922 research outputs found

    OncoSpineSeg: A Software Tool for a Manual Segmentation of Computed Tomography of the Spine on Cancer Patients

    Get PDF
    The organ most commonly affected by metastatic cancer is the skeleton, and spine is the site where it causes the highest morbidity. Computer-aided diagnosis (CAD) for detecting and assessing metastatic disease in bone or other spine disorders can assist physicians to perform their decision-making tasks. A precise segmentation of the spine is important as a first stage in any automatic diagnosis task. However, it is a challenging problem to segment correctly an affected spine, and it is a crucial step to assess quantitatively the results of segmentation by comparing them with the results of a manual segmentation, reviewed by one experienced radiologist. This chapter presents the design of a MATLAB-based software for the manual segmentation of the spine. The software tool has a simple and easy to use interface, and it works with either computed tomography or magnetic resonance imaging (MRI). A typical workflow includes loading the image volume, creating multi-planar reconstructions, manually contouring the vertebrae, spinal lesions, intervertebral discs and spinal canal with availability of different segmentation tools, classification of the bone into healthy bone, osteolytic metastases, osteoblastic metastases or mixed lesions, being also possible to classify an object as a false-positive and a 3D reconstruction of the segmented objects

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Advanced Algorithms for 3D Medical Image Data Fusion in Specific Medical Problems

    Get PDF
    Fúze obrazu je dnes jednou z nejběžnějších avšak stále velmi diskutovanou oblastí v lékařském zobrazování a hraje důležitou roli ve všech oblastech lékařské péče jako je diagnóza, léčba a chirurgie. V této dizertační práci jsou představeny tři projekty, které jsou velmi úzce spojeny s oblastí fúze medicínských dat. První projekt pojednává o 3D CT subtrakční angiografii dolních končetin. V práci je využito kombinace kontrastních a nekontrastních dat pro získání kompletního cévního stromu. Druhý projekt se zabývá fúzí DTI a T1 váhovaných MRI dat mozku. Cílem tohoto projektu je zkombinovat stukturální a funkční informace, které umožňují zlepšit znalosti konektivity v mozkové tkáni. Třetí projekt se zabývá metastázemi v CT časových datech páteře. Tento projekt je zaměřen na studium vývoje metastáz uvnitř obratlů ve fúzované časové řadě snímků. Tato dizertační práce představuje novou metodologii pro klasifikaci těchto metastáz. Všechny projekty zmíněné v této dizertační práci byly řešeny v rámci pracovní skupiny zabývající se analýzou lékařských dat, kterou vedl pan Prof. Jiří Jan. Tato dizertační práce obsahuje registrační část prvního a klasifikační část třetího projektu. Druhý projekt je představen kompletně. Další část prvního a třetího projektu, obsahující specifické předzpracování dat, jsou obsaženy v disertační práci mého kolegy Ing. Romana Petera.Image fusion is one of today´s most common and still challenging tasks in medical imaging and it plays crucial role in all areas of medical care such as diagnosis, treatment and surgery. Three projects crucially dependent on image fusion are introduced in this thesis. The first project deals with the 3D CT subtraction angiography of lower limbs. It combines pre-contrast and contrast enhanced data to extract the blood vessel tree. The second project fuses the DTI and T1-weighted MRI brain data. The aim of this project is to combine the brain structural and functional information that purvey improved knowledge about intrinsic brain connectivity. The third project deals with the time series of CT spine data where the metastases occur. In this project the progression of metastases within the vertebrae is studied based on fusion of the successive elements of the image series. This thesis introduces new methodology of classifying metastatic tissue. All the projects mentioned in this thesis have been solved by the medical image analysis group led by Prof. Jiří Jan. This dissertation concerns primarily the registration part of the first project and the classification part of the third project. The second project is described completely. The other parts of the first and third project, including the specific preprocessing of the data, are introduced in detail in the dissertation thesis of my colleague Roman Peter, M.Sc.

    Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression

    Full text link
    [EN] Purpose: The development of automatic and reliable algorithms for the detection and segmentation of the vertebrae are of great importance prior to any diagnostic task. However, an important problem found to accurately segment the vertebrae is the presence of the ribs in the thoracic region. To overcome this problem, a probabilistic atlas of the spine has been developed dealing with the proximity of other structures, with a special focus on ribs suppression. Methods: The data sets used consist of Computed Tomography images corresponding to 21 patients suffering from spinal metastases. Two methods have been combined to obtain the final result: firstly, an initial segmentation is performed using a fully automatic level-set method; secondly, to refine the initial segmentation, a 3D volume indicating the probability of each voxel of belonging to the spine has been developed. In this way, a probability map is generated and deformed to be adapted to each testing case. Results: To validate the improvement obtained after applying the atlas, the Dice coefficient (DSC), the Hausdorff distance (HD), and the mean surface-to-surface distance (MSD) were used. The results showed up an average of 10 mm of improvement accuracy in terms of HD, obtaining an overall final average of 15.51 2.74 mm. Also, a global value of 91.01 3.18% in terms of DSC and a MSD of 0.66 0.25 mm were obtained. The major improvement using the atlas was achieved in the thoracic region, as ribs were almost perfectly suppressed. Conclusion: The study demonstrated that the atlas is able to detect and appropriately eliminate the ribs while improving the segmentation accuracy.The authors thank the financial support of the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under Grants TEC2012-33778 and BFU2015-64380-C2-2-R (D.M.) and DPI2013-4572-R (J.D., E.D.)Ruiz-España, S.; Domingo, J.; Díaz-Parra, A.; Dura, E.; D'ocon-Alcaniz, V.; Arana, E.; Moratal, D. (2017). Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression. Medical Physics. 44(9):4695-4707. https://doi.org/10.1002/mp.12431S46954707449Harris, R. I., & Macnab, I. (1954). STRUCTURAL CHANGES IN THE LUMBAR INTERVERTEBRAL DISCS. The Journal of Bone and Joint Surgery. British volume, 36-B(2), 304-322. doi:10.1302/0301-620x.36b2.304Oliveira, M. F. de, Rotta, J. M., & Botelho, R. V. (2015). Survival analysis in patients with metastatic spinal disease: the influence of surgery, histology, clinical and neurologic status. Arquivos de Neuro-Psiquiatria, 73(4), 330-335. doi:10.1590/0004-282x20150003Chou, R. (2011). Diagnostic Imaging for Low Back Pain: Advice for High-Value Health Care From the American College of Physicians. Annals of Internal Medicine, 154(3), 181. doi:10.7326/0003-4819-154-3-201102010-00008Brayda-Bruno, M., Tibiletti, M., Ito, K., Fairbank, J., Galbusera, F., Zerbi, A., … Sivan, S. S. (2013). Advances in the diagnosis of degenerated lumbar discs and their possible clinical application. European Spine Journal, 23(S3), 315-323. doi:10.1007/s00586-013-2960-9Quattrocchi, C. C., Santini, D., Dell’Aia, P., Piciucchi, S., Leoncini, E., Vincenzi, B., … Zobel, B. B. (2007). A prospective analysis of CT density measurements of bone metastases after treatment with zoledronic acid. Skeletal Radiology, 36(12), 1121-1127. doi:10.1007/s00256-007-0388-1Doi, K. (2007). Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Computerized Medical Imaging and Graphics, 31(4-5), 198-211. doi:10.1016/j.compmedimag.2007.02.002Ruiz-España, S., Arana, E., & Moratal, D. (2015). Semiautomatic computer-aided classification of degenerative lumbar spine disease in magnetic resonance imaging. Computers in Biology and Medicine, 62, 196-205. doi:10.1016/j.compbiomed.2015.04.028Alomari, R. S., Ghosh, S., Koh, J., & Chaudhary, V. (2014). Vertebral Column Localization, Labeling, and Segmentation. Lecture Notes in Computational Vision and Biomechanics, 193-229. doi:10.1007/978-3-319-12508-4_7Hamarneh, G., & Li, X. (2009). Watershed segmentation using prior shape and appearance knowledge. Image and Vision Computing, 27(1-2), 59-68. doi:10.1016/j.imavis.2006.10.009Ghebreab, S., & Smeulders, A. W. (2004). Combining Strings and Necklaces for Interactive Three-Dimensional Segmentation of Spinal Images Using an Integral Deformable Spine Model. IEEE Transactions on Biomedical Engineering, 51(10), 1821-1829. doi:10.1109/tbme.2004.831540Mastmeyer, A., Engelke, K., Fuchs, C., & Kalender, W. A. (2006). A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Medical Image Analysis, 10(4), 560-577. doi:10.1016/j.media.2006.05.005Rasoulian, A., Rohling, R., & Abolmaesumi, P. (2013). Lumbar Spine Segmentation Using a Statistical Multi-Vertebrae Anatomical Shape+Pose Model. IEEE Transactions on Medical Imaging, 32(10), 1890-1900. doi:10.1109/tmi.2013.2268424Ma, J., & Lu, L. (2013). Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Computer Vision and Image Understanding, 117(9), 1072-1083. doi:10.1016/j.cviu.2012.11.016Kim, Y., & Kim, D. (2009). A fully automatic vertebra segmentation method using 3D deformable fences. Computerized Medical Imaging and Graphics, 33(5), 343-352. doi:10.1016/j.compmedimag.2009.02.006Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., & Lorenz, C. (2009). Automated model-based vertebra detection, identification, and segmentation in CT images. Medical Image Analysis, 13(3), 471-482. doi:10.1016/j.media.2009.02.004Štern, D., Likar, B., Pernuš, F., & Vrtovec, T. (2011). Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Physics in Medicine and Biology, 56(23), 7505-7522. doi:10.1088/0031-9155/56/23/011Korez, R., Ibragimov, B., Likar, B., Pernus, F., & Vrtovec, T. (2015). A Framework for Automated Spine and Vertebrae Interpolation-Based Detection and Model-Based Segmentation. IEEE Transactions on Medical Imaging, 34(8), 1649-1662. doi:10.1109/tmi.2015.2389334Castro-Mateos, I., Pozo, J. M., Pereanez, M., Lekadir, K., Lazary, A., & Frangi, A. F. (2015). Statistical Interspace Models (SIMs): Application to Robust 3D Spine Segmentation. IEEE Transactions on Medical Imaging, 34(8), 1663-1675. doi:10.1109/tmi.2015.2443912Pereanez, M., Lekadir, K., Castro-Mateos, I., Pozo, J. M., Lazary, A., & Frangi, A. F. (2015). Accurate Segmentation of Vertebral Bodies and Processes Using Statistical Shape Decomposition and Conditional Models. IEEE Transactions on Medical Imaging, 34(8), 1627-1639. doi:10.1109/tmi.2015.2396774Michael Kelm, B., Wels, M., Kevin Zhou, S., Seifert, S., Suehling, M., Zheng, Y., & Comaniciu, D. (2013). Spine detection in CT and MR using iterated marginal space learning. Medical Image Analysis, 17(8), 1283-1292. doi:10.1016/j.media.2012.09.007Yan Kang, Engelke, K., & Kalender, W. A. (2003). A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Transactions on Medical Imaging, 22(5), 586-598. doi:10.1109/tmi.2003.812265Huang, J., Jian, F., Wu, H., & Li, H. (2013). An improved level set method for vertebra CT image segmentation. BioMedical Engineering OnLine, 12(1), 48. doi:10.1186/1475-925x-12-48Lim, P. H., Bagci, U., & Bai, L. (2013). Introducing Willmore Flow Into Level Set Segmentation of Spinal Vertebrae. IEEE Transactions on Biomedical Engineering, 60(1), 115-122. doi:10.1109/tbme.2012.2225833Forsberg, D., Lundström, C., Andersson, M., & Knutsson, H. (2013). Model-based registration for assessment of spinal deformities in idiopathic scoliosis. Physics in Medicine and Biology, 59(2), 311-326. doi:10.1088/0031-9155/59/2/311Yao, J., Burns, J. E., Forsberg, D., Seitel, A., Rasoulian, A., Abolmaesumi, P., … Li, S. (2016). A multi-center milestone study of clinical vertebral CT segmentation. Computerized Medical Imaging and Graphics, 49, 16-28. doi:10.1016/j.compmedimag.2015.12.006Shi, C., Wang, J., & Cheng, Y. (2015). Sparse Representation-Based Deformation Model for Atlas-Based Segmentation of Liver CT Images. Image and Graphics, 410-419. doi:10.1007/978-3-319-21969-1_36Domingo, J., Dura, E., Ayala, G., & Ruiz-España, S. (2015). Means of 2D and 3D Shapes and Their Application in Anatomical Atlas Building. Lecture Notes in Computer Science, 522-533. doi:10.1007/978-3-319-23192-1_44Hyunjin Park, Bland, P. H., & Meyer, C. R. (2003). Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Transactions on Medical Imaging, 22(4), 483-492. doi:10.1109/tmi.2003.809139Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., & Bach Cuadra, M. (2011). A review of atlas-based segmentation for magnetic resonance brain images. Computer Methods and Programs in Biomedicine, 104(3), e158-e177. doi:10.1016/j.cmpb.2011.07.015Fortunati, V., Verhaart, R. F., van der Lijn, F., Niessen, W. J., Veenland, J. F., Paulides, M. M., & van Walsum, T. (2013). Tissue segmentation of head and neck CT images for treatment planning: A multiatlas approach combined with intensity modeling. Medical Physics, 40(7), 071905. doi:10.1118/1.4810971Zhuang, X., Bai, W., Song, J., Zhan, S., Qian, X., Shi, W., … Rueckert, D. (2015). Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection. Medical Physics, 42(7), 3822-3833. doi:10.1118/1.4921366Zhou, J., Yan, Z., Lasio, G., Huang, J., Zhang, B., Sharma, N., … D’Souza, W. (2015). Automated compromised right lung segmentation method using a robust atlas-based active volume model with sparse shape composition prior in CT. Computerized Medical Imaging and Graphics, 46, 47-55. doi:10.1016/j.compmedimag.2015.07.003Linguraru, M. G., Sandberg, J. K., Li, Z., Shah, F., & Summers, R. M. (2010). Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation. Medical Physics, 37(2), 771-783. doi:10.1118/1.3284530Xu, Y., Xu, C., Kuang, X., Wang, H., Chang, E. I.-C., Huang, W., & Fan, Y. (2016). 3D-SIFT-Flow for atlas-based CT liver image segmentation. Medical Physics, 43(5), 2229-2241. doi:10.1118/1.4945021Michopoulou, S. K., Costaridou, L., Panagiotopoulos, E., Speller, R., Panayiotakis, G., & Todd-Pokropek, A. (2009). Atlas-Based Segmentation of Degenerated Lumbar Intervertebral Discs From MR Images of the Spine. IEEE Transactions on Biomedical Engineering, 56(9), 2225-2231. doi:10.1109/tbme.2009.2019765Taso, M., Le Troter, A., Sdika, M., Ranjeva, J.-P., Guye, M., Bernard, M., & Callot, V. (2013). Construction of an in vivo human spinal cord atlas based on high-resolution MR images at cervical and thoracic levels: preliminary results. Magnetic Resonance Materials in Physics, Biology and Medicine, 27(3), 257-267. doi:10.1007/s10334-013-0403-6Lévy, S., Benhamou, M., Naaman, C., Rainville, P., Callot, V., & Cohen-Adad, J. (2015). White matter atlas of the human spinal cord with estimation of partial volume effect. NeuroImage, 119, 262-271. doi:10.1016/j.neuroimage.2015.06.040Hardisty, M., Gordon, L., Agarwal, P., Skrinskas, T., & Whyne, C. (2007). Quantitative characterization of metastatic disease in the spine. Part I. Semiautomated segmentation using atlas-based deformable registration and the level set method. Medical Physics, 34(8), 3127-3134. doi:10.1118/1.2746498Forsberg, D. (2015). Atlas-Based Registration for Accurate Segmentation of Thoracic and Lumbar Vertebrae in CT Data. Lecture Notes in Computational Vision and Biomechanics, 49-59. doi:10.1007/978-3-319-14148-0_5Ibañez MV Schroeder W Cates L Insight software Consortium. The ITK Software Guide 2016 http://www.itk.org/ItkSoftwareGuide.pdfLoader C R package: Local regression, likelihood and density estimation. CRAN repository 2013 2016 http://cran.r-project.org/web/packages/locfitPARK, H., HERO, A., BLAND, P., KESSLER, M., SEO, J., & MEYER, C. (2010). Construction of Abdominal Probabilistic Atlases and Their Value in Segmentation of Normal Organs in Abdominal CT Scans. IEICE Transactions on Information and Systems, E93-D(8), 2291-2301. doi:10.1587/transinf.e93.d.2291Pohl, K. M., Fisher, J., Bouix, S., Shenton, M., McCarley, R. W., Grimson, W. E. L., … Wells, W. M. (2007). Using the logarithm of odds to define a vector space on probabilistic atlases. Medical Image Analysis, 11(5), 465-477. doi:10.1016/j.media.2007.06.003Baddeley, A., & Molchanov, I. (1998). Journal of Mathematical Imaging and Vision, 8(1), 79-92. doi:10.1023/a:1008214317492De Bruijne, M., van Ginneken, B., Viergever, M. A., & Niessen, W. J. (2003). Adapting Active Shape Models for 3D Segmentation of Tubular Structures in Medical Images. Information Processing in Medical Imaging, 136-147. doi:10.1007/978-3-540-45087-0_12Zhang, K., Zhang, L., Song, H., & Zhou, W. (2010). Active contours with selective local or global segmentation: A new formulation and level set method. Image and Vision Computing, 28(4), 668-676. doi:10.1016/j.imavis.2009.10.009Kalpathy-Cramer, J., Awan, M., Bedrick, S., Rasch, C. R. N., Rosenthal, D. I., & Fuller, C. D. (2013). Development of a Software for Quantitative Evaluation Radiotherapy Target and Organ-at-Risk Segmentation Comparison. Journal of Digital Imaging, 27(1), 108-119. doi:10.1007/s10278-013-9633-4Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850-863. doi:10.1109/34.232073Aspert, N., Santa-Cruz, D., & Ebrahimi, T. (s. f.). MESH: measuring errors between surfaces using the Hausdorff distance. Proceedings. IEEE International Conference on Multimedia and Expo. doi:10.1109/icme.2002.103587

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society
    corecore