thoracic Cobb angles were measured 

between superior endplate of T5 and inferior endplate of T8 for coronal and sagittal plane 

analyses.  Measurements were repeated between T4 and T13 to explore influence outside region 

of instrumentation.  Vertebral wedging measurement (angle between vertebral endplates) was 

made over T5-T8 for all groups in coronal plane.  Measures of vertebral height in coronal plane 

were documented on left (non-instrumented) and right (instrumented in experimental group) 

extremities of T5-T8 vertebral bodies in all groups.  Vertebral height differences (left-right) were 

calculated and compared between groups.  Measures were performed on digital radiographs 

using Synapse
®
 3.1.1 (Fujifilm Medical Systems, USA, INC). 

Statistical analyses 

Group sample sizes were determined using a significance of α=0.05 and a power of p=0.80.  

Post-hoc analyses (Cobb angles, vertebral wedging, and vertebral height) were compared 
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between groups using values recorded pre-operatively and immediately prior to euthanasia.  

Successive results (Cobb vs. age, vertebral wedging vs. age, and vertebral height vs. age) were 

collected sequentially and thus not statistically independent.  Areas under the temporal curves of 

these results were calculated using trapezoidal rule and results compared as single variables per 

subject.  Non-parametric Wilcoxon tests were utilized to interpret this data.  Measures 

(constrained Cobb angles, vertebral wedging, and vertebral heights) were repeated by two 

different observers. 

5.2.3 Results 

Minimal blood loss occurred during surgery (<30ml) and no post-operative complications 

occurred.  Average surgery time (with standard deviation) to install all 4 devices, exclusive of 

opening and closure of the incision site, was 10.8±4.8 minutes.  All animals underwent standard 

weight gains of 4.1±0.5kg/week and showed no signs of reduced physical activity. 

Initial coronal radiographs showed no irregular spinal configurations in all subjects (coronal 

Cobb angle=0).  Final coronal radiographs returned insignificant modifications to average 

constrained T5-T8 Cobb angles for both control and sham groups, while experimental group 

finished with an average angle of 6.5°±3.5° (between 3° and 12°).  Measures of constrained T4-

T13 Cobb angles showed no important deviation (<1°) from reported data between T5-T8 and 

were excluded from graph for clarity (Fig. 2).  Bi-weekly radiographs in coronal plane returned 

negligible differences between initial and final Cobb measures in control and sham groups 

(p≥0.44). Such Cobb measures did not significantly diverge between control and sham groups 

during follow up (p=0.56).  Experimental group showed significant modification of coronal 

profile (Fig. 3).  Final experimental coronal Cobb angles measured were significantly modified 

over initial values (p=0.01) while temporal modifications differed significantly from both control 

and sham groups (p0.05). 

Sequential measures of sagittal Cobb angles demonstrated no difference between subjects (Fig. 

4).  Final mean measures involving T5-T8 or T4-T13 were 4.0°±1.4° or 30.0°±1.4°, 3.6°±0.6° or 

26.0°±2°, and 6.3°±0.6° or 25.8°±4.6° for control, sham, and experimental groups respectively.  

All possible post hoc and sequential comparisons of Cobb angles in sagittal plane provided no 

evidence of deviating profiles (p≥0.12). 
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Mean T5-T8 vertebral wedging angles measured in the coronal plane began at 0º in all groups 

and, following 85 days of growth, ended with 0.2°±0.4°, 0.1°±0.5°, and 4.1°±3.6° in control, 

sham, and experimental groups respectively.   This vertebral wedging amounted to a cumulative 

wedging of up to 25° over only four instrumented segments.  No difference regarding initial and 

final wedging values for control and sham groups was measured (p≥0.82) whereas experimental 

group showed significant change (p=0.01).  Sequential wedging measures between groups 

reported no differences concerning control and sham (p=0.56). Experimental sequential data 

differed from control and sham groups (p=0.01) (Fig. 5). 

Final differences in vertebral body heights were evident in experimental group.  Vertebral left 

and right heights of T5-T8 were 0mm±0.5, 0mm±0.6, and 1.2mm±1.9 for control, sham, and 

experimental groups respectively (Fig. 6).  Left and right vertebral height differences between 

initial and final measures did not present themselves within control and sham groups (p≥0.31). 

Experimental group revealed a growth reduction on instrumented portion (right) with respect to 

non-instrumented side (left) of the vertebra (p=0.04).  Difference in vertebral height progressive 

data revealed insignificant deviations between control and sham groups (p=0.77) while measures 

of experimental diverged significantly from control and sham data (p=0.02).  All measures 

(constrained Cobb angles, vertebral wedging, and vertebral heights) between observers did not 

alter reported statistical conclusions. 

5.2.3 Discussion 

A novel growth modulating device for early AIS treatment demonstrated its ability to locally 

modify spinal growth and alignment.  Although the intravertebral epiphyseal device formerly 

confirmed its feasibility on a rat tail model [12], the study discussed herein is the first to 

demonstrate success of a fusionless instrumentation to manipulate spinal alignment without 

spanning the intervertebral discs in a large animal model. 

The device achieved a mean coronal curvature of 6.5° after 12 weeks and a cumulative vertebral 

wedging of up to 25° over only 4 segments and solely targeting one of two possible growth 

plates per vertebra.  Interestingly, coronal Cobb angle measure seemed to level at 123 days of 

age (Fig. 2) despite consistent progression of vertebral wedging (Fig. 5).  To rationalize this, 

there was a trend in the development of reverse intervertebral disc wedging (discs compensated 
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and assumed an opposing wedged to vertebrae) which may be responsible for the Cobb measure 

plateau.  It is possible that radiographs taken while spine is placed under compression would be 

prone to adopt a more pronounced scoliotic curvature than those reported under anesthetized 

conditions.  This speculative behavior was qualitatively observed while manually imposing 

compression loads on excised spines.  Irrespective of such experimental restrictions, the 

intravertebral epiphyseal device was able to effectively modify spinal curvatures. A novel and 

important characteristic of this approach is its ability to control spinal alignment as a direct result 

of inflicting local growth modulation of the vertebral body exclusive of disc compression.  

Accordingly, in a clinical context, this innovative approach would theoretically allow for its 

removal if over correction was obtained without loss of structural alignment.  Nonetheless, disc 

wedging in scoliotic spines remains an important characteristic to progression and, 

correspondingly, correction. 

As a result of the unassuming size and position of the intravertebral epiphyseal device, initial 

corrective ability offered by compression of intervertebral discs is not exploited.  In scoliotic 

spines, comparative measures of disc and vertebral wedging suggest larger vertebral body 

wedging in thoracic spine; the contrary was observed in thoracolumbar and lumbar curves [13, 

14].  However, a longitudinal study using progressive scoliosis patients demonstrated 

intervertebral disc wedging a more important constituent of scoliotic curves up until and during 

adolescent growth spurt followed by vertebral wedging taking precedence following growth 

spurt [15].  Regarding the mechanical factors in the pathomechanism of scoliosis, it is therefore 

reasonable to deduce that, as a result of initial curvature created by disc wedging, asymmetrical 

forces may encourage irregular soft tissue remodeling and/or growth and pose another 

progressive risk.  Although the proposed intravertebral device may not actively alter and correct 

disc wedging, it would halt or inverse progression through its ability to manipulate vertebral 

wedging.  As a result of improved spinal alignment, asymmetrical forces would diminish.  In 

consequence, this system may also passively reduce AIS progression resulting from additional 

soft tissue deformation and/or remodeling. 

The device insertion of 5mm targets resting and proliferation zone of growth plate (immediately 

below annulus).  Theoretically, insertion in this region would not hinder intervertebral disc or 

growth plate health. Previous authors have demonstrated disc rim lesions as a precursor to 
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degeneration in a porcine model [18, 19].  However, the insertion sites in these studies takes 

place in the midline of the annulus at a depth of 13mm and, thus, are not analogous to those 

imposed by the explored device.  Previous analyses of this device on rat tail model returned 

positive results concerning disc and growth plate viability [12].   During spinal extraction 

following sacrifice, the device appeared lightly covered in fibrous tissue; however, no 

macroscopic changes were observed.  Alternatively, quantitative histological and biochemical 

analyses will be conducted to draw more assertive conclusions with regards to disc and growth 

plate health. 

Limitations of this study reside with the sham group and include the use of a quadruped animal 

model.  The sham group may be merely representative of the surgical procedure devoid of 

periosteal irritation related to device insertion.  The putative contribution of perioseal tissue 

cannot be ruled-out although prior investigations of similar intravertebral epiphyseal device in a 

rat tail which included an incision at the site of device insertion (creating a periosteal irritation) 

in sham animals led to no significant growth modulation compared to controls [12].  A porcine 

model was selected as morphology of anterior body of pig vertebra resembles human adolescent 

spines.  Hybrid porcine (ladrace/yorkshire) vertebrae grow at a mean rate of 20 

microns/day/growth plate [18] which translates into 3.4mm (or 1.7mm per growth plate) 

vertebral growth over 12 weeks.  Adolescents, during their 2-3 year growth spurt, grow an 

average of 1mm/year [19] or a total of 2-3mm per vertebra.  Therefore, results achieved using 

porcine model may be realistically utilized to draw inferences to the early treatment of AIS.  

Porcine spines are submitted to 15% to 50% of human stresses [20] and have a second 

ossification zone whereas human vertebral growth plates are bordered by discs.  Such variances 

are perceived not to hinder device performance.  The intravertebral epiphyseal device arrests 

growth through rigidity and position.  This mechanism would not be diminished by altered stress 

magnitudes and lack of subchondral bone above growth plate.  Alternatively, morphological 

differences between growth plates challenge instrumentation techniques.  Device insertion in this 

study was guided by fluoroscopic imaging.  Currently, a custom imaging device is being 

developed to allow device positioning within micro meter accuracy and allow for a minimally 

invasive surgery [21].  Nevertheless, these mechanical and morphological differences should be 

acknowledged when inferring towards human application. 
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In conclusion, this study confirms the ability of the intravertebral epiphyseal device to locally 

manipulate vertebral growth and spinal alignment in a porcine model exclusive of the 

intervertebral disc. 
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5.2.5 Figures and tables 

 

Figure 5.1: Article 3 figure 1 Fusionless intravertebral epiphyseal device 

 

Figure 5.2: Article 3 figure 2 Progressive bi-weekly T5-T8 constrained Cobb angles from coronal plane 

radiographs 
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Figure 5.3: Article 3 figure 3 Example of coronal plane manipulation in excised porcine spine 

 

Figure 5.4: Article 3 figure 4 Progressive bi-weekly Cobb angles constrained between T5-T8 and T4-T13 

measured from sagittal plane radiographs 
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Figure 5.5: Article 3 figure 5 Progressive bi-weekly vertebral wedge angles (measured in the coronal 

plane) 

 

Figure 5.6: Article 3 figure 6 Difference in final left and right vertebral heights measured at 85 days post-

operative 



123 

 

5.3 Framework of fourth article 

The novel intravertebral epiphyseal device explored in the preceding manuscript (section 5.2) 

demonstrated its ability to induce local growth modulation while manipulating global spinal 

alignment.  However, it is essential that the in vivo application of this device maintains 

intervertebral disc health and growth plate function as it is tailored towards adolescent use.  The 

fourth manuscript explores the devices influence on the intervertebral disc and growth plate 

using radiographic and histological analyses.  The realization of objective 4 and the investigation 

of hypothesis 3 are presented in the manuscript entitled “Novel device for the correction of 

paediatric scoliosis: influence on intervertebral disc and growth plate in a porcine model”, for 

which the contribution of the first author is considered to be 85%.  This manuscript was 

submitted to the European Spine Journal on May 4, 2011. 
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5.4.1 Abstract 

Purpose: Fusionless growth modulation for the early treatment of scoliosis should insure the 

long term viability of the intervertebral disc and successfully reduce or arrest local growth.  The 

influence of an intravertebral epiphyseal device, which proved effective control of coronal spinal 

alignment, on disc health and growth plate morphology was explored. 

Methods: A novel device that inhibited local vertebral growth exclusive of the disc was 

introduced over T5-T8 in 4 immature porcine (experimental) while 3 underwent surgery without 

instrumentation (sham) and 2 had no intervention (control).  Three month follow up prior to 

sacrifice provided radiographic (disc height and health) and histological (growth plate 

morphology, disc health, and type X collagen distribution) analyses. 

Results: No post-operative complications were experienced.  Radiographic data returned inverse 

disc wedging (greater disc height adjacent to device) in experimental segments and suggested 

disc viability.  Histological data confirmed device growth modulation through significant local 

reduction of growth plate hypertrophic zone and cell height.  A variability of disc health, 

dependant of device insertion location, was observed.  Type X collagen was consistently 

identified in experimental growth plates and absent from intervertebral discs. 

Conclusions: Intravertebral epiphyseal device decreased growth plate hypertrophic zone and cell 

height, and, reliant on device insertion site, showed positive signs of disc health sustainability.  

Spinal growth modulation achieved exclusive of disc compression, as practiced by this method, 

offers unique advantages over other fusionless techniques.  This technique may provide a 

suitable and attractive alternative for the early treatment of idiopathic scoliosis. 

 

Key Words 

scoliosis, fusionless, surgery, growth modulation, hemiepiphysiodeisis, intervertebral disc 

5.4.2 Introduction 

Idiopathic scoliosis is a 3D spinal deformity whose etiology continues to escape researchers 

while a lack of exploitable risk factors dictating scoliotic progression restricts case specific 

prognostics.  These restraints bound conventional scoliotic treatments to observation, brace 

treatment, and spinal fixation involving fusion.  To improve progressive scoliosis management, 

fusionless growth modulation techniques have been explored.  Propagated by the Hueter-
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Volkmann principle [1], this method seeks to alter local forces within the spine with the purpose 

of correcting and/or reversing vertebral wedging – a phenomenon linked to scoliotic progression 

described under the “vicious cycle” [2].  This approach utilizes residual spinal growth to alter 

vertebral morphology (most commonly seek to halt convex vertebral growth) and, consequently, 

encourage spinal alignment. 

Previous fusionless attempts returned both debatable and promising results.  In a human clinical 

trial, shape memory alloy staples constrained scoliotic progression in 87% of cases (defined by 

progression  10) [3].  Braun and colleagues explored the performance of both shape memory 

alloy staples and flexible tethers in a progressive scoliotic goat model.  Although the staple 

showed no significant difference with untreated group, the flexible tether demonstrated 

considerable corrective abilities [4].
 
 Others investigated a rigid stainless steel staple and 

demonstrated its ability to reduce local growth in a porcine model resulting in important 

deformities (reverse approach)
 
[5]. 

Despite preliminary appeal of these devices, considerable scepticism remains regarding their 

influence on intervertebral disc health.  Such cautious considerations arise from the fact that, by 

spanning the disc space, these methods invariably alter the discs mechanical environment, which 

may lead to local degenerative alterations [6].  Newton et al. demonstrated the flexible tether 

approach to preserve discs health through a detailed analysis [7].  Nevertheless, as these methods 

target skeletally immature adolescents, long term effects remain disconcerting.  In an attempt to 

remedy such distress surrounding disc health, an intravertebral epiphyseal device that does not 

traverse disc space, thus preserving the disc’s mechanical setting, was explored.  In vivo testing 

in rodent [8] and porcine models [9] proved the devices effectiveness to control coronal spinal 

curvature.  However, the insertion location of this device, aimed between the growth plate and 

the disc`s annulus, poses justified suspicion of its particular influence on discs and growth plates.  

The purpose of this study was to explore the influence of the intravertebral epiphyseal device on 

intervertebral disc health and growth plate morphology in an immature porcine model. 

5.4.3 Methods 

Nine immature 3 month old hybrid female pigs (ladrace/yorkshire) were utilized.  Four 

experimental pigs underwent surgery with device introduction.  Three sham pigs underwent 
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surgical protocol, including vertebral puncture, exclusive of device.  Two pigs were maintained 

as control subjects. 

Surgical Protocol and harvest 

Study was approved by Institutional Committee for Animal Care in Research (ICACR) of 

Sainte-Justine University Hospital Centre.  Pre-surgical sedation was achieved using 

intramuscular injections of atropine (0.04 mg/kg), azaperone (4 mg/kg), and ketamine (25 

mg/kg).  Intravenous injection of propofol (1.66 mg/kg) was introduced before intubation using a 

6.5mm endotracheal tube.  Ventilation and anesthesia maintenance were achieved using an 

oxygen and 1-3% isoflurane mix.  Pig was placed in a lateral decubitus position over a heated 

mat.  Insertion site was shaved and prepared with proviodine solution.  Right side thoracotomy 

was made between the 7
th

 and 8
th
 rib providing access to vertebrae T5 to T8.  Experimental 

group underwent transpleural insertion of device between vertebral growth plate and 

intervertebral disc.  Insertion site and device were guided via fluoroscopic imaging.  Device was 

fixed with a 25 mm bone screw through a custom guided surgical tool (Fig. 1).  The pleura were 

cauterized at the site of insertion and lesions were closed in sham group.  Subcutaneous tissue 

and skin sutures were applied at incision site.  Film dressing was used to insure proper healing.  

Pig was then introduced with a fentanyl patch (7.5 mg).  Post-operative intramuscular injections 

of antibiotics (excenel 3 mg/kg) were performed for 3 days.  All pigs were maintained in 

individual cages until lesions were healed.  Pigs were then held in a communal area until 

sacrifice.  Post-operative follow up lasted 12 weeks. 

Immediately following sacrifice, experimental cultured spinal segments with intact growth plates 

and discs were submerged in 4% paraformaldehyde. Segments were decalcified in RDO (Apex, 

Cederlane Burlington, Canada, ON.).  Dehydration was performed using ethanol concentration 

gradients of 40%, 70%, 90%, and 100%.  Lightening was achieved in Xylene.  Segments were 

embedded in paraffin and the region of interest, which included the disc and adjacent growth 

plates (Fig. 2), was sectioned in slices of 5μm. 

Radiographic study 
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All test subjects underwent final pre-sacrifice radiographs while sedated.  Radiographs were 

digitized and intervertebral disc heights measures were performed on using Synapse
®
 3.1.1 

(Fujifilm Medical Systems, U.S.A., Inc.).  Left and right disc height measurements were taken in 

all groups.  Intervertebral disc health of all groups was graded (between 0 and 4) as employed by 

Christe et al [10].  Namely, degree of disc health was projected using osteophytosis measures, 

narrowing disc space, and vertebral plates sclerosis. 

Histological study 

Two 5μm coronal slices, spaced 30 μm, apart, per experimental vertebra were taken from zone of 

interest and stained using safranine-O to highlight growth plate and bring into evidence 

surrounding tissues (Fig. 3).  An optical microscope (Leika MDR) and Bioquant 6.9 software 

was used to measure growth plate hypertrophic zone height, hypertrophic cell height, and grade 

intervertebral disc degeneration.  The hypertrophic zone was easily distinguishable as it begins 

with an abrupt increase in chondrocyte dimension and finishes with intact columns coming to an 

end.  Under a magnification of 10, a sample of 35 measures of hypertrophic growth plate height 

was manually identified in left and right regions.  Similarly, under a magnification of 20, a 

sample of 30 measures of cell height in hypertrophic region was recorded.  As cell height was 

diverse, a range of cell sizes was selected to incorporate this variation.  Mean measures of 

hypertrophic zone and cell heights were computed resulting in statistical comparisons of a 

singular value per region per vertebrae. 

In parallel, experimental segments were treated for type X collagen.  Two 5μm coronal slices, 

spaced 30μm apart, were processed for immunoperoxydase labelling with an in house type X 

collagen staining protocol using a monoclonal antibody anti-collagen X (Sigma C-7974).  

Subsequent to imunoperoxydase labelling, segments were processed with hematoxylin to bring 

into evidence cellular content.  A control segment was also processed to accurately assess type X 

collagen distribution.  Comparison of type X collagen and cellular dispersion was assessed 

between left and right utilizing an optical microscope (Leika MDR).  Under a magnification of 

40, device insertion region was explored thoroughly to interpret tissue morphology.  To 

objectively interpret type X collagen dispersal and tissue characteristics, intra-observer tests were 

performed. 
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Intervertebral disc health of all groups was evaluated using a histological grading scale [10].  The 

scale estimates disc heath using signs of annulus fibrosus laminar orientation, nucleus pulposus 

clefting and necrosis, and distinction between growth plate and subchondral bone margins.  The 

grade selected for each disc was defined by its worst characteristic observed over analysed 

sections. 

Statistics 

Comparative data were analyzed using non-parametric Wilcoxon tests.  Radiographic measures 

compared left and right disc height and graded disc health in all groups.  Disc height (left and 

right) and difference in height (left-right) was compared for each group.  Histological analyses 

compared difference in left and right growth plate morphology for the experimental group.  

Radiographic/histological grading of disc heath, distributions of collagen type X, and tissue 

analyses remain qualitative and were thus reported as such.  All measures were repeated by 2 

observers to interpret influence on statistical conclusions. 

5.4.4 Results 

Device successfully induced a curvature of 6.53.5° under the inverse approach (creation of a 

scoliotic curve).  No pigs experienced post-operative infection or showed altered activity.  Upon 

processing the histological samples, it was noted that 9/16 vertebrae showed device insertion in a 

relevant position to explore its influence on discs and growth plates.  These included samples 

were device presented slightly in annulus, between annulus and growth plate, and/or pierced 

mildly the growth plate.  Other samples (7/16) had devices located inferior to growth plate.  

Accordingly, this position would not significantly influence disc or growth plate health and were 

excluded from analyses.  All groups were investigated via radiographic analysis.  Only 

experimental group was processed for histological and biochemical examinations. 

Radiographic data 

Experimental left and right (device) intervertebral disc mean height and standard deviations were 

respectively 1.8mm 0.5 and 2.6mm  0.7.  Correspondingly, left and right discs of shams 

measured 2.0 mm  0.4 and 2.0 mm  0.3 while left and right control disc zones were 2.2 mm  

0.5 and 2.2 mm  0.5 (Fig. 4).  Only left and right measures in experimental group suggested 
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significant difference (p=0.01).  Sham (p=0.38) and control (p=0.97) measures returned no 

quantifiable difference.  Left and right disc height difference in experimental group diverged 

from both sham (p<0.01) and control (p<0.01) groups while comparison of sham and control 

suggested measurement difference (p=0.26). 

Sham and control discs were graded as 0, no signs of degenerative alteration (0=healthy, 

5=advanced degeneration).  Experimental discs demonstrated no osteophytosis or vertebral plate 

sclerosis signs.  Disc height narrowing was not observed in experimental group compared to 

sham and control groups (p>0.34).  Consequently, experimental discs received a grade 0. 

Histological data 

Differences in growth plate hypertrophic zone and cell height proved different over experimental 

vertebra (Fig. 5).  Mean measures and standard deviations of hypertrophic zone height over left 

and right (device) portion of the growth plates were 125.64μm  16.61 and 61.16μm  8.25 

respectively.  Hypertrophic zone cell height measures were 16.14μm  1.87 over left portion and 

9.22μm  1.57 in right (device) sections (Fig. 6).  Zone and cell heights provided significant 

difference (p < 0.01) between the left and right measures in properly instrumented vertebrae. 

Successful type X collagen staining was confirmed as hypertrophic zone of growth plate was 

brought into evidence in contrast to control slides (Fig. 7).  Type X collagen was consistently 

observed in growth plate regions inferior to device.  No evidence of type X collagen in either left 

or right sections of discs in all segments was observed. Correspondingly, no indication of type X 

collagen surrounding the inserted device head was distinguished. 

Documentation of intervertebral disc health via histological grading (1=healthy, 5=advanced 

degeneration) returned a value of 3 (3/9 vertebrae), 2 (5/9 vertebrae) and 1 (1/9 vertebrae) for 

experimental group.  All segments had a significant increase in cellular content distinctively 

observed surrounding void formerly occupied by device head.  These cells were not highlighted 

using Safranine-O staining and had a fibroblastic morphology suggesting fibrous tissue.  This 

tissue, under a 40x magnification, included signs of nominal vascularisation in 3/9 explored 

segments, resulting in a disc grade of 3.  A grade of 2 was attributed to segments with laminar 

penetration of device into inferior portion of annulus.  Such penetration disrupted laminar 
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orientation reserved to outer portion of annulus.  Score of 1 was credited to segment whose 

insertion site was immediately superior to growth plate and inferior to annulus, thus had no 

influence on disc or growth plate health.  All segments showed no signs of chronic inflammation, 

absence of clefting or necrosis in the nucleus, and growth plate and subchondral bone appeared 

consistently healthy with no indication of invading vascular channels or osteophytes formation. 

5.4.5 Discussion 

A novel intravertebral epiphyseal device for the treatment of paediatric scoliosis demonstrated 

the ability to control coronal spinal alignment in a porcine model.  Objectives of fusionless 

techniques are to correct spinal deformities while maintaining mobility, health, and function.  

The intravertebral device proposes a novel instrumentation method that would tentatively respect 

such aspirations. 

Radiographic analyses confirmed device’s ability to manipulate spinal alignment.  Moreover, 

this interpretation provided evidence of that the flexible intervertebral disc adopted an opposing 

configuration to vertebrae.  Measurements confirm disc wedging converse to vertebral wedging 

previously measured [9].  Evidently, this impedes coronal profile control; however, such a 

restrained expense may be justifiable if spinal health and function is preserved.  Moreover, as 

this approach targets early and immature scoliotic spines, correction magnitudes observed in this 

study (up to 12 degrees Cobb over 4 instrumented vertebrae) may suffice as a treatment to retard, 

arrest, or correct underdeveloped deformities in immature patients. 

Decisive evidence significantly supported the device`s capacity to reduce growth as indicative of 

adjacently reduced hypertrophic zone and cell height.  Others have demonstrated reduction of 

both hypertrophic zone and cell height in growth plates to be representative of reduced 

longitudinal bone growth [11, 12].  These findings support the notion that the device successfully 

reduces height by means of growth modulation. 

In this study, 9 of 16 instrumented vertebrae had device inserted in or immediately adjacent to 

the annulus and/or growth plate while guided via fluoroscopy.  Although radiographic 

examination suggested preservation of disc health, histological disc health grading reported local 

signs of degenerative tendencies consequential to device position.  Nonetheless, histological disc 
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viability outside region of device insertion demonstrated no additional signs that would suggest 

degeneration.  Absence of type X collagen distribution in disc extracellular matrix further 

supported disc viability remote to device.  Previous works have demonstrated that type X 

collagen is expressed in the matrix of degenerated [13] and scoliotic [14] discs.  Such 

differentiations may be initial indication of matrix calcifications related to degenerative 

adaptations.  As expected, type X collagen was present in hypertrophic region of growth plates 

while its continued presence adjacent to device insertion suggests sustainability of growth plate 

function. 

Intervertebral disc health remains a concern with this method.  Although device does not span 

disc space, insertion site requires great accuracy and its position invites unrest.  Insertion 

precision is important both for device’s ability to arrest growth and avoid disc puncturing which, 

as indicative in this analysis, may initiate degenerative adaptations.  Such precision obligations 

may be remedied by reduction of device head thickness and the development of a handheld 

probe based on optical coherence tomography that allows for a real time resolution of 10μm and 

a penetration up to 3mm [15].  Such a probe, allows for per-operative tissue differentiation.  The 

current study did not utilize this probe to position device but authors are confident that, upon 

completion, the custom probe may be coupled with surgical instrumentation to insure exact 

insertion location of intravertebral epiphyseal devices. 

While attempting to infer the influence of this intravertebral epiphyseal device on humans one 

must acknowledge differences.  Adolescent human vertebrae grow at a slower pace while they 

differ anatomically from porcine vertebrae as they lack a second ossification zone amid 

epiphysis and disc.  Only experimental group was processed for histological analyses.  Detailed 

interpretation of the device influence on disc health was nevertheless assessed using common 

interpretative methods.  Although a 12 week follow up may not suffice to deduce long term disc 

and growth plate viability, this study successfully identified areas necessitating improvements.  

Other limitations include the act of decalcifying and embedding vertebral samples which is 

known to alter growth plate morphology [16].  Absolute morphometric measures may be 

imprecise and, thus, authors reserved conjectures to measures derived from relative comparisons. 
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In conclusion, the intravertebral epiphyseal device provides an attractive method to achieve 

fusionless growth sparring instrumentation.  Its minimally invasive procedure and unassuming 

presence may satisfy judicious requirements of aspiring new fusionless treatments tailored to 

progressive adolescent idiopathic scoliosis. 
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5.4.7 Figures and tables 

 

Figure 5.7: Article 4 figure 1 Fluoroscopic image of harvested instrumented porcine spine with 

intravertebral epiphyseal device 
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Figure 5.8: Article 4 figure 2 Scaled depiction of the zone of interest from which biochemical and 

histological analyses were performed 

 

 

Figure 5.9: Article 4 figure 3 Section of instrumented segment (device formerly in void) stained with 

Safranine O 
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Figure 5.10: Article 4 figure 4 Left and right intervertebral disc height measurements 

 

Figure 5.11: Article 4 figure 5 Left and right sections of growth plate under 10x and 20x magnification 
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Figure 5.12: Article 4 figure 6 Measurements of left and right portions of hypertrophic zone and cell 

height of instrumented growth plate 

 

 

Figure 5.13: Article 4 figure 7 a) Positive immunostaining of type X collagen in hypertrophic zone of 

growth plate b) control segment 
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5.2.8 Additional studies related to the comparative measure of osteopontin 

Osteopontin (OPN) is an extracellular structural protein which is biosynthesized by most 

physiologic tissues.  Recent finding have attributed it as a potential progressive risk marker in 

scoliotic spines [127, 128].  More specifically, these studies suggest mutations are present that 

interfere with melatonin signal transduction and, thus, post transduction modifications affecting 

Gi protein function are speculated as a mechanism in the etiopathogenesis of AIS.  Therefore, to 

analyze the influence of growth modulating implants (that seek to induce a scoliotic curve – 

reverse method) on its circulatory concentration, OPN was calculated bi-weekly during the 12 

week post-operative follow up in all groups. 

Blood was taken from each pig in all groups in parallel to radiograph sessions every two weeks 

while sedated (Stresnil, IM 2.2 mg/kg; Atropine, IM 0.1 mg/kg 4ml; Ketamine, IM 10mg/kg).  A 

blood sample of 2ml from the ear was taken using a 5ml syringe with a number 23 needle.  This 

took place over the 12 week post-operative follow up.  Following culture, blood plasma was 

separated and analyzed using enzyme-linked immunosorbent assays.  Statistical analyses 

utilizing t-student test were performed. 

Detectable levels of OPN were nominal in pig plasma.  Pre-operative concentrations of OPN in 

sham, control, and experimental groups were 11.06  3.3ng/ml, 14.72  0.54ng/ml, and 12.72  

0.08 ng/ml respectively.  Successive post-operative measures were 10.80  1.8ng/ml, 11.44  

0.44ng/ml, and 9.92  1.12ng/ml and post-operative at 4 months were 11.11  2.6ng/ml, 11.24  

1.15ng/ml, and 9.83  0.82ng/ml for respective sham, control, and experimental groups.  This 

data are represented in figures 5.14 and 5.15 below.  No statistical differences were identified 

between groups (sham-control, sham-experimental, and control-experimental) at different times. 
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Figure 5.14: OPN result pre and post-operative in all experimental groups 

 

Figure 5.15: OPN result pre and 4 month post-operative in all experimental groups 

This information provides inconclusive trends as statistical significance was not achieved.  

Possibly because a difference did not exist but this inconclusive evidence is believed to take 

place as processing kits used were designed with antibodies recognizing human OPN while pig 

plasma did not offer sufficient cross-reactivity.  For future studies, a speculated alternative 

approach would entail measuring OPN levels (utilizing a developed in-house OPN antibody for 

pigs) after processing the cultured spines using immunohistochemistry and gathering OPN levels 

locally around the implant. 
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CHAPTER 6 : Performance of a novel 3D corrective tether for the treatment 

of adolescent idiopathic scoliosis 

6.1 Framework of chapter 6 

Over the course of the in vivo trial of the intravertebral epiphyseal device described in chapter 5, 

another novel device was conceived.  The device, titled 3D corrective tether (initial invention 

disclosure made on July 29, 2009, provisional patent filed April 14, 2011 by Mark Driscoll, Carl-

Eric Aubin, and Stefan Parent), was engineered to meet distinct design specifications and was 

developed and thoroughly explored using the platform which includes in silico, in situ, and in 

vivo analyses. This device was conceived to addresses the full 3D deformity present in scoliotic 

spines and, consequently, would be an improvement over current fusionless devices which act 

solely unilaterally (identified through the completion of objective 2).  The sequential realization 

of objectives 1, 2, 3 and 4 and the investigation of hypothesis 4 are presented in chapter 6. 

6.1.1 Design specification 

To date, no corrective fusionless device for the treatment of AIS has attempted to address its 

three dimensional characteristic.  In order to achieve this, careful planning in all anatomical 

planes is required to ensure proper direction and magnitude of corrective force vectors. 

Coronal/Sagittal plane correction 

One may manipulate coronal and sagittal planes independently from another by moving the 

insertion site of the screw over the vertebral body.  In a healthy spine (i.e. no axial rotation), the 

normalized coronal and sagittal influence ratios may be summarized in figure 6.1.  This 

interpretation is significantly modified when applied to a scoliotic spine with associated vertebral 

rotation.  Under this consideration, the normalized coronal and sagittal correction ratios were 

also calculated for vertebrae under 15 and 30 degrees of axial rotation as observed in figures 6.2 

and 6.3 respectively.  Given this information it becomes apparent that if one was actively seeking 

to manipulate the coronal and sagittal planes, selection of the screw insertion site should vary 

according to the degree of axial rotation of the vertebra under consideration. 

Notwithstanding, one should note that the projected coronal and sagittal manipulation presented 

in figures 6.1 to 6.3 where made under the following assumptions.  First, the relations were 
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achieved based on the vertebral pivot occurring at the geometric center of mass of the anterior 

vertebral body.  Second, it was considered that the magnitudes of the forces were equivalent in 

order to effectively compare their relative influence while the direction of the force vector was 

maintained normal to the displayed transverse plane.  Finally, it was assumed axial rotation 

would remain the same. 

 

Figure 6.1: Normalized relative moments imposed on vertebra as a function of implant location 

 

Figure 6.2: Normalized relative moments imposed on 15º axially rotated vertebra as a function of implant 

location 
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Figure 6.3: Normalized relative moments imposed on 30º axially rotated vertebra as a function of implant 

location 

Transverse Plane Correction (axial derotation) 

To interpret desired axial rotation for the correction of scoliotic spines, the average degree of 

rotation was acquired for a type 1 Lenke scoliotic deformity using published values from Stokes 

[211].  Such values and corrective angles are summarized in figure 6.4.  The second graph titled 

global (absolute) rotation required demonstrates the total magnitude of vertebral derotation 

required during a surgical procedure in order to fully align all vertebrae of the thoracolumbar 

spine with respect to the transverse plane.  As one would expect, around the apex of the 

curvature (T7-T8) larger inputs are required to achieve proper alignment.  One must keep in 

mind that any rotational inputs induced on a vertebra will directly influence the axial position of 

superiorly located vertebrae (under the assumption that rotational inputs translate to superior 

vertebrae as L5 is considered to be the most grounded reference point).  As a consequence of 

such interpretative assumptions, it is also important to recognize the relative axial rotations 

required for proper transverse arrangement as observed under relative rotation required.  From 

these results it becomes apparent that if sufficient axial correction is achieved at each level, then 

the relative values required for an effective transverse repositioning during instrumentation are 

achievable under the capabilities of conventional instrumentation methods.  Moreover, these 

values identify that the minimum relative rotation required would be present at the apex.  That is, 

if vertebral rotation is corrected, no additional derotation forces would be required at the apex.  

Although the magnitude of vertebral rotation achieved under conventional scoliotic treatments 
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remains a debate, authors have identified that possible corrections lie between 1 and 5 degrees, 

[212, 213] - values within the suggested relative ranges found in figure 6.4 below.  However, to 

date, no fusionless device has attempted nor measured axial correction. 

 

Figure 6.4: Required axial correction for Lenke Type 1 scoliotic curve 

6.2 FEM conception (in silico) 

A 3D corrective tether was devised to meet corrective requirements indicated above in section 

6.1.  Initial analyses were performed using the developed FEM platform to interpret growth plate 

stress distribution, immediate correction, and long term modifications by means of growth 

modulation. 

6.2.1 Methods 

Stress distribution using the proposed 3D tether was explored using the FEM developed through 

the completion of objectives 1 and 2 as reported in chapters 3 and 4.  The 3D corrective tether 

was introduced into the same scoliotic model utilized to explore other fusionless device detailed 

in article 2.  Once introduced, spinal loading was applied and axial stresses over the apical 

growth plate were measured in a healthy FEM (no coronal curve), a non-instrumented scoliotic 
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model, and an instrumented scoliotic model with a tether of varying initial strain (pre-tension) 

using different materials. 

Next, the immediate impact of the device on spinal alignment (post-operative) was explored.  

This was achieved by comparing the final configurations of the loaded non-instrumented FEM 

and the FEM instrumented with the 3D corrective tether.  As an additional step, the immediate 

axial correction was measured and compared to the desired correction previously calculated and 

reported in figure 6.4.  In order to achieve the necessary axial correction, successive tensions in 

the 3D corrective tether were altered. 

The final step consisted of simulating 2 years of progressive growth in the scoliotic model.  

Again applying methods adopted in chapter 4 section 4.2.3, the iterative growth algorithm 

governed this simulation. 

6.2.2 Results 

Figure 6.5 report the apical stress distributions.  A pre-tension of 150 Newtons using stainless 

steel (SS) proved to be the best in terms of altering growth plate stress distribution by reducing 

concave and augmenting convex stresses. 

 

Figure 6.5: Apical (T7) axial stress (Pa) distribution in instumented scoliotic FEM with 3D corrective 

tether using polyethylene and stainless steel (SS) at vayring intial strains compared to non-intrumented 

(NI) scoliotic and healthy FEMs ((LAT) lateral, (PA) posterior anterior) 
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Figure 6.6 reports values of calculated immediate correction offered by the 3D tether in SS at 

varying initial strains.  The coronal Cobb angle was reduced from 28° to 8° using about 150 

Newtons.  The impact on the sagittal plane was not significant under this configuration; however, 

it was verified that sagittal manipulation may be achieved by anterior and posterior displacement 

of device. 

 
Figure 6.6: Immediate impact of 3D tether on thoracic coronal Cobb angle at different initial strains 

Figure 6.7 reports the axial manipulation of the 3D tether device on a scoliotic spine.  A tether 

configuration spanning 7 functional segments from T10 to T4 at varying tensions of 200, 200, 

150, 150, 100, 50, 50 Newtons respectively (high tension to low tension) was able to achieve an 

absolute derotation up to 10 and a relative derotation of up to 8.  When limited to 5 functional 

units, a tether with successive tensions from T9 to T5 of 200, 150, 150, 100, 50 Newtons best 

matched required derotation for a scoliotic Lenke Type 1 as depicted in figure 6.4. 
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Figure 6.7: Immediate absolute and relative axial correction obtained from 3D tether compared to 

required value (calculated in fig. 6.4) 

Figure 6.8 reports examples of spinal configurations after 2 years of simulated adolescent spinal 

growth when instrumented with the 3D tether at varying tensions.  Based on this analysis, an 

initial tension of about 100 Newtons proved the most beneficial under these conditions (thoracic 

curve 28° and two years of adolescent growth remaining).  As indicated, tensions of 150 

Newtons provided a mild overcorrection at the site of instrumentation. 

 

Figure 6.8: Long term correction of scoliotic curve using stainless steel 3D tether at different initial 

tensions 
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6.2.3 Discussion 

Results reported are based on several optimization analyses that explore the material properties 

of the tether, insertion sites of bone screws, initial tensions, and a plethora of tether angles and 

configurations. 

In a trivial manner, results agree with findings of chapter 4 article 2 and indicate scoliotic 

correction is, in part, dependant of initial tension in tether.  However, one must be cautious and 

keep in mind a few additional design factors.  More tension may entail more disc adaptation or 

degeneration.  Also, greater force may place demands too great for the vertebra to handle 

resulting in screw plow (bone screw moving within vertebra).  It is estimated that unconstrained 

screw plow (i.e. screw movement not restricted by attachment) occurred in cadaveric vertebrae at 

about 190 Newtons [214].  Finally, with regards to tether tension, the possibility of 

overcorrection must be considered. 

Each tether is mechanically independent from another and, therefore, local tensional forces may 

vary in isolation of others.  This, as demonstrated in figure 6.7, is a novel aspect to obtaining the 

desired absolute and relative axial rotations.  Evidently, during in vivo instrumentation, such 

adjustment would be performed at the discretion of the surgeon and tailored to the patient’s 

deformity specifics.  However, as discussed in sections 6.1.2, the relative moments in the coronal 

and sagittal planes must be kept in mind when imposing this desired pre-tension.  Finally, 

another factor one must consider is the available long term correction by means of growth 

modulation available, as patient skeletal maturity will vary. 

These in silico analyses supported the 3D corrective tether to provide spinal manipulation in 

three anatomical planes.  To further verify this information, additional studies using in situ and in 

vivo investigations were performed. 

6.3 Analogue spine model analyses (in situ) 

Once design specifications were met using the in silico platform, the device was fabricated from 

technical drawings and further explored using an analogue spine model.  This analysis employed 

a qualitative assessment of the device`s influence on spinal alignment while providing a means to 

develop surgical tools and techniques.  This phase of the developmental platform took place 
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under two iterations for the 3D tether.  The first feasibility study encountered experimental 

problems during in vivo analyses.  Problems were remedied and the in situ and in vivo processes 

were repeated. 

The first trial consisted of using a screw with a large head used as a means to clamp and fix the 

tether between bone and screw (Fig. 6.9 left).  This design provided sufficient strength to 

maintain the forces estimated to take place within a pig spine during in situ tests (100-400 

Newtons).  However, a few problems were encountered during the first in vivo trial.  Bone 

screws had too large of a head and the fixation between the bone screw and tether was not 

sufficient.  Moreover, bone screw threads were not sufficient and mild screw pullout appeared 

with time.  Thus, the problem was resolved and the in situ and in vivo processes were repeated. 

The second trial of the 3D tether consisted of using improved bone screws (Fig. 6.9 right).  This 

was required to address inadequacies experienced within the first design regarding device size 

and fixation problems.  First, a longer screw (as to achieve cortical to cortical insertion) with a 

larger thread was adopted to encourage osseointegration as a means to enhanced long term 

screw/bone fixation.  Second, to address the confined space available, a lower profile head was 

designed and machined.  This head integrated a tapered and threaded slot that allowed the tether 

to pass while under wedged compression in the taper. A set screw drove the tether further into 

the machined wedge and, thus, provided improved and effective screw/tether fixation. 

 

Figure 6.9: Design of first trial (left) and second trial (right) of screw/bone/tether fixation 
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The qualitative assessment of the 3D corrective tether agreed with the axial control measured 

under the in silico platform.  Local adjustments of tether tension provided the ability to alter 

relative rotations of vertebral bodies independently from adjacent vertebrae (Fig 6.10). 

 

Figure 6.10: Example of agreement between in silico and in situ manipulation of spinal alignment by the 

3D corrective tether 

6.4 Porcine model (in vivo) 

The in vivo porcine model trial of the 3D tether construct also took place in two separate parts.  

Experimental methods followed those described in chapter 5 article 3.  The in vivo analysis of 

the 3D corrective tether was performed as a feasibility study.  Thus no control or sham pigs were 

used.  The purpose of this analysis was to investigate if in vivo manipulations of spinal alignment 

provided by the 3D tether in a porcine spine respected those predicted by in silico and in situ 

analyses. 

6.4.1 Methods 

Part 1 of the in vivo tests, involved 1 three-month old pig instrumented from T6-T8.  

Experimentally, part 2 underwent several modifications over the first.  This analysis utilized 3 

four-month old pigs and instrumented T9-T12 in order to target larger vertebrae.  The second 

trial also used an improved screw design as indicated in figure 6.9.  Both groups were followed 

for 12 weeks.  All pigs were instrumented by means of a right side thoracotomy.  Bone screw 

insertion sites were bored prior to screw insertion using custom surgical tools.  A stainless steel 
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tether was then joined to the bone screws via a compression fixture.  Subcutaneous tissue and 

skin sutures were used to close the incision.  Post-operative bi-weekly dorsal-ventral and lateral 

radiographs of sedated pigs were taken until sacrifice.  Radiographic images were digitalized and 

measures of Cobb angles together with vertebral and disc wedging were acquired in the coronal 

and sagittal planes while axial rotation was also analyzed.  All measured were performed using 

Synapse
®

 3.1.1 (Fujifilm Medical Systems, USA, INC). 

6.4.2 Results part 1 

The first pre-clinical trial manipulated the coronal plane, axial plane modifications were not 

sufficient to record, and sagittal plane was slightly altered (sagittal plane not targeted in this 

analysis but it is maintained that the 3D tether may alter the sagittal plane if desired).  Following 

30 days post-operative, one of the screws was loosened and pulled out at T8 and, consequently, 

the integrity of the screw/tether assembly suffered.  Prior to the pull-out, inverse disc wedging 

was observed (opposing induced vertebral wedging) while the tether construct achieved a mean 

vertebral wedging of 3 and a mild coronal Cobb angle of 10.  Measures of the sagittal plane 

went from 34 to 41 after 33 days post-operative. 

 

Figure 6.11: Sequential post-operative coronal Cobb angles of first in vivo trial using 3D tether on a 

porcine spine prior to screw loosening 

With reference to the sagittal profile radiographs, the successive pedicle offset of adjacent 

vertebrae support the achievement of axial rotation.  However, experimental limitations impede 

the objective measure of axial rotation. 
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Figure 6.12: Digitized radiographic images of first in vivo trial of 3D tether in pig spine 

 

6.4.3 Results part 2 

Similarly to the first trial, this device design also led to vertebral wedging as a result of 

unilaterally compressed vertebral growth plates.  Inverse vertebral wedging was also reported 

i.e., disc height is greatest adjacent to device.  Mean measures of vertebral and disc wedging was 

2.6° and 1.1° after 61 days respectively.  The average final post-operative Cobb angles were 

between 1 to 3 degrees.  The sagittal profile fluctuated between 30° and 33° over the course of 

the post-operative follow up. 

 

Figure 6.13: Sequential post-operative measures of vertebral and disc wedging angles in the coronal plane 
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Figure 6.14: Post-operative dorsal-ventral radiograph of 3D tether after 30 days 

Screw pullout and loosening occurred in 2 of 3 pigs.  This loosening may be observed in the 

lower screw in the sequential radiographs of pig a) in figure 6.15.   Other screw loosening was 

confirmed during spinal culture following sacrifice. 

 

Figure 6.15: Digitized post-operative radiographs of 3D tether in pig spines 
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6.4.4 Discussion 

Two in vivo trials of the 3D tether took place using skeletally immature pigs.  The device proved 

its ability to modify the coronal profile by means of local growth modulation observed through 

consistent vertebral wedging.  Sagittal manipulation was not targeted in this study and, 

correspondingly, no significant modification to the sagittal profile was observed.  Axial rotation 

was not sufficient to conclude with confidence the devices ability to modify this vertebral 

orientation. Qualitatively, axial rotations (when screw fixation remained) were observable by the 

offset of the posterior processes (Fig. 6.14); however, insufficient data was available to realize 

statistical support.  Moreover, the ability to objectively quantify vertebral rotation by means of 

3D reconstruction was hindered by the change in position of the pig during dorsal-ventral and 

lateral x-ray.  Although the Perdriolle torsionmeter and Cobb methods may be adopted to 

analyze axial rotation by means of posterior radiographs, the accuracy offered by these methods 

is not sufficient to conclude with confidence the presence of axial manipulation in this study 

[215, 216]. 

Both in vivo trials returned signs of inversed vertebral wedging.  There are three reasons believed 

to induce this inverse local wedging of the discs which hinders the global control of the device 

on spinal alignment.  As speculated by Newton et al., who also measured inversed wedging when 

exploring fusionless growth modulating devices in a porcine model [164, 166], it is believed that 

the devices explored herein led to intervertebral disc remodelling due to augmented 

asymmetrical stresses imposed by the devices.  Interestingly, this assumption is not feasible to 

explain the inverse wedging of the discs measured in the intravertebral epiphyseal device 

(Chapter 5) as it does not alter the loads over the disc.  Thus, although disc remodelling may lead 

to inverse wedging, it is also believed to be due to the dorsal-ventral position of the pig during 

the radiograph.  This position may place a tension over the spine and remove curvatures by 

means of reverse disc wedging.   A final possibility is that a compensatory position is adopted by 

the pig as to remove undesirable coronal curvatures within their spine. 

A biological follow up of the spinal segments was not performed in this study.  However, pig 

spines were cultured following sacrifice and submerged in paraformaldehyde where they are 

maintained at 4 degrees Celsius for future histomorphometric and histological analyses.  These 

analyses will allow for a greater understanding on the mechanism of correction offered by the 3D 
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tether.  In addition, further interpretation of the devices influence on the health of the 

intervertebral disc should be performed and, if needed, modifications should be conducted to 

encourage a viable disc environment. 

Unfortunately, experimental limitations impeded both these investigations.  Parts 1 and 2 

experienced problems of screw fixation believed to be related to under sized screw threads or the 

lack of cortical to cortical penetration.  Despite these apparent restrictions, it is still hypothesized 

that the 3D tether has the novelty of correcting a scoliotic spine in all three anatomical planes.  

Further, in vivo testing on a larger animal model, while ensuring adequate screw fixation, will 

allow one to truly analyze the innovative spinal manipulation offered by the 3D tether as 

revealed through in silico and in situ analyses reported in sections 6.2 and 6.3 respectively. 
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CHAPTER 7 : GENERAL DISCUSSION 

Fusionless devices for the early treatment of AIS offer many appealing advantages over 

conventional surgical treatments. A literature review however indicates that uncertainties remain 

regarding the biomechanics of the pathomechanism of AIS and of the corrective avenues 

attempted by current fusionless methods. 

In an attempt to address these issues and to bring an improved theoretical base to fusionless 

treatment, a FEM was developed.  The purpose of this thesis was to develop a finite element 

platform of the spine with integrated growth dynamics, use the FEM to investigate 

biomechanical factors involved in AIS pathomechanism, use the FEM to analyse current 

fusionless devices, and to develop, optimize, and evaluate improved fusionless devices for the 

treatment of AIS using a platform that includes in silico, in situ, and in vivo analyses. 

The development of the computational platform or FEM was an integral aspect of this thesis.  

The devised spinal FEM proved to be effective and corroborated with patient specific 

progression (Fig. 0.5) and predicted asymmetrical forces that agree with published literature 

(0.15 – 0.8 MPa in articles 1 and 2 correspond to stresses detailed in table 1.4).  The model was 

designed and programmed to be utilized as a comparative platform (i.e. explore biomechanical 

factors and devices against the lack thereof).  As a result, various assumptions were adopted in 

order to achieve calculations within a sensible time frame and render the evaluation of an 

otherwise indeterminate system possible.  In spite of such simplifications, additional steps were 

taken to insure that reported results held true and were thus robust under variations of the 

selected assumptions (spinal loading, boundary conditions, and parameters of computational 

algorithm).  Such comparative analyses allowed for engineering and clinical insight to be derived 

and, when suitable, further explored. 

In an attempt to improve biomechanical understanding of AIS, a theory entitled physiological 

stress shielding was explored in the scoliotic spine FEM (such theory was later applied to 

develop novel implant concepts).  This notion, suggested that underlying mechanical factors 

found within a scoliotic spine would encourage and augment the risk of scoliotic progression 

(hypothesis 1).  More specifically, the hypothesis projected the idea that a local offset of 

mechanical properties in scoliotic spines, caused by remodelling, would augment asymmetrical 
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loading and encourage scoliotic progression.  That is, the concave portion would become more 

rigid while the convex portion would become less rigid or remain the same.  Such differences in 

mechanical properties are known to lead to stress shielding in the context of rigid prostheses; 

however, the theory of physiological stress shielding occurring within a scoliotic spine is novel.  

Moreover, the functional application of such a hypothesis is related to the Hueter-Volkmann 

principle and scoliotic progression which suggest that increased loading will lead to augmented 

progression.  Therefore, it was believed that physiological stress shielding in a scoliotic spine, if 

it was to take place, may serve to identify patients with added risk of progression – a prognostic 

attribute required to justify an early intervention such as growth sparring instrumentation. 

This first study utilizing the developed FEM explored the aforementioned theory (article 1, 

chapter 3).  This FEM analysis affirmed hypothesis 1.   That is, upon the inclusion of the offset 

of mechanical properties calculated to occur in AIS patients, increased asymmetrical stresses 

measured at the apex was greater than 25% and increased vertebral thoracic wedging of up to 1° 

(10-20%) occurred.  However, such measures are not significant enough to identify with 

confidence those at risk of progression.  It is important to note that the offset of mechanical 

factors utilized in this experiment represent the mean values.  Perhaps, patients with larger 

mechanical offsets (greater increase in concave bone and disc rigidities and augmented convex 

migration of nucleus) may undergo exaggerated progression based on the explored hypothesis. 

Thus, the identification of an irregular distribution of spinal mechanical properties may be 

valuable measure to forecast progressive risks. 

Hypothesis 1 was verified via computer modeling and not by means of experimental studies.  

Although results from the modeling simulations may be deemed objective, this notion has yet to 

be experimentally verified under in vivo conditions.  At the time of this thesis, such a concept 

was not easily verifiable as mechanical property prediction from available medical imagery was 

neither achievable nor commonly practiced in a clinical context.  Predictions of patient specific 

cancellous bone density and rigidity may be achieved via CT-scans [217].   Furthermore, a group 

under the supervision of Dr. Delphine Périé (Associate Professor at École Polytechnique) is 

working on new methods to predict intervertebral disc properties using MRI images.  Therefore, 

a combination of this data could be used in a prospective study to further support and verify that 
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these mechanical biases may be adopted as an effective marker for advanced risk of scoliosis 

progression. 

There exist various other scoliotic morphological differences between evolutive and non-

evolutive AIS patients accentuated by a retrospective study [218].  These include wedging of 

apical disc, axial rotation of inferior junctional vertebra, torsion, and height width ratios of 

vertebra.  The developed FEM platform would be an effective method with which to further 

explore the biomechanical influences of these modifications. 

As for all FEM analyses one must be aware of limitations.  First, as previously detailed, FEMs 

include assumptions that simplify reality to insure computational feasibility.  These assumptions 

must be explored via sensitivity analyses to document their influence on the derived conclusions 

(chapter 3 section 3.2.9 and chapter 4 section 4.2.8).  Second, FEM simulations aid greatly in 

advancing knowledge of mechanical aspects of the spine but, to be conservative, insight gathered 

should be limited to relative deduction and not absolute quantifications. 

A parallel objective to exploring possible mechanical factors involved in the pathomechanism of 

AIS was to acquire a mechanical comfort, per se, regarding the manner in which loads are 

dispersed within the spine – a key to developing new fusionless methods that seek to manipulate 

spinal growth plate loading. 

The next stage of this thesis was concerned with exploring the biomechanics behind current 

fusionless treatments of scoliosis while making use of the developed FEM and previously 

utilized methods of documenting comparative asymmetrical growth plate stress and scoliotic 

progression.  To begin, the FEM was integrated with different fusionless growth sparring devices 

(article 2, chapter 4).  The explored devices were chosen on the basis that, amongst a plethora of 

related devices (patent review table 1.6), they appeared the most promising and commercially 

driven.  This included a SMA staple, SS staple, and flexible tether.  These devices were critically 

explored on the developed FEM platform.  Results supported this fusionless approach and 

affirmed hypothesis 2.  That is, compression and passive expansion resistance focused on the 

convexity of the spine reduced asymmetrical loading by more than 35% and showed the ability 

to limit scoliotic progression by 10% in a scoliotic FEM after 2 years of simulated growth. 
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Although the FEM predicted the biomechanical feasibility of these devices, more importantly, it 

highlighted their shortcomings and provided valuable inferences into plausible methods of 

improvement.  An important factor employed by these devices is their ability to alter loads over 

the vertebral growth plate.  As a result of the selected approach (compressive isolation of the 

contralateral convex growth plate), these devices may induce an environment of hypomobility 

over the intervertebral disc, a phenomenon attributed to disc degeneration [29].  This undesirable 

influence on the disc could be avoided in two ways.  First, an implant that would not span the 

intervertebral disc space would not alter the local mechanical environment.  Second, a method 

that allowed for a certain degree of mobility to be maintained or introduced controlled dynamic 

stimulus would encourage the maintenance of a healthy disc environment.  Another important 

characteristic identified through the use of the FEM platform showed that although convex 

growth was reduced, it was not arrested.  Moreover, this FEM investigation confirmed the lack 

of initial and long term 3D control over spinal alignment offered by the explored fusionless 

concepts. 

Subsequent to these interpretations, ten novel fusionless growth modulation devices were 

conceived, modeled, and explored over the course of this thesis using the in silico platform.  

Amongst them, two devices were selected for further development and investigation by means of 

in situ and in vivo analyses: an intravertebral epiphyseal device (seeks to arrest local vertebral 

growth without spanning the disc) and a 3D tether (seeks to manipulate all anatomical planes). 

The intravertebral epiphyseal device previously demonstrated its feasibility on a rat tail [165].  

Alterations performed to this original device were explored and achieved while using both 

CATIA and ANSYS (in silico FEM platforms with 3D design capabilities) and initially verified 

via in situ testing with an analogue spine model.  Such improvements to the former device took 

place in order solve previously encountered problems of device post-operative migration and 

fixation experienced in the rate tail model.  In brief, the dimensions were altered to respect the 

morphology of immature pig vertebra.  Bone screw selection was improved and device/bone 

screw interface was accurately designed to include a counter sink and press fit in order to restrict 

degrees of freedom between the two bodies.  Moreover, an important circumferential curvature, 

which more accurately mimicked vertebral body profile, was introduced as to eliminate fixation 

and device migration problems previously encountered in the rat tail study.  Finally, a custom 
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surgical tool was designed and fabricated to guide device insertion and allow for screw fixation 

to be accurately achieved with ease. 

In vivo result of the improved intravertebral epiphyseal device explored in a porcine model 

proved to be notable and affirmed hypothesis 3 (articles 3 and 4, chapter 5).  This device 

manipulated vertebral morphology and achieved wedging greater than 4° with sustainable 

influence on the intervertebral disc.  Inverse method was used (creation of scoliotic deformities 

as the goal).  An important aspect of this approach, suggested by relatively small curvature 

control observed, is that the intravertebral epiphyseal device is perhaps best fit for early curves 

showing signs of progression.  The accurate identification of patients at risk of early progression 

would thus greatly complement and further justify this device as a means of early intervention.  

Moreover, as the intravertebral epiphyseal device does not seek to manipulate local forces, as it 

seeks to passively halt growth, its applicability to advanced curves may be hindered.  Advanced 

scoliotic curves are coupled with irregular force distribution.  This factor would not be initially 

altered by the intravertebral device.  It is believed that, with time, the intravertebral device would 

passively correct the deformity and thus return spinal forces to regular standards.  However, 

another conceivable scenario under such context is that the implication of the asymmetrical 

forces overshadows the correction provided by the intravertebral device.  Therefore, for the 

moment, the intravertebral epiphyseal device is tailored as an early method of intervention.  

Alternatively, additional studies of the influence of the intravertebral staple on a progressive 

animal model would further support and persuade one of its corrective abilities over a larger 

range of scoliotic deformities. 

Following radiographic and histological analyses of the disc and growth plate, instrumented 

vertebrae showed positive signs of disc and growth plate viability (article 4). This analysis 

suggested effective growth modulation was achieved and intervertebral disc health was 

unhindered outside the region of instrumentation.  Conversely, at times, disc health surrounding 

the insertion of the intravertebral epiphyseal device showed a tampering of disc space.  That is, 

degenerative signs were identified most commonly by the adoption of fibrous tissues 

surrounding the device head.  These encouraging results may be further enhanced through minor 

alterations to the device and surgical procedure. 
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The introduction of slits or voids into the device head (portion inserted into spine) may alleviate 

obstruction of disc space and further encourage the conservation of disc health.  These slits 

would vastly reduce the amount of outer annular fibres that are incised by the device insertion (as 

observed in the histological analyses) – a key characteristic of the outer annulus to maintain 

compression resistance.  Moreover, such slits would allow for a greater nutrient diffusion 

between vertebral body and intervertebral disc.  Finally, if required, removal of the device 

containing these slits would induce less laminar lesions and, thus, further encourage adequate 

healing.  Another possible improvement may be achieved by the reduction of device head 

thickness as to solely target the upper zone of the growth plate without hindering the disc.  

Finally, the development of a custom surgical endoscopic guidance system, being advanced in 

parallel by the team of Pr. Caroline Boudoux (Assistant Professor at École Polytechnique), 

would insure accurate positioning of the device [219]. 

The intravertebral epiphyseal device offers the novelty of excluding the intravertebral disc in its 

attempt to realign the spines of patients with AIS.  The exploited experimental platform 

confirmed the intravertebral device to be a plausible early treatment for progressive AIS patients. 

Conversely, AIS patents with advanced scoliotic deformities often include deformations in all 

three anatomical planes.  This cohort would benefit from initial correction offered by disc 

compression and would be more effectively treated with a device that offers a 3D correction.  To 

address these concerns, another novel device was devised during this thesis.  A 3D tether was 

also developed, optimized and explored in this thesis.  Both in silico and in situ analyses 

confirmed the 3D tether`s ability to effectively manipulate all three anatomical planes.  In vivo 

analyses however experienced difficulties with limited anterior vertebral space (related to 

porcine model) for device insertion and inconsistent screw fixation.  Moreover, experimental 

limitations restricted objective conclusions concerning axial manipulation to be derived.  

Nevertheless, hypothesis 4 was partially verified.  The 3D tether achieved vertebral wedging of 

up to 4° after 12 weeks in a porcine model.  Vertebral rotation greater than 5° was confirmed in 

in silico and in situ models but experimental limitations restricted its affirmation under the in 

vivo analysis.  Inverse method was also used (creation of scoliotic deformities as the goal). 
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It is advisable that the 3D tether be pursued under the following modifications.  First, as screw 

and tether dimensions were selected under a generous safety factor of 1.5 (in the absence of 

accurate data, worst case configuration was used), this may be reduced to adopt smaller 

dimensions to tailor to reduce anterior vertebral body space in pig vertebra.  Alternatively, the 

current device may be explored on a larger animal model.  A porcine model has an anterior 

vertebral body size (sagittal height and width) of roughly half of human vertebra [220].  In 

contrast, a bovine model has larger vertebral morphology to that of humans [221].  Moreover, 

bovine spines have previously been utilized as a pre-clinical model for fusionless devices [159, 

160, 173].  Finally, cortical to cortical screw fixation must be achieved to insure that screw 

pullout or screw plow is avoided.  These modifications will offer an attractive avenue to explore 

the 3D tether while maintaining improved structural and fixation integrity. 

Another alternative is utilizing a material with a less aggressive stress/strain relationship as to 

allow for a more consistent compression of the targeted growth plates by the 3D corrective 

device.  To elaborate, the modulus (linear relation between stress and strain) of the applied 316L 

stainless steel is about 190 000 MPa while polyethylene is 275 MPa.  Therefore, if relative 

motion of the tether occurs between fixations (bone screws) stainless steel will resist this 

transition with 690 times more force (assuming identical cross sectional area and deformation 

takes place in elastic region of stress/strain curve).  Such a vast increase in force may not be 

necessary to halt vertebral growth. Moreover, it may cause fixation problems of the screw which 

is predicted, in ex vivo vertebrae, to dislodge at between 188 and 562 Newtons [214].  Finally, 

polyethylene thickness may be selected as to fail at a desired tension in order to avoid dangerous 

screw movement due to screw/bone interface breakdown. Given the vast dynamic mobility of the 

spine and the large forces distributed within, polyethylene may be the more logical selection for 

future studies; however, as predicted under in silico analyses (section 6.2) a loss of corrective 

abilities is to be anticipated. 

To date, there are no fusionless devices for the treatment of spinal deformities that claim to 

actively pursue 3D correction.  Preliminary analyses of this device were promising and thus a 

provisional patent was filed (April 14, 2011) to protect the novelties of the 3D tether device. 
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CHAPTER 8 : CONCLUSIONS AND PERSPECTIVES 

This doctoral dissertation describes improved understanding of biomechanical factors involved 

in the pathomechanism of AIS and in the corrective avenues exploited by fusionless treatments 

utilizing growth modulation.  This enhanced comprehension in combination with a thorough 

experimental platform employing in silico, in situ, and in vivo analyses has led to the 

development and evaluation of two novel fusionless devices. 

The developed FEM permitted exploration of biomechanical factors implicated in scoliotic 

progression. The presence of a mechanical bias between concave and convex regions in the spine 

mildly increases asymmetrical loading and, consequently, encourages scoliotic progression.  

These biomechanical factors are believed to be a secondary risk factor involved in scoliotic 

progression.  Additional studies using a prospective analysis of scoliotic patients are advised to 

further substantiate these findings and, if applicable, conceive feasible clinical screening 

methods. 

The elaborated FEM confirmed the ability of current fusionless devices (SMA staple, SS staple, 

and flexible tether) to reduce asymmetrical growth plate loading and decrease scoliotic 

progression by means of unilateral convex growth modulation; however, several potential 

improvements were made evident. The developed FEM platform and experimental methods 

provide an effective means to enhance current or devise novel fusionless devices for the 

treatment of AIS. 

The intravertebral epiphyseal device, which was improved over preliminary designs, 

manipulated spinal alignment through the realization of local growth modulation exclusive of the 

intervertebral disc in a porcine model.  Additionally, analyses of intervertebral disc and growth 

plate health and morphology revealed the viability of these physiological structures given 

accurate device positioning.  A final pre-clinical trial is advised to include suggested 

improvements prior to adapting device to human application and moving forth with a clinical 

trial. 

The 3D tether, which was conceived over the course of this thesis, returned promising results 

which confirmed its application as a plausible corrective method for AIS.  Manipulation of spinal 
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alignment was demonstrated in all anatomical planes using in silico and in situ analyses.  

Although promising, in vivo evaluations were encumbered by experimental limitations.  

Nevertheless, the valuable novelty of providing correction all three anatomical planes is worth 

pursuing in supplementary in vivo experimentations over the next 12 month pendency period 

offered by the issued provisional patent. 

Both the intravertebral epiphyseal device and the 3D tether offer hopeful expectations for the 

improved early treatment of AIS.  Pre-clinical trials were successful and minor inconveniences 

appear to be resolvable.  The intravertebral epiphyseal device provides an attractive method to 

achieve fusionless growth sparring instrumentation exclusive of the disc.  The 3D tether device 

offers corrective control in all three anatomical planes. 

Both devices offer valuable novelties over current treatments and satisfy judicious requirements 

of aspiring new fusionless treatments tailored to skeletally immature patients with progressive 

idiopathic scoliosis.  The intravertebral staple is tailored towards the early treatment of relatively 

small curves showing no signs of complicated 3 dimensional deformities.  The 3D tether is 

adapted to offer a complete 3 dimensional correction of primitive or advanced deformities.  

Together, these devices may offer improved treatments over the considerable phenotypic 

spectrum of deformities observed in adolescents with idiopathic scoliosis. 
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