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Nathan Timothy Sjoquist

Abstract

Metastatic bone disease (MBD) is a common secondary feature of cancer that can cause
significant complications, including severe pain and death. Current methods of diagnosis
require a highly trained radiologist capable of interpreting medical images and recognising
the sites of MBD. These medical images are often noisy, two dimensional, greyscale and
usually have a poor resolution.

In order to help assist with these issues, several studies have shown that computer aided
methods can locate MBD within medical images. However these methods are limited in
scope, accuracy, sensitivity, explainability and do not improve upon the poor visualisations
of the underlying medical imaging data.

To address these limitations, I have developed a novel method of automatic MBD
assessment and visualisation using computed tomography (CT) imaging data as the input.
The method is fully automated and does not require any human interaction – although users
can interact with a viewer that visualises the results. This method has been tested on CT data
from prostate cancer patients as prostate cancer is one of the most common sources of MBD.

The method described in this thesis has a sensitivity of 0.871 when detecting sclerotic
and lytic lesions within a single data set. This sensitivity is comparable to existing methods,
however the scope in detecting these lesions was limited to the vertebrae in previous studies.
My method significantly expands this scope to include the ribs, vertebrae, pelvis and proximal
femurs.

The work in this thesis also provides novel visualisations of the disease and does not
suffer from explainability issues that plague modern machine learning algorithms.

In addition, I developed a novel method of tracking the spread of MBD at multiple time
points using longitudinal CT data. This method is capable of calculating the change in lesion
volume size across multiple time points, providing a novel numerical assessment.
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Chapter 1

Background

1.1 Metastatic bone disease

Metastatic bone disease (MBD) is cancer that has spread from a primary tumour into the
bone [63] and is a common secondary feature of prostate cancer, breast cancer and many
other malignancies [30, 35]. Bone metastasis is of great clinical importance in patients
with these diseases, as MBD can cause considerable complications [30] that include pain,
impaired mobility, pathological fracture, cranial nerve palsies, nerve lesions, hypercalcaemia
and spinal cord suppression [19, 63, 100]. It is estimated that metastasis is the cause of 90%
of cancer related deaths [113]. MBD is particularly common in patients dying of advanced
cancer of the breast, bronchus, prostate, kidneys and thyroid [107] with the skeleton being
the most common site of metastasis [35]. Patients with these types of cancers account for
more than 80% of the incidence of MBD [35].

As these cancers are not common in younger patients, bone metastases are usually
encountered in the middle-aged and the elderly, but MBD may occur in children as well [100].
Of these cancers, prostate cancer is one of the most prevalent, and is the second leading cause
of malignancy in men [18, 103].

Each year, in the United Kingdom, almost 50,000 new cases of prostate cancer are
diagnosed [142] and 15,000 men die from its complications [107]. Studies show that prostate
cancer patients have a MBD incidence approaching 70% [19, 30, 35, 63, 107] in advanced
cases with an estimated incidence of 80-100% in men where the cancer is terminal [63].
Because prostate cancer is so common and because it produces a high incidence rate of MBD,
my thesis will primarily use data from prostate cancer patients to further research in this field,
although this research could be applied to other types of primary cancer.

The majority of skeletal metastases are haematogenous in origin as the primary cancerous
tumour cells travel through the arteries and veins [100]. In normal bone, development and
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Fig. 1.1 A computed tomography scan of the pelvis showing a sclerotic lesion in a prostate
cancer patient. The lesion on the right side has a much higher bone density (shown by a
more intense white colour in the image) than the healthy left side does. Image from the
Addenbrooke’s Hospital CT Data Collection.

maintenance of bone tissues are sustained through a balance of osteoclasts and osteoblasts
resorbing and depositing bone tissue. Osteoclasts, attracted to a site of fatigue damage,
remove the fatigued bone by creating an erosion cavity [30]. Osteoblasts are then attracted
to sites of prior resorption, and synthesise an organic matrix that will fill the resorption
cavity [30]. With MBD, this process of bone resorption and formation is disrupted by
the cancerous cells, which cause metastatic bone lesions to form [35]. These metastatic
bone lesions can be of three types: sclerotic, lytic and mixed [35, 63, 100]. Most bone
metastases due to prostate cancer are sclerotic, causing an increase in bone density as shown
in Figure 1.1, although some metastases are lytic, causing a reduction of bone density [63] as
well as mixed (lytic/sclerotic). Mixed can also refer to the data set itself if it contains both
sclerotic and lytic lesions. In all cases, MBD causes an abnormal change in the density of
bone.

Two types of bone exist as seen in Figure 1.2, a harder outer shell called the cortical bone
and a softer inner spongy bone which encapsulates the bone marrow, called the trabecular
bone [37]. The softer trabecular bone has a much greater surface to volume ratio than the
harder outer cortical bone, and consequently, metastatic involvement of the trabecular bone
surfaces are often more developed [30, 35].

MBD most often occurs in the five years following treatment of the original cancerous
tumour [100]. MBD usually forms at multiple lesion sites [35, 63] in the axial bones, such as
the vertebral column, ribs, skull as well as in the pelvis and femurs [30, 35, 63, 107, 114]
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Fig. 1.2 Bone composition of the proximal femur showing the relative anatomy between the
cortical bone and trabecular bone. The bone marrow (not shown for simplification purposes)
is encapsulated within the trabecular bone.

while bone metastases of the distal bones are rare although not unheard of [30, 35]. MBD
lesions almost always cause pain and this pain is usually the presenting symptom for a
patient [30, 35]. This pain is caused by a variety of factors including periosteal stretching,
compression or infiltration of nerve roots, reflex muscle spasm and the local effects of
cytokines [35]. Bone pain is also the most common source of pain in patients with cancer,
with over two-thirds of cancer patients having pain severe enough to require treatment at
some point, much of this being caused by MBD [19, 63].

In general, metastatic bone disease is an incurable condition [35, 100]. However, it is
still important to diagnose MBD early in order to provide treatment and improve quality
of life. Treatment of bone metastasis is primarily palliative [100] in order to relieve pain,
prevent development of pathological fractures, and to improve mobility and function [100].
It is also sometimes possible to prolong survival by preventing the metastatic tissue from
spreading as well as to reduce organ destruction [35, 100]. Common treatments include
surgery, radiotherapy, endocrine therapy, chemotherapy as well as pain relieving drugs [19,
30, 63, 100, 114]. It is also imperative to diagnose MBD because it may lead to a diagnosis
of the primary cancer that was previously undiagnosed [35]. It may also indicate the staging
of the cancer [35], which has a profound effect on both the treatment and prognosis. There is
however, probably a considerable underestimate of the true incidence of metastases in the
skeleton [107].
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(a) An example of a bone scintigraphy
image. This case contains pubic and rib
metastasis.

(b) A plain X-ray radiograph showing
a MBD lesion located within the left
femur.

Fig. 1.3 Imaging of MBD using a bone scan and plain X-rays. Images were adapted
from [118].

1.2 Existing methods of diagnosis

Imaging is used as a pivotal tool in diagnosing MBD [100]. Imaging allows a radiologist
to recognise the development of new MBD lesions as well as to track the enlargement of
existing lesions – both of which indicate the progression of the disease [35]. The diagnosis of
MBD is usually straightforward, but MBD can occasionally be confused with benign skeletal
pathology [63]. In some cases of MBD, the disease is very difficult to identify [100] as it can
be challenging to interpret radiographic changes [35].

The usual imaging techniques for MBD include bone scintigraphy (Figure 1.3a), radio-
graphic films (Figure 1.3b), computed tomography (CT) (Figure 1.1) and magnetic resonance
imaging (MRI) (Figure 1.4) [30, 35, 63, 100, 107].

More modern MBD imaging techniques include single photon emission computed to-
mography (SPECT) [102] and positron emission tomography (PET), which is shown in
Figure 1.5 [31]. Bone scintigraphy remains the most widely used method in the diagnosis
and surveillance of metastatic skeletal disease [63] and is the usual method of choice for
physicians [107]. CT can also be effectively used as a problem solving modality for diag-
nosing MBD [114] and can be combined with SPECT and PET to attain more functional
imaging information, due to uptake of the radioactive tracers [31, 102]. Evaluation of pa-
tients using MRI is also useful, especially as the response to therapy can be easily followed
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Fig. 1.4 A MRI scan showing a MBD lesion located within the right proximal humerus.
Image adapted from [118].

using MRI [114]. However, the CT imaging modality is much more commonly used than
MRI [116].

Whilst CT is not the most common way to diagnose MBD, in this thesis I will be focusing
on this modality for a number of reasons. Although planar scintigraphy is the most widely
used imaging tool in diagnosing MBD, it is more useful in screening MBD than in finding
exact bone lesion sites as it is only in 2D [52]. Plain radiographs can show MBD, but are often
difficult to interpret and again are only in 2D [30]. A significant amount of bone destruction
must exist before either bone scintigraphy or radiographs show the abnormality [114], while
CT can detect small areas of bone destruction [151]. A MRI scan is twice as expensive as
CT [52] and is far less available in hospitals according to a study in the United States [47].
PET is a very expensive imaging modality [52] and the effectiveness of both PET and SPECT
in diagnosing MBD is still not proven, as very few studies use these modalities for MBD [52].

CT provides excellent high definition bone imaging and is especially useful in imaging
metastatic bone lesions [89]. CT is the most widely used imaging technology in radiology
departments [23] and is available in most hospitals [47]. It is also cheaper than most other
imaging modalities [52]. Radiation dose is also less of a concern in patients with advanced
cancers. CT is also used routinely for oncology follow-up in the majority of cancer cases,
and provides a good assessment of bone, lung and visceral metastases.

Furthermore, the use of CT enables the use of the relatively new cortical bone mapping
(CBM) technique (described in Section 1.7). Whilst CBM has been tried on MRI as well as
on CT, it was specifically designed for determining bone quality in CT data and has only been
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Fig. 1.5 A PSMA-PET scan showing uptake consistent with a bone metastasis. This image is
from the Addenbrooke’s Hospital Data Collection.

Fig. 1.6 An example CT scan of the chest and spine. This image is from the Addenbrooke’s
Hospital CT Data Collection.
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Fig. 1.7 An example CT scan of the pelvis and spine. This image from the Addenbrooke’s
Hospital CT Data Collection.

thoroughly validated on this modality. This technique allows bone density to be accurately
estimated in 3D, unlike plane radiographs. CBM has never been used to detect bone lesions,
however it is anticipated that this detailed analysis of bone quality could be an important
factor in assessing MBD.

1.3 Computed tomography

X-ray computed tomography is an imaging modality that produces cross-sectional images
as seen in Figure 1.6 and in Figure 1.7, representing the X-ray attenuation properties of the
body [122]. X-rays are produced by an X-ray tube, attenuated by the patient, and measured
by an X-ray detector [122]. As the X-rays travel through the patient, different types of
materials attenuate (by absorbing and scattering) the X-rays by different amounts based
on the material’s properties. This produces varying X-ray measurements depending on the
patient’s internal material makeup. Narrow beams of X-rays, placed in a fan or parallel beam
geometry, scan over a field of view densely sampling the patient [23, 122]. This is repeated
over many angles and often at many z-depths to create a full scan of an area. A sinogram is a
2D scan of an area at a given z-depth [23], an example of which can be seen in Figure 1.8.

Based on these measurements, the actual attenuation at each point of the scanned slice is
reconstructed using a direct Fourier reconstruction or a filtered back projection technique [23].
Reconstruction can also be performed by using an iterative process that uses both forward
(from the reconstruction to the sinogram) and backward (from the sinogram to the recon-
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Fig. 1.8 An example of a CT sinogram. This image is from the Biomedical Imaging Group,
EPFL [143]. Each pixel in this image shows the attenuation along a particular line: the
vertical axis is the position and the horizontal axis is the angle of the line.

struction) steps to refine the reconstruction. The attenuation values are usually represented
as greyscale voxel values and are normalised by their relationship to the attenuation of the
value of water and also of air [122]. This is called a Hounsfield unit (HU) with -1000 HU
being the value assigned to air and 0 HU being the value assigned to water. The scale is
open ended, but many digital images only store values up to 3000 HU [23]. Stacks of images
can be resliced at any location and angle by interpolating through the images (as seen in
Figure 1.9) and can be of great value to radiologists [114]. While 3D visualisations (usually
volume rendering) are very impressive, radiologists tend to rely on either the original images
or on resliced images when diagnosing.

1.4 Existing detection methods

There are a small number of existing methods that use computer-aided detection to semi-
automatically or automatically find the presence of MBD. Most of these methods use the CT
imaging modality [22, 25, 53, 55, 60, 61, 99, 105, 106, 115, 141, 149, 154–156, 162, 163]
although a few methods use MRI [64, 147]. One method uses PET and CT in combina-
tion [161] and one method uses bone scintigraphy [28]. Some of these methods detect
only lytic lesions [64, 115, 149, 162, 163] or sclerotic lesions [22, 105, 106, 141, 155, 156]
although some methods can find both [53, 55, 60, 61, 99, 161]. These methods are limited to
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Fig. 1.9 An example of a resliced CT image created by interpolating through a stack of CT
images. This image is from the Addenbrooke’s Hospital CT Data Collection.

 Images
Segmentation 

and image 
manipulation

Classification

Fig. 1.10 General approach to MBD classification.

spinal data except for only one study that uses the full body, but in this case the analysis is
restricted to 2D data [28].

All these methods generally follow a similar approach, which is shown in Figure 1.10.
The bone is first located in the images using a semi-automatic or fully-automatic segmentation
method. By segmenting the bone, the search space is narrowed (since by definition, MBD
will only appear in or near the bone), which reduces the complexity of the problem. The
segmentation methods used include thresholding [22, 60, 106, 155, 161–163, 156], model and
atlas based [25, 28, 55, 64, 99, 115], marginal space learning [53] and manual selection [147,
149]. Often, these methods are combined with other image manipulation techniques such as
region growing, graph cuts or the watershed algorithm, which are used to merge or prune
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regions in order to improve segmentation accuracy and to manipulate the morphology of the
segmentation [22, 61, 106, 155, 156, 162, 163].

After the bone is located, various approaches are used to locate and label the diseased
bone within each bony region. The simplest method involves using the cross-section of the
segmented bone to create a histogram by binning voxels based on HU [55]. The histogram
is compared to a healthy region’s histogram where strong differences in histogram shape
indicate lytic or sclerotic lesions [154]. However, this method uses a manual segmentation
approach that is tedious and time consuming. Manual segmentation also limits this method’s
usefulness as it can only be used to distinguish between healthy and unhealthy regions but
cannot be used to find the location of the regions themselves.

More complex supervised learning methods have also been employed to locate and label
the diseased bone. In supervised learning, an unknown function is estimated given a labelled
training set [91]. Each data point in the training set is made of a number of features which
describe that data point. Once the function is estimated by learning from the training set, the
estimated function can make predictions to generalise the output of the original unknown
function given novel inputs [91]. The methods for detecting MBD that use these supervised
learning approaches can be described as classifiers as they attempt to associate a class to
each novel data point.

Classifiers are dependent on training sets comprised of meaningful features as they
must learn to accurately classify healthy bone and diseased bone based on the training data.
Many of these approaches use hand-picked MBD image features such as shape, density
and location [156, 162] as well as mean intensity [99], Haar-like features [53, 149], and
others [61]. Medical experts are needed to mark the data (i.e., healthy or diseased) in order
to provide the classification for the training data. This marking can be very time consuming.
Types of learning classifiers used in this way include support vector machines [22, 155, 156,
161–163], Fisher’s linear discriminant [64], graph cut classification [61], Markov random
field in the Bayesian classification framework [99] and random forests [53, 149]. Neural
network classifiers that do not require hand-picked features have also been used [25, 60, 105,
106, 147].

It is difficult to compare the accuracy of these methods with each other as the input data
varies significantly from study to study. These differences include using completely different
imaging modalities as well as having different types of markings produced by the experts.
Within the data itself, small indistinct MBD lesions are much more difficult to locate than
large distinct lesions. This further complicates the comparison of methods as information
describing lesion data is not often available, making it challenging to judge how difficult
the lesions are to actually find. Also, the final classifications (diseased, abnormal, healthy,
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sclerotic, lytic, etc.), groupings (voxel based, object based, region of interested based, etc.)
and reporting (sensitivity, accuracy, false positives, etc.) vary significantly between studies.

In the study that produced the best results (by sensitivity and number of false positives),
a convolutional neural network was used in conjunction with a medial axis transform and
a random forest to classify spinal lesions [25]. The study used CT data consisting of
thirty-one cases, involving thirteen females and eighteen males which contained a total of
626 vertebrae [25]. Lesions (both lytic and sclerotic) were marked by expert radiologists,
voxel-wise, and divided into three categories, depending on volume, ranging from small
(1.40 mm3 to 14.20 mm3) to medium (14.2 mm3 to 300.00 mm3) to large (greater than
300.0 mm3) [25]. Connected voxels were grouped into objects for testing purposes [25]. The
classifier performed a voxel-wise classification and results were determined by comparing
the overlap of the classified voxels to marked voxel object groups [25]. Using an object
overlap intersection threshold of 1%, the method produced a 0.92 to 0.95 true positive rate
for small lesions, 0.97 to 0.99 for medium lesions and 0.99 for large lesions [25]. This
method produced a mean sensitivity of 0.88 when detecting lytic lesions and a sensitivity of
0.97 when detecting sclerotic lesions. It also produced 45.63 to 130.31 false positives per
patient for small regions, 20.47 to 40.40 false positives per patient for medium regions, and
5.92 to 7.65 false positives per patient for large regions [25].

The study that produced the second best results (by sensitivity and number of false
positives) used a support vector machine to identify MBD lesions in a PET/CT spine data
set consisting of 26 diseased cases and 18 healthy cases [161]. Radiologists identified 456
lytic and sclerotic lesions which were manually labelled and used for training and testing
purposes [161]. Using a cross-validation approach, the method achieved a sensitivity of
0.81 in identifying lytic regions with 1.3 false positives per case, a sensitivity of 0.81 in
identifying sclerotic regions with 2.1 false positives per case and a sensitivity of 0.76 in
identifying both lytic and sclerotic regions with 2.1 false positives per case [161]. However,
this method also produced an exponential increase in a number of false positives for small
improvements in the sensitivity [161]. Information about the size of the diseased regions was
not included in this study, which is important as larger volumes are almost always easier to
detect than smaller regions. The definition of sensitivity is also not discussed, so it is unclear
how much of a detected region needs to overlap a marked region in order to classify the
marked region as detected. It appears that a single overlapping point is enough to mark the
lesion as detected. This method also requires PET data along with CT data to achieve its
sensitivity, which is not desirable.

The study with the next best results (by sensitivity) used a convolutional neural network
and a random view aggregation to detect spinal sclerotic metastases in CT images consisting
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of forty nine patients (14 female and 35 male) [105]. Radiologists labelled a total of 532
lesions, all of which were greater than 300 mm3 [105]. At three false positives per patient,
the method produced a sensitivity of 0.70 in detecting sclerotic regions [105]. However, this
method also produced an exponential growth of the number of false positives with slight
increases to sensitivity [105].

These methods are limited in scope as they can only find MBD in the vertebral column.
This is a severe limitation as MBD is often located within the pelvis, ribs and upper femurs
as well as in the vertebral column [30, 35, 63, 107, 114]. The single method that works on
the whole body [28], is underdeveloped as it is only a segmentation method and is limited to
2D planar bone scintigraphy data. Furthermore, these methods produced a high number of
false positives that severely reduces their usefulness. Also, many of these methods either do
not perform well on small lesions or do not describe how well they perform on small lesions.
This is a vital metric in the usefulness of these methods, as detecting MBD early (when the
lesions are small) helps improve the effectiveness of the treatment.

There is cause to suspect that, however well these supervised learning techniques work
on recorded vertebral data, this performance would not carry through to general whole-body
data. This is because there is significant variance in bony shape and size when comparing the
spine to other parts of the full-body. Supervised learning also often requires large quantities
of accurately marked training data, which can be difficult to obtain in a medical imaging
setting due to patient ethical agreements and a lack of experts to mark the data [26]. It is also
currently very difficult to understand and explain why a supervised learning method classifies
a data point to a particular class [57, 58]. This makes the justification of the classification
often impossible, which can be detrimental in a medical setting [58]. Supervised training
methods can also suffer from over-fitting where noise and variations in the training data are
modelled instead of the true signal [91]. This can also be caused when enough of the true
signal is missing from the training data set, if the training data does not contain an accurate
representation of the real data. Over-fitting can cause the classifier to fail when it encounters
data that does not fit the observed training patterns. Again, as medical data for training is
difficult to attain, it is likely that the training set will not contain enough data to learn all of
the features it needs to accurately locate MBD lesions in all patients scanned in a hospital
setting.

1.5 Existing methods of metastatic bone disease tracking

It is also of great importance to track metastatic disease progression by imaging the patient at
different time-points in order to monitor the disease spread so the patient can receive optimal
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treatment. Without automated tools, this is a slow tedious process that involves comparing
longitudinal images side by side to look for small bony changes.

A limited number of studies have attempted to address this problem using a temporal
subtraction technique in which a baseline image is automatically compared to a follow-up
image through image subtraction [94, 108, 141]. These methods attempted to map the bony
voxels between the CT data sets by registering one with the other. This was accomplished
by warping or deforming one data set (in either 2D or 3D) with the other to account for
differences in body position between the two scans.

While these methods are an important proof of concept, they go no further than demon-
strating their potential usefulness in helping improve the performance of radiologists. These
methods could also be improved to provide a much better visualisation of the disease as they
currently only provide 2D slice difference images. 2D images still will take a long time for a
radiologist to examine and to interpret. Also, these methods do not numerically summarize
and quantify the changes in diseased volume between scans. This is a currently unavailable
but very useful and desired metric.

1.6 Existing visualisation methods

Methods for detecting and tracking MBD do not generally describe how their results are
visualized but instead provide a few examples where the lesions were marked on the original
2D images. Visualisation of disease is important, as much of medical imaging only produces
2D greyscale images that can be difficult to interpret. Much of the research in this thesis will
focus on producing better and unique methods of visualising MBD.

Very few MBD visualisation methods exist other than viewing the imaging scans di-
rectly. However, a method was developed that can automatically segment the bones in a
thoracoabdominal CT and then erode the cortical bone, providing an unobstructed view of
the trabecular bone [132]. However, this method does not highlight the diseased regions, so
expert knowledge from a radiologist is still required to interpret the images.

1.7 Cortical bone mapping

A more accurate way to locate and measure cortical bone and trabecular bone is the cortical
bone mapping technique. Given that MBD affects bony features, detecting MBD in CT
data critically involves the ability to accurately assess bone quality from such data. CBM is
an automatic method of estimating bone quality, focusing on the cortical and sub-cortical
trabecular bone, and primarily aimed at the CT imaging modality [136]. It can produce
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Fig. 1.11 An example of measuring the cortical thickness along the cyan line through the
cortical and trabecular bone. This image is a screenshot taken from Stradview [133]. The
underlying CT image is from the Addenbrooke’s Hospital CT Data Collection.

cortical thickness measurements down to 0.3 mm from clinical CT as well as estimate cortical
and trabecular bone density accurately. It has been used successfully in a number of studies
to assess bone integrity [134–137]. CBM fits a parameterized model to measurements taken
along a short line (usually approximately 18 mm) perpendicular to the cortical layer as seen
in Figure 1.11 [136].

The underlying density distribution is assumed to be equation (1.1), where y0, y1 and y2

are the CT values of the surrounding tissue, cortical and trabecular bone respectively, t is the
cortical thickness and H(x) is a unit step function that models the location of the cortical and
trabecular bone which can be seen in Figure 1.12 [137].
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To account for the imaging system’s blur, the system’s point spread function can be
approximated as a Gaussian function shown in equation (1.2), where σ represents the extent
of the blur [101, 135–137]. This is a deliberate simplification of the real point spread function
and, partly as a result, the value of σ is allowed to vary locally over the image data. The
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step response of the imaging system is equation (1.3) where erf denotes the error function
that is the result of integrating the Gaussian in equation (1.2). Equations (1.1) and (1.3) are
combined together to produce the final blurred density function shown in equation (1.4).
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An optimisation method is used to optimise equation (1.4) to fit this function to the
sampled CT data: the Levenberg-Marquardt [90] approach has been shown to work well on
this problem [135]. The optimisation is ill-posed in that there are multiple similar solutions.
In particular, for thin cortices, the thickness t and the cortical density y1 can vary with respect
to each other without much impact on the result. To force convergence, y1 is estimated and
constrained which reduces the unconstrained number of parameters down to five [135–137].
In order to map the cortical and trabecular bone thicknesses across an entire surface, the outer
cortical bone surface is located and encapsulated within a triangle mesh [134]. Measurements
are taken at the vertices within this mesh, with their corresponding surface normals providing
the orientation of the cortical bone [136].

1.8 Research overview

In this thesis, I describe a new method that can find these bone lesions by symmetrically
comparing (left to right) the bone density in the human skeleton and grouping areas of
large difference. I also describe a new method that can track lesion growth using multiple
time-points providing an automatic numerical comparison as well as improved visualisations.
These methods are thoroughly tested to demonstrate their validity.

The goal of this thesis is to improve upon existing methods for the detection and tracking
of MBD. Where existing methods are limited in scope to the spine, this work expands
detection to the ribs, spine, pelvis and femurs as MBD is commonly found in all of these
areas. The current supervised learning methods provide unexplainable results with high false
positive rates and poor visualisation of disease. This work provides much better visualisations
that can explain the results and help reduce or explain the false positives. It will use CT
imaging as this modality is readily available in most hospitals and provides high definition
bone imaging able to display small and developing MBD lesions essential to diagnosing
MBD at an early stage. The work in this thesis will also improve upon MBD tracking as
current methods are underdeveloped and suffer from poor visualisations.
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The current clinical methods of diagnosing MBD lesions from CT data require time
consuming reviews of many cross-sectional images looking for small and diffuse bony
changes – the summary of which is difficult to demonstrate in a multidisciplinary team
meeting review setting. These changes are also often difficult to demonstrate to the patient.
The aim of this work is to address these challenges, by developing a novel method that can
more thoroughly identify these lesions to better detect and visualise MBD.

Rather than using training data to learn features distinct to bone lesions, the CT data is
compared to itself through symmetry to find irregularities. This removes the need for training
data and bypasses the problem often encountered with machine learning algorithms – poor
results when the training data does not contain a specific, never-before-encountered pattern.

Using symmetry to locate disease has been shown to be a successful approach in a
variety of situations [129, 160]. Although results from these papers could be improved, they
demonstrate the feasibility of the approach. I have extended these ideas and have applied
them to the problem of locating MBD.

The human skeleton is nearly symmetric in both shape and bone density, and does not
change over time as rapidly as MBD would be expected to. When two healthy symmetric
bony regions are compared with each other, the regions will hence contain little difference.
However, MBD causes sclerotic and lytic bone lesions to form, increasing the density
(sclerotic lesions) or decreasing the density (lytic lesions) of the bone. When the bone density
of symmetric regions containing bone lesions is compared, the difference is greatly increased
as the lesions do not generally form symmetrically across both regions.

These lesions (areas of differing densities) are displayed through a novel visualisation.
These visualisations have the potential to improve accuracy in diagnosis of MBD and to
reduce the time-consuming review of the individual inspection of hundreds of cross-sectional
images. This visualisation technique could be used to identify potential areas of concern,
although the final reporting of a bone lesion would require assessment of the source data by
the radiologist.

Additionally in this thesis, I explore a novel way of tracking MBD progression in patients
imaged (using CT) at multiple time-points. Instead of using symmetry in a single scan, the
trabecular bone density is compared between longitudinal scans to find differences or the
lack thereof. This can be used to indicate disease progression and to assign a quantifiable
value to the progression.

This new method is developed in Chapter 2, the experimental results are located in
Chapter 3, these results are discussed in Chapter 4, and Chapter 5 contains concluding
remarks.





Chapter 2

MBD Assessment

2.1 Introduction

As metastatic bone disease is located within the skeleton, finding all areas of bone within
each CT image is an essential step in its detection and tracking. In CT bone segmentation,
voxels are classified as being either of a bone type or of a non-bone type. Voxels labelled as
bone generally contain a higher intensity than that of non-bone (unless the CT data contains
a metal implant or a contrast agent). Cortical bone has a radiodensity typically greater than
1000 HU while soft tissue and fat have a radiodensity typically between -70 HU and 100 HU.
However, in the region between 100 HU and 1000 HU, there is much overlap between the
radiodensity of trabecular bone, fat and soft tissue as seen in Figure 2.1. This is mainly due
to the partial volume effect where multiple types of tissue contribute to the average HU value
recorded for a single voxel.

Because of this, a single intensity threshold cannot be used to accurately separate bone
from non-bone, as a threshold set low enough to include all bone will also include fat and soft
tissue. A threshold set high enough to exclude fat and soft tissue will also exclude bone. To
overcome this issue, context from surrounding voxels must be combined with voxel intensity
to correctly classify a voxel as being either bone or non-bone.

Furthermore, although the more dense cortical bone encapsulates the less dense trabecular
bone, the boundary between the two is not always clearly defined in CT images, as seen in
Figure 2.2. This is due to a combination of the partial volume effect and the imaging blur
resulting in limited imaging resolution, as well as complications from MBD, as lesions can
affect both the cortical bone and trabecular bone morphology.

Segmentation is further complicated by the great variance in shape, thickness and size
between different types of bones as well as by the significant variance in anatomy and body
position between patients. Since correct classification of bone voxels is not straightforward,
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Fig. 2.1 An example of plotting the HU overlap of non-bone and bone. Data was taken from
a single full body CT data set. Although bone tissue has a higher radiodensity than non-bone
tissue, there can be a significant overlap between the two in a single voxel due to the partial
volume effect.
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Fig. 2.2 A CT scan of the pelvis. Bone segmentation in CT images can be difficult as bony
regions and boundaries are not always well defined. The white arrows point to areas of bone
that are difficult to segment. The underlying CT data is from the Addenbrooke’s Hospital CT
Data Collection.

and the large variation in anatomy and pathology make developing good priors difficult, the
segmentation of bone in CT is a challenging problem.

2.2 Segmentation of bone in CT

2.2.1 Overview of segmentation techniques

Many approaches have been developed that can segment bone in CT. The ideal method for
detecting and tracking MBD needs to be capable of segmenting most of the body (at least
the chest, abdomen and pelvis including ribs, spine, pelvis and upper femurs), have a high
accuracy rate (especially the bone surface boundaries), require no human interaction (as
manual bone segmentation is very time consuming even for a small section of the body) and
be relatively quick to run on the resources that are available.

To determine segmentation accuracy, segmentation results are usually compared to a
ground truth segmentation that has been carefully segmented through a manual process.
Comparison between segmentation methods is often difficult as unique CT data sets are
used in each study and individual studies often use different comparison metrics. These
comparison metrics include the dice similarity coefficient, average surface distance, average
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symmetric surface distance, volume overlap error, relative volume difference, mean absolute
error, Hausdorff distance, average Hausdorff distance, Jaccard similarity and others, or just
involve visual comparisons.

The most commonly used similarity metric in CT bone segmentation is the Dice Similarity
Coefficient (DSC). The DSC metric (equation 2.1), initially developed by Sørensen et al.
[119] and Dice [34], can be used to compare two discrete sets of data.

DSC =
2|X ∩Y |
|X |+ |Y |

(2.1)

In equation (2.1), X and Y each contain a discrete set of elements and |X | and |Y | are
the cardinalities of the two sets. When applied to segmentation methods, one set (i.e. X),
contains the ground truth voxel classification of bone or non-bone. The other set (i.e. Y ),
contains the segmentation method’s voxel classification results. A higher DSC score means
more voxels have correctly overlapped between the segmentation and the ground truth data
sets.

Another common approach used in determining the segmentation accuracy, is to compare
the 3D surface representations of the segmentation and ground truth data sets by measuring
the average surface error between the two point sets. There are two commonly used similarity
surface metrics – the average surface distance (ASD) and the average symmetric surface
distance (ASSD).

ASD =
1
|Y | ∑

y∈Y
DX(y) (2.2)

ASSD =
1

|X |+ |Y |

(
∑
x∈X

DY (x)+ ∑
y∈Y

DX(y)

)
(2.3)

The average surface distance is shown in equation (2.2), while the average symmetric
surface distance is shown in equation (2.3). In these equations, Y is the set of points that
comprise the surface segmentation and X is the set of points that comprise the ground truth
surface. DX(y) is the distance from a point (y) in Y to its closest point in X or vice versa if Y
and X are switched. The average surface distance is a measure of how close the segmentation
surface is to the ground truth surface, while the average symmetric surface distance is a more
robust measure of how close the segmentation surface is to the ground truth surface and also
how close the ground truth surface is to the segmentation surface.

CT segmentation approaches can be organised into general techniques that include
global thresholding [21, 46, 54, 123–125, 144, 145, 148], adaptive thresholding [17, 65,
150, 166, 168], hysteresis thresholding [43], deformable models [72, 96, 110, 111], region-
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growing [65, 84], watershed [40, 165], active contour [97, 140], edge based [148], level
set [85], graph cuts [44, 75, 93], statistical shape models [112, 128] and machine learning [7,
14, 27, 38, 45, 56, 62, 71, 76–79, 82, 109, 131, 157].

Most of these methods are only designed to segment a specific bone or a small group of
bones, which is a far easier task than segmenting all the bone within the full body. Methods
have been designed to segment the skull [65], orbital bone [77, 78], temporal bone [82],
mandible [128, 131, 144, 145], radius [21, 44], ulna [44], carpal bones [110, 111], distal
bones [45], ribs [17, 84, 157], vertebrae [6, 7, 38, 40, 62, 72, 79, 84, 85, 93, 97, 166],
pelvis [56, 109, 112, 165], hip [27, 123, 150, 168], femur [65, 75, 124, 150], knee [65, 96,
125], tibia [21, 96, 148] and fibula [96].

In many of these segmentation methods, manual human interaction is required to produce
acceptable results. Examples of these include Brahim et al. [17], Buie et al. [21], Patrick and
Indu [97], Pardo et al. [96], Sebastian et al. [110, 111], Truc et al. [140] and Yu et al. [165]. In
one common approach (as in Buie et al. [21]), a global threshold was manually set to segment
the data. Individual images were then manipulated to improve results (using techniques such
as dilation and erosion in order to fill surface gaps). Another common approach that required
manual input (as in Sebastian et al. [110, 111], Pardo et al. [96] and Truc et al. [140]) used
a region growing or active contour method in which a region or contour was expanded or
shrunk to lie upon the bony region or bony boundaries. Because the initial placements for
these methods are difficult to automate in an accurate way within relatively complex CT
data, these approaches require manually placed initial starting seeds or starting contours for
each 2D bone region. As a fully automatic approach is needed, the methods described in this
paragraph are not appropriate for the requisite segmentation.

Selecting a segmentation method that produces high accuracy is important for this
research. However, a number of the segmentation methods cited above produced very poor
results and thus can be ignored for this purpose as not being sufficiently useful. This is
especially true for techniques that use global thresholding in which a single threshold is
selected to separate bone from non-bone based on voxel radiodensity.

Of all the studies that use global thresholding, van Aarle et al. [145] produced a method
that achieved the best results (to the best of my knowledge). They developed a way to optimise
the global threshold to minimise classification errors using information from both the raw
DICOM data and the reconstructed images. Although this method has better accuracy than
all other global thresholding methods, it still produced a significant number of misclassified
voxels, so a more complex segmentation technique is required than global thresholding.

A number of methods have been developed that produce moderately accurate results.
Gassman et al. [45] used an artificial neural network and achieved segmentation to ground
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truth overlap of 76.0%. Li et al. [82] achieved a DSC of 77.18% by using a deep learning
method. Krčah et al. [75] used graph cuts and boundary enhancements and reported that
81.0% of cases were accurately segmented. Zhang et al. [166] used 3D adaptive thresholding
to achieve a volume overlap between the segmentation and ground truth of 85%. Nguyen
et al. [93] used 3D graph cuts and achieved a volume extraction accuracy ranging from
82.30 to 86.37%. Although these methods segment a significant amount of bone correctly, a
number of segmentation methods produced much better results with an accuracy of greater
than 90.0% [14, 27, 43, 56, 65, 71, 125, 128, 150, 168].

While discussing these methods, it is important to note that even methods that produced
high accuracy are often not good segmentation methods for detecting MBD for various other
reasons. Westin et al. [150] used a tensor based adaptive filtering approach that produced
a 98% voxel overlap between the segmentation and ground truth. Although this method
produced very good results, it was only tested on a single case and on a specific bony region
(upper femur and a small section of the pelvis). As the testing of this method was extremely
limited, it is difficult to predict whether this method would perform well when segmenting
the full skeleton in a much larger CT data set. Furnstahl et al. [44] used a graph cut approach
to segment the radius and ulna in CT. The surface results from this approach were compared
to a ground truth surface that was manually segmented. It produced an average surface
distance of 0.22 mm. However, this method used a cost function that was tailored specifically
to segment the radius and ulna and will not likely apply well to the segmentation of a whole
CT skeleton.

Kang et al. [65] used 3D region growing with local adaptive thresholds, border closing
and boundary adjustment for segmenting femurs, skulls and knees. This method produced
segmentation specificity errors of less than 1% in finding bone volume. However, the study
stated that this approach performed poorly on diseased subjects, so it would be unwise to use
this method in detecting MBD. Seim et al. [112] used a statistical shape model to segment
the pelvic bones in CT. The model deformed while respecting shape constraints to form the
segmentation. This method produced an average surface distance of 0.7±0.3 mm. However
the study also stated that it does not handle pathological data well, which makes it a poor
choice for segmenting data containing MBD.

A number of methods produced very accurate results but are tailored specifically to
individual bones (as are all of the other methods mentioned above). Chu et al. [27] used
a statistical shape model with a random forest for segmentation and produced a DSC of
93.9%, 96.5% and 96.4% for the pelvis, left femur and right femur respectively. Although
this method produced good accuracy, it would be difficult to apply a single statistical shape
model of the entire human skeleton to a CT set as there is much more variability in the shape
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and size of a full skeleton when compared to that of a single bone. Hemke et al. [56] used
a convolutional neural network to segment the pelvis and produced a DSC of 92.0%. Sun
et al. [125] used an active contour with prior prediction information to segment the knee. It
produced an average segmentation DSC greater than 94%.

Taghizadeh et al. [128] used a statistical shape model and template matching correction
to segment the scapula, mandible and orbital bones. It was tested on 63 scapula, 72 mandible
and 50 orbit data sets and produced an average DSC of over 90%. Zhou et al. [168] used an
adaptive thresholding approach and then refined the border using surface normal information.
It was tested on 70 hip joints and produced a Jaccard similarity measure of 96%.

There are also a number of methods that are tailored specifically for segmenting individual
vertebrae in the spine. Liu et al. [85] used a level set method to segment the vertebrae,
achieving a DSC of 94.8 to 97.7%. Lessmann et al. [79], Bae et al. [7] and Janssens et al.
[62] used a convolutional neural network that produced segmentation DSC accuracies of
94.7%, 95.2% and 95.8% respectively. Dutta et al. [38] used a U-Net to segment vertebrae
and achieved an accuracy of 96.0%.

While the methods mentioned above produced good results and have helped further the
field of bone segmentation in CT, it is unclear what segmentation accuracy these methods
would produce when applied to the full skeleton. It is also unclear how some of these methods
could actually be applied to the full skeleton as they have been designed to segment specific
bones. As there is no evidence for the performance or applicability of these methods on the
whole body, they will not be pursued further in this thesis.

Four methods exist that have been designed to segment bone within a full body CT scan.
Bieth et al. [14] used an iterative random forest approach using Harr-like features as well as
geometric and distance features. A hierarchical label tree was used to find bone centroids in
order to obtain the geometric and distance measurements within bony regions. The CT data
was re-sampled to an isotropic resolution of 2 mm and an image size of 230 × 230 voxels.
This method was tested on twenty full body CT scans of healthy subjects as well as on thirty
prostate cancer and twenty myeloma data sets of the thorax and trunk. It achieved average
DSC scores of 84.4%, 81.6% and 74.8% respectively [14]. It used a 2-fold cross validation
approach for training and validation. The average segmentation time for one scan was about
12.48 minutes.

This method appears to be a viable full body segmentation technique, although it produced
a somewhat low DSC and the paper does not include a discussion from where the main
sources of error stem. This is important as certain bony regions are more difficult to segment
than others making comparisons between other methods difficult. The re-sampling of the
image size might also be problematic for MBD visualisations, as the standard CT image
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size is 512 × 512 voxels. Resizing would lose resolution that might be important for the
detection of small MBD regions.

Klein et al. [71] used a U-net convolutional neural network adapted from Ronneberger
et al. [104]. This method was tested on 18 full body CT data sets of patients suffering from
myeloma. It achieved a DSC of 95.0% using a 6-fold cross-validation approach. The method
used images of axial, sagittal and coronal slices to try and take into account 3D information.
After training, each scan took about 9 minutes and 30 seconds to segment. Best results
were achieved in the femurs, followed by the pelvis and upper body while the ribs produced
the poorest results. This method produced a specificity of 0.94±0.04 and a sensitivity of
0.91±0.08.

The DSC from Klein et al. [71] is better than that of Bieth et al. [14] although this method
was only tested on eighteen data sets. This method segmented standard sized 512 × 512 CT
images which would make visualisation of disease easier. The results were only tested on
data sets containing myeloma so it is not clear how this method would fare using a data set
containing healthy bone or a data set containing MBD. Overall, this could be a valid method
of segmenting full body CT.

Fu et al. [43] performed bone segmentation by optimising the morphology of a 3D
anatomical atlas mesh to match a target segmentation that was segmented using hysteresis
thresholding. Hysteresis thresholding addresses the problem of overlapping regions of bone
and non-bone by provided context that greatly improves the accuracy when compared to
global thresholding.

In hysteresis thresholding, multiple thresholds are used and combined to locate the bone
voxels. These bony voxels comprise their own segmentation (which I will refer to as the
target segmentation). An anatomical surface mesh atlas was then registered (point mesh
to point mesh) to the outer surface voxels of the target segmentation. Registration was
performed by following a hierarchical registration tree that involved registering the atlas to
the target. Starting with the full atlas, at each step of the tree, smaller and smaller sections
of the atlas were registered with the target. Each previous registration step helped guide the
current registration into the correct place. Finally, the atlas was deformed to match the target
segmentation.

The deformed atlas surface was superimposed on the original CT data set and used to
label individual voxels as being either bone or non-bone. The original target mesh was
discarded as the final deformable atlas became the final segmentation. 19 patients scanned in
an oncology department (with no mention of a specific disease) were used as a test set. This
method produced a segmentation DSC of 90.0% [43].
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This DSC is higher than in Bieth et al. [14] but also lower than Klein et al. [71]. How-
ever, there is reason to suspect that results produced by this method, have better surface
accuracy than do Bieth et al. [14] and Klein et al. [71] as this method is specifically a sur-
face segmentation based method. This method also produced an average surface distance
measurement between the final segmentation surface and the ground truth segmentation sur-
faces [43]. Results were tabulated by individual bone groups and range from 0.41±0.02 mm
to 1.55±0.20 mm. The number of test cases (19) was comparable to the other methods of
Bieth et al. [14] (30 full body cases) and Klein et al. [71] (18).

There is little discussion in this paper about bony areas that achieve poor results [43].
There is mention, however, that sometimes the vertebrae may be misaligned due to signif-
icantly different skeleton shapes and so must be guided by human intervention for correc-
tion [43]. This is undesirable behaviour as the MBD detection and tracking algorithm should
be fully automatic. This method took around twenty minutes per scan to segment with the
deformable registration taking almost half of this time [43] – longer, though not significantly,
than the first two methods. It also used the standard 512 × 512 sized CT images, which
would enable better visualisation of MBD.

In the final method, Lay et al. [76] used a watershed algorithm in conjunction with support
vector machine (SVM) classifiers to segment bone in full body CT. First, the data was heavily
smoothed, then the watershed algorithm was used to find general bone surface boundaries.
These boundaries helped guide the decomposition of CT images into supervoxels [76]. These
supervoxels were merged with each other depending on proximity and similarity. A SVM
was used to classify voxels into being either bone or non-bone. A second SVM classifier
was used to classify supervoxels that were difficult for the first classifier to classify in order
to improve accuracy. Further SVM classifiers were sometimes also used for more specific
regions of the body to improve results. This method was trained on 57 scans and then
validated on 80 CT scans (collected from hospitals without mention of a specific disease). It
achieved a DSC of 98.2% with a specificity of 0.986 and a sensitivity of 0.979 [76]. Each
CT scan segmentation took around two to three minutes making this method the fastest of
the four methods. There was no mention of a specific CT image size used in this paper [76].
There was also no discussion about specific bony regions that were difficult for this method
to segment.

Of these four methods (summarised in Table. 2.1), Lay’s method (watershed and support
vector machine) achieved the best overall results with a DSC of 98.2% [76] compared to
Bieth (random forest) with a DSC of 84.4% [14], Fu (hysteresis thresholding and hierarchical
registration) with a DSC of 90.0% [43] and Klein (U-net type convolutional neural network)
with a DSC of 95.0% [71]. Of these methods, Lay et al. [76], Bieth et al. [14] and Klein et al.
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Table 2.1 Methods for full body bone segmentation in CT.

Author Method DSC
Lay et al. [76] Watershed and support vector machine 98.2%

Klein et al. [71] U-Net convolutional neural network 95.0%
Fu et al. [43] Hysteresis thresholding and hierarchical registration 90.0%

Bieth et al. [14] Random forest 84.4%

[71] used machine learning approaches, while Fu et al. [43] did not. All of these methods
ran within an appropriate time allotment. However, it is significant that none of these papers
mention if these methods have been tested on CT data sets containing MBD.

It is also significant that only Klein et al. [71] and Lay et al. [76] mentioned specific
specificity and sensitivity rates. These are important metrics, as the DSC is a measure of total
overall accuracy (bone and non-bone) while specificity and sensitivity is a measure of bone
accuracy. As there is generally much more non-bone than bone in a CT image, it is possible
for the segmentation method to produce a high DSC in segmenting the non-bone correctly
while still producing poor results in segmenting the bone. Fu et al. [43] however, while not
including specificity and sensitivity metrics, produced average surface distance metrics that
are very helpful in determining the accuracy of the bone surface.

Although Lay’s method produced a higher DSC when compared to the other methods,
it is not clear if this would translate to better results in detecting and tracking MBD. In my
research, I used CBM, which accurately measures trabecular bone density, useful in locating
MBD. CBM produces the best results when the contour lines surrounding the bone lie exactly
between the bone and non-bone pixels, though it will still produce results when the boundary
is between 1 or 2 mm from this. It is essential for the bone boundary to be as accurate as
possible as this boundary also determines the surface normals along the bone surface, critical
to producing accurate CBM modelling. Due to the heavy smoothing, it could very well be
that Lay’s method achieves the best overall accuracy in finding the majority of the volumetric
bone correctly, but produces poorer surface boundary results. When examining the images in
Lay’s paper [76], multiple regions of the bony surface are clearly incorrect, which is likely
to be problematic. The only method that used a surface based segmentation optimisation
method is Fu [43].

As none of these methods have been tested on data sets containing MBD, it is unclear
whether a machine learning approach would produce good results when segmenting bone
that contains patches of MBD lesions, as these patches could vary greatly from the normal
bone training data. Klein’s method [71] worked successfully in segmenting bone in CT of
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myeloma patients, but it is unclear how much damage myeloma causes to bone in these data
sets (MBD often causes a significant amount of bone damage).

2.2.2 Hysteresis thresholding

For this research, I implemented a hysteresis thresholding and hierarchical registration
approach, which was based on Fu [43]. The hysteresis thresholding technique produces
a relatively high DSC in segmenting bone in CT, but, more importantly, should produce
better surface normals than the other full body methods as it explicitly optimises the surface
boundaries to find the best segmentation. This method also produces an acceptable average
surface distance metric demonstrating acceptable bone surface errors. In addition, hysteresis
thresholding enables contour lines to be produced with sub-pixel accuracy by interpolating
between thresholded voxels. This further improves subsequent CBM density calculation as
the surface normals will be more accurate. However, segmentation is only a small part of the
approach I outline in this thesis, and it is acknowledged that, whilst Fu’s method seems to be
the most promising, the other full body methods may also be appropriate for this task.

In the hysteresis thresholding implementation, all voxels with a radiodensity greater
than 400 HU were labelled as bone. After this, voxels with a radiodensity greater than 200
HU and that were adjacent (eight-way connected) to the first set of voxels (those with a
radiodensity greater than 400 HU) were also labelled as bone. Additionally, voxels were
marked as bone if they had radiodensity greater than 200 HU and if any of the nine voxels
(eight-way connected, as well as the centre voxel) in the slice directly below or above had a
radiodensity greater than 400 HU.

A contour algorithm was then used to trace around each segmentation to find the border
voxels. The contour line was adjusted to subpixel accuracy by weighting the difference
between each bony voxel and its neighbouring non-bony voxel. The contours were saved and
exported into Stradview for polygonal mesh surface generation and CBM.

2.2.3 Polygonal mesh background

There are a number of ways of rendering and modelling 3D data. General approaches include
ray tracing [153], volume rendering [80], curve based (i.e. 3D spines) and polygonal mesh
rendering [12]. (A variety of lesser used methods exist as well, such as radiosity based,
photon mapping and others, but they are largely irrelevant).

The polygonal mesh was used in this project as it offers many benefits. The mesh is a
way of defining the shape of a polyhedron through a collection of vertices (points in 3D
space – usually with a colour and a normal vector), edges (connections between two vertices)
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Fig. 2.3 An example of a typical segmentation with the segmented bone being outlined in
purple. The underlying CT data is from the Addenbrooke’s Hospital CT Data Collection.

and faces (a closed set of edges – usually triangles). This was first described by Baumgart
[12] for use in computer vision algorithms and has been extended into mainstream use
in the field of computer graphics. The polygonal mesh is the standard 3D surface format
supported by many modern software packages (i.e. OpenGL [95]) as well as graphics
hardware. 3D graphics cards have been designed and optimised to quickly and efficiently
render large 3D polygonal meshes using fragment shaders. These cards also make use of
efficient pixel shading programs that can quickly calculate semi–realistic lighting effects for
each mesh vertex. This allows for state of the art visualisations and often real time rendering
of interactive computer 3D graphics.

Polygonal meshes were also used in this thesis as they can be created at any resolution
and can be used to precisely model the surfaces of 3D objects (i.e. bony surfaces). Meshes
can be created in a variety of ways. Often polygonal meshes are created through interactive
modelling software such as Maya [87], or by using a scanning based approach. Polygonal
meshes can also be created from discrete scalar fields by using the marching cubes [86] or
marching tetrahedra [36] algorithms.

The polygonal mesh is also an efficient way of storing 3D surface data. Efficiency
was needed as the surface meshes used in this project are relatively large, consisting of
hundreds of thousands of vertices. This information (along with the normal vectors, edge
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relationships and triangle surface information) was needed to be able to fit into memory to
support real-time viewer interactions.

Furthermore, the Stradview software [133] supports polygonal meshes. This software
was needed as it contains the implementation of the CBM algorithm as well as the marching
tetrahedra algorithm that was used to convert discrete segmentation contour points into a
polygonal mesh.

Most of the other rendering methods mentioned at the start of this section make use of the
polygonal mesh. In ray tracing, the scene is usually defined as a polygonal mesh. Rays are
projected into the scene and intersections are found with the mesh faces (usually triangles).
At the intersections points, the rays are split into reflection rays and refraction rays. The
colour intensity is recursively summed in order to render the scene.

Although ray tracing can be used to create photo realistic renderings, it produces the most
impressive results when the scene has either reflective or opaque objects within it. The bony
meshes used in this thesis are neither reflective nor opaque, so using ray tracing would not
have improved the visualisations. Also, ray tracing is computationally expensive and cannot
often be rendered in real–time, a necessity for an interactive viewer.

Curve based methods also make use of polygonal meshes. Splines are usually interpolated
into 3D points at a given resolution in order to create a polygonal mesh. The polygonal mesh
is then rendered using a standard polygonal mesh rendering technique. Curve based methods
were not used in thesis as the surface was already defined through the segmentation, so the
surface did not need to be modelled using a curve based approach.

In volume rendering, volumetric data is usually displayed directly. However the data is
sometimes converted into a polygonal mesh before rendering. Although volume rendering
can produce interesting visualisations, it was not used in this project as this approach is
very similar to displaying slice planes at various angles through the CT data, which was too
limited for the purposes of this thesis.

2.2.4 Polygonal mesh generation

Once the bone in a CT volume was segmented using hysteresis thresholding, the 2D seg-
mentation contours in each CT image slice were converted into a 3D triangle polygonal
mesh which fully encapsulates the bone. Figure 2.3 shows what a typical segmentation bone
outline looks like. The Stradview software implementation [133] was used to convert each
cross section into the mesh using a shape-based interpolation technique [139] (to add more
contour points) and the regularised marching tetrahedra technique [138] to generate the mesh.
An example of a typical segmentation mesh using hysteresis thresholding can be seen in
Figure 2.4, which shows the result before the atlas registration.
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Fig. 2.4 This figure shows what a typical fully automatic hysteresis segmentation of the
bone looks like, as well as indicating the typical range over which the detection of MBD is
attempted. This is the result of the segmentation before the atlas registration. This image is a
screenshot taken after the new mesh was loaded back into Stradview [133].

These operations were performed using function calls in the Stradview software pack-
age using a command line interface. These commands are documented on the Stradview
website [133] on the scripts documentation page. The SURFACE_RESOLUTION, SUR-
FACE_SMOOTH_TYPE, SURFACE_SMOOTHING and SURFACE_ALL functions were
called to build the mesh with the resolution set to high, the surface smoothing type set to
standard and the surface smoothing set to low. The THICKNESS_EST_DENSITY, THICK-
NESS_SURF_FIT and THICKNESS_SURF_SAVE functions were called to run CBM and
to save the results.

The segmentation is correct and very accurate across most of the surface, although prob-
lems can clearly be seen by a visual inspection of the mesh. Specifically, this segmentation
contains a number of holes, but the otherwise accurate surface locations mean that this
segmentation is highly appropriate to detect, visualise and track MBD. The segmentation
DSC results can be seen in section 3.3.1 and the overall results in detection of MBD using
this type of segmentation were also recorded in section 3.3.1.
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Fig. 2.5 The pelvic bone is extremely thin in places, as can be seen in this CT image. The
bone at these locations does not contain any trabecular bone but is entirely cortical bone.
Underlying CT data is from the Addenbrooke’s Hospital CT Data Collection.

2.2.5 Bone thickness calculation

If the bone is significantly thin (much less than 10.8 mm, the length of line that passes
through the trabecular bone), CBM will not generally produce an accurate result. For
instance, this occurs in two locations, which include parts of the hip, as well as in most of
the ribs. Figure 2.5 shows an example of a very thin area within the hip. In this example, the
thin area is entirely cortical bone so there is no trabecular bone density to measure. This case
produced poor results in the CBM modelling process. The ribs are also very thin in most
places even though they do contain a small amount of trabecular bone. This amount however,
is also very small, negatively impacting the CBM modelling process.

If the bone is very thin, there is unlikely to be much, if any, trabecular bone to measure
or compare with. These thin regions cannot be used as there is not enough information to
accurately determine if the bone at that location is diseased or not. It is therefore necessary
to find these regions and discard them so they are not used in the disease detection process.

To find points on the bony segmentation that are very thin, each point’s vertex normal
was projected into the bone and was intersected with all triangles within the mesh, in order to
determine bone depth for that point. If multiple intersections occurred, the closest intersection
was used to calculate the depth. Points that contain depths less than 3.0 mm were marked as
being too thin, although an exact depth is difficult to determine as this depends on how thick
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the cortices are relative to the overall bone thickness. Using this cutoff excludes a number of
thin regions, including some part of the ribs, but a significant number of points in the ribs
can still be assessed.

2.3 Atlas creation

Using a symmetrical atlas is an essential step in detecting and tracking MBD. In order to
investigate symmetrical difference in the skeleton, an atlas was used to both refine the target
segmentation as well as to produce a symmetrical mapping.

This is slightly different from the last stage of the hysteresis thresholding method de-
scribed by Fu et al. [43]. In their method, the atlas mesh was registered to the target
segmentation mesh only to refine the result – the deformed atlas became the final segmenta-
tion [43]. As mentioned above, I used the atlas to both refine the segmentation and to create
a symmetrical mapping between points.

To create the atlas, a healthy CT data set was initially segmented using the threshold
feature in the Stradview software [133]. Stradview is an medical 3D data visualisation
package that can be used to load most types of DICOM data sets. It has a segmentation
feature that can be used to segment bone (and edit the segmentations). It can produce high
quality surface meshes from the contour lines that surround the segmentations. It also has a
cortical bone mapping feature which can be used to model trabecular bone density from the
surface meshes.

Ideally, the atlas would be as similar as possible to a normal data set (i.e. in the right age
range and the right sex). For prostate cancer patients, the atlas should be male and roughly
over sixty years of age. The atlas I used in this thesis (due to the difficulty of obtaining a
full body CT scan from a healthy patient), was of a healthy male in his forties. As the age of
this data set is younger than almost all prostate cancer patients, the atlas should match less
precisely and therefore work less well than if using an atlas of data from a more similar age.
However, older patients will have different degrees of degenerate change, which could also
cause less precise matching. Osteopaenia or osteoporosis often exists in the older population
as well, which can be an additional potential issue for using an aged atlas.

To improve accuracy, the atlas segmentation was then thoroughly corrected by hand
using the Stradview software [133]. This process would not be possible for individual
segmentations, since it took over 30 hours to carefully correct this segmentation. The full
segmentation of the skeleton was also split into multiple regions by labelling general bone
groups (left pelvis, centre pelvis, right pelvis), and bones (left upper femur, right upper femur,
individual ribs and individual vertebrae) as seen in Figure 2.6.



2.3 Atlas creation 35

Fig. 2.6 A screenshot taken from Stradview [133] showing one of the atlases. Every point
in the polygonal mesh has a perfectly symmetrical point pairing. The colour indicates the
individual labelling of bones and bony regions.
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For each bony region, a plane was found that best symmetrically split the region in half.
In order to find this plane, the Levenberg-Marquardt [90] algorithm was used to optimise
plane variables A, B and C in the plane equation Ax+By+Cz+D = 0. D was held constant
during the optimisation and later used to enforce unit vector constraints required for the plane
variables. The Levenberg-Marquardt [90] algorithm requires initial starting parameters, so
an initial plane placement was defined by hand. This was found using Stradview [133] for
visualisation. After initialisation, all points on one side of the plane (i.e. points that are a
positive distance along the plane’s normal) were found and projected across the plane as in
equation (2.4).

P′ = P−2MN̂ (2.4)

In this equation, P is a selected point, N̂ is the symmetric plane’s normal unit vector, M
is the minimum distance from P to the plane and P′ is the projected symmetrical point.

This process was also repeated for points on the opposite side (points a negative distance
along the plane’s normal). Using these two projections, a complete symmetrical region was
formed. The Levenberg-Marquardt [90] algorithm was then used to optimise A, B and C to
best reduce the distance between each point in the symmetrical region and its closest point
match in the initial region. The error function used was the distance between closest points
multiplied by the dot product of the surface normals. This optimisation was iteratively run
until near convergence.

Once the plane was optimised, equation (2.4) was applied to every point on one side of
the plane to create a perfectly symmetrical atlas. For the set of points that made up triangles
that were bisected by the plane of symmetry, a procedure was used to form these points into
new triangles (this procedure is demonstrated in Figure 2.7). Then, all sets of points were
found, in which two points, O and S, were cut off from a third (R). The symmetric points of
O and S were found (O′ and S′ respectively). Two new triangles were formed, the first being
△ OO′S, and the second being △ SO′S′. This joined the seam between the selected points
and the projected points, creating a full and completely symmetric atlas (Figure 2.8 shows an
example of this).

A second atlas could be created by flipping the sign of the symmetrical plane’s normal
vector and repeating the process, however a second atlas was not needed. This approach
was not designed to create an atlas that is exactly true to a real human’s bone anatomy, but
instead, to create a model that is similar to a human’s anatomy but perfectly symmetric.
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Fig. 2.7 A demonstration of joining the seam between severed triangles when creating the
perfectly symmetric atlas. The two triangles △ ORS and △ SRT on the left are cut (indicated
roughly by the red lines) by the plane of symmetry. New triangles △ OO′S and △ SO′S′ are
created to join the seam and complete the fully symmetric atlas.

(a) This figure shows an area of the
pelvis before the centre seam has been
joined together.

(b) This figure shows the same area of
the pelvis after the centre seam has been
joined together.

Fig. 2.8 An example of joining the centre seam. This process was used to help create a fully
symmetrical atlas.
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2.4 Registration

Registration is the process of aligning two objects. Objects can vary greatly in type and
include 2D images, 3D surfaces, point clouds, landmarks, features, and others. There are
three main components of the registration process – a registration (or transformation) model,
an objective function and an optimisation method [121]. Of these three, the criteria for
the registration model and objective function are the most significant for this thesis, as the
optimisation method can be exchanged for a number of workable solutions.

The registration model defines the transformations allowed for the registration process
and limits the scope of the registration. There are two types of broad registration models –
rigid (which allows for linear transformations and usually a small number of parameters) and
deformable (which allows for elastic warpings, and usually includes a much larger set of
parameters).

The objective function (or cost function) measures a cost or difference metric between the
alignment of the two objects. Any number of difference metrics or matching criteria can be
used. Common metrics include using geometric information such as differences in euclidean
distance between corresponding points, principal curvatures, surface normal vectors, points
of interest, landmarks features and others. Non geometric differences can also be used by
measuring the intensity of relationships between two objects. This type of method is often
used in multi–modal registration (were the two objects originate from different imaging
modalities) [121].

The optimisation method is used to minimise the objective function. Commonly used
methods include gradient descent, conjugate gradient, Powell’s conjugate directions, Quasi–
Newton, Levenberg–Marquardt, and the stochastic gradient descent method [121]. These
methods optimise a differentiable objective function (the cost function) over a number of
iterative steps. At each iteration, the given method optimises a set of parameters that results
in a step in the direction of the minimization. This is repeated until convergence, or until
certain criteria are met. These methods vary in step size (which can be constant or variable)
and in search direction. The Levenberg–Marquardt algorithm [90] was used in this thesis
because the code was readily available. However, any of these methods could be used in
place of the Levenberg–Marquardt method with similar results.

2.4.1 Overview of mesh to mesh registration

In order to compare symmetrical bony regions in a CT segmentation for an individual patient,
the symmetrical point mapping must be found. Almost all research in this area (finding
symmetry) has focused on locating lines or planes of symmetry in 3D point meshes [11].
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However, it is difficult to use a plane of symmetry to find 3D point mappings between
symmetric regions when looking at the whole skeleton for an individual.

One way to find this symmetrical mapping however, is to register individual symmetric
regions (i.e. left femur with right femur) with one of the regions mirrored. After registration,
closest pairs of points can be marked as symmetrical point pairings. Segmentations that do
not have a corresponding symmetrical segmentation (i.e. the vertebrae) can be registered
to a mirrored copy of themselves. This is essentially the process described in Section 2.3.
However, this symmetrical point mapping approach requires the target segmentation to be
split up and labelled into individual known bones or regions (left femur, right femur, 12th

rib left, 12th rib right, etc.). This can be challenging to do accurately using an automatic
approach.

The symmetrical point pairing accuracy can be significantly improved by using an atlas-
based approach. As the atlas described in Section 2.3 was created to be completely symmetric,
it was used to project symmetry into a similarly shaped segmentation. This was accomplished
by rigidly registering the atlas to the target segmentation and then by deforming the atlas to
best match the target segmentation.

The atlas symmetry can either be projected onto the target segmentation using a closest
point approach or by letting the deformed atlas become the segmentation itself, as in Fu et al.
[43]. By letting the atlas become the segmentation itself, the segmentation surface is also
optimised in the process, which might help improve CBM accuracy. Results of projecting
the atlas symmetry onto the target segmentation are described in Section 3.4. Results from
using the deformed atlas as the segmentation are described in Section 3.4.12.

2.4.2 Rigid registration

In surface to surface rigid registration, the translation and rotation are found that best
minimise the distance between a movable point set P and a static point set Q. For this thesis,
P represents the points of the 3D atlas surface while Q represents the points of the 3D target
segmentation surface.

This registration technique was first described by Besl and McKay [13] and Zhang [167]
and is the basis of all surface to surface point registration methods. In this iterative technique,
n steps are taken until there is an error convergence or until some other criterion is reached.
In each step, for every point pi in P, the closest point (usually by Euclidean distance) qi

in Q is found. Then, the least squares solution to the rigid displacement (a translation and
rotation) is applied to the points in P as in equation (2.5), which is the best minimisation of
the error [130]. This error is defined as the cost function. Having found (R,T ), p is updated,
and this update means that the set of matching points will be different in the next iteration.
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In equation (2.5), E is the error to be minimised, R is the matrix representing the rotation and
T is vector representing the translation. This optimisation problem is often solved using the
quaternion method [41].

E(R,T ) = min∑
i
∥qi − (Rpi +T )∥2 (2.5)

This method can easily fail to achieve good results if the two point sets are at significantly
different scales or if they have significant shape differences. To help mitigate the differences
in shape and scale, affine registration can be used as described in [42]. Instead of solving for
a rotation as in equation (2.5), an affine transformation is solved for as in equation (2.6). In
this equation, A is a 3 by 3 (affine) matrix and T is the translation. This affine matrix allows
for rotation, scaling and shearing so that P can better register and match Q.

Registration accuracy can also be improved by using a greater number and a wider array
of difference metrics. Instead of only comparing the Euclidean distance between points,
surface normals and principal curvatures can be used to better match surfaces [42]. This also
helps constrain the affine transformation, which can make it more likely to find convergence.

E(A,T ) = min∑
i
∥qi − (Api +T )∥2 (2.6)

2.4.3 Deformable registration

Affine registration can still fail to produce registrations that include significant differences
in shape between the two point sets. This is because the affine registration is often not
flexible enough to allow for a complete deformation of the points in P to match the points
in Q. These differences may include the fine surface details that are important in accurately
registering one surface to another, though they can also include errors in the surfaces that are
not desirable to register. In order to match the fine details, a deformable registration model
was used.

The deformable registration model used in this project was required to meet certain
criteria, namely that the method has been shown to work on 3D meshes (not solely 2D
images) and that the method does not require manual landmarks. Placing manual landmarks
can be challenging and time-consuming (depending on the size of the data set). Often this
requires manual interaction to accurately place the landmarks, which relies on an expert’s
knowledge. This is especially true in a medical setting with complex data sets and unknown
pathology. Because of this, a deformable method that does not use manual landmarks was
necessary.
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There are a number of deformable models that allow for a greater degree of deformation
to occur. The primary methods include radial basis functions, elastic body splines, free
form deformations and locally affine models. Radial basis functions, while beneficial in
interpolating between values, has difficulty seeking local transformations and often requires
manual landmarks. A popular version of a radial basis function is the sliding semilandmarks
algorithm. It was first introduced by Bookstein [15, 16] and extended to three dimensions by
Gunz [51]. In this approach, matching landmarks are found between the point set P and the
point set Q. Semi-landmarks are then roughly placed either manually or semi-automatically
between the landmarks on the curves and surfaces [50], which are allowed to slide along
these curves and surfaces [51]. The thin plate spline matches the landmarks between P and
Q and then, as smoothly as possible, it interpolates the data between these landmarks by
minimising the total bending energy of the deformation [50]. Using sliding semilandmarks
can produce very accurate deformations if the landmarks are placed accurately. I chose not
to use sliding semilandmarks because accurate and automatic deformations were needed
in order to have a fully automatic MBD detection and tracking algorithm. Also, the scale
at which the deformation process needed to accurately work was large (ribs, spine, pelvis
and upper femurs) and the bony shapes greatly varied across the different anatomies. This
made using sliding semilandmarks on these data sets challenging. Elastic body splines
can also be used to optimise matching surfaces, but also requires manual landmarks. Free
form deformations are often used as a type of transformation model, however topological
preservation is not guaranteed and requires manual control points. Locally affine models use
locally linear deformations in order to parametrize transformation that do not require manual
landmarks and are suitable for 3D meshes. In a locally affine transformation, each point
pi in P is allowed to register independently of the other points in P. In each iteration, an
affine transformation is applied to pi by finding the best affine transformation that registers
a group of points in P that are within a maximum distance R away from pi to their closest
matches in Q [42]. The points in P are then smoothed and the process repeated until a
criterion is met. The locally affine transformation has been used successfully in a number of
studies [2, 4, 5, 42, 83, 81].

There are a number of other approaches similar to the locally affine model. In a local rigid
transformation, each point pi in P is allowed to register independently of the other points in P.
However, at certain intervals, points with similar deformations are clustered together. These
clusters of points are then registered as a single group in subsequent steps [59]. This clustering
helps add more rigidity to the deformable registration, which can be important in preserving
distances between points. A number of studies have used locally rigid transformations
successfully [59, 120, 126]. Additional studies similar to the locally affine transformation,
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used a local displacement approach where groups of points with like attributes were forced to
displace in similar ways [59]. This local displacement approach has been applied in several
other studies [29, 92, 146].

Of these methods, the locally affine transformation, the locally rigid transformation and
the local displacement field transformation follow a similar pattern. Individual points are
free to deform but are influenced by their neighbouring points’ deformation in some way in
order to help preserve the overall surface. These methods are completely automatic and have
been shown to work well in 3D deformable surface registration. Because of the levels of
success a version of the locally affine transformation model was used in this thesis.

In addition to these methods, isometric registration is an important deformable registration
concept that can help improve accuracy when registering point clouds to each other under
certain conditions. Instead of solely using external properties of the surface for registration,
internal properties within the surface are preserved in order to help guide the registration [130].
Isometric registration has been shown to be an especially effective tool when registering
surfaces containing anatomical morphology [130]. Baiker et al. [8] and Yip et al. [164]
created an articulated skeletal joint model used to limit bony registration to known ranges of
joint motion in order to guide human and mouse skeletal registration. Isometric registration
creates a much more structured registration that can improve accuracy and can help reduce
the dimensionality of the registration problem as the deformations are mostly limited to the
joints.

2.4.4 Initial placement in registration

A significant source of error in both rigid registration and deformable registration is often
due to poor initial placement of the two point sets. This is because a local minimum can
easily be found instead of the optimal global minimum [13].

Many approaches have been used to help find accurate initial placements between the
two point sets. One very common method is to use a rigid global alignment for a number
of steps to initialise the registration before deformable registration takes place [20, 81].
Other approaches try multiple initial placements, and use the best one for the final initial
placement [59]. Prior shape information (i.e. the skeleton) can also be used to help the initial
placement of the two shapes [1, 98].

A well established method of guiding initial placement in skeletons is to use a piece-wise
hierarchical registration [9, 10, 67–70, 74, 117, 164]. This is a prior-based method, as the
skeletal bone structure is generally the same across specimens so the general skeletal shape
can be leveraged. Piece-wise hierarchical registration was first introduced when registering
mice skeletons [8] and was later applied to humans [164].
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Initial Placement
Piece-wise Hierarchical Tree

(using affine registration) Deformable Registration

Fig. 2.9 An overview of the registration method.

In this approach, the entire skeleton as a whole is first registered for initial placement.
Multiple initial placements are attempted in order to find the best starting initial placement.
Then smaller and smaller sub-regions of the skeleton are rigidly registered following a hierar-
chical anatomical tree of the atlas. Each previous registration acts as the initial placement for
the current step, which guides the smaller subsections of the skeleton into a generally correct
location before the final rigid registration and deformable registration. This greatly improves
accuracy and allows each bony region to move independently of each other but be guided by
the skeleton as a whole.

2.4.5 Piece-wise hierarchical registration

For this research, a three part registration technique was used (this can be seen in Figure 2.9).
First, the initial placement of the atlas was calculated by using the centroids of the target
mesh and the atlas for a rough global positioning estimate. All 103 CT scans within my
data-set (described in Section 3.2.1) were oriented the same way with the x-axis, y-axis
and z-axis corresponding to the transverse, frontal, and longitudinal axes respectively. This
simplifies the initial placement problem, however it is possible for CT data sets not to be in
this orientation, although most CT data sets do contain a patient-derived coordinate system.

As the orientations were roughly the same in my case, the atlas was initially placed by
lining up centroids between the target and atlas. Then, the atlas was moved by a positive
or negative z-offset relative to the centroid. At each z-depth, for each point in the atlas, the
closest point (by Euclidean distance) in the target was found. These distances were summed
to determine the total distance error. After trying all z-offsets, the position with the smallest
error was chosen as the final initial position. Figure 2.10 and Figure 2.11 show two examples
of initial placement.

This initial positioning was especially needed when the number of z-slices was signifi-
cantly different as it was in the case of the healthy control data-set. Often, these CT scans did
not include the pelvis and femurs making them much shorter. If the CT scans had differed
significantly in orientation, I would have used a principal component analysis to help align
principal vectors for better alignment.

After initial placement, a piece-wise hierarchical affine registration technique was used
to guide individual pieces of the atlas into relatively correct spatial locations. The euclidean



44 MBD Assessment

Fig. 2.10 This image is an example of typical initial placement where the atlas is multi-
coloured and the target segmentation is coloured yellow. Initial placement in registration is
very important as a poor initial placement can lead to inaccurate registration.
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Fig. 2.11 This image shows another example of a typical initial placement.

distance between each point in the atlas and its closest point in the target mesh was used as
the cost function. A diagram of the hierarchical tree can be seen in Figure 2.12. At each node
in the tree, each bone group was registered together for a number of iterative steps (until only
a very small amount of improvement is made in each step) using affine registration. Each
previous node and step guides the current registration into place. The figures in Figure 2.13
show an example of piece-wise hierarchical registration, starting from initial placement.

After this, a modified version of the locally rigid transformation was used to deform the
final registration so that it closely matched the target segmentation. Instead of starting with
individual points, the deformation process started with full sets of the bony regions. These
regions were split in half by first finding the points farthest away from each other in the
mesh. By treating the points within the mesh as nodes and their triangle relationships as a
connected graph, two simultaneous breadth first searches were expanded starting at these
initial points until all nodes were claimed by either search. Each of these two regions was
registered using affine registration to best align their point sets to Q. The regions were then
smoothed using a Gaussian kernel in order to prevent hard boundaries from forming between
the patches. This approach helped preserve some of the structure gained from clustering due
to the locally rigid transformation. This is useful in covering holes in the target segmentation



46 MBD Assessment

Initial Global Alignment
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Fig. 2.12 A diagram of the hierarchical registration. Initial registration first occurs globally
with the entire skeleton. Progressively smaller regions are then registered with each previous
step acting as the initial placement for the current step. Finally, each bone is deformed to
match the segmentation.
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(a) After 0 iterations – the initial place-
ment of the two meshes.

(b) After 25 iterations – registration of
the entire skeleton (global alignment).

(c) After 50 iterations – registration of
the lower skeleton (pelvis and femurs).

(d) After 75 iterations – registration of
the upper skeleton (spine and ribs).

(e) After 100 iterations – registration of
the pelvis and then registration of the
individual bones within the pelvis.

(f) After 150 iterations – registration of
the left femur and then registration of
the right femur.

(g) After 200 iterations – registration
of the spine, then of the individual ver-
tebrae and then of the individual ribs.

(h) After 300 iterations – the final reg-
istration result before the deformable
registration process.

Fig. 2.13 An example showing a typical piece-wise hierarchical affine registration process of
registering the atlas mesh to the target mesh.
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(a) The target segmentation. (b) The deformed atlas.

Fig. 2.14 An example of comparing a target segmentation to a deformed atlas segmentation.
The target segmentation often contains a number of holes as seen in Figure 2.14a. This figure
shows a typical example of the target segmentation mesh result of part of the pelvis. In
Figure 2.14b, the deformed atlas was used to cover the holes.

as seen in Figure 2.14. Again, the difference between each point in the atlas and its closest
match in the target segmentation was used as the cost function.

The splitting and registration process was repeated for a number of iterations with each
iteration creating smaller and smaller patches to deform in order to match finer details. This
process continued until little improvement (the reduction of the distance error) was made for
a step. Each previous step helped guide the current step into place by providing finer and finer
placement. Once the patches were small enough (only a few points), this deformation process
behaved very similarly to the locally affine registration. Each point was free to deform but
was dependant on the radius of points around it (only in this method they must be connected
by the graph). This helped capture the fine details of the registration. Figures 2.15, 2.16
and 2.17 show an example of the deformable registration starting from the last step of the
piece-wise registration.

It was also found that optimising both surface normal difference and Euclidean point
distance was needed in order to produce accurate registration results. The difference between
surface normal vectors of the two points was compared by first normalising the vectors and
then by finding the dot product between them. Results from this calculation ranged from -1.0
to 1.0 where a greater value indicated more similar surface normal directions. Points were
only used in the registration if their surface normals matched significantly well (for each
point on the atlas, its paired point was set to be the closest matching point in the target mesh,
where the dot product between the surface normals was greater than 0.5). This threshold was
found by trying a selection of values from 0.0 to 1.0 (0° to 90° difference between vectors),
although a range of nearby values (to 0.5) produced similar results. Using a higher value will
enforce greater surface shape matching, while using a lower value will weight minimising
Euclidean point distance to a greater extent.
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Fig. 2.15 The results of the piece-wise registration before the deformable registration has
started.
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Fig. 2.16 The results of the piece-wise registration after 20 iterations of deformable registra-
tion.
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Fig. 2.17 The results of the piece-wise registration after 40 iterations of deformable registra-
tion.
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Fig. 2.18 In this image, the best affine registration is found, so the atlas (shown in purple),
can best match the target (shown in yellow). The points in the atlas indicated by the white
arrow are significantly far away from areas of the target mesh in comparison to the other
points in the atlas. One such area is indicated by the black arrow. These points could easily
pull the atlas in the wrong direction and so are ignored when computing the registration.

It was also found that as the piece-wise hierarchical model guided each bone into place,
its registration was limited similarly to that of an isometric registration articulated joint model,
thus using an actual articulated joint model was not necessary. Similarly, matching principal
curvatures was not needed when finding closest points, as the piece-wise hierarchical model
again guided the registration into the correct locations without examining principal curvatures.
However, these two techniques could be used if a more accurate registration was needed.

Additionally, at each step of the registration, the mean Euclidean distance was calculated.
If a point was farther than two standard deviations away from the mean, it was considered an
outlier and was not used to find the affine transformation. This allowed for points that did
not have a good point match to not influence the registration. This was important because
it allowed bones of different lengths to register correctly, as seen in Figure 2.18. However,
this created other problems as seen in Figure 4.6, for instance, because the corner of the
pelvis was prevented from matching as the sides were already close. An example of the final
registration after initial placement, piece-wise hierarchical affine registration and deformable
registration can be seen in Figure 2.19.
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Fig. 2.19 A typical final registration – each region of the deformed atlas is coloured in a
different colour while the target segmentation is in yellow.

2.4.6 Improving the hierarchical registration

It was found that even when using a piece-wise hierarchical approach, the registration of the
spine still contained a significant number of errors, as the vertebrae were similar in shape and
easily moved into the wrong location during registration. If a vertebra was initially placed
at too high a z-value, it often would incorrectly slide up and register to the wrong vertebra.
Similarly, if the vertebra was initially placed at too low a z-value, it often slid incorrectly
down.

For simplicity in this thesis, individual vertebrae are labelled from Vertebrae0, which is
the lowest vertebra closest to the pelvis, to Vertebrae8, the vertebra farthest from the pelvis.
The mapping of the proper anatomical terms for these vertebrae are listed in Table 2.2.

A number of studies exist, such as Chen et al. [24], Glocker et al. [48, 49], Kelm et al.
[66], Klinder et al. [72], Suzani et al. [127] and Yang et al. [159] that have solved for vertebra
centroids (vertebra localisation) within CT data sets. This can be used as initial placement
for atlas vertebrae. However, due to variable sizes between the target segmentation vertebra
and the atlas vertebra, even when having correct vertebra locations, registration can still
easily lead to a vertebrae registering above or below the correct vertebra. This is because the
top surface of an atlas vertebra often registers with the bottom surface of a target vertebra
located a place above its intended registration target vertebra. This occurs when errors in the
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Table 2.2 The numerical ordering (for clarity) of the vertebrae used in the registration.

Anatomical label Project label
L5 Vertebra0
L4 Vertebra1
L3 Vertebra2
L2 Vertebra3
L1 Vertebra4
T12 Vertebra5
T11 Vertebra6
T10 Vertebra7

segmentation cause two or more vertebrae to merge into a single body. When this happens,
target points and target normals do not always exist on either the top or bottom of individual
vertebrae. As registration cannot match onto these missing points, the atlas vertebra can
easily slide up and down the merged vertebral column.

After searching the literature, it was found that there has been little written on vertebra
to vertebra 3D point registration. In order to solve this issue, three point markers (A_ntop,
A_n′top and A_n′′top) were placed (before registration) on the top surface of each vertebra A_n
in the atlas using a manual visualisation point selection process. Another point (A_nbottom),
was placed on the bottom centre of each, as well as a point (ptop) on the top-centre of the
pelvis where the spine starts. Figure 2.20a shows an example of this. These markers were
used to set the initial placement locations of each vertebra.

Beginning with the vertebra with the lowest z-value (nearest to the pelvis), the initial
atlas vertebra A_0, was placed by lining up its A_0bottom point with the ptop point on the
pelvis. This can been seen in Figure 2.20b. The pelvis was used as a base, as it had already
been guided into the correct location using the piece-wise hierarchical tree registration order.
The pelvis had a larger and more unique shape that is easier to register correctly. The A_0
vertebra was then registered to its closest target vertebra T _0, which was the correct vertebra
match. This is shown in Figure 2.21.

Then, the second atlas vertebra A_1 (the vertebra right above A_0), was placed by lining
up its A_1bottom point with the centroid of A_0top, A_0′top and A_0′′top. This is shown in
Figure 2.22. Using the plane defined by A_0top, A_0′top and A_0′′top, all points below this
plane were ignored during registration. This forced A_1 to register upwards (as there are
no point matches below the plane) into the correct location T _1. This also made it unlikely
that A_1 would register with the target vertebra T _2 above its correct location, as the initial
location of A_1 was already low (due to the natural vertebra spacing which had been ignored
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(a) Points are initially placed by hand on
each vertebra (only one shown here) in
the atlas and also on the pelvis to mark
the top and bottom surfaces.

A0
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(b) In this example shown in simplified
2D, the points A0bottom and Ptop are used
for correct initial alignment between the
first vertebra and the pelvis.

Fig. 2.20 An example of registering the lowest vertebra with the top of the pelvis. Using
pre-marked points greatly improves vertebra registration.
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A0

Pelvis

T0

Fig. 2.21 An example showing the registration of an atlas vertebra to a target vertebra. Atlas
vertebra A0 moves upward to register with target vertebra T 0.
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Fig. 2.22 An example of using the top of a previously registered vertebra as the initial starting
registration location for the vertebra above it. Atlas vertebra A1 is initially placed by aligning
the A1bottom with the centroid of A0top, A0′top and A0′′top.
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when placing A_1 right above A_0). This process was repeated for all of the vertebrae. An
example of using this technique can be seen in Figure 2.19.

The ribs also often contained significant registration errors as there is great variance
between shape, size and placement between scans. The atlas ribs frequently registered to the
wrong target rib or incorrectly registered to multiple ribs. Moreover, costal cartilage joins
the ribs (not ribs 11 to 12) to the sternum, which can have a variable degree of calcification,
especially in the older age group. This may affect the segmentation and therefore the
registration. Again, after searching the literature, it appears that very little has been written
about 3D rib registration.

To help fix these problems, a technique was used to provide better initial rib placement
and to limit each individual rib registration to point groups made of a single target rib. A
line was found running through the spine using centre points from the vertebrae with the
greatest and smallest z value. This line was used to ignore points on the spine (located within
a certain distance of the line) and then split the target segmentation into individual ribs using
region growing (breadth first search). A region growing method (Liu et al. [84]) similar
to this was used successfully to assign individual ribs unique regions. Once the groups of
points that make up the individual target ribs were found, each atlas rib was assigned a target
rib point group based on z-ordering and left-right side. Each atlas rib was only allowed
to register with its assigned point group. All other points were ignored, forcing the rib to
register with its correct rib without interacting with any other rib. This greatly improved
registration accuracy.

2.5 Symmetrical disease assessment

Once the segmentation, CBM and registration processes are finished, the trabecular bone
density at every point on one side of the segmentation is compared with the other side using
the registration mappings. A significant difference in trabecular bone density between the
left side and the right side can indicate the presence of MBD.

For this thesis, I implemented a custom viewer written in C++, using the OpenGL [95]
library. It can display the results of this method in order to assess the disease visually. It can
visualize the polygonal meshes created by Stradview and overlay them with different colour
schemes.

In figure 2.23a, the trabecular bone density has been overlaid upon the segmentation
mesh. This is not yet showing the symmetrical difference although a user can easily compare
the left side of the pelvis to the right side and notice a strong difference in colour. The darker
blue indicates a more dense bone while a lighter colour indicates a less dense bone. Different
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(a) Polygonal mesh over-
laid with colour map.

(b) CT slice data in-
cluded with mesh.

(c) Colour scale of tra-
becular bone density.

Fig. 2.23 An example of a segmentation result overlaid with a colour map representing the
trabecular bone density measurements. A user can easily see the difference in trabecular
bone density by comparing the colour of the left side of the pelvis with the right side of the
pelvis. This difference can indicate the presence of MBD.

colour projection schemes can also be applied by using a drop–down menu based on user
colour preference. This may be an important option for a colour blind user. A user can click
and drag in the viewer to rotate the segmentation and to view it from any angle. The user can
also zoom in and out to visualise specific regions of the mesh in more detail.

A user can choose any CT slice within the data set and select to either view or to hide the
CT image within the viewer window. Figure 2.23b shows an example of when a user has
selected to turn on the visualisation of the CT slice image. This allows a user to compare the
CT slice images with the trabecular bone density (as it has been projected upon the segmented
mesh). A user can also apply an alpha blend to the mesh which blends the background and
CT slice image with the segmentation. If the alpha blend is fully applied, the segmentation is
completely hidden so only the background and CT slice are visible. An alpha blend can also
be applied to the slice image in order to blend it with the segmented mesh.

The CT image in the viewer is distorted due to the projection of the image into the texture
map, as the image is viewed using a 3D perspective camera. Because of this, the CT image is
also displayed in a separate 2D viewing panel, so a user can view the image directly in 2D.
The left and centre panels of the viewer are shown in Figure 2.24.

2.5.1 Smoothing of CBM data

The cortical bone mapping (CBM) process produces an estimate of the parameter variance
for each point measurement [136] – this indicates how accurate each trabecular bone den-
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Fig. 2.24 An example of the custom image viewer. The right side of the image shows the main
viewer with an alpha blend applied. This blends the polygonal mesh with the background
and CT slice (texture mapped) image. The left side shows the CT slice 2D along with some
of the user interface controls. This allows a user to specify the display options including the
alpha blend, image brightness, image contrast, image zoom and slice image selection.
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(a) Without using any smoothing. (b) Using three iterations of smoothing.

Fig. 2.25 An example of the segmentation where each vertex has been coloured according to
its trabecular bone density measurement.

sity measurement was. A smoothing filter weighted by the inverse of these errors can be
used to smooth the trabecular bone density measurements across the surface as described
by Treece et al. [136]. CBM measurements with lesser error are weighted more than CBM
measurements with greater error. This is an important step in improving the accuracy of this
algorithm, as it can reduce some of the error in the assessment method.

The filter works by iterating over each point in the mesh and setting the CBM measure-
ment for that point to a weighted (by CBM error) sum of itself and of the neighbouring CBM
measurements. This process is repeated a specified n number of times, with the output values
of the last iteration used as the input values of the next. Figure 2.25a shows the surface with
0 smoothing iterations while Figure 2.25b and Figure 2.26 show the surface with three and
five iterations respectively. The number of smoothing iterations can be set dynamically by
the user in the viewer.

2.5.2 Density differences

After the smoothing filter has been applied, the trabecular bone density at each point is
subtracted from the trabecular bone density of its symmetrically mapped point (using the
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Fig. 2.26 An example of the segmentation where each vertex has been coloured according to
its trabecular bone density measurement. This example used five iterations of smoothing.
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(a) The trabecular bone
density of each side is sub-
tracted from the other side
to locate potentially dis-
eased regions.

(b) Regions of strong
density differences are
clustered together, and
smaller clusters are re-
moved to reduce error.

(c) Healthy regions are re-
moved by symmetrically
comparing either gradi-
ents or trabecular bone
density.

Fig. 2.27 An example of visualising disease by comparing trabecular bone density differences.

symmetrical mappings found in the registration process). This visualisation is shown in
Figure 2.27a. In this image, the blue regions indicate a positive difference in trabecular bone
density while red regions indicate a negative difference.

A user–selected HU cutoff threshold parameter is then applied to the mesh. This marks
a point as healthy if the absolute value of the difference of trabecular bone density for that
point is less than the threshold. An example of this is shown in Figure 2.27b.

By treating the polygonal mesh as an undirected graph, where vertices are the nodes, and
triangle relationships between these nodes define the paths, connected groups of potentially
diseased points are grouped into clusters. A user–selected cluster size parameter is then
used to disregard all clusters where the number of points within that cluster is less than the
selected cluster parameter. In Section 3.4.4, the number of smoothing iterations, the HU
threshold cutoff and the cluster size parameters are optimised.

2.5.3 Diseased side selection

Groups of potentially diseased points could be either healthy or diseased. Healthy regions
are still included with diseased regions at this point, as all groups with large differences in
trabecular bone density between left and right sides are selected without taking into account
which side caused the differences. In prostate cancer most MBD lesions have increased bone
density, so the region with the greatest trabecular bone density can be selected as the diseased
region. The results of this experiment are described in Section 3.4.10.



64 MBD Assessment

However, some cancers cause both sclerotic and lytic lesions to form, which means that
both types can exist within a single data set. I wanted to explore a way to automatically
distinguish either lesion type. Intuitively, trabecular bone density in healthy tissue is relatively
constant, while diseased bone that has increased or decreased bone density will have certain
intense changes in trabecular bone density. Therefore, when the gradient of the trabecular
bone density of healthy bone is compared to the gradient of trabecular bone density of
diseased bone, the gradient of the healthy bone will generally have a smaller value.

By using this principle, I developed a novel method of determining which side is diseased
when mixed lesions are present. For each potentially diseased group, the points on the border
of each group were located. A diseased point was considered a border point if it was located
next to a healthy point. For each of these border points, the gradient of the trabecular density
was compared with its symmetrical point’s trabecular density gradient. These differences
were summed and the group was marked as a lesion if the final sum was greater than 0 (as the
group had a greater total change in trabecular bone density than its symmetrical points did).

Very symmetrical regions of actual disease may exist within the bone. However, it is
unlikely that their borders will map completely symmetrically to the same place as the regions
will be of differing sizes and shapes. This allows for two diseased regions with slightly
different borders to both be marked as disease by the assessment method.

In this way, regions can be determined to be either diseased or healthy. In Figure 2.27c,
the results of this process is shown, as the healthy side has been hidden from view.

2.5.4 Visualisations of the disease

In the viewer, a user can click on any point on the mesh to find its symmetric point pair. Fig-
ure 2.28 shows the results of clicking on the diseased right side. The CT data is automatically
re-sliced and shown in Figure 2.29. In this image, the red line shows the surface normal of
the point that user has clicked. The blue line shows the surface normal of the selected point’s
symmetrically mapped point. The green line shows the vector of the line connecting the first
and second points. The vectors are automatically calculated and drawn in the viewer on each
click. The new, re-slice image plane (shown in Figure 2.29) is defined by adding the two
surface normals together to define one axis and by using the green vector as the other. The
red text and circle were added by hand in this image for clarity. It is clear that the left side
of the pelvis shown in this image is diseased, as it contains a much greater trabecular bone
density than the right side does. These re-sliced images can be viewed in a second window
(in 2D), in the same way that the original slice images can be, as mentioned above.

The numerical values of the trabecular bone density for both points are also provided in
the viewer within another window, along with other information about the points, including
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Fig. 2.28 An example of re-slicing the CT data at a user selected location. A user can click
on the mesh to calculate a re-sliced CT image at that location. Figure 2.29 shows this resliced
CT image without the mesh. The CT data is from the Addenbrooke’s Hospital CT Data
Collection.

the bone depth, distance between points, other CBM measurements and surface normal
vector information.

2.6 Longitudinal disease assessment

A secondary application of this assessment method was developed in order to track disease
progression. Instead of using symmetry to compare trabecular bone density within a single
case, segmented skeletons of the same patient scanned at different times are registered with
each other. Strong differences in trabecular bone density across multiple scans can indicate
lesion growth or lesion reduction. The symmetrical atlas was not used in this process as the
symmetrical mappings were not needed.

Figure 2.30 shows the trabecular bone density of a baseline case and a follow-up case
projected onto the surface of the skeleton. The trabecular bone density is compared between
these skeletons by subtracting the density of the registered points. Areas of strong differences
are found by using the three parameters (HU cutoff, number of smoothing iterations and
cluster size) mentioned in Section 2.5.1 and in Section 2.5.2. This is shown in Figure 2.31
where areas of strong differences in trabecular bone density between the baseline case and the
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Fig. 2.29 The diseased left side can be seen in the re-sliced CT image. The left side of the
pelvis has a much greater trabecular bone density than the right side does. The underlying
CT data is from the Addenbrooke’s Hospital CT Data Collection.

(a) The trabecular bone density of a typ-
ical baseline case.

(b) The trabecular bone density of a typ-
ical followup case.

Fig. 2.30 In this example, the trabecular bone density from a baseline scan and follow-up CT
scan has been projected onto the surface of their respective segmented meshes. By comparing
these two images, it can be seen that the disease has progressed, as the trabecular bone
density strongly differs in specific regions across these two images. The longitudinal disease
assessment method attempts to find these differences.
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Fig. 2.31 An example showing the disease progression between a baseline case and a follow-
up case. The disease progression (in turquoise) has been overlaid over the grey segmentation.

follow-up case have been overlaid in turquoise on top of the segmentation. This highlights
the regions where the disease has progressed.

CT HU values may vary across longitudinal scans and across different CT machines, so a
calibration step may be needed to improve accuracy when using this method.





Chapter 3

Results

3.1 Introduction

This chapter contains the results of the testing and validation experiments that are used to
demonstrate the validity of the detection and visualisation methods presented in Chapter
2. This includes systemic results from both the longitudinal and symmetry disease assess-
ment algorithms, as well as results from individual parts of the system, such as the bone
segmentation and registration.

3.2 CT Data

3.2.1 Acquisition

Computed tomography DICOM data was acquired from Addenbrooke’s Hospital for use in
all the experiments presented below (which is labelled as the Addenbrooke’s Hospital CT
Data Collection in this thesis). A medical ethics agreement allows for this data to be used for
medical research – including for this project. The release of the data used in this project was
approved by the Cambridge Urology Translational Research and Clinical Trials (CUTRACT)
team [32].

A total of 103 anonymised CT DICOM data sets were obtained predominantly from the
DIAMOND database – a research database of patients who have agreed to let their data be
used for medical research. Of this total, 68 data sets were acquired from diseased prostate
cancer patients and 35 data sets were acquired from healthy patients. In all, the data was
scanned from 81 unique patients as 22 patients had both a baseline and a follow-up scan. All
patients were male with an age at time of scan ranging from 44 to 89 years old. The average
age in the data set was 71.47 years with a standard deviation of 8.51 years.
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All diseased data sets where of the full upper body, which included the ribs, spine, pelvis
and upper femurs, although some of the data sets from healthy patients did not include the
femurs and lower regions of the pelvis. The slice images from these scans had a dimension of
512 by 512 voxels with the spacing between slices 2.0 mm for the diseased data and 2.5 mm
for the healthy data. The CT images had an average x and y pixel spacing of 0.776 mm. The
average mAs (milliampere seconds through filament of x-ray tube) for these data sets was
152.857 while the average kVp (kilovoltage peak) was 122.5.

3.2.2 Reference data

In order to have ground truth disease markings to compare with, expert radiologist and
secondary supervisor Dr. Barrett marked every diseased region in each 2D image slice of the
CT data by outlining each lesion with a contour line. Dr. Barrett is a consultant radiologist,
with uroradiology fellowship training and 14 years reporting experience. Dr. Barrett spent an
average of 45 minutes per case to create these outlines. Cases with fewer diseased regions
took between 25 to 30 minutes, while significantly diseased cases took much longer than
an hour. As Dr. Barrett normally spends about 10 minutes assessing a CT scan during a
normal radiological CT review, significantly more time and attention was given to marking
and creating these outlines than would normally be given to a case. A discussion about the
CT data and about the reference data is located in Section 4.2.

Figure 3.1 shows an example of an outline produced by Dr. Barrett that marks the location
of a lesion within a CT slice. Figure 3.2 shows another example of an outlined lesion which
is much smaller and more difficult to locate. Both of these examples are typical of the lesions
and outlines contained within the data.

The 2D contours in each data set were converted into 3D mesh volumes using the regu-
larised marching tetrahedra technique [138]. The Stradview software [133] implementation
of this algorithm was used to create these 3D meshes as described in Section 2.2.4. In
Figure 3.3, the 3D volumes have been exported from Stradview and imported into a viewer
created specifically for this research. These 3D volumes are used as the ground truth disease
locations in the experiments described within this thesis.

When assessing detection methods, lesion volume size is an important metric, as smaller
lesions are most often more difficult to locate than larger lesions. To calculate the internal
volume within a triangle mesh (and thus the volume of a lesion), equation (3.1) was used as
described by Desbrun et al. [33]. In this equation, V is the total volume, vi is the ith triangle
in the mesh, vi j is the jth vertex within the ith triangle and n is the number of triangles.
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Fig. 3.1 This slice image shows an example of a diseased region outlined by Dr. Barrett in
red. Every lesion within each data set was outlined by expert radiologist Dr. Barrett. The
lesion is in the left superior pubic ramus bone of the pelvis. The underlying CT data is from
the Addenbrooke’s Hospital CT Data Collection.

Fig. 3.2 Another lesion outlined in red by the radiologist: this one is more challenging to
find. The underlying CT data is from the Addenbrooke’s Hospital CT Data Collection.
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(a) An example showing the visualisa-
tion of the diseased volumes within a
CT data set.

(b) The same diseased volumes overlaid
with a faint alpha blend of the segmen-
tation.

Fig. 3.3 Visualisation of diseased 3D volumes created from the radiologist’s 2D contour
markings. Images are screenshots taken of the visualisation tool which was created for this
project.
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Table 3.1 The number of lesions binned into volume ranges. The majority of the lesions in
this data set are less than 3.0 cm3.

Volume (cm3) range Number of Lesions
0 ≤ volume < 3.0 1161

3.0 ≤ volume < 6.0 128
6.0 ≤ volume < 9.0 67

9.0 ≤ volume < 12.0 34
12.0 ≤ volume < 15.0 23
15.0 ≤ volume < 18.0 15
18.0 ≤ volume < 21.0 16
21.0 ≤ volume < 24.0 14
24.0 ≤ volume < 27.0 18
27.0 ≤ volume < 30.0 14
30.0 ≤ volume < 33.0 7
33.0 ≤ volume < 36.0 8
36.0 ≤ volume < 39.0 4
39.0 ≤ volume < 42.0 8
42.0 ≤ volume < 45.0 4
45.0 ≤ volume < 48.0 7
48.0 ≤ volume < 51.0 5
51.0 ≤ volume < 54.0 2
54.0 ≤ volume < 57.0 0
57.0 ≤ volume < 60.0 0

60.0 ≤ volume 33

V =
i=n

∑
i=1

1
6
(vi1 × vi2) · vi3 (3.1)

The diseased data sets contained a total of 1,568 distinct lesions (3D mesh volumes).
The volume of these polygonal meshes ranged from 0.00296 mm3 to 256.765 cm3 with an
average volume being 7.55 cm3. In Table 3.1, the lesions have been binned by volume. The
majority of the lesions have a volume less than 3.00 cm3, although a significant number of
the lesions have a volume much greater than this. Table 3.2 shows the lesions smaller than
3.00 cm3 binned by volume. Most of the lesions in this data set are located in the spine,
pelvis and upper femurs as shown in Figure 3.4. According to Dr. Barrett, the majority of the
lesions in this data set are sclerotic.
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Table 3.2 The number of lesions binned into volume ranges less than 3.0 cm3.

Volume (cm3) range Number of Lesions
0 ≤ volume < 0.1 262

0.1 ≤ volume < 0.2 191
0.2 ≤ volume < 0.3 130
0.3 ≤ volume < 0.4 73
0.4 ≤ volume < 0.5 63
0.5 ≤ volume < 0.6 61
0.6 ≤ volume < 0.7 42
0.7 ≤ volume < 0.8 44
0.8 ≤ volume < 0.9 29
0.9 ≤ volume < 1.0 37
1.0 ≤ volume < 1.1 16
1.1 ≤ volume < 1.2 23
1.2 ≤ volume < 1.3 23
1.3 ≤ volume < 1.4 10
1.4 ≤ volume < 1.5 22
1.5 ≤ volume < 1.6 12
1.6 ≤ volume < 1.7 13
1.7 ≤ volume < 1.8 9
1.8 ≤ volume < 1.9 13
1.9 ≤ volume < 2.0 13
2.0 ≤ volume < 2.1 9
2.1 ≤ volume < 2.2 9
2.2 ≤ volume < 2.3 15
2.3 ≤ volume < 2.4 10
2.4 ≤ volume < 2.5 4
2.5 ≤ volume < 2.6 6
2.6 ≤ volume < 2.7 3
2.7 ≤ volume < 2.8 4
2.8 ≤ volume < 2.9 5
2.9 ≤ volume < 3.0 10
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Fig. 3.4 Location of lesions by region (rib, femur, etc.).

3.2.3 Disease shadow size

To project the 3D diseased volumes onto the 3D segmentations of the bone, a ray-triangle
intersection method was used. Starting from each vertex within every segmentation mesh,
the vertex normal (found by averaging the normal vectors of the triangles that contained the
vertex) was projected into the bone and tested for intersection with the 3D lesions associated
with its segmentation.

For these experiments, the total line length used in the cortical bone mapping process was
set to 18 mm. Of this line, 7.2 mm lies outside the cortex, while 10.8 mm passes through the
cortex and into the trabecular bone. If the vertex normal ray intersected a lesion within the
10.8 mm bound, the vertex was labelled as a ground truth diseased point on the segmentation.
As shown by the experiments in Section 3.3.2, it is not worth using a line length greater than
18 mm, as all but three lesions are located within 10.8 mm of the surface. These diseased
regions on the segmentation surface are called disease shadows. Figure 3.5 shows a typical
example of the disease shadows produced by using this process.

The morphology of the bone will constrain both the shape of the disease shadow as well
as the maximum size that a diseased volume can grow. Because of this, a single lesion may
produce many groups of disease shadows depending on the shape of the bone anatomy. In



76 Results

Fig. 3.5 The diseased shadows on the segmentation mesh. The diseased vertices were found
by intersecting each vertex normal on the segmentation with the triangles in the 3D lesions
less than 10.8 mm away. The disease vertices are highlighted in fluorescent green (the red
regions are protruding diseased regions). These projected diseased regions are called disease
shadows.
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this thesis, the disease shadow size for a lesion is defined as the sum total of the number of
the disease shadow points produced by that lesion.

As the volume increases, so does the average number of points in the disease shadow.
This relationship can be roughly modelled using a power of 2/3 as the number of points in a
disease shadow is a measure of surface area in cm2 while the volume is measured in cm3.
The equation for this relationship was solved for using a least squares approximation method
and found to be equation (3.2).

disease shadow size = 288.955× volume2/3 (3.2)

It is important to note that all of the meshes were created using the same mesh resolution
setting (high) in Stradview. This caused the points within each mesh to have the same areal
density. Without this, equation (3.2) could not be applied to the mesh in each data set, as the
distance between points would differ.

From equation (3.2), 1 cm3 of volume corresponds to roughly 289 points which is about
17 points per cm length. This is a spacing of 0.6 mm between each point.

In Figure 3.6, lesion volume has been plotted against disease shadow size (number of
points) along with the fit line from equation (3.2). The variance of individual data points
away from this fit line is most likely due to the differing shapes due to differing anatomy of
the various bony surfaces. A discussion about this is located in Section 4.2.5.

If equation (3.2) is reversed, so that volume is described in terms of disease shadow size,
then the disease shadow size can be used to provide an estimate of volume. Equation (3.3)
shows this relationship.

volume = 0.000204× (disease shadow size)3/2 (3.3)

As the assessment methods described in this thesis produce disease shadow size, equa-
tion 3.3 can provide an estimate for the total lesion volume in a data set. To determine
the accuracy of this equation, the disease shadow size from every lesion was passed into
equation 3.3 and the output compared to the actual volume size. It was found that there was
an absolute percentage difference of 52.2% between the actual volume and the predicted
volume.

3.2.4 Converting disease shadow points to surface area

To find the average area per point of a disease shadow, the area of each triangle in multiple
segmented meshes was calculated using Heron’s formula [3]. As the x, y, z cartesian
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Fig. 3.6 A plot showing the relationship between lesion volume and disease shadow size. As
the volume of a lesion increases, so does the disease shadow size projected by that lesion.
The fit (shown in red) can be modelled using a power of 2/3 relationship. This is due to the
conversion from volume in cm3 to number points (which is a measure of area in cm2). This
fit was found using a least squares approximation method. A single 3D lesion can produce
many disease shadows so the number of points on the y axis is actually the sum of the number
of points in all of the disease shadows produced by that lesion.
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coordinates of the points within these triangles correspond directly in mm to their location in
real world coordinates, the areas calculated by this formula corresponds directly to the real
world area in mm2.

To find the average area per point, the sum total of all of the triangle areas was divided
by the number of unique vertices (a single vertex can be a point in multiple triangles) in the
meshes. 228,622 vertices were used in this calculation, which produced an average area per
vertex of 4.090 mm2.

When applying this average surface area to a diseased region, the number of points in
the disease shadow can be multiplied by 4.090 mm2 to get a rough estimate of the surface
area on the bone. If the number of points in a disease shadow is very small, two points can
be removed in this calculation in order to get a slightly more accurate result as at least three
points are needed to create a single triangle.

It was also found that the average distance between points was 1.544 mm. This was
somewhat different than the rough estimate of 0.6 mm calculated in Section 3.2.3. This
difference is likely due to the significant variance found when calculating the disease shadow
metrics.

3.3 Evaluation of individual sub-methods

3.3.1 Hysteresis segmentation accuracy

To determine the accuracy of the hysteresis bone segmentation technique as described in
Section 2.2.2, six diseased cases representative of the 68 diseased data sets were chosen. The
bones in the CT images for these six cases were manually segmented using the Stradview
software [133] and carefully checked for accuracy in order to create the ground truth segmen-
tations. It is important to note that in certain bony regions, it is challenging to know what the
ground truth segmentation should actually be. An example of a CT image that contains bone
that is difficult to segment (even manually) is demonstrated in Figure 2.2.

The CT data for these six cases was processed by the hysteresis segmentation algorithm
and the results evaluated against the ground truth segmentations. To determine accuracy, two
methods of comparison were used – the dice similarity coefficient (equation 2.1) and the
average surface distance (equation 2.2). The DSC measures the correctness of the segmenta-
tion using voxel comparison while ASD measures the correctness of the segmentation by
evaluating 3D surface distance errors.

The DSC results for six cases (containing 1754 slice images and 459,800,576 voxels)
are listed in Table 3.3. The average DSC for these cases was 98.95% This metric is the
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Table 3.3 The DSC metric and specificity for six segmentations. Specificity is the number of
true positives divided by the (number of true positives plus the number of false positives).
The DSC measurement is the ratio of correctly labelled voxels to total number of voxels.

Case 1 2 3 4 5 6
DSC 98.96% 99.14% 99.25% 98.91% 99.03% 98.44%

Specificity 0.92 0.92 0.93 0.90 0.93 0.93

Table 3.4 The average surface distance metric for the six segmentations. The number
of invalid points are the number of segmentation points that lie more than two standard
deviations away from a ground truth point.

Case 1 2 3 4 5 6
Average error (mm) 2.06 1.67 1.84 1.90 2.75 2.58

Standard deviation (mm) 4.18 4.29 3.26 3.15 4.66 4.76
Number of points 141,732 150,320 114,021 137,424 144,107 184,773

Number of invalid points 7,253 6,743 10,059 2,464 10,072 3,699

percentage of correctly labelled voxels (bone vs non-bone when comparing the automatic
segmentation to the ground truth segmentation) to total number of voxels.

As voxels in CT images generally contain much more non-bone than bone, it may be
possible to have a high DSC score while misidentifying a significant number of the bony
voxels. Because of this, an important metric in determining the accuracy of voxels is
specificity. Specificity is defined as the number of true positives divided by (number of true
positives plus the number of false positives). In this case, specificity is the number of voxels
correctly identified as bone divided by the number of voxels correctly identified as bone
summed with the number of voxels incorrectly identified as bone. The average specificity for
these cases was 0.92.

The ASD results for the six segmentations are listed in Table 3.4. ASD is the measure
of error when comparing the segmentation surface to the ground truth surface on a 3D
point–wise basis. The total average surface distance for the segmentations was 2.17 mm,
using 872,377 points. A discussion about these results is located in Section 4.2.1.

Certain artefacts often exist within the CT data (i.e. the CT table) which are later ignored
by the main detection algorithm, as these artefacts are too far away to match well in the
registration process. However, these artefacts can negatively affect segmentation results,
although they do not usually affect final detection accuracy. Because of this, outlier points
more than two standard deviations away were ignored when calculating ASD as they are also
ignored within the registration process. These artefacts were not removed when calculating
the DSC metric so the true accuracy may be slightly higher.
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3.3.2 CBM considerations

As the 18 mm length can be adjusted as needed, an experiment was performed to see if any
lesions were located at a depth greater than 10.8 mm away from all points in the segmentation.
Lesions in this state would be too deep to be detected using this line length. This test was
carried out on all diseased data sets and it was found that 3 lesions out of 1568 were too deep
to detect.

In these three cases, at least one vertex normal from the bony surface intersected with a
lesion at a depth greater than 10.8 mm. However, not a single ray did so within the 10.8 mm.
This justifies the original use of 18 mm as the line length for CBM.

Although using a line length greater than 18 mm could ensure all lesions fall within
the detection range, this will produce slower running times during CBM and is largely
unnecessary as only a few lesions were found to be too deep in this data set.

It may also be possible, if the density of points on a bony surface mesh is too small
in comparison to the size of the surface of the lesion, for all surface normal rays to miss
intersecting with the lesion, even if the lesion is within 10.8 mm of the surface. A test found
that this case was present with a single lesion. This justifies using the chosen resolution
"high" in the Stradview software to create the segmentation mesh, as only one lesion was
missed out of many. Using a polygonal mesh with a higher density of points could solve this
problem. However, using a greater number of points will produce a slower run time and a
greater memory cost, which, again, is unnecessary.

3.3.3 Validation of registration

Calculating registration error directly is a challenging problem, as it is difficult to create an
accurate ground truth mesh that has been deformed from the original mesh into a completely
correct shape. It is not clear how to define a registration that will move each specific
preregistered point into its perfect location. It may be the case that multiple good solutions
exist for a point, or that a single satisfactory solution does not even exist. Also, as the meshes
in use contain hundreds of thousands of points, this problem is magnified by the sheer size of
the point meshes.

It may be possible to place landmarks by hand at distinct point locations across both
the preregistered mesh and the ground truth mesh, and then to compare the final landmark
distances. However, this would only check the registration accuracy at these landmark points.
There is no guarantee that the deformable registration method will prevent other points from
moving away from the distinct locations during registration, even if the final registration of
the landmark points is very accurate.
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Because of these difficulties, the residual registration error was used to validate the regis-
tration. In this method, the atlas was allowed to deform and register to a segmentation using
the same deformable registration technique used to project the symmetrical mapping onto the
segmentation as described in Section 2.4. Whilst the residual error will not measure incorrect
registration within the direction of the surface, it will still capture the major component of
error where the surfaces are relatively complex and the registration is reasonably constrained.
In this case we are dealing with the whole skeleton, which is undeniably a complex structure,
and the registration is never allowed to deform too far in any direction (due to the smoothing
process between each iteration).

In this experiment, the registration method was tested to see if each point in the atlas
could successfully deform so that all points in the segmentation mesh closely match (using
Euclidean distance) with a point in the atlas mesh. This experiment does not directly check
whether the registration is correct for each point, but instead finds the average surface distance
between each point in the segmentation mesh and its respective closest point in the deformed
atlas mesh. Although this is not measuring the direct amount of registration error, this is a
valid test which produces important results.

As a segmentation can often extend far below (in a negative z direction) or above (in
a positive z direction) the atlas, segmentation points that lie outside the minimum z and
maximum z atlas bounds will not have accurate registration matches. As these points will be
ignored later in the detection algorithm due to poor registration matching and will not affect
the overall detection results, they are ignored in this calculation by limiting the segmentation
points to be within the maximum and minimum z bounds of the atlas. Figure 3.7 shows an
example of a case where the segmentation extends below the atlas.

Other causes of poor registration are cases that contain either the CT imaging of a
contrast agent administered to the patient or cases where the CT table is contained within
the segmentation. Figure 3.7 shows an example of a case where the CT table is part of the
segmentation. These issues, again, do not generally affect the detection algorithm’s accuracy
due to poor registration matching (these points are ignored), but only cause inaccurate and
poor registration test results. Because of this, the three segmentations with contrast agents
and the six segmentations containing CT tables were not used in this experiment.

Furthermore, another issue exists (in five cases) where the ribs are at significantly different
longitudinal axis locations due to strong differences in the natural anatomy of the patient
when compared to the anatomy of the atlas. This severely decreases the registration accuracy
as the atlas ribs register to the segmentation vertebrae leaving the segmentation ribs without
decent registration matches. This problem occurs as the ribs are not rooted to anything but
are free to move a significant distance away from their location of origin if they do not have
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Fig. 3.7 An example of a segmentation (shown in yellow) that includes the CT table. The
segmentation also extends far below the atlas femurs (shown in red and purple). Both of these
issues can severely reduce the registration accuracy between the atlas (shown in multi-colour)
and the segmentation. Note that in this case one of the ribs has also failed to register due to
incomplete data in the segmentation.
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(a) The lesions within this case are
shown in red while the segmentation is
shown in yellow. It can be seen that this
case is extremely diseased.

(b) A CT slice image through the hips
and pelvis for this case. The HU values
for this case vary greatly from that of a
normal CT scan.

Fig. 3.8 The images from a case of an extremely diseased patient. The segmentation algorithm
achieved poor results on this case as the spine, pelvis, and femurs contain very different HU
values from that of a healthy CT scan. As this case would be very easy for a radiologist to find
the lesions, it is not a good candidate for this algorithm and is not used in the experiments.
The CT data is from the Addenbrooke’s Hospital CT Data Collection.

a good initial registration match. As there are relatively few lesions that occur in the ribs
(Figure 3.4) and the thickness of the ribs are the most often too thin for CBM method to work
(as described in Section 3.3.2), these five cases were removed from this experiment, so as not
to confuse the registration error results for the other cases. However, these cases are used in
the assessment algorithm and have a poor accuracy.

It was also found that one case was so completely diseased that the segmentation algorithm
produced extremely poor results as the HU values were not representative of a normal CT
scan. This case is shown in Figure 3.8. As this case was so obviously diseased, it would most
likely not be necessary to run a detection algorithm to find the lesions within it. It was hence
removed from all future experiments below, including in this registration experiment.

The registration results for the remaining 88 cases are listed in Table 3.5, summarised by
bony region – that is, by the bony region within the atlas that a target point was closest. The
average distance error between points was 4.84 mm with a standard deviation of 10.30 mm.
A significant part of the registration error occurs in the ribs (for the same reasons described
above). If ribs are discarded in this registration experiment, the average distance error
between points was 3.38 mm. A discussion about these results is located in Section 4.2.2.
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Table 3.5 The average distance between each point in the segmentation and its closest
respective point in the atlas, for 88 cases. The pelvic bone is made of the ilium, acetabulum,
ischium and pubis bones.

Region Average distance (mm) Standard deviation
femur left 2.79 3.47

femur right 2.82 3.61
sacrum 2.70 2.48

pelvic bone left 1.78 2.41
pelvic bone right 1.87 2.65

6th rib left 9.91 8.98
6th rib right 7.60 7.28
7th rib left 4.09 8.51

7th rib right 3.41 5.49
8th rib left 3.34 5.93

8th rib right 4.46 8.14
9th rib left 3.79 7.12

9th rib right 3.31 5.87
10th rib left 3.83 6.65

10th rib right 3.75 6.21
11th rib left 4.42 7.20

11th rib right 4.27 6.91
12th rib left 7.69 10.25

12th rib right 6.69 9.00
Th 10 8.14 9.13
Th 11 2.67 2.89
Th 12 2.59 2.77
L 1 2.23 3.14
L 2 1.91 2.33
L 3 1.94 2.28
L 4 2.15 2.53
L 5 2.38 3.01
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3.4 Experiments on symmetrical disease assessment

3.4.1 Defining metrics

In the following experiments, a number of metrics were used to determine the quality of
the assessment when comparing the results to the ground truth markings. The metrics listed
below were selected as they provided the best overlap with those used by existing studies.

Existing studies provide a 2D point accuracy, so the point accuracy was included as a
metric in this thesis (although these are 3D disease shadow points and significantly different
from the 2D images used by the other studies). These studies also include a sensitivity metric,
so this, too, was included. Additionally, a group accuracy was included in the thesis as a
way of measuring the cluster size parameter’s ability to remove erroneous regions from the
results.

Point accuracy was determined by dividing the total number of correctly labelled points
by the total number of points. Diseased point accuracy was found by dividing the number of
points correctly labelled as disease by the total number of points labelled as diseased.

Sensitivity was found by comparing the points labelled as disease by the assessment with
the points in the disease shadows produced by the ground truth 3D lesions. If at least a single
point in the disease shadow was labelled as diseased by the assessment, the 3D lesion was
marked as detected. The sensitivity was set to be the number of detected lesions divided by
the total number of lesions.

Likewise, group accuracy was found by considering the individual groups of points
(connected by their triangle point relations) marked as diseased by the assessment method. A
disease group was considered correctly identified if at least a single point within the group
was actually diseased. The group accuracy was set to be the number of correctly identified
diseased groups divided by the total number of diseased groups.

3.4.2 Overall results

Once each vertex in every segmentation was labelled as being either diseased or healthy by
the ground truth markings (as described in Section 3.2.3) and by the symmetrical disease
assessment (as described in Section 2.5), the overall point accuracy and lesion detection
sensitivity was determined. The disease side selection method described in Section 2.5.3 was
also used to select diseased regions. It was found that the symmetrical disease assessment
method produced an average sensitivity of 0.871 per case with a point accuracy of 0.894.
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(a) The symmetrical difference in trabec-
ular density when removing all absolute
differences less than 150 HU.

(b) The symmetrical difference in tra-
becular density when removing all ab-
solute differences less than 300 HU.

Fig. 3.9 These images show an example of how varying the threshold the HU difference
cutoff can produce different results. The blue and red points are potentially diseased areas.
The blue regions indicate positive differences greater than the cutoff value while red regions
indicate negative differences greater than the cutoff value. Increasing the threshold HU cutoff
will increase the amount of difference required in order for a vertex to be labelled as diseased.

3.4.3 Parameters

In order to achieve these results using the symmetrical disease assessment method, three
main parameters were varied. The first of these was the threshold at which the absolute value
of the symmetrical difference in radiodensity (HU) causes a set of symmetrical points to
be labelled as diseased. Figure 3.9 shows the results when using two different thresholding
values. A lower value will produce a more sensitive detection but will also incur more false
positives, whilst a higher value will decrease sensitivity but also decease the number of false
positives.

The second parameter that can be varied, is a connected component size threshold filter.
By treating the polygonal mesh as an undirected graph, where vertices are the nodes, and
triangle relationships between these nodes define the paths, connected groups of diseased
points can be grouped into clusters. This size parameter can be used to disregard all clusters
where the number of points within that cluster is less than the selected cluster parameter.
This is demonstrated in Figure 3.10. Often, the number of points in a diseased region is
larger than the number of points in a group of points incorrectly labelled as disease – so this
approach can help reduce error. However, there is always the risk of using too great a cluster
size parameter as this can filter out small clusters of legitimate disease.

The third parameter that can be adjusted is the number of smoothing iterations used. This
smoothing filter is described in Section 2.5.1. As small groups of speckled noise usually
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(a) Significant groups of error exist
when comparing the symmetrical dif-
ference in trabecular bone density.

(b) By removing clusters of points less
than a defined threshold, much of the
error can be disregarded.

Fig. 3.10 These images show an example of how using a cluster size of 300 can be used to
remove speckled noise.

exist, this parameter can help reduce error as this technique removes the less precise CBM
measurements by smoothing the trabecular bone density measurements throughout the mesh.
This is shown in Figure 3.11. However, smoothing can also remove legitimate disease from
the results, decreasing the sensitivity.

3.4.4 Determining parameters

To determine optimal values for the three parameters, a brute force method was first used
to evaluate a wide range of sensible combinations of parameters. This involved trying
over 2000 unique parameter combinations on the 102 data sets. (One data set out of the
original 103 cases was removed as it was completely diseased. This data set was described in
Section 3.3.3)

For this experiment, the HU cutoff threshold was varied from 25 to 400 HU, the number
of smoothing iterations was varied from 0 to 20 and the cluster size was varied from 1 to 20.
Results were sorted by multiple evaluation metrics as described below.

Table 3.6 lists the best 10 results sorted by point accuracy. As shown in the table, the
best overall point accuracy was found by using high values for all of the parameters (HU
cutoff threshold, the number of smoothing iterations and the cluster size). As the majority of
points in a data set are healthy points, using high parameter values decreased the number of
points marked as disease. Because of this, the point accuracy increased but the sensitivity
decreased.
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(a) Significant speckled noise exists
when comparing the symmetrical dif-
ference in trabecular bone density.

(b) By smoothing for a number of iter-
ations, much of the speckled noise can
be removed, improving accuracy.

Fig. 3.11 These images demonstrate how using three smoothing iterations can remove
speckled noise.

Table 3.6 The 10 best results and parameter values when sorting by point accuracy using a
brute force method.

HU threshold Smoothing iterations Cluster size Point accuracy Average sensitivity
400 20 5 0.9537 0.1529
400 20 6 0.9537 0.1487
400 20 15 0.9539 0.1219
400 20 7 0.9537 0.1450
400 20 4 0.9536 0.1539
400 20 8 0.9538 0.1405
400 20 9 0.9538 0.1358
400 20 20 0.9540 0.1139
400 20 3 0.9536 0.1566
400 20 10 0.9538 0.1313
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Table 3.7 The 10 best results and parameter values when sorting by sensitivity using a brute
force method.

HU threshold Smoothing iterations Cluster size Point accuracy Average sensitivity
25 0 1 0.747 0.978
25 0 2 0.755 0.977
25 0 3 0.760 0.976
25 1 1 0.747 0.975
50 0 1 0.791 0.974
25 0 4 0.764 0.973
25 1 2 0.756 0.972
25 0 5 0.767 0.971
75 0 1 0.823 0.970
25 0 6 0.770 0.970

Table 3.7 displays the best 10 results sorted by sensitivity. The greatest sensitivity
was found using low values for the parameters. By decreasing the values for these three
parameters, more points were marked as diseased, which improved the sensitivity but
increased the number of false positives.

Maximising point accuracy produced lower sensitivities, while maximising sensitivity
produced more false positives. In order to produce usable results, parameter values that are
influenced by both point accuracy and sensitivities were needed to balance the sensitivity
with the number of false positives.

In order to find this balance, the results were sorted by both point accuracy and sensitivity.
To combine accuracy and sensitivity, values were either summed or multiplied together.
Different weightings and normalisations were applied by multiplying each value by a selected
weight from a range of weightings.

A more systematic method of normalisations was also tried by dividing each term by
its respective squared variance or by applying a linear weighting scale (equation 3.4). This
was based on a value’s relation to the maxima or minima across the data sets. These two
terms were added as in equation 3.5 and then sorted. In this equation, Na is the normalised
accuracy and Ns is the normalised sensitivity.

normalisation =
value−minima

maxima−minima
(3.4)

combination = Na +Ns (3.5)

Table 3.8 shows the results of using this equation to combine terms. This same process
was repeated by multiplying the terms instead of summing them and by maximising many
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Table 3.8 The 10 best results and parameter values when sorting by point accuracy and sensi-
tivity using a brute force method. The point accuracy and sensitivity were first normalised
and then combined into a single term. These results were then summed and sorted.

HU threshold Smoothing iterations Cluster size Point accuracy Average sensitivity
125 0 1 0.865 0.962
175 0 1 0.891 0.925
200 0 1 0.900 0.911
125 1 1 0.874 0.947
225 0 1 0.907 0.901
125 0 2 0.874 0.946
150 1 1 0.889 0.925
275 0 1 0.918 0.882
250 0 1 0.913 0.889
175 1 1 0.900 0.904

other combinations of metrics including using diseased point accuracy, specificity and group
accuracy. Combining more than two terms was also tried but it was found that all of these
variations and combinations produced similar results. The results from these experiments
did not converge on a set of optimal parameters, but showed that there is a trade off between
sensitivity and the number of false positives.

3.4.5 Parameter considerations

Although using a brute force method to maximise the different metrics was useful to gain
a general understanding of how the different parameter values affected the results, it was
found that there are subtle lower bounds on the parameters that need to be in place in order
to produce usable and valid results. These bounds are difficult to find by only examining the
numerical results and can be recognised more easily through visual results.

When using low parameter values, a speckled error noise pattern (of disease points)
exists that semi-evenly covers the bony surface and greatly increases the sensitivity rate.
The point accuracy does not drastically decrease due to the relatively low density of the
speckled pattern. This speckled noise can be seen in Figure 3.12a. Removing speckled error
is essential to producing meaningful results as blindly marking evenly spaced points on the
bony surface as diseased will produce a high sensitivity rate with a relatively low number of
false positives. If this speckled error is not removed, these results will be useless in practical
detection of lesions.

One way to reduce this speckled noise error is to set the number of smoothing iterations
to at least two and to set the minimum cluster size to be at least seven. These numbers were



92 Results

(a) A speckled pattern of error exists
when using low smoothing and low clus-
ter sizes. This speckle must be removed
for meaningful results.

(b) By applying a minimum cluster size
of seven and two smoothing iterations,
most of the speckle noise can be re-
moved.

Fig. 3.12 These images show an example of how using a number of smoothing iterations and
a minimum cluster size can reduce speckled noise.

found through a visual inspection of the results. Figure 3.12 shows the results of using 2
smoothing iterations and a minimum cluster cluster size of 7.

From Section 3.4.4, a valid cost function that could be optimised does not appear to exist.
However, there is an appropriate range of values that could be used as input parameters to the
algorithm that would achieve satisfactory results. This range generally includes a minimum
of two smoothing iterations and a minimum cluster size of seven–though a range of values
greater than this would be sufficient.

3.4.6 Overfitting

By training and testing the optimised parameters on a single data set, it is possible that the
parameters will over-fit (overfitting is when an optimised model performs well on the training
data, but does not perform accurately on a different set of data). In order to help prevent
overfitting, the data can be split into a training and a testing set. The training data set is used
to optimise the parameters and hyperparameters while the testing data set is used to validate
the accuracy of these optimised parameters in an unbiased way [73].

The most common method of splitting the data is to place 80% of the data into the training
set and 20% of the data into the testing test. The training set is then split again into data that is
used to train the model and data that is used to validate the model. General splitting methods
for this include cross-validation, the bootstrap method, and selecting the most representative
samples for the split [158]. The simplest form of data splitting is cross-validation (CV),
which involves dividing the data set into the two groups at random - usually with 80% of the
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data used for training and 20% used for validation. There are many variations on this which
include the leave-one out CV, Monte-Carlo CV and K-fold CV.

In leave one out CV, a single data set is taken out of the training set and used for validation
on each iteration. This is repeated for each item in the data set until every data set has been
left out one time. In Monte-Carlo CV, the data is selected at random and placed into either
the training set or into the validation set. This is repeated for a number of iterations. Usually
the percentages differ between the training set and validation on each iteration. The same
data sets can be placed into the training or validation sets on subsequent iterations. In K-fold
CV, the data is split randomly into K groups (folds). On each iteration, one fold is used
as the validation group and the rest of the folds are used as the training group. This is
repeated K times, until each fold has been used as a validation group. In the bootstrap
method, samples are iteratively selected from a data set with replacement into the training
or validation sets [39]. Other methods include selecting representative samples and placing
them into the training set or validation set.

Although all of these methods could be used successfully to prevent overfitting, K-fold
cross validation was used in this project for a number of reasons. Using K-fold CV is the gold
standard of data splitting. Using K-folds is much more robust than using a single fold for
validation. The other methods are more complicated and are more computationally expensive
while not providing many extra benefits. They would most likely produce similar results.
The most common split is an 80% to 20% (training to testing) split. However, many other
similar ratios are commonly used (i.e. 70% to 30% or a ratio of 1/3 to 2/3 [73]). Any ratio
similar to these percentages will work successfully.

In my project, all of the data was originally placed into the training set and none was left
for the testing set. It is too late to create a testing set now without acquiring more data (as
all of the data has been used as part of the training). The lack of a testing set is a limitation,
as a testing set would have provided an unbiased evaluation of the optimised parameters.
However, a 5-fold validation technique was used and this does provide a robust measure of
the accuracy (although it may be slightly biased). All of the experiments described below
this section use the 5-fold CV technique for training and validation.

3.4.7 Parameters based on volume size

As shown in Table 3.1, the majority of the lesions in this data set have a volume less than
3.00 cm3. However, lesions that have a volume in the range between 3.00 cm3 and 6.00 cm3,
produced an average disease shadow size of 597 points. The minimum cluster size parameter
can be successfully set to a much higher value when detecting larger lesions than when
detecting small lesions.
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Related to this, it was also found that the disease shadow produced by the symmetrical
assessment method has significantly fewer points than that of a disease shadow produced by
the ground truth lesions. This may be because the ground truth size of the disease shadow
is the sum total of all of the disease shadows produced by a lesion while the symmetrical
assessment method assesses each disease shadow individually. As the cluster size needs to
be reflective of this difference, it must be adjusted accordingly.

To determine parameters based on the lesion volume size, a number of experiments were
run. The sensitivity and accuracy results of these experiments were binned into different
lesion volume groups. In Figures 3.13a, 3.13b, 3.13c, 3.13d and 3.13e, the HU threshold
cutoff was set to 150, the number of smoothing iterations was set to 2 and the cluster size
was allowed to vary. Different folds from the training data were used to produce each result.
These figures show that as the minimum cluster size increases, the sensitivity decreases.
Figure 3.14 shows that as the cluster size increases, the overall point accuracy increases. As
the cluster size is decreased, more lesions will be detected at the cost of a reduced accuracy.

In the next experiment, the HU threshold cutoff was allowed to vary, the number of
smoothing iterations was set to 2 and the cluster size was set to 7. Figures 3.15a, 3.15b,
3.15c, 3.15d, and 3.15e show the results of using these parameters while Figure 3.16 shows
the accuracy using these parameters. Higher HU thresholds can be used to produce better
accuracies at the cost of lower sensitivities and vice versa. This result is similar to the
clustering size result. Lesions that are detected using either a high cluster size or a high
threshold will be a more accurate detection. However, it is not necessarily the case that a
lesion has increased in trabecular density as it becomes more diseased or becomes larger.

The experiment was also repeated for the smoothing iterations. The HU threshold cutoff
was set to 150, the cluster size was set to 7 and the number of smoothing iterations was
allowed to vary. It was found that using 2 to 5 smoothing iterations improved results, but
varying the cluster size was more successful than varying the smoothing iterations.

In Figure 3.17 and Figure 3.18, lesions have been binned by a volume cutoff (i.e., all
volumes greater than the cutoff are placed in the same bin) for the varying cluster and
threshold data. A single volume can be placed into multiple bins.

3.4.8 Overall optimised results

As there is no cost function to optimise, the graphs above (Figures 3.13a, 3.13b, 3.13c,
3.13d and 3.13e, 3.15a, 3.15b, 3.15c, 3.15d, 3.15e, 3.17 and Figure 3.18) were used to
select appropriate parameters for these optimal results. These parameters were generated by
their respective CV training data sets. The best results use the same set of parameters – a
fixed cluster size of 7 with 2 smoothing iterations and a threshold cutoff from 100 HU to 150
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(a) Training data excluding fold one
data was used to produce this graph.

(b) Training data excluding fold two
data was used to produce this graph.

(c) Training data excluding fold three
data was used to produce this graph.

(d) Training data excluding fold four
data was used to produce this graph.

(e) Training data excluding fold five
data was used to produce this graph.

Fig. 3.13 These graphs shows the relationship between sensitivity, volume and cluster size. In
this experiment, the threshold cutoff size was set to 150, the number of smoothing iterations
was set to 2 and the cluster size was allowed to vary. The lesions were binned into 20 groups
by ranges of volume. As the cluster size increases, the sensitivity decreases.
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Fig. 3.14 A graph showing the cluster size vs point accuracy using the training data that does
not include data from fold one. As the cluster size is increased, so does the overall point
accuracy.

HU. This fulfils the minimum thresholds needed to remove the speckled noise, while also
maximising the sensitivity. These values can be increased to improve accuracy at a cost of a
decreased sensitivity. A discussion about the parameter choice is located in Section 4.2.3.
Tables 3.9, 3.10 and 3.11 show the results of using these optimal parameters in detecting
mixed lesions on the validation data sets.

When using a HU threshold cutoff of 100 HU, the resulting average point accuracy and
average sensitivity was 0.874 and 0.867 per case respectively. When using a HU threshold
cutoff of 125 HU, the resulting average point accuracy and average sensitivity was 0.894
and 0.871 per case respectively. When using a HU threshold cutoff of 150 HU, the resulting
average point accuracy and average sensitivity was 0.908 and 0.808 per case respectively.

A discussion about these results is located in Section 4.2.4. Examples of typical good
results are shown in Figure 3.20, Figure 3.21 and Figure 3.22. Figure 3.19 shows an example
of a typical average result while Figure 3.23 shows an example of a typical poor result.

Using the results from section 3.2.4, for a cluster size of 7, the total surface area was
calculated to be 28.63 mm2. This brings the rough surface area of a cluster of 7 points to
20.45 mm2 as two points can be subtracted from the calculation as it contains a small number
of points. This is about a 4.5 mm by 4.5 mm region of bone.
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(a) Training data excluding fold one
data was used to produce this graph.

(b) Training data excluding fold two
data was used to produce this graph.

(c) Training data excluding fold three
data was used to produce this graph.

(d) Training data excluding fold four
data was used to produce this graph.

(e) Training data excluding fold five
data was used to produce this graph.

Fig. 3.15 These plots show the relationship between sensitivity, volume and threshold. In
this experiment, the cluster size was set to 7 and the smoothing to 2 iterations and the HU
threshold cutoff was allowed to vary. The lesions have been binned by range of volume. As
the threshold increases, the sensitivity decreases.
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Fig. 3.16 A graph showing the threshold size vs point accuracy using training data that does
not include fold one data. As the threshold size increases, so does the overall point accuracy.

Table 3.9 The average results per case from using the optimal parameters when detecting data
sets containing both lytic and sclerotic lesions using the validation data sets. 2 smoothing
iterations, a cluster size of 7 and a threshold cutoff of 100 were used.

Validation fold Point accuracy HU Average sensitivity HU
One 0.863 0.904
Two 0.870 0.899

Three 0.876 0.836
Four 0.875 0.886
Five 0.886 0.810

Average 0.874 0.867

Table 3.10 The average results per case from using the optimal parameters when detecting
data sets containing both lytic and sclerotic lesions using the validation data sets. 2 smoothing
iterations, a cluster size of 7 and a threshold cutoff of 125 were used.

Validation fold Point accuracy Average sensitivity
One 0.881 0.878
Two 0.890 0.899

Three 0.896 0.810
Four 0.893 0.860
Five 0.909 0.748

Average 0.894 0.871
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Fig. 3.17 A plot showing the relationship between sensitivity, volume cutoff and cluster size.
Lesions have been binned by their volume cutoff. Each volume is placed into every bin
where its volume is greater than the threshold cutoff. For this experiment, the HU threshold
was set to 150 and the number of smoothing iterations was set to 2. This graph is intended to
show how each cluster size affects the sensitivity of detecting lesions that are greater than
a certain volume. It does not show how a cluster size affects the sensitivity of detecting a
lesion of a certain volume. Training data that does not include fold data one was used to
produce this graph.

Table 3.11 The average results per case from using the optimal parameters when detecting
data sets containing both lytic and sclerotic lesions using the validation data sets. 2 smoothing
iterations, a cluster size of 7 and a threshold cutoff of 150 were used.

Validation fold Point accuracy Average sensitivity
One 0.894 0.863
Two 0.905 0.883

Three 0.911 0.723
Four 0.907 0.855
Five 0.924 0.718

Average 0.908 0.808
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Fig. 3.18 A plot showing the relationship between sensitivity, volume cutoff and threshold.
Lesions have been binned by their volume cutoff. Each volume is placed into every bin
where its volume is greater than the threshold cutoff. The cluster size for this experiment
was set to 7 and the number of smoothing iterations was set to 2. This graph is intended to
show how each threshold affects the sensitivity of detecting lesions that are greater than a
certain volume. Training data excluding fold one was used to produce this graph.
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(a) Using an alpha blend to see the
ground truth 3D volumes (shown in red)
which are located within the bony sur-
face.

(b) Possible sclerotic lesions are shown
in blue while possible lytic lesions are
shown in red – found using the assess-
ment method.

Fig. 3.19 A representative example of an average result from the fold five validation set. The
assessment method found 5 out of 6 lesions correctly. It achieved a sensitivity of 0.833 with
a point accuracy of 0.887.
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(a) Using an alpha blend to see the
ground truth 3D volumes (shown in red)
which are located within the bony sur-
face.

(b) Possible sclerotic lesions are shown
in blue while possible lytic lesions are
shown in red – found using the assess-
ment method.

Fig. 3.20 A representative example of a good result from the fold five validation set. The
assessment method found 23 out of 24 lesions correctly. It achieved a sensitivity of 0.958
with a point accuracy of 0.861.
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(a) Using an alpha blend to see the
ground truth 3D volumes (shown in red)
which are located within the bony sur-
face.

(b) Possible sclerotic lesions are shown
in blue while possible lytic lesions are
shown in red – found using the assess-
ment method.

Fig. 3.21 A representative example of a good result from the fold five validation set. The
assessment method found 23 out of 24 lesions correctly. It achieved a sensitivity of 0.958
with a point accuracy of 0.817.
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(a) Using an alpha blend to see the
ground truth 3D volumes (shown in red)
which are located within the bony sur-
face.

(b) Possible sclerotic lesions are shown
in blue while possible lytic lesions are
shown in red, found using the assess-
ment method.

Fig. 3.22 A representative example of a good result from the fold five validation set. The
assessment method found 19 out of 21 lesions correctly. It achieved a sensitivity of 0.905
with a point accuracy of 0.929.
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(a) Using an alpha blend to see the
ground truth 3D volumes (shown in red)
which are located within the bony sur-
face.

(b) Possible sclerotic lesions are shown
in blue while possible lytic lesions are
shown in red, found using the assess-
ment method.

Fig. 3.23 A representative example of a poor result from the fold five validation set. This
case achieved a sensitivity of 0.621 with a point accuracy of 0.823. The assessment method
found 120 out of 193 lesions correctly.
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As a representative example of validation, the results using data from the fold five data
validation set was selected. At a point level, 48.5% of the ground truth diseased points were
marked correctly (true positive rate) and 89.7% of the total number of healthy points were
marked correctly as healthy (true negative rate). The false positive rate was 3.00%, which is
(the number of false positives) / (the number of false positives + the number of true negatives).
A total of 2,474,811 points were labelled correctly. Of this total, 70,084 were diseased points
and 2,404,727 were healthy points. 74,460 diseased points were labelled incorrectly while
275,429 healthy points were labelled incorrectly. When limiting the results to only the 35
cases of healthy data, 91.91% of the points were marked correctly. The average false positive
rate was 2.70% across all of the data sets.

At a diseased region level (i.e. a cluster of points marked as disease), a 30.6% true
positive rate was achieved (the number of diseased regions with at least a single point that
is actually diseased) / (total number of diseased regions). A false negative rate of 69.4%
was achieved, which is the (number of regions incorrectly marked as disease) / (number of
diseased regions).

In Figure 3.24, the number of missed lesions has been grouped by region. The lesions
that were not detected had an average volume of 0.239 cm3 and an average disease shadow
size of 34.6 points. Table 3.12 shows sensitivity by lesion volume while Table 3.13 shows the
sensitivity by lesion volume where lesions have a volume less than 3.0 cm3. Table 3.14 shows
the sensitivity by diseased shadow size and Table 3.15 shows the sensitivity by diseased
shadow size where the size is less then 300 points.

3.4.9 Sclerotic and lytic labelling

As Dr. Barrett was unable to label individual lesions as being either sclerotic or lytic due to
time constraints (and the Coronavirus pandemic), I developed a technique to identify these
lesions correspondingly. In this technique, the trabecular bone density for each point in the
ground truth disease shadow (that was produced by a ground truth lesion) was compared to
the trabecular bone density of its symmetrically mapped point. The trabecular bone density
was summed: the lesion was labelled sclerotic if its sum was greater than the sum of the
symmetrically mapped points; if the sum was less than the sum of the symmetrically mapped
points, the lesion was labelled lytic. The process is similar to the disease side selection
technique described in Section 2.5.3. However, there are significant differences between
these two methods as the disease side selection only compares border points on a region
while the lesion labelling method compares the entire disease shadow.

This process labelled 273 lesions as sclerotic and 137 lesions as lytic. The assessment
method detected 241 out of 273 sclerotic lesions correctly (0.883) and 72 out of 137 lytic



3.4 Experiments on symmetrical disease assessment 107

Table 3.12 The sensitivity of detecting all lesions by volume (cm3) using validation data from
fold five.

Volume range (cm3) Number of detected lesions Number of lesions Sensitivity
0 ≤ volume < 3.0 233 327 0.713

3.0 ≤ volume < 6.0 28 29 0.966
6.0 ≤ volume < 9.0 17 17 1.00

9.0 ≤ volume < 12.0 2 2 1.00
12.0 ≤ volume < 15.0 5 5 1.00
15.0 ≤ volume < 18.0 3 3 1.00
18.0 ≤ volume < 21.0 4 4 1.00
21.0 ≤ volume < 24.0 5 5 1.00
24.0 ≤ volume < 27.0 5 6 0.833
27.0 ≤ volume < 30.0 1 1 1.00
30.0 ≤ volume < 33.0 0 0 NA
33.0 ≤ volume < 36.0 1 1 1.00
36.0 ≤ volume < 39.0 0 0 NA
39.0 ≤ volume < 42.0 0 0 NA
42.0 ≤ volume < 45.0 1 1 1.00
45.0 ≤ volume < 48.0 1 1 1.00
48.0 ≤ volume < 51.0 1 1 1.00
51.0 ≤ volume < 54.0 0 0 NA
54.0 ≤ volume < 57.0 0 0 NA
57.0 ≤ volume < 60.0 0 0 NA

60.0 ≤ volume 6 7 0.857
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Table 3.13 The sensitivity of detecting lesions where the lesion volume was less than 3 cm3

using validation data from fold five.

Volume range (cm3) Number of detected lesions Number of lesions Sensitivity
0 ≤ volume < 0.1 37 94 0.394

0.1 ≤ volume < 0.2 38 54 0.704
0.2 ≤ volume < 0.3 30 36 0.833
0.3 ≤ volume < 0.4 18 26 0.692
0.4 ≤ volume < 0.5 12 13 0.923
0.5 ≤ volume < 0.6 14 14 1.00
0.6 ≤ volume < 0.7 11 13 0.846
0.7 ≤ volume < 0.8 11 11 1.00
0.8 ≤ volume < 0.9 10 11 0.909
0.9 ≤ volume < 1.0 4 5 0.800
1.0 ≤ volume < 1.1 2 2 1.00
1.1 ≤ volume < 1.2 5 5 1.00
1.2 ≤ volume < 1.3 2 2 1.00
1.3 ≤ volume < 1.4 3 3 1.00
1.4 ≤ volume < 1.5 5 6 0.833
1.5 ≤ volume < 1.6 2 2 1.00
1.6 ≤ volume < 1.7 4 4 1.00
1.7 ≤ volume < 1.8 2 2 1.00
1.8 ≤ volume < 1.9 4 4 1.00
1.9 ≤ volume < 2.0 2 2 1.00
2.0 ≤ volume < 2.1 2 2 1.00
2.1 ≤ volume < 2.2 2 3 0.667
2.2 ≤ volume < 2.3 5 5 1.00
2.3 ≤ volume < 2.4 2 2 1.00
2.4 ≤ volume < 2.5 1 1 1.00
2.5 ≤ volume < 2.6 1 1 1.00
2.6 ≤ volume < 2.7 0 0 NA
2.7 ≤ volume < 2.8 1 1 1.00
2.8 ≤ volume < 2.9 1 1 1.00
2.9 ≤ volume < 3.0 2 2 1.00
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Table 3.14 The sensitivity of detecting lesions by disease shadow size using validation data
from fold five.

Disease shadow size range Number of detected lesions Number of lesions Sensitivity
0 ≤ shadow size < 300 222 319 0.696

300 ≤ shadow size < 600 28 28 1.00
600 ≤ shadow size < 900 26 26 1.00

900 ≤ shadow size < 1200 5 5 1.00
1200 ≤ shadow size < 1500 7 7 1.00
1500 ≤ shadow size < 1800 5 5 1.00
1800 ≤ shadow size < 2100 6 6 1.00
2100 ≤ shadow size < 2400 3 3 1.00
2400 ≤ shadow size < 2700 4 4 1.00
2700 ≤ shadow size < 3000 1 1 1.00
3000 ≤ shadow size < 3300 0 0 NA
3300 ≤ shadow size < 3600 1 1 1.00
3600 ≤ shadow size < 3900 0 0 NA
3900 ≤ shadow size < 4200 1 1 1.00
4200 ≤ shadow size < 4500 0 0 NA
4500 ≤ shadow size < 4800 0 0 NA
4800 ≤ shadow size < 5100 1 1 1.00
5100 ≤ shadow size < 5400 1 1 1.00
5400 ≤ shadow size < 5700 1 1 1.00
5700 ≤ shadow size < 6000 0 0 NA

6000 ≤ shadow size 1 1 1.00
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Table 3.15 The sensitivity of detecting lesions by disease shadow size where the number of
points is less than 300 using validation data from fold five.

Disease shadow size range Number of detected lesions Number of lesions Sensitivity
0 ≤ shadow size < 10 4 39 0.103

10 ≤ shadow size < 20 20 36 0.556
20 ≤ shadow size < 30 12 21 0.571
30 ≤ shadow size < 40 13 22 0.591
40 ≤ shadow size < 50 17 22 0.773
50 ≤ shadow size < 60 16 22 0.727
60 ≤ shadow size < 70 12 14 0.857
70 ≤ shadow size < 80 15 20 0.75
80 ≤ shadow size < 90 13 15 0.867

90 ≤ shadow size < 100 6 8 0.75
100 ≤ shadow size < 110 8 8 1.00
110 ≤ shadow size < 120 8 8 1.00
120 ≤ shadow size < 130 7 9 0.778
130 ≤ shadow size < 140 7 8 0.875
140 ≤ shadow size < 150 6 7 0.857
150 ≤ shadow size < 160 5 5 1.00
160 ≤ shadow size < 170 9 9 1.00
170 ≤ shadow size < 180 3 3 1.00
180 ≤ shadow size < 190 6 6 1.00
190 ≤ shadow size < 200 6 6 1.00
200 ≤ shadow size < 210 5 5 1.00
210 ≤ shadow size < 220 2 2 1.00
220 ≤ shadow size < 230 2 3 0.667
230 ≤ shadow size < 240 5 5 1.00
240 ≤ shadow size < 250 6 6 1.00
250 ≤ shadow size < 260 1 1 1.00
260 ≤ shadow size < 270 4 4 1.00
270 ≤ shadow size < 280 1 1 1.00
280 ≤ shadow size < 290 2 3 0.667
290 ≤ shadow size < 300 1 1 1.00
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Fig. 3.24 The number of lesions grouped by region. The red bars show the number of missed
lesions while the blue bars show the number of correctly detected lesions. This data is from
the fold five validation data set.

lesions correctly (0.52). Table 3.17 shows the sensitivity of sclerotic lesions by shadow size
and Table 3.16 shows the sensitivity of lytic lesion by shadow size.

An experiment was then carried out to verify the validity of labelling lesion types. This
included selecting representative samples of the lesions and examining the results visually,
as lytic lesions will contain a lesser bone density and sclerotic lesions will contain a greater
bone density. Figure 3.25 shows an example of a lytic region being labelled correctly. In
this figure the left shows the original CT image with the ground truth lesion shown in red.
The right shows the same CT image with a white arrow pointing to the lesion. My technique
labelled this lesion as lytic, which is correct as the bone density has decreased.

Smaller lesions will most likely be less accurately labelled, as there are fewer points to
use in determining the relative symmetric bone density difference. And in cases where both
sides are diseased, the method will probably be less accurate as well. This can be seen in
Figure 3.26.

A check was carried out to see how many ground truth diseased shadow points were
symmetrically mapped to other ground truth diseased shadow points. It was found that there
was an overlap of 25% per case. This is significant, indicating that my lesion type labelling
method was not accurate in certain cases. If the symmetric disease shadows from two regions
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Table 3.16 The sensitivity of detecting lesions by disease shadow size for lytic lesions using
validation data from fold five.

Disease shadow size range Number of detected lesions Number of lesions Sensitivity
0 ≤ shadow size < 10 1 21 0.048

10 ≤ shadow size < 20 4 16 0.250
20 ≤ shadow size < 30 3 11 0.273
30 ≤ shadow size < 40 3 8 0.375
40 ≤ shadow size < 50 7 11 0.636
50 ≤ shadow size < 60 4 9 0.444
60 ≤ shadow size < 70 4 6 0.667
70 ≤ shadow size < 80 5 7 0.714
80 ≤ shadow size < 90 4 5 0.800

90 ≤ shadow size < 100 3 4 0.750
100 ≤ shadow size < 110 3 3 1.00
110 ≤ shadow size < 120 3 3 1.00
120 ≤ shadow size < 130 1 3 0.333
130 ≤ shadow size < 140 2 3 0.667
140 ≤ shadow size < 150 1 2 0.50
150 ≤ shadow size < 160 1 1 1.00
160 ≤ shadow size < 170 1 1 1.00
170 ≤ shadow size < 180 1 1 1.00
180 ≤ shadow size < 190 1 1 1.00
190 ≤ shadow size < 200 2 2 1.00
200 ≤ shadow size < 210 1 1 1.00
210 ≤ shadow size < 220 0 0 NA
220 ≤ shadow size < 230 0 0 NA
230 ≤ shadow size < 240 1 1 1.00
240 ≤ shadow size < 250 0 0 NA
250 ≤ shadow size < 260 0 0 NA
260 ≤ shadow size < 270 1 1 1.00
270 ≤ shadow size < 280 0 0 NA
280 ≤ shadow size < 290 0 1 0.00
290 ≤ shadow size < 300 0 0 NA

300 ≤ shadow size 15 15 1.00



3.4 Experiments on symmetrical disease assessment 113

Table 3.17 The sensitivity of detecting lesions by disease shadow size for sclerotic lesions
using validation data from fold five.

Disease shadow size range Number of detected lesions Number of lesions Sensitivity
0 ≤ shadow size < 10 3 18 0.167

10 ≤ shadow size < 20 16 20 0.80
20 ≤ shadow size < 30 9 10 0.90
30 ≤ shadow size < 40 10 14 0.714
40 ≤ shadow size < 50 10 11 0.909
50 ≤ shadow size < 60 12 13 0.923
60 ≤ shadow size < 70 8 8 1.00
70 ≤ shadow size < 80 10 13 0.769
80 ≤ shadow size < 90 9 10 0.90
90 ≤ shadow size < 100 3 4 0.75

100 ≤ shadow size < 110 5 5 1.00
110 ≤ shadow size < 120 5 5 1.00
120 ≤ shadow size < 130 6 6 1.00
130 ≤ shadow size < 140 5 5 1.00
140 ≤ shadow size < 150 5 5 1.00
150 ≤ shadow size < 160 4 4 1.00
160 ≤ shadow size < 170 8 8 1.00
170 ≤ shadow size < 180 2 2 1.00
180 ≤ shadow size < 190 5 5 1.00
190 ≤ shadow size < 200 4 4 1.00
200 ≤ shadow size < 210 4 4 1.00
210 ≤ shadow size < 220 2 2 1.00
220 ≤ shadow size < 230 2 3 0.667
230 ≤ shadow size < 240 4 4 1.00
240 ≤ shadow size < 250 6 6 1.00
250 ≤ shadow size < 260 1 1 1.00
260 ≤ shadow size < 270 3 3 1.00
270 ≤ shadow size < 280 1 1 1.00
280 ≤ shadow size < 290 2 2 1.00
290 ≤ shadow size < 300 1 1 1.00

300 ≤ shadow size 76 76 1.00
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(a) The CT data with a ground truth le-
sion volume that is shown in red. This
image is used to demonstrate the loca-
tion of the ground truth marking.

(b) The CT data without the ground
truth marking. The arrow has been man-
ually drawn on this image to indicate
the location of the lesion.

Fig. 3.25 An example of correctly labelling a lesion lytic. My algorithm labelled this lesion
by symmetrically comparing the CBM trabecular bone density measurements. The CT data
is from the Addenbrooke’s Hospital CT Data Collection.

fully overlap, one side will be labelled as lytic and the other as sclerotic. This could cause
inaccurate labelling, as both sides could actually be sclerotic (the sclerotic lesion with less
bone density between the two would be labelled as lytic) or vice versa. If a partial overlap is
present, the lesions may both still be labelled correctly as there is healthy bone to compare
with. However, it appears that this method did label most lesions correctly although this was
not verified by a radiologist.

3.4.10 Diseased side selection

The results from Section 3.4.8 used the diseased side selection method described in Sec-
tion 2.5.3 to determine whether a region was diseased or healthy. It was found that 4.01%
of all points that were incorrectly marked as diseased had their symmetrical mapped point
labelled incorrectly as being healthy (as it was diseased) using validation data from fold five.
A discussion about these results are located in Section 4.2.6.

As the majority of the lesions in this data set are sclerotic (having an increase in tra-
becular bone density), another experiment was carried out where the side selection method
(section 2.5.3) was disregarded. For this experiment, it was assumed that every diseased
region was sclerotic. Instead of comparing border gradients of the trabecular bone density,
the trabecular bone density was compared directly. For each point in a region, the trabecular
bone density was summed. The symmetrically mapped point was also looked up for each
point in the region and the trabecular bone density at each of these symmetrical mapped
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(a) The CT data with a ground truth le-
sion volume that is shown in red. This
image is used to demonstrate the loca-
tion of the ground truth marking. The
left side is also diseased although the
ground truth visualisation is not dis-
played.

(b) The CT data without the ground
truth marking. The white arrow has
been manually drawn on this image to
indicate the location of the lesion. The
red arrow shows where the symmetri-
cally mapped region is likely to be lo-
cated.

Fig. 3.26 A example of incorrectly labelling a lesion as lytic. My algorithm labelled this
lesion as lytic by symmetrically comparing the CBM trabecular bone density measurements.
However, this lesion is actually sclerotic (although this has not been verified by a radiologist).
This lesion was most likely labelled incorrectly as its symmetrically mapped points are also
diseased and sclerotic as seen by the denser white bone on the left side of the image. The CT
data is from the Addenbrooke’s Hospital CT Data Collection.
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Table 3.18 The table shows the number of detected and missed lesions out of 1626 using line
data sampled at 40 locations using 2 smoothing iterations and a cluster size of 7. The full
data set was used in the experiment (instead of using a cross validation approach). Results
would most likely be worse using CV approach.

HU threshold point accuracy average sensitivity
100 0.927 0.541
1 0.882 0.805
5 0.886 0.799
4 0.885 0.801
2 0.883 0.801
3 0.884 0.801

50 0.913 0.677
10 0.891 0.778
20 0.898 0.747
45 0.912 0.690

points was also summed. The region with the higher total was marked as diseased. This
method detected 967 out of 1067 sclerotic lesions correctly producing a sensitivity of 0.906
using the parameters optimised in Section 3.4.8.

This experiment was also performed for lytic lesions by assuming all lesions were lytic
(having a decrease in trabecular bone density) and by marking a region as diseased if the first
total had a smaller sum than the second. This method correctly detected 427 out of 501 lytic
lesions producing a sensitivity of 0.852.

3.4.11 Experiments using line data

Instead of using CBM measurements for comparison, the raw line data was used directly
for detection. In this experiment, at a number of evenly spaced increments along the
10.8 mm line normal to the bone, radiodensity measurements were taken using the Stradview
software [133]. For these experiments, 40 measurements were taken along each 10.8 mm
line segment providing a radiodensity sample every 0.27 mm (10.8/40 = 0.27 mm). As the
minimum x and y pixel spacing is 0.580 mm and minimum slice spacing 2 mm, sampling
every 0.27 mm was a short enough distance to accurately measure the data.

The measurements at each vertex were compared between symmetric points by taking
the absolute values of their summed differences. This value was compared to a threshold and
points above the threshold were marked as diseased. A range of thresholds were used and
the results from this experiment are listed in Table 3.18. The results from this table produce
significantly lower sensitivities and point accuracies.
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3.4.12 Experiments on atlas symmetrical deformation mappings

Instead of using the segmentation mesh for comparison, in this experiment the atlas is
deformed and used to match the skeleton as described in Section 2.4.5. This method produced
a sensitivity of 0.846 and a point a accuracy of 0.717 using the parameters optimised using
cross validation in Section 3.4.8. This method detected 1376 lesions out of 1626 correctly.
The point accuracy is significantly worse than using the segmentation directly as described
above.

3.5 Longitudinal evaluation

In longitudinal assessment, baseline and follow-up cases were compared with each other
as described in Section 2.6. The ground truth for the longitudinal results was determined
by starting with the ground truth disease shadows (as described in Section 3.2.3) for each
case. The registration point mapping data was used to compare the label of each point on the
baseline segmentation to its mapped point in the follow-up case. For the points in which the
label changed from healthy to diseased, the point was marked as a disease progression point.
A point was labelled as disease regression if it changed from diseased to healthy.

For assessment, the trabecular bone density of each point in the base case segmentation
was compared with the trabecular bone density of each point in the follow-up segmentation
using the registration point mapping. Differences above a defined threshold were labelled as
diseased. Connected groups smaller than a defined cluster size were discarded as described
in Section 3.4.3. The results from the longitudinal cases are shown in Table 3.19 using the
parameters optimised using the cross validation parameters from Section 3.4.8. Table 3.20
shows the results where the HU threshold and the cluster size were allowed to vary (without
cross validation). A discussion about longitudinal analysis is located in Section 4.3.2.

Figure 3.27 shows an example of baseline and follow-up cases for a single patient. It can
be seen that the disease has progressed from the baseline case to the follow-up case as the
lesions have increased in size. New lesions have also appeared within the follow-up case that
were not present in the baseline case. The longitudinal assessment results for this case are
shown in Figure 3.28. Figure 3.29 shows another baseline and follow-up case. Figure 3.30
shows the results for this case which are poorer than the previous case.

In another experiment, the longitudinal assessment method was used to predict lesion
volume growth. This was calculated by taking the longitudinal diseased shadow size (spread
of disease) and by using this number with equation (3.3) (to find lesion volume). In order
to assess this result, a ground truth volume was compared to the longitudinal assessment’s
predicted volume growth.
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(a) A baseline case – an alpha blend is
used here to show the 3D lesions (shown
in red) within the bony surface.

(b) The follow-up case – it can be seen
that the 3D lesions have primarily in-
creased in size from the baseline case.

Fig. 3.27 A typical example of the disease progression. The bony segmentations have been
displayed in grey while the lesions have been displayed in red. The disease has progressed
from the baseline case to the follow-up case.
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Fig. 3.28 An example of the results from a longitudinal experiment. In the longitudinal
assessment, strong differences in trabecular bone density between baseline and follow-up
cases are marked as disease. These diseased regions are shown in teal. The baseline case
had a total sum ground truth lesion volume of 120.845 cm3. The follow-up case had a total
sum ground truth lesion volume of 264.592 cm3. This was an increase of 143.747 cm3. The
predicted volume for this case was 101.442 cm3 using the longitudinal assessment method.
This is an absolute percent error difference of 29.431%
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(a) A baseline case, the 3D lesions are
shown in red.

(b) The follow-up case contains many
more lesions.

Fig. 3.29 An example of longitudinal disease progression. It can be seen that the 3D lesions
have significantly increased in number and in size from the baseline case to the follow-up
case.

Table 3.19 The point accuracy using the optimised parameters described in 3.4.8 (using the
parameters optimised by cross validation on the single data sets).

Accuracy HU threshold Smoothing iterations Cluster size
0.807 150 2 7
0.773 125 2 7
0.723 100 2 7

To find the ground truth volume growth, the total lesion volume was found for each case
(by summing each lesion’s volume for every lesion within a case). Then, the absolute value
of the volume differences between each baseline and follow-up cases was found to determine
the ground truth. In Table 3.21, the ground truth volume growth has been compared to the
longitudinal assessment’s predicted volume growth. This comparison shows the percentage
difference between the two values. Table 3.22 shows 10 representative cases, which include
the actual baseline and follow-up volumes. It also shows the growth and estimated growth
that was found by converting diseased shadow points to volume using equation (3.3).
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Table 3.20 The 10 best longitudinal accuracies letting the HU threshold and the cluster size
vary. Ranges were set near to the optimised parameters described in 3.4.7 (using cross
validation to optimise the parameters on single data sets), although cross validation was not
used to optimise these results (across multiple data sets).

Accuracy HU threshold Smoothing iterations Cluster size
0.925 150 2 600
0.918 150 2 400
0.915 125 2 600
0.911 150 2 200
0.910 125 2 400
0.908 150 2 150
0.906 150 2 125
0.903 150 2 100
0.901 125 2 200
0.898 100 2 600

Table 3.21 The 10 best results by volume percentage difference. The volume percentage
difference is the absolute value of the calculated volume subtracted from the ground truth
volume divided by the ground truth volume. Initial ranges were set near to the optimised
parameters described in 3.4.7 (using cross validation to optimise the parameters on single
data sets), although cross validation was not used to optimise these results (across multiple
data sets).

Volume percentage difference HU threshold Smoothing iterations Cluster size
107.41 % 150 2 400
111.78 % 150 2 600
140.56 % 150 2 200
153.39 % 150 2 150
154.81 % 150 2 125
161.43 % 150 2 100
169.41 % 125 2 600
174.40 % 125 2 400
192.10 % 150 2 50
209.25 % 125 2 200
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.

Fig. 3.30 An example of a longitudinal result. The change in disease between baseline and
follow-up cases is shown in teal on the bony surface. The baseline case had a total sum
ground truth lesion volume of 1.249 cm3. The follow-up case had a total sum ground truth
lesion volume of 305.602 cm3. This was an increase in 304.352 cm3. The predicted volume
for this case was 150.501 cm3 using the longitudinal assessment method. This is an absolute
percent error difference of 50.6%.
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Table 3.22 10 representative longitudinal cases showing total lesion volume (cm3) of the
baseline and the follow-up scans. Volume growth is the change in volume (cm3) from
baseline to follow-up scans. The volume estimate (cm3) is the predicted volume growth
which uses equation (3.3) to convert shadow points to volume. Percentage difference shows
the relationship between the volume growth and the volume estimated growth.

Case Baseline Follow-up Growth Estimate % difference
1 0.86 59.94 59.07 131.57 122.72%
2 191.80 276.73 84.93 11.79 86.12%
3 1.32 0.20 -1.12 0.00 100.00%
4 42.41 223.01 180.60 10.63 94.12%
5 120.85 264.60 143.75 94.65 34.16%
6 1.25 305.60 304.35 150.50 50.55%
7 12.18 5.50 -6.68 4.53 167.83%
8 318.82 416.89 98.07 65.47 33.24%
9 34.87 264.84 229.97 65.50 71.52%

10 80.26 1752.66 1672.40 877.67 47.52%

Table 3.23 The table shows running times for the different executables in the symmetrical
assessment method.

Name Min Max Average
Segmentation 3m 49s 12m 11s 8m 45s

CBM and bone mesh generation 2m 35s 51m 51s 16m 16s
MBD mesh generation 1s 30m 25s 3m 23s

Registration 17m 59s 1h 21m 55s 34m 12s

3.6 Running times

The running times for the executables are listed in Table 3.23. These jobs were run on an
Alienware Aurora R8 gaming desktop (9th Gen Intel(R) Core(TM) i7 9700 (8-Core), 32GB
DDR4 and NVIDIA GeForce GTX 1660Ti with 6GB GDDR6) running the Ubuntu operating
system. All executables were single threaded, although batches of jobs were run at the same
time across the multiple cores. The data passed through a pipeline where the output from
each executable becomes the input for the next. A diagram of this execution pipeline can be
seen in Figure 3.31.
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MBD mesh generation

Registration

CBM and mesh generation

Interactive
3D Viewer

Segmentation

Experimental
results

Fig. 3.31 This image shows the flow of the execution pipeline where each box is an executable.
The output of each executable is used as the input of the next. The CBM and mesh bone
generation executable and the MBD mesh generation executable can be run in parallel.
Results can be calculated using the experimental results executable as well as viewed
interactively in the 3D viewer or both.

Table 3.24 The table shows running times for the different executables for the longitudinal
assessment.

Name Min Max Average
Segmentation 8m 21s 13m 30s 10m 00s

CBM and bone mesh generation 1m 28s 27m 32s 10m 59s
MBD mesh generation 5s 24m 32s 5m 18s

Registration 16m 39s 51m 48s 35m 09s



Chapter 4

Discussion

4.1 Introduction

In this chapter, I will be addressing a number of points regarding the algorithms, including
the input data sets, segmentation, registration, overall results, usefulness of the approach as a
whole and the various limitations.

4.2 Experimental data

Using experimental data that is representative of the actual diseased data (as would be
encountered in a clinical setting) is essential in demonstrating the validity of the symmetrical
algorithm and the longitudinal algorithm. As all of the diseased data used in these experiments
was produced by imaging real prostate cancer patients, the experimental data is a valid
representation of real clinical data. Because of this, it is likely that the results produced by
my algorithm, in the experiments described in this thesis, would be similar to the results
produced in a clinical setting.

However, having a high number of data sets from a wide range of patients is also important,
since the results can only be considered reliable on patients with the same demographics,
and the same range of disease, as is contained in this data. As the data sets used in this
thesis overlap the expected age range and disease progression of a patient with prostate
cancer, these data sets can successfully provide an accurate indication of how this method
will perform on real prostate cancer patients. Having many CT data sets from a range of
differing bone anatomies, shape, sizes and ages also reduces the chance of the algorithm
over-fitting to the specific experimental data. The number of CT data sets used in these
experiments was 103, with 68 being diseased and 35 being healthy. This is similar to the
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average number of data sets used by other researchers in their experiments in detecting MBD,
so these tests are expected to be as robust as those typically reported in the related literature.

Although 103 data sets is a significant number, more data would be beneficial as it
would provide a more robust indication of the true sensitivity and accuracy produced by this
algorithm. By using a five fold cross validation technique to optimise the three parameters
(as described in Section 3.4.6), over-fitting of the data can be reduced. However, a limitation
of this approach is that data was not available for a testing set. A test set would have provided
a more unbiased evaluation of the results.

Unfortunately, it is very difficult to obtain these CT scans due to the usual issues sur-
rounding clinical ethics in research, as well as the practical issues including patient consent
forms, anonymisation, release and the secure transfer of the data, even though it is common
for prostate cancer patients to be scanned in a CT scanner. In the project, attaining usable
CT data took a significant amount of time (well over a year) and expertise. Once these were
acquired, Dr. Barrett spent a considerable period of time to mark the outlines of the lesions.
This acquisition process is challenging to do on a large scale due to the time constraints,
especially for a busy radiologist, further limiting the number of data sets that are practically
available.

The lesion type labels are missing from the marked data, which is important. However,
it was not possible to obtain these due to the radiologist’s time constraints and due to the
outbreak of the pandemic. However, an alternative method for determining the lesion type
was developed as described in Section 3.4.9. These results have not been verified by the
radiologist, but upon visual inspection they appear to be largely accurate.

With regards to disease, the majority of the lesions in these data sets have a volume of
less than 3.0 cm3 and are generally located around the pelvis. The locations of the lesions
are determined by the primary cancerous tumour cells that travel through a patient’s arteries
and veins [100].

There are also slight discrepancies between the diseased data sets and the healthy data
sets. The diseased data sets extend lower than the healthy data sets, and usually contain the
upper femurs but do not contain the upper ribs as seen in Figure 4.1a. The healthy data sets
extend higher than the diseased data sets, and include the shoulders and upper ribs but often
do not contain the upper femurs. This can be seen in Figure 4.1b. It would be beneficial if
both the healthy and diseased CT images overlapped in exactly the same regions, but this is
constrained by the scanning protocol. This was not controlled by this study; the healthy data
represented an opportunistic sample. This is because the European Association of Urology
(EAU) only recommends abdomen and pelvis coverage at baseline staging. The majority of
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(a) An example of a typical diseased
data set that extends from the ribs to the
lower femurs.

(b) An example of a healthy data set
that extends from the shoulders to mid
pelvis.

Fig. 4.1 Examples of typical diseased and healthy data sets. The healthy data sets extend to
the shoulders, while the diseased data sets extend to the upper femurs.

the bony regions do overlap, however this also shows that the algorithm can work correctly
on slightly different regions of the skeleton.

4.2.1 Segmentation results

Automatic segmentation of bone in CT is an essential part of the detection of metastatic bone
disease. Creating perfect segmentations is, however, a challenging problem. Much of the
difficulty is caused by the noisy CT data with often low contrast values between the bone and
non-bone. In many cases, it is not even clear how to correctly label bone during a manual
segmentation process. Errors in the segmentation are compounded as segmentation precedes
the other steps in the algorithm. Poor results in the segmentation can cause poor results in the
registration process, and can lead to a reduction in performance of the symmetry method’s
overall sensitivity and point accuracy.

My segmentation method used in these experiments produced an average DSC score
of 98.95%, as shown in Section 3.3.1. This is more accurate than the other segmentation
techniques described in section 2.2.1, which produced DSC scores of (98.20%, 95.00%,
90.00% and 84.40%). Significantly, my method outperforms Fu et al. [43] by 8.85% even
though it is based on the same core segmentation technique (hysteresis thresholding) and
despite that fact, unlike their version, my method does not require any human interaction.

The total average surface distance produced for the segmentations using my implemen-
tation of the algorithm was 2.168 mm. This is slightly worse than the 0.41 mm - 1.55 mm
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produced by Fu et al. [43], although the segmentation was still good enough to produce
usable results in both the symmetrical and longitudinal algorithms. Fu et al. [43] may have
achieved a lower average surface distance error because it is not a fully automatic method
but requires some human intervention.

My method produced a better DSC score than Fu et al. [43], but also had a greater average
surface distance error than Fu et al. [43]. This means that my method had a higher accuracy
in labelling all voxels correctly but was less accurate in generating a correct bony surface. As
there are many more non-bone voxels than bony voxels, my segmentation method is likely
more accurate in labelling non-bone voxels correctly than in labelling bony voxels correctly.

Related to this, my segmentation algorithm achieved a precision of 0.92. This is the
accuracy limited to voxels that have been labelled as bone. This result was similar to 0.94,
which was achieved by [71], and less than 0.99, which was achieved by [76]. These methods
are likely to produce a more accurate labelling of bone than my method. The precision
achieved by Fu et al. [43] method was not available, but it was most likely greater than my
precision of 0.92 as Fu et al. [43] achieved a smaller average surface distance error.

As highlighted in Figure 4.2, the segmentation errors are common in a number of areas.
This most often occurs when a bony voxel’s radiodensity value overlaps the normal range
for the radiodensity of either bone or tissue. Both tissue and bone can be binned into the
same voxel during the image reconstruction process, which makes it difficult to distinguish
between the two.

My segmentation algorithm has difficulties with the vertebrae as shown in Figure 4.3, as
they are especially hard to segment correctly. The 2D slices often cut through the patient in
each vertebra at an angle that is challenging to reconstruct back into the 3D model. Figure 4.4
shows a segmentation that produced a far worse result than normal, which is an example of
where this issue was present.

However, the overall segmentation results are acceptable for use in this algorithm. This
can be clearly seen in Section 3.4.8, as an overall sensitivity of 0.820 was achieved in
detecting both sclerotic and lytic lesions within the same data set.

My segmentation method took an average of 10 minutes per case. This is significantly
faster than Fu et al. [43] (who used a similar segmentation technique), as this method took
about 20 minutes to run per skeleton. The machine learning methods are significantly faster –
an average of 8.13 minutes using the random forest method [14], less than 2 or 3 minutes
using the watershed and support vector machine method [76], and under one second using
the U-net method [71].
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Areas of 
poor 
segmentation

Fig. 4.2 A typical segmentation – the segmentation is not accurate in places. This is due to
the partial volume effect, as both bone and non-bone is binned into the same voxel.

Fig. 4.3 An example of a difficult region to accurately segment. Segmentation of the vertebrae
is challenging due to the partial volume effect and the slice angle through each vertebra.
An example of a typical vertebra in a CT scan – it is unclear where the upper segmentation
boundary should be in this case due to the small angle difference between the surface of
the vertebra and the CT slice. The CT data is from the Addenbrooke’s Hospital CT Data
Collection.
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Fig. 4.4 A typical poor quality segmentation result – the vertebrae are particularly problematic
due to the extremely thin cortices.
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4.2.2 Registration results

Registration is an essential process in both the symmetrical and the longitudinal methods. It
either determines the symmetrical mapping between points (in the case of the symmetrical
method) or the regional mapping between baseline and follow-up points. Errors in registration
will cause the trabecular bone density to be compared at incorrect points, which can increase
the overall error in both algorithms.

Generally, the majority of the registration is very accurate. Figure 4.5 shows what
a typical registration result looks like. In this image, the segmentation mesh is slightly
interleaved with the deformed atlas in many places. This indicates the registration matches
are very close to each other in this situation.

The overall average distance error between the registered atlas and segmentation was
4.84 mm. As seen in Table 3.5, most of the larger errors are due to problems in registering
the ribs as they are much more difficult to register correctly. The pelvic bones contained a
much smaller error of 1.78 mm, 1.87 mm and 2.70 mm (for the pelvic bone left, pelvic bone
right and sacrum respectively). This is significant as a majority of the lesions (as shown by
Figure 3.4), are located within the pelvic bones. Only a low number of lesions are located
within the ribs.

Figure 3.4 shows that another common location of the lesions is in specific vertebrae and
in the femurs. Most of the vertebrae have an average distance error significantly lower than
the overall distance error of 4.84 mm. When excluding vertebra Th 10, these values ranged
from 1.91 mm to 2.66 mm. Th 10 has an average distance error of 8.14 mm, that is greater
than the other vertebrae as it often does not have a segmentation vertebra to match to, as the
atlas extends higher than the segmentation.

There is, however, a noticeable amount of error within the registration results in certain
cases. This registration error can be due to a variety of issues, including errors in the
segmentation, asymmetric bone, large differences in shape and size between the segmentation
and atlas, difficult original registration placement issues and imperfect point matching criteria.
Figure 4.6 shows a region where a large difference between shape and size of the atlas and
segmentation was significant enough to produce poor registration matching on the edge of
the pelvis. Figure 4.7 shows the results of a poor point symmetry match.

The largest error in the registration is in the ribs. These errors are primarily caused by the
large differences in shape, size, length as well as the difference in number of ribs between
the segmentation and the atlas. These errors do not significantly affect the sensitivity, as most
of the lesions are in the spine, pelvis and femurs. However, they can reduce the overall point
accuracy of the algorithm.
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Fig. 4.5 A typical deformable registration result. The segmentation mesh is displayed in
yellow and the individual pieces of the atlas are displayed by specific colours. The registration
results are especially accurate within the pelvis and the femurs where the majority of the
disease is located. It is important to note that there are some issues with the vertebrae
registration.
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Fig. 4.6 The registration is not accurate in places as shown in this image. Significant
differences in shape and size of the atlas and the segmentation can cause areas of poorly
matching registrations.

Fig. 4.7 An example of a poor symmetrical point match. This will cause a decrease in the
overall accuracy of the algorithm, since clearly the wrong points are being compared. The
underlying CT data is from the Addenbrooke’s Hospital CT Data Collection.
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Overall, there are errors in the registration from a number of sources that negatively
affect the final results of the algorithm. While much of the registration is correct and there
is still enough symmetry for the symmetrical method to produce good results, improved
registrations would certainly produce better results.

4.2.3 Parameter choice

Setting the correct parameters is essential to producing good results for the symmetrical
and longitudinal methods. When determining the parameters used by the algorithm, there
are a number of factors to consider. The first of these is a minimum number of smoothing
iterations and a minimum cluster size needed to remove the speckle noise that exists when
using these methods. Removing speckle noise can be achieved using at least 2 smoothing
iterations or a minimum cluster size of 7, as described in section 3.4.5. Without removing the
speckle noise, the results are effectively invalid as the speckle noise will incorrectly detect all
lesions simply because the noise is generally spread relatively evenly across all of the bony
mesh.

Another significant determining factor in setting the parameters is the size of the lesions.
When projecting symmetric difference in trabecular bone density to the surface, lesions
produce a disease shadow as described in Section 3.2.3. As shown in Figure 3.6, there is
approximately a power of 2 to 3 relationship between number of points in a disease shadow
to the total volume in a lesion. This relationship occurs because the number of points is a
measure of squared millimetres while volume is a measure of cubed millimetres, although it
is only approximate since the lesions can have a very complex shape.

Larger lesions produce larger disease shadows. A larger disease shadow can be detected
using a larger cluster size parameter. Using a larger cluster size parameter improves the
overall point accuracy as much of the noise can be filtered away. Therefore, the largest
possible cluster size should be used in order to detect the lesions. Figure 4.8 shows a large
legion producing a large disease shadow. The cluster size can be set to a very high number
and still successfully detect this legion.

Smaller lesions produce smaller disease shadows, so a smaller cluster size must be used to
find these lesions. This will reduce the overall point accuracy, but it is necessary in producing
a good sensitivity. Very small lesions are difficult to locate with good accuracy, as they
produce very small disease shadows that are often indistinguishable from the noisy error.

The symmetrical method sometimes produces a number of poor results. This is especially
true with small lesions as they produce a limited size disease shadow. In these cases, a much
smaller margin of error is needed to correctly detect the lesion. In Figure 4.9, the lesion and
disease shadow is relatively small and difficult to distinguish from the error. Table 3.13 shows
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Fig. 4.8 A large 3D lesion (shown in red) produces a disease shadow (shown in green) with
hundreds of points. This type of lesion is relatively easy to accurately locate as the cluster
size can be set to a large number which removes much of the noisy error.

that the sensitivity significantly decreases in lesions that have a volume less than 0.5 cm3.
Lesions that have a volume less then 0.1 cm3 have a very low average sensitivity (0.48).

Disease shadows with greater differences in trabecular bone density are also easier to
accurately detect as significantly diseased bony regions have a greater difference in bone
density than the noisy error generally does. As shown in Figure 3.16, if a lesion can be
detected using a greater HU cutoff value, it will improve the overall accuracy of the algorithm,
hence as large as possible HU threshold should be used to detect the lesions. However, it is
not always possible to detect lesions using a high HU so a lesser HU cutoff must be used
at the cost of a reduced overall point accuracy. Some lesions only exhibit small changes in
bone density, and in that case my method will not be able to detect these.

As the lesions have varying volumes and trabecular bone densities, certain sets of
parameters work well on certain data sets and poorly on others. It is not possible to find a
single set of parameters that produces the optimal point accuracy and sensitivity on all data
sets as shown in Section 3.4.4. This requires checking a range of parameter values in order
to optimally detect the lesions in each data set implying user interaction and some degree of
interpretation.
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Fig. 4.9 The very small 3D lesion (shown in red) produces a disease shadow (shown in green)
with a tiny number of points. A very small disease shadow such as this is very difficult to
distinguish from error.

Using optimised parameters in the detection algorithms is ideal for producing the best
results. Removing speckled error noise (achieved by setting a minimum cluster sizes or a
minimum number of smoothing iterations), is important to validate the algorithm. Using
as high as possible values of both cluster size and HU cut-off will produce better accuracy.
However, each data set is significantly different and if either of these parameter values are
set too high, there is a potential to miss legitimate (but either smaller or with lower change in
density) lesions. Having an additional set of test data could confirm whether the optimised
parameters would work well in general.

4.2.4 Discussion of overall results

As shown in Section 3.4.8, using a threshold cutoff of 125 HU, a minimum cluster size of
7 and 2 smoothing iterations produced an overall average point accuracy of 0.894 and an
average sensitivity of 0.871 respectively when detecting lesions in a data set containing both
sclerotic and lytic lesions using a five fold cross validation approach. The optimal parameters
are the same for each fold which implies that using a testing set is less important. When
detecting only sclerotic lesions, the assessment method produced an overall sensitivity of
0.906 (Section 3.4.10). It also produced an overall sensitivity of 0.852 when detecting only
lytic regions. However, as described in Section 3.4.9, the labelling of the lesion type has not
been verified by a radiologist. This is a shortcoming, although the marking was not possible
to obtain due to constraints on the radiologist’s time, especially during the pandemic.

Although the final classification of results in the various studies differ widely, the best
state of the art machine learning technique [161], produced a sensitivity of 0.760 when
detecting mixed sclerotic and lytic lesions. As mentioned in Section 1.1, mixed can refer to
either a lesion type or a data set that contains both sclerotic and lytic lesions. Although my
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data set does not have any lesions specifically labelled as mixed, my data set does include
both sclerotic and lytic lesions. It achieved an overall sensitivity of 0.871 on these data sets.

When detecting only lytic lesions, the state of the art techniques produced a sensitivity of
0.88 [25] and 0.81 [161]. My method produced a sensitivity of 0.852 in detecting only lytic
lesions. When detecting only sclerotic lesions, the best techniques produced a sensitivity of
0.97 [25], 0.81 [161] and 0.70 [105]. My assessment method achieved a sensitivity of 0.906
in detecting only sclerotic lesions. The size of the lesions used in all of these methods was
similar, although none of the data sets used in any of the other studies were available to allow
for a direct comparison.

However, these three state of the art methods are limited to finding lesions in the spinal
column. The method described in this thesis finds lesions in the ribs, spinal column, pelvis
and upper femurs. My technique also provides a 3D visualisation of the results that can be
used to explain the results and to provide the locations of the lesions, and also provides an
immediate way for a clinician to confirm in the CT data whether lesion detections are valid
or not.

With regards to the number of false positives, all methods produce a significant number.
It’s difficult to compare between methods as my method uses a surface based approach while
these other methods use a voxel based approach. However, Chmelik et al. [25] produced 3.4
to 7.8 false positives per vertebrae, while Yao et al. [161] produced a false positive rate of
0.81 (the false positive rate is defined as the number of false positives divided by the number
of false positives added to the number of true negatives). Roth et al. [105] produced 3372
false positives and 935 true positives across 59 patients when detecting sclerotic lesions.
My assessment method produced a false positive rate of 2.70% on a point labelling level.
This is a greater false positive rate than existing methods, although this is a surfaced based
measurement instead of a voxel based measurement.

My assessment method produces results comparable to the existing methods, although it
is difficult to measure how well each of the results precisely compares to my results. It is also
important to note that the sensitivities are based on detecting a small percentage of the actual
diseased region (i.e. Chmelik et al. [25] required at least a 1% overlap between detected
voxels and the lesion volume in order to mark a lesion as detected) and are not detecting the
entirety of the diseased regions. This potentially poses a problem for determining the validity
of the results available in the literature.

4.2.5 Discussion on volume calculation

As shown in Figure 3.6, the fit line for mapping disease shadow size to lesion volume
follows the general trend of the data. However, a significant variance exists from individual
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data points to the fit line. This is likely due to the varying shape of the bone constraining
the lesion volume and disease shadows in different ways. As described in Section 3.2.3,
calculating volume from disease shadow sizes produced an absolute percentage error of
52.2%. This shows that when calculating lesion volume using the disease shadow produced
by the symmetrical assessment method, the volume will generally predict the correct value
but the prediction could potentially have a significant variance from the true underlying
lesion volume sizes.

This can be seen in Table 3.21, as the volume percentage difference ranges from 107.41%
to 209.25%. It is also important to note that the data in this table is from the longitudinal
experiments. The disease shadows used in calculating the lesion volume have been caused
by the growth or shrinkage of the lesions.

4.2.6 Disease side selection

On a point basis, only 4.01% of all points that were incorrectly marked as diseased (as they
were actually healthy) had their symmetrically mapped point labelled incorrectly as being
healthy (as it was diseased). This demonstrates that the disease side selection algorithm does
pick the correct side for the majority of the points.

As described in Section 3.4.9, a 25% overlap exists in ground truth symmetrical disease
shadow points. Even though this is a relatively high percentage, the disease side selection
method successfully picks the disease side correctly in the majority of the cases. This occurs
because it is very unlikely that two disease shadows will have the same border even if they
do overlap a significant amount. Also, although there is a 25% overlap, this may not always
be between two of the same lesion type (i.e. lytic and lytic). If either lesion are of a different
type, the disease side selection will be more accurate.

As the symmetrical assessment method provides a visualisation of potentially diseased
regions, the sensitivity of this method could be immediately improved if the disease side
selection was disregarded and both sides were offered to the user for inspection, comparison
and disease selection. The cost of this would be the time required to manually inspect the
extra regions, which may not be necessary as the disease side selection does a relatively good
job at selecting the correctly diseased side. In any case, if one were to examine a selected
side, the other side is highlighted at the same time, so it would be easy to manually check
whether the side was not correct.
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4.3 Discussion on general functionality

This algorithm is unique in its ability to transform noisy greyscale 2D images into a 3D
model that can be used for displaying a potentially diseased region. It is the combination of
the different individual elements that create the novel technique. Segmentation of bone is a
reasonably common technique, although much less so when applied to a significant part of
the whole body. However, taking the results from segmentation, overlaying the segmentation
with trabecular bone density from CBM and symmetrically comparing the trabecular bone
density is a completely novel combination of these components.

The symmetrical technique is useful in finding differences in trabecular bone density
between symmetric parts of the bone structure. The applications using this method are
potentially extensive, as anything that produces abnormalities in trabecular bone densities
could potentially be found. This could include finding any other abnormalities, other than
those purely limited to cancer. Broken or injured bones, for example, can potentially be
found using this method. However, symmetric differences in trabecular bone density are
especially prevalent in metastatic bone disease, which has been the focus of this project, as
the secondary spread often causes severe changes in trabecular bone densities.

4.3.1 Usefulness pertaining to metastatic bone disease

The symmetrical method described in this thesis is capable of detecting MBD numerically
in the form of a predicted lesion volume size and as the number of points in a disease
shadow. This numerical output is both novel and an important distinction, as the current
method of diagnosing MBD is visual. The current diagnostic technique, as described in
Section 1.2, requires extensive training of a medical professional and identification skills of
matching a current radiographic image to what would be regarded as physiological rather
than pathological variation. While this is the gold standard of disease diagnosis, my algorithm
provides a secondary method of identifying the disease by comparing trabecular bone density
directly, which reduces the reliance on human methodology and also reduces error and
oversight. My method offers a simple and numerical way to evaluate indicators of disease
with regard to differences in trabecular bone density.

When a radiologist looks at an image to diagnose disease, they are taking the knowledge
they previously learned in their medical training and applying it to the radiographic image
at hand. While this usually provides an effective diagnosis (depending on the skill and
experience of the radiologist), there is always an element of human error or oversight.

My approach with this algorithm is to use the numerical data itself to determine the
presence and extent of the disease. The number of points in each disease shadow can be
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totalled to determine the approximate surface area of each shadow. This area measurement
can be used to find an approximate lesion volume based on the 2 to 3 relationship between
surface area and volume. This is not a precise number. However, when combined with the
total number of disease shadows in a data set, these values provide a secondary numerical
metric that could be useful to a radiologist, especially if the radiologist overlooked a lesion.
This algorithm could potentially be used to provide both a numerical description of the extent
of the disease as well as an automated secondary check, in order to remove some of the
dependency on potential human error. This method is not intended to replace a radiologist,
but rather to support them by providing them with another tool where the expert knowledge of
medical education and experience is combined with scientific and mathematical calculations.
This, in turn, creates the best possible diagnostic situation.

4.3.2 Longitudinal analysis – changes in trabecular bone density over
time

According to Dr. Barrett, accurately tracking disease progression in MBD is usually a far
more onerous problem for a radiologist to overcome than the initial diagnosis is. As explained
in Section 1.5, this process consists of imaging a patient at multiple time-points. The data sets
are then viewed side by side, where the radiologist evaluates them using a visual comparison,
looking for small changes between the scans.

Clinicians broadly categorise tumour growth into four states using the response evaluation
criteria in solid tumours (RECIST) rules. RECIST refers to a set of published rules used
to assess tumour burden in order to provide an objective assessment of the response to
therapy [88]. These states include a complete response (the disappearance of all lesions), a
partial response (less than 30% decrease in sum of all target lesions), a stable disease and a
progressive disease.

Potentially, this is where my algorithm could provide the most benefit for the medical
community. Using the registration techniques described in Section 2.6, my algorithm can
map the 3D bone segmentations taken from the scans to each other and directly compare
the difference in trabecular bone densities, providing a much more automatic and possibly
more precise visualisation of results for a radiologist to use when comparing the scans. Any
combination of possible baseline and follow-up scans can alternatively be compared with
each other, further increasing the usefulness of the longitudinal analysis technique.

This technique can also provide numerical values (of differences in disease shadow size
as well as changes in volume) that represents the amount of growth or stagnancy with regard
to the progression of the disease at different time-points. This is a novel and important metric



4.4 Visualisations 141

as radiologists are unable to quantify a precise numerical value for the baseline and follow-up
differences in diseased scans without painstakingly measuring areas in the CT scan by hand.
They usually evaluate the differences and mark them with varying degrees of progression,
but are unable to easily and precisely measure the sum total of differences.

While similar approaches [94, 108, 141] have been used before in order to compare
Hounsfield units at the bone’s surface, comparing the trabecular bone density measurements
in 3D has not been applied to this longitudinal technique before. Most of the MBD is
located within the trabecular bone, thus using the trabecular bone density measurements is an
essential component to making this longitudinal analysis work correctly—which is a more
effective method of evaluating the spread of the disease.

4.4 Visualisations

While my algorithm can produce numerical reports of the bone in a data set being either
diseased or healthy, these numerical values can be projected onto the 3D bony segmented
surfaces, creating novel visualisations of the disease. The CT data sets contain noisy,
greyscale 2D images, which a radiologist is required to examine slice by slice. This can often
consist of inspecting hundreds of images, looking for minuscule changes. By encapsulating
the bone into a 3D mesh, the bony data set can be viewed in its entirety, and the disease can
be projected onto this 3D bone model.

This surface visualisation provides a unique way of viewing the skeleton, both in terms of
locating the disease, as well as viewing the size and spread. In this way, the 3D visualisation
has the potential to be an incredibly beneficial tool, both for the radiologist, as it provides
them a 3D imaging technique that helps to summarise the data, but also for the patients who
will most likely find looking at a 3D model of the disease easier to understand than looking
at noisy greyscale CT images as the diseased and healthy regions can be coloured with any
user-defined colour scheme.

Although this surface visualisation has not been tested in a clinical setting, an important
next step in this research would be to use this method in a clinical setting to demonstrate its
benefits.

The direct trabecular bone density and symmetrical differences in trabecular bone density
can also be mapped to colour values and displayed on the 3D mesh, providing more novel
methods of visualisation that could be useful in evaluating disease.

When using a 3D model of the bone, the underlying CT data is not lost but incorporated
into the visualisations, as the 3D skeletal mesh is mapped to the CT data and can be displayed
with a user click. This process is described in Section 2.5.4. Both the original CT slices can
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(a) (b)

Fig. 4.10 An example of mapping the 3D visualisations back to the original CT images. On
the left, a user has clicked on a diseased region (shown by the red surface normal line). On
the right, this diseased data is shown in the resliced CT data (which is the plane defined by
the vector found by averaging the red and blue surface normal vectors and by the vector of
the green line connecting the two points). The CT data is from the Addenbrooke’s Hospital
CT Data Collection. Image is a screenshot taken of the custom image viewer.

be displayed as well as a resliced plane defined by the bony symmetry. This can be seen in
Figure 4.10 where the diseased region has been projected onto the 3D surface (shown on the
left) and also mapped back to the original CT data (resliced and shown on the right).

4.4.1 Use in a clinical setting

In a clinical setting, my algorithm has the potential to provide significant benefits. As
scanning patients in a CT machine is a very common medical imaging technique used for
diagnosing a wide range of diseases and injuries, this algorithm could be run on every CT
scan produced in a clinic in order to check for metastatic bone disease with little additional
clinician time required. Again, this assessment method requires no manual interaction at all
in the entire assessment process.

The output of each run could produce a report containing the results of whether MBD
was likely to be present in the scan. Numerical volume results could indicate the extent of
the disease describing the size and possible number of lesions. As my program can run on a
normal desktop computer (with an acceptable graphics card), this executable could easily
run in the background on a laboratory machine. It could notify the clinic if any disease was
found and continue silently otherwise. If disease was found, clinicians could interpret the
report and could notify an appropriate radiologist to take a closer look at the CT data. Using
this method, disease has the potential to be diagnosed earlier than it would normally have
been, potentially leading to a better outcome for the patient.
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Furthermore, producing numerical data describing the disease both in assessing the extent
of MBD in a patient as well as the disease progression is valuable in a clinical setting. This
allows for more precise labelling of the disease and a more accurate comparison between
patients and cases. The most usual numerical labelling would most likely be when assessing
disease across time-points, as this is more difficult for a radiologist to do.

Additionally, this method could potentially lead to a number of improvements in a clinical
setting that include a reduction in the amount of time it takes for a radiologist to assess MBD.
It can also lead to an improved confidence in the assessment and a more thorough screening
of the disease (by running it on every CT scan).

4.4.2 Clinical pilot study

For an initial pilot study, a single case was selected at random. It was loaded into the image
viewer and nine screen shots were taken of different views. These images showed the 3D
bone segmentation overlaid with trabecular bone density colour mapping as well as the
3D bone segmentation overlaid with the symmetrical differences in trabecular bone density
between the left and right sides. Screenshots were also taken of potentially diseased areas
(areas of strong symmetrical difference in trabecular bone density) along with the original
and resliced CT images (from a user click) that intersected these potentially diseased regions.

These screenshot images were presented to Dr. Barrett for feedback on the potential
usefulness of the visualisations. Dr. Barrett noted that the 3D segmentations overlaid
with trabecular bone density colour mapping as well as 3D segmentations overlaid with
the trabecular bone density symmetrical differences were particularly useful in diagnostic
analysis. He also commented on the resliced (axial) CT images (intersecting through the
diseased regions) and said that creating a resliced image from a user click on a symmetrical
region could be very beneficial. However he wanted the ability to scroll through the axial
images based on the initial resliced image’s orientation–something that can be easily added.

This small study shows that the viewer developed for this thesis would be useful in a
clinical setting. However additional work would be needed to expand the functionally of the
reslicing visualisation feature to make it more beneficial for a radiologist’s ease of use. Based
on this small study, a larger clinical study including many more cases would be helpful in
order to gather additional data points on the potential usefulness of this tool.

4.4.3 Limitations

There are limitations when using the symmetrical method to detect lesions. Most obviously,
if the lesions form symmetrically, the hardened bone density in each symmetrical area will
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Fig. 4.11 The entire vertebrae shown in this image is diseased. The hardened trabecular
bone density on each side cancels the other out so the region is not marked as diseased. The
underlying CT data is from the Addenbrooke’s Hospital CT Data Collection.

cancel out each other and the region will not be marked as a diseased region. While this is
uncommon, it does happen, most often in the vertebrae, as seen in Figure 4.11. In this image,
the entire vertebra has been diseased.

Also, human bones do not develop in an exactly symmetrical way. In Figure 4.12, it
is obvious that the bone is not completely symmetrical in this case, which can introduce
error into the registration results. This could either be the result of physiological difference
between left and right sides, or the result of pathology, or from poor segmentation.
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Fig. 4.12 The human skeleton does not develop in exactly a symmetric way. The bone
within this CT slice is not perfectly symmetric, and this lack of symmetry is likely due to
development as well as to disease. Additionally, the slice angle could be another cause of
asymmetry with CT images. The CT data is from the Addenbrooke’s Hospital CT Data
Collection.





Chapter 5

Conclusions

5.1 Introduction

The purpose of this project was to investigate using a symmetry-based method to compare
trabecular bone density in order to locate metastatic bone disease and to track its spread.
A secondary component was to compare the trabecular bone density of CT scans taken as
different time-points in order to track the spread of MBD.

A significant number of components exist in this project including a fully automatic
segmentation technique, a deformable registration technique, the creation of a completely
symmetric atlas, parameter optimisations and a 3D viewer capable of comparing trabecular
bone density and overlaying the diseased regions upon a 3D segmentation mesh.

5.2 Discussion and conclusions

The approach used in this thesis to locate metastatic bone disease is completely novel as it
varies greatly from the machine learning approaches described in Chapter 1. It offers benefits
over these other methods as it provides a 3D visualisation of the diseased regions and disease
spread that can be used to verify the results whilst minimising the need for manual input.

While it is difficult to directly compare results to existing methods as they solve a slightly
different problem, the methods described in this thesis improve upon these existing methods
by providing novel visualisations of the disease while maintaining comparable sensitivities.
This method can find lesions in the ribs, spine, pelvis and upper femurs and is not limited to
the spinal column, as the other methods are.

The symmetrical assessment method can accurately find lesions greater than 0.1 cm3 in
the spine, pelvis and upper femurs. However, the accuracy of the ribs is much poorer due to
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their shape, size and location. Also, widespread disease in the vertebrae is difficult for the
symmetrical assessment method to find.

Improvements can be made to this algorithm to improve its accuracy and sensitivity and
to decrease the number of false positives. However, it is a fully working algorithm that
provides a significant milestone in lesion detection in MBD and can be used as a benchmark
for others to compare results against.

5.3 Improvements

There are a number of improvements that could be made to the different subsections of the
algorithm that might improve the accuracy of each section as well as the systemic accuracy
as a whole. These improvements cover issues with the symmetry, the registration, limitations
to Cortical Bone Mapping (CBM), in addition to the need to speed up the algorithm itself.
These could serve for future research projects that would hopefully add to the ability to
accurately diagnose bone disease.

5.3.1 Improvements to segmentation

Segmentation of bone and CT, as described in Section 2.2.1, is a problem that has not yet
been fully solved. Although the results for the algorithm’s segmentation are generally good, it
can fail in many places, especially in cases where the bone is not distinct, and has Hounsfield
units that are similar to surrounding tissue or contains irregularities such as the CT table,
metal implants or contrast agents. A significant amount of additional research would be
necessary in this area in order to produce a perfect, automatic, and fast segmentation of the
bone.

In order to improve the segmentation, it is important to address the partial volume effect.
This would be reduced by increasing the CT resolution, which would also enable better
segmentation accuracies. It may be possible to combine the method of hysteresis thresholding,
with a state-of-the-art neural network technique (such as Klein et al. [71]) to help improve the
deformable registration accuracy. If the segmentation is improved, it will impact all future
downstream algorithmic use in this program, which should improve the overall accuracy and
sensitivity of the algorithm. Producing a very accurate segmentation will also improve the
CBM mapping, which will improve the trabecular bone density measurements—this is an
absolutely vital step to improving overall accuracy and sensitivity.

Having a more precise segmentation will reduce the noise error in the visualisation, which
will allow the cluster size parameter to be set lower and the threshold cut-off parameter to
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also be set lower. Both of these will improve the sensitivity without sacrificing accuracy, and
without increasing the number of false positives.

It would also be helpful if more CT data were available, especially if the bone within the
CT data was manually segmented with greater accuracy. This would produce a more robust
ground truth and would allow for more accurate experiments and produce more data (for
instance) for machine learning algorithms on which to train. Additionally, a more robust test
could be achieved if each lesion was marked with a type (i.e. sclerotic or lytic).

5.3.2 Improvements to registration

Remaining errors in registration are from a number of sources, including severe differences
between the atlas and the segmentation – which can include either strong differences in
anatomy, or different sizes and scanned areas. Sometimes there are difficulties in initial
placement that can produce poor results, since the registration error will not be correctly
minimised from the wrong starting point.

There are a number of things that might be done to improve registration, including using
multiple atlases, where the atlas that best registers to the segmentation is used and the others
discarded. Whitmarsh et al. [152] used a similar multi-atlas segmentation technique. Also,
the atlas vertebrae registration might be improved using a flexible hinge-type model where
the vertebrae are free to move around with some degree of freedom within a joint angle
setting. This could provide a more structured registration for the vertebrae, as they sometimes
float and match to an incorrect vertebra. Equally, the additional restriction of the hinges could
prevent a bone registering correctly and actually make the overall registration less precise.

The part of registration that is by far the most problematic is the ribs. This is because the
ribs have large variations in their shape, size, number, and general anatomy when comparing
the segmentation to the atlas. Although this issue matters less in this project, as almost all the
diseased bone is located closer to the prostate, lesions in this area are much more common in
other types of cancer, such as breast cancer where the ribs are more closely located to the
primary site of the disease.

5.3.3 Improvements to CBM

An additional area of improvement that needs to be addressed is the CBM measurements.
CBM can be improved in handling thin regions of the bone, which occurs in various parts
of the pelvis, as well as in the ribs. As CBM expects the bone to be a certain length, the
modelling process is not accurate in very thin areas. Because of this, my algorithm often
labels these thin areas as diseased when they are not. To compensate for this, the algorithm
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checks for thin areas and ignores these regions. However, a better solution would be to adjust
the CBM modelling process in some way when a thin area is found.

Another possible way to improve the very thin regions would be to use the CBM line
measurements directly. Line data was used in the experiments in Section 3.4.11 to see if
this would achieve better results than CBM. Using line data bypasses the CBM modelling
approach but has shown to work significantly less well than using CBM. However, it may
be possible to achieve better results if this approach is only used when the bone is very
thin, and hence when the CBM modelling process does not produce valid trabecular density
measurements.

Significant improvement is needed in detecting small lesions, especially those with
low differences in trabecular bone density. As mentioned in Section 3.4.5, speckled error
noise within the program is often indistinguishable from the signal produced by legitimately
diseased regions. In order to detect these, the overall accuracy of all the subsections of the
algorithm would need to be improved.

5.4 Future Extensions

As this is a novel technique, there are a large number of related future extensions that can
be explored. This section provides an overview of a number of possible areas that could be
extensions of the work described in this thesis.

This algorithm is capable of finding any changes within the skeletal system, and so
may be applied to any applications where there are changes in bone density. The obvious
next application is detecting MBD from other types of cancer such as breast cancer. Slight
modifications would need to be made, as the lesions in a breast cancer circumstance will
more likely be focused around the chest, and will have a more common prevalence in the
ribs and upper vertebra.

There are more sclerotic lesions than lytic lesions in my data set. Since my algorithm is
better at finding sclerotic lesions, a new way of detecting lytic lesions could be incorporated
into the algorithm. Also, a new atlas will be needed for breast cancer, as the current atlas
is of a male skeleton. In the case of breast cancer, the patients are nearly all women, thus a
female skeleton atlas will be essential. Also, the atlas would need to be centred around the
chest instead of the prostate as a close proximity to the primary site of cancer is needed.

Another area of investigation would be to look into using this technique to detect and
track osteoporosis. Osteoporosis weakens the bone structure over time, and so as long as
the osteoporosis does not weaken the bone in a completely symmetric and uniform manner,
which is unlikely, this algorithm should be able to determine the weakened areas of the bone,
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creating an opportunity for diagnosis. This process could also be used on longitudinal CT
scans in order to find and track the disease progression of osteoporosis. Again, the atlas will
have to be adjusted depending on the sex of the patient, and the location of the bony regions.

An additional extension of this project would be to show how symmetric a general human
skeleton actually is, as a plane of symmetry can be defined, optimised and used to create a
perfectly symmetric segmentation by projecting its points across the plane of symmetry. By
comparing the points in this projection to the original segmentation, the amount of difference
between the closest points will provide a measure of the amount of symmetry (or the lack
thereof) in the skeleton.
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