25 research outputs found

    Model design for algorithmic efficiency in electromagnetic sensing

    Get PDF
    The objective of the proposed research is to develop structural changes to the design and application of electromagnetic (EM) sensing models to more efficiently and accurately invert EM measurements to extract parameters for applications such as landmine detection. Two different acquisition modalities are addressed in this research: ground-penetrating radar (GPR) and electromagnetic induction (EMI) sensors. The models needed for practical three-dimensional (3D) spatial imaging typically become impractically large, with up to seven dimensions of parameters that need to be extracted. These parameters include, but are not limited to target type, 3D location, and 3D orientation. The new special structures for these models exploit properties such as shift invariance and tensor representation, which can be combined with strategic inversion techniques, including the Fast Fourier Transform and semidefinite programming. The structures dramatically reduce the amount of computation and can eliminate the need to store up to five dimensions of parameters while still accurately estimating them.Ph.D

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Compressed Sensing for Open-ended Waveguide Non-Destructive Testing and Evaluation

    Get PDF
    Ph. D. ThesisNon-destructive testing and evaluation (NDT&E) systems using open-ended waveguide (OEW) suffer from critical challenges. In the sensing stage, data acquisition is time-consuming by raster scan, which is difficult for on-line detection. Sensing stage also disregards demand for the latter feature extraction process, leading to an excessive amount of data and processing overhead for feature extraction. In the feature extraction stage, efficient and robust defect region segmentation in the obtained image is challenging for a complex image background. Compressed sensing (CS) demonstrates impressive data compression ability in various applications using sparse models. How to develop CS models in OEW NDT&E that jointly consider sensing & processing for fast data acquisition, data compression, efficient and robust feature extraction is remaining challenges. This thesis develops integrated sensing-processing CS models to address the drawbacks in OEW NDT systems and carries out their case studies in low-energy impact damage detection for carbon fibre reinforced plastics (CFRP) materials. The major contributions are: (1) For the challenge of fast data acquisition, an online CS model is developed to offer faster data acquisition and reduce data amount without any hardware modification. The images obtained with OEW are usually smooth which can be sparsely represented with discrete cosine transform (DCT) basis. Based on this information, a customised 0/1 Bernoulli matrix for CS measurement is designed for downsampling. The full data is reconstructed with orthogonal matching pursuit algorithm using the downsampling data, DCT basis, and the customised 0/1 Bernoulli matrix. It is hard to determine the sampling pixel numbers for sparse reconstruction when lacking training data, to address this issue, an accumulated sampling and recovery process is developed in this CS model. The defect region can be extracted with the proposed histogram threshold edge detection (HTED) algorithm after each recovery, which forms an online process. A case study in impact damage detection on CFRP materials is carried out for validation. The results show that the data acquisition time is reduced by one order of magnitude while maintaining equivalent image quality and defect region as raster scan. (2) For the challenge of efficient data compression that considers the later feature extraction, a feature-supervised CS data acquisition method is proposed and evaluated. It reserves interested features while reducing the data amount. The frequencies which reveal the feature only occupy a small part of the frequency band, this method finds these sparse frequency range firstly to supervise the later sampling process. Subsequently, based on joint sparsity of neighbour frame and the extracted frequency band, an aligned spatial-spectrum sampling scheme is proposed. The scheme only samples interested frequency range for required features by using a customised 0/1 Bernoulli measurement matrix. The interested spectral-spatial data are reconstructed jointly, which has much faster speed than frame-by-frame methods. The proposed feature-supervised CS data acquisition is implemented and compared with raster scan and the traditional CS reconstruction in impact damage detection on CFRP materials. The results show that the data amount is reduced greatly without compromising feature quality, and the gain in reconstruction speed is improved linearly with the number of measurements. (3) Based on the above CS-based data acquisition methods, CS models are developed to directly detect defect from CS data rather than using the reconstructed full spatial data. This method is robust to texture background and more time-efficient that HTED algorithm. Firstly, based on the histogram is invariant to down-sampling using the customised 0/1 Bernoulli measurement matrix, a qualitative method which only gives binary judgement of defect is developed. High probability of detection and accuracy is achieved compared to other methods. Secondly, a new greedy algorithm of sparse orthogonal matching pursuit (spOMP)-based defect region segmentation method is developed to quantitatively extract the defect region, because the conventional sparse reconstruction algorithms cannot properly use the sparse character of correlation between the measurement matrix and CS data. The proposed algorithms are faster and more robust to interference than other algorithms.China Scholarship Counci

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    OFDM passive radar employing compressive processing in MIMO conïŹgurations

    Get PDF
    A key advantage of passive radar is that it provides a means of performing position detection and tracking without the need for transmission of energy pulses. In this respect, passive radar systems utilising (receiving) orthogonal frequency division multiplexing (OFDM) communications signals from transmitters using OFDM standards such as long term evolution (LTE), WiMax or WiFi, are considered. Receiving a stronger reference signal for the matched ïŹltering, detecting a lower target signature is one of the challenges in the passive radar. Impinging at the receiver, the OFDM waveforms supply two-dimensional virtual uniform rectangul ararray with the ïŹrst and second dimensions refer to time delays and Doppler frequencies respectively. A subspace method, multiple signals classiïŹcation (MUSIC) algorithm, demonstrated the signal extraction using multiple time samples. Apply normal measurements, this problem requires high computational resources regarding the number of OFDM subcarriers. For sub-Nyquist sampling, compressive sensing (CS) becomes attractive. A single snap shot measurement can be applied with Basis Pursuit (BP), whereas l1-singular value decomposition (l1-SVD) is applied for the multiple snapshots. Employing multiple transmitters, the diversity in the detection process can be achieved. While a passive means of attaining three-dimensional large-set measurements is provided by co-located receivers, there is a signiïŹcant computational burden in terms of the on-line analysis of such data sets. In this thesis, the passive radar problem is presented as a mathematically sparse problem and interesting solutions, BP and l1-SVD as well as Bayesian compressive sensing, fast-Besselk, are considered. To increase the possibility of target signal detection, beamforming in the compressive domain is also introduced with the application of conve xoptimization and subspace orthogonality. An interference study is also another problem when reconstructing the target signal. The networks of passive radars are employed using stochastic geometry in order to understand the characteristics of interference, and the effect of signal to interference plus noise ratio (SINR). The results demonstrate the outstanding performance of l1-SVD over MUSIC when employing multiple snapshots. The single snapshot problem along with fast-BesselK multiple-input multiple-output conïŹguration can be solved using fast-BesselK and this allows the compressive beamforming for detection capability

    Applications of compressive sensing to direction of arrival estimation

    Get PDF
    Die SchĂ€tzung der Einfallsrichtungen (Directions of Arrival/DOA) mehrerer ebener Wellenfronten mit Hilfe eines Antennen-Arrays ist eine der prominentesten Fragestellungen im Gebiet der Array-Signalverarbeitung. Das nach wie vor starke Forschungsinteresse in dieser Richtung konzentriert sich vor allem auf die Reduktion des Hardware-Aufwands, im Sinne der KomplexitĂ€t und des Energieverbrauchs der EmpfĂ€nger, bei einem vorgegebenen Grad an Genauigkeit und Robustheit gegen Mehrwegeausbreitung. Diese Dissertation beschĂ€ftigt sich mit der Anwendung von Compressive Sensing (CS) auf das Gebiet der DOA-SchĂ€tzung mit dem Ziel, hiermit die KomplexitĂ€t der EmpfĂ€ngerhardware zu reduzieren und gleichzeitig eine hohe Richtungsauflösung und Robustheit zu erreichen. CS wurde bereits auf das DOA-Problem angewandt unter der Ausnutzung der Tatsache, dass eine Superposition ebener Wellenfronten mit einer winkelabhĂ€ngigen Leistungsdichte korrespondiert, die ĂŒber den Winkel betrachtet sparse ist. Basierend auf der Idee wurden CS-basierte Algorithmen zur DOA-SchĂ€tzung vorgeschlagen, die sich durch eine geringe RechenkomplexitĂ€t, Robustheit gegenĂŒber Quellenkorrelation und FlexibilitĂ€t bezĂŒglich der Wahl der Array-Geometrie auszeichnen. Die Anwendung von CS fĂŒhrt darĂŒber hinaus zu einer erheblichen Reduktion der Hardware-KomplexitĂ€t, da weniger EmpfangskanĂ€le benötigt werden und eine geringere Datenmenge zu verarbeiten und zu speichern ist, ohne dabei wesentliche Informationen zu verlieren. Im ersten Teil der Arbeit wird das Problem des Modellfehlers bei der CS-basierten DOA-SchĂ€tzung mit gitterbehafteten Verfahren untersucht. Ein hĂ€ufig verwendeter Ansatz um das CS-Framework auf das DOA-Problem anzuwenden ist es, den kontinuierlichen Winkel-Parameter zu diskreditieren und damit ein Dictionary endlicher GrĂ¶ĂŸe zu bilden. Da die tatsĂ€chlichen Winkel fast sicher nicht auf diesem Gitter liegen werden, entsteht dabei ein unvermeidlicher Modellfehler, der sich auf die SchĂ€tzalgorithmen auswirkt. In der Arbeit wird ein analytischer Ansatz gewĂ€hlt, um den Effekt der Gitterfehler auf die rekonstruierten Spektra zu untersuchen. Es wird gezeigt, dass sich die Messung einer Quelle aus beliebiger Richtung sehr gut durch die erwarteten Antworten ihrer beiden Nachbarn auf dem Gitter annĂ€hern lĂ€sst. Darauf basierend wird ein einfaches und effizientes Verfahren vorgeschlagen, den Gitterversatz zu schĂ€tzen. Dieser Ansatz ist anwendbar auf einzelne Quellen oder mehrere, rĂ€umlich gut separierte Quellen. FĂŒr den Fall mehrerer dicht benachbarter Quellen wird ein numerischer Ansatz zur gemeinsamen SchĂ€tzung des Gitterversatzes diskutiert. Im zweiten Teil der Arbeit untersuchen wir das Design kompressiver Antennenarrays fĂŒr die DOA-SchĂ€tzung. Die Kompression im Sinne von Linearkombinationen der Antennensignale, erlaubt es, Arrays mit großer Apertur zu entwerfen, die nur wenige EmpfangskanĂ€le benötigen und sich konfigurieren lassen. In der Arbeit wird eine einfache Empfangsarchitektur vorgeschlagen und ein allgemeines Systemmodell diskutiert, welches verschiedene Optionen der tatsĂ€chlichen Hardware-Realisierung dieser Linearkombinationen zulĂ€sst. Im Anschluss wird das Design der Gewichte des analogen Kombinations-Netzwerks untersucht. Numerische Simulationen zeigen die Überlegenheit der vorgeschlagenen kompressiven Antennen-Arrays im Vergleich mit dĂŒnn besetzten Arrays der gleichen KomplexitĂ€t sowie kompressiver Arrays mit zufĂ€llig gewĂ€hlten Gewichten. Schließlich werden zwei weitere Anwendungen der vorgeschlagenen AnsĂ€tze diskutiert: CS-basierte VerzögerungsschĂ€tzung und kompressives Channel Sounding. Es wird demonstriert, dass die in beiden Gebieten durch die Anwendung der vorgeschlagenen AnsĂ€tze erhebliche Verbesserungen erzielt werden können.Direction of Arrival (DOA) estimation of plane waves impinging on an array of sensors is one of the most important tasks in array signal processing, which have attracted tremendous research interest over the past several decades. The estimated DOAs are used in various applications like localization of transmitting sources, massive MIMO and 5G Networks, tracking and surveillance in radar, and many others. The major objective in DOA estimation is to develop approaches that allow to reduce the hardware complexity in terms of receiver costs and power consumption, while providing a desired level of estimation accuracy and robustness in the presence of multiple sources and/or multiple paths. Compressive sensing (CS) is a novel sampling methodology merging signal acquisition and compression. It allows for sampling a signal with a rate below the conventional Nyquist bound. In essence, it has been shown that signals can be acquired at sub-Nyquist sampling rates without loss of information provided they possess a sufficiently sparse representation in some domain and that the measurement strategy is suitably chosen. CS has been recently applied to DOA estimation, leveraging the fact that a superposition of planar wavefronts corresponds to a sparse angular power spectrum. This dissertation investigates the application of compressive sensing to the DOA estimation problem with the goal to reduce the hardware complexity and/or achieve a high resolution and a high level of robustness. Many CS-based DOA estimation algorithms have been proposed in recent years showing tremendous advantages with respect to the complexity of the numerical solution while being insensitive to source correlation and allowing arbitrary array geometries. Moreover, CS has also been suggested to be applied in the spatial domain with the main goal to reduce the complexity of the measurement process by using fewer RF chains and storing less measured data without the loss of any significant information. In the first part of the work we investigate the model mismatch problem for CS based DOA estimation algorithms off the grid. To apply the CS framework a very common approach is to construct a finite dictionary by sampling the angular domain with a predefined sampling grid. Therefore, the target locations are almost surely not located exactly on a subset of these grid points. This leads to a model mismatch which deteriorates the performance of the estimators. We take an analytical approach to investigate the effect of such grid offsets on the recovered spectra showing that each off-grid source can be well approximated by the two neighboring points on the grid. We propose a simple and efficient scheme to estimate the grid offset for a single source or multiple well-separated sources. We also discuss a numerical procedure for the joint estimation of the grid offsets of closer sources. In the second part of the thesis we study the design of compressive antenna arrays for DOA estimation that aim to provide a larger aperture with a reduced hardware complexity and allowing reconfigurability, by a linear combination of the antenna outputs to a lower number of receiver channels. We present a basic receiver architecture of such a compressive array and introduce a generic system model that includes different options for the hardware implementation. We then discuss the design of the analog combining network that performs the receiver channel reduction. Our numerical simulations demonstrate the superiority of the proposed optimized compressive arrays compared to the sparse arrays of the same complexity and to compressive arrays with randomly chosen combining kernels. Finally, we consider two other applications of the sparse recovery and compressive arrays. The first application is CS based time delay estimation and the other one is compressive channel sounding. We show that the proposed approaches for sparse recovery off the grid and compressive arrays show significant improvements in the considered applications compared to conventional methods

    Resolving Measurement Errors Inherent with Time-of-Flight Range Imaging Cameras

    Get PDF
    Range imaging cameras measure the distance to objects in the field-of-view (FoV) of the camera, these cameras enable new machine vision applications in robotics, manufacturing, and human computer interaction. Time-of-flight (ToF) range cameras operate by illuminating the scene with amplitude modulated continuous wave (AMCW) light and measuring the phase difference between the emitted and reflected modulation envelope. Currently ToF range cameras suffer from measurement errors that are highly scene dependent, and these errors limit the accuracy of the depth measurement. The major cause of measurement errors is multiple propagation paths from the light source to pixel, known as multi path interference. Multi-path interference typically arises from: inter reflections, lens flare, subsurface scattering, volumetric scattering, and translucent objects. This thesis contributes three novel methods for resolving multi-path interference: coding in time, coding in frequency, and coding in space. Time coding is implemented by replacing the single frequency amplitude modulation with a binary sequence. Fundamental to ToF range cameras is the cross-correlation between the reflected light and a reference signal. The measured cross-correlation depends on the selection of the binary sequence. With selection of an appropriate binary sequence and using sparse deconvolution on the measured cross-correlation the multiple return path lengths and their amplitudes can be recovered. However, the minimal resolvable path length is dependent on the highest frequency in the binary sequence. Frequency coding is implemented by taking multiple measurements at different modulation frequencies. A subset of frequency coding is operating the camera in a mode analogous to stepped frequency continuous wave (SFCW). Frequency coding uses techniques from radar to resolve multiple propagation paths. The minimal resolvable path length is dependent on the camera's modulation bandwidth and the spectrum estimation technique used to recover distance, and it is shown that SFCW can be used to measure depth of objects behind a translucent sheet, while AMCW measurements can not. Path lengths below quarter a wavelength of the highest modulation frequency are difficult to resolve. The use of spatial coding is used to resolve diffuse multi-path interference. The original technique comes from direct and global separation in computer graphics, and it is modified to operate on the complex data produced by a ToF range camera. By illuminating the scene with a pattern the illuminated areas contain the direct return and the scattering (global return). The non-illuminated regions contain the scattering return, assuming the global component is spatially smooth. The direct and global separation with sinusoidal patterns is combining with the sinusoidal modulation signal of ToF range cameras for a closed form solution to multi-path interference in nine frames. With nine raw frames it is possible to implement direct and global separation at video frame rates. The RMSE of a corner is reduced from 0.0952 m to 0.0112 m. Direct and global separation correctly measures the depth of a diffuse corner, and resolves subsurface scattering however fails to resolve specular reflections. Finally the direct and global separation is combined with replacing the illumination and reference signals with a binary sequence. The combination allows for resolving diffuse multi-path interference present in a corner, with the sparse multi-path interference caused mixed pixels between the foreground and background. The corner is correctly measured and the number of mixed pixels is reduced by 90%. With the development of new methods to resolve multi-path interference ToF range cameras can measure scenes with more confidence. ToF range cameras can be built into small form factors as they require a small number of parts: a pixel array, a light source and a lens. The small form factor coupled with accurate range measurements allows ToF range cameras to be embedded in cellphones and consumer electronic devices, enabling wider adoption and advantages over competing range imaging technologies

    Acoustic Measurement of Snow

    Get PDF
    Instrumentation commonly used to measure snowpack stratigraphy, snow density, Snow Water Equivalent (SWE), temperature and liquid water content is usually invasive and requires disruption of the snowpack. Most measurement techniques modify the snow medium and more than one sample cannot be taken at the same location. This does not permit continuous monitoring of these parameters using a single measurement instrument. An acoustic wave sent into the snowpack was used to measure snow. To provide the theory required to make acoustic measurements, the Biot-Stoll model of sound wave propagation in porous media was modified using a mixture theory so that it was applicable to a multiphase porous medium. The combined model is called the Unified Thermoacoustic Model (UTAM) for snow. An acoustic measurement device, the System for the Acoustic Sensing of Snow (SAS2), was designed to send sound waves into snow and to receive the reflected sound waves using a loudspeaker and a microphone array. A stationary version of the SAS2 was deployed on a met station and a portable version of the SAS2 was placed on a roving ski-based platform. The systems were deployed at field sites in the Canadian Rocky Mountains, Alberta. The results showed that the SAS2 was able to measure snow density, temperature, and liquid water content and serve as a replacement technology for snowtube and snowpit measurements. Snow density was estimated more accurately by the SAS2 than from commonly-used snow tube techniques

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 04)

    Get PDF
    Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Time-lapse seismic imaging and uncertainty quantification

    Get PDF
    Time–lapse (4D) seismic monitoring is to date the most commonly used technique for estimating changes of a reservoir under production. Full–Waveform Inversion (FWI) is a high resolution technique that delivers Earth models by iteratively trying to match synthetic prestack seismic data with the observed data. Over the past decade the application of FWI on 4D data has been extensively studied, with a variety of strategies being currently available. However, 4D FWI still has challenges unsolved. In addition, the standard outcome of a 4D FWI scheme is a single image, without any measurement of the associated uncertainty. These issues beg the following questions: (1) Can we go beyond the current FWI limitations and deliver more accurate 4D imaging?, and (2) How well do we know what we think we know? In this thesis, I take steps to answer both questions. I first compare the performances of three common 4D FWI approaches in the presence of model uncertainties. These results provide a preliminary understanding of the underlying uncertainty, but also highlight some of the limitations of pixel by pixel uncertainty quantification. I then introduce a hybrid inversion technique that I call Dual–Domain Waveform Inversion (DDWI), whose objective function joins traditional FWI with Image Domain Wavefield Tomography (IDWT). The new objective function combines diving wave information in the data–domain FWI term with reflected wave information in the image–domain IDWT term, resulting in more accurate 4D model reconstructions. Working with 4D data provides an ideal situation for testing and developing new algorithms. Since there are repeated surveys at the same location, not only is the surrounding geology well–known and the results of interest are localized in small regions, but also they allow for better error analysis. Uncertainty quantification is very valuable for building knowledge but is not commonly done due to the computational challenge of exploring the range of all possible models that could fit the data. I exploit the structure of the 4D problem and propose the use of a focused modeling technique for a fast Metropolis–Hastings inversion. The proposed framework calculates time–lapse uncertainty quantification in a targeted way that is computationally feasible. Having the ground truth 4D probability distributions, I propose a local 4D Hamiltonian Monte Carlo (HMC) — a more advanced uncertainty quantification technique — that can handle higher dimensionalities while offering faster convergence
    corecore