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Abstract

A key advantage of passive radar is that it provides a means of performing position de-

tection and tracking without the need for transmission of energy pulses. In this respect,

passive radar systems utilising (receiving) orthogonal frequency division multiplexing

(OFDM) communications signals from transmitters using OFDM standards such as long-

term evolution (LTE), WiMax or WiFi, are considered. Receiving a stronger reference

signal for the matched filtering, detecting a lower target signature is one of the challenges

in the passive radar.

Impinging at the receiver, the OFDM waveforms supply two-dimensional virtual uni-

form rectangular array with the first and second dimensions refer to time delays and Dop-

pler frequencies respectively. A subspace method, multiple signals classification (MU-

SIC) algorithm, demonstrated the signal extraction using multiple time samples. Apply

normal measurements, this problem requires high computational resources regarding the

number of OFDM subcarriers. For sub-Nyquist sampling, compressive sensing (CS) be-

comes attractive. A single snapshot measurement can be applied with Basis Pursuit (BP),

whereas l1-singular value decomposition (l1-SVD) is applied for the multiple snapshots.

Employing multiple transmitters, the diversity in the detection process can be achieved.

While a passive means of attaining three-dimensional large-set measurements is provi-

ded by co-located receivers, there is a significant computational burden in terms of the

on-line analysis of such data sets. In this thesis, the passive radar problem is presented

as a mathematically sparse problem and interesting solutions, BP and l1-SVD as well as

Bayesian compressive sensing, fast-Besselk, are considered. To increase the possibility of

target signal detection, beamforming in the compressive domain is also introduced with

the application of convex optimization and subspace orthogonality. An interference study

is also another problem when reconstructing the target signal. The networks of passive

radars are employed using stochastic geometry in order to understand the characteristics

of interference, and the effect of signal to interference plus noise ratio (SINR). The re-

sults demonstrate the outstanding performance of l1-SVD over MUSIC when employing

multiple snapshots. The single snapshot problem along with fast-BesselK multiple-input

multiple-output configuration can be solved using fast-BesselK and this allows the com-

pressive beamforming for detection capability.
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Chapter 1

Introduction

1.1 Background

Previously, surveillance and reconnaissance were military operations which provided the

required information during wartime only. These operations presently play notable roles

in both military and non-military applications. There are many kinds of sensors used for

many different purposes, such as camera, laser guidance or radar. Camera-type sensors

can produce impressive surveillance pictures, but they require a suitable amount of light

and fine weather. Laser has lately become more interesting due to its very high data rate

transmission; however, the distance applied is relatively short as the wave cannot penetrate

obstacles. Many missions, either in the commercial sector or government-led, continue to

use radar. The range of frequencies employed ranges from radio to microwave. Without

the demand for good conditions, radars can be operated efficiently. Additionally, there is

considerable ongoing research and development.

What drives this research is the increasing determination to degrade radar detection

ability. Regarding military activities, there is currently an increase in deployment of ste-

alth platforms. Many areas of research (e.g. aircraft design, aerodynamics, composite

materials or signal scattering) are being combined to improve the capability of detection

avoidance. Another activity to decrease the ability of radar is jamming. Jamming is

a cheap and easy algorithm compared to other warfare devices. Many communication

systems utilise a frequency-hopping technique which can effectively eliminate jamming

issues. Another similar successful concept alongside stealth and jamming is to know the

characteristics of radar signals. In this case, it is impossible to prevent this as radar nor-

mally transmits a beam of waveform to sense its targets. Moreover, some light aircrafts,

e.g. Unmanned Aerial Vehicles (UAVs), keep flying at a low altitude and at a very low
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speed, which can cause many problems for the radar due to the reflections of surrounding

clutters.

This is interesting because there is a possibility of communication signals exploitation

by the radar systems. Due to the fact that there are a large number of communication sig-

nals being applied throughout the world, radar should be able to understand the available

signals and employ the techniques to distinguish the target signature from the original ver-

sion. The available and proper commercial signals are Frequency Modulation (FM) radio,

Digital Video/Audio Broadcasting (DVB/DAB), the Global System for Mobile commu-

nications (GSM), and even wireless internet communication signals. The name of the

radar which does not transmit a signal is passive radar. As the transmitter and receiver

are at different locations, passive radar works in bistatic or multistatic scenarios [5]. It is

obvious that passive radar requires only half of the monostatic hardware configurations,

and the burdens of a transmitter, as well as a transmitted signal, are not necessary. Con-

trast to a standard active radar, the radar jammer may struggle to interfere with the overall

frequency bands used in the communication systems, and this frequency diversity leads

to the probability of detecting very slow-moving targets. Passive radar can cope with the

problem of the sensors searching for the radar signals or locations. This is a contribution

not only regarding military usage, but also commercial applications. In regular radar scan-

ning, the passive radar does not send an electromagnetic signal out into the atmosphere,

and can be regarded as a green radar. The number of communication channels utilised in

the area is consistent due to the fact that there is no need for its frequency allocation. For

the illustration, Fig. 1.1 shows the configurations of active radars with monostatic and

bistatic, in contrast to the passive radar with bistatic configuration.

1.2 Problems and Motivations

Classically, passive radars have separate transmitters and receivers, namely Passive Bi-

static Radar (PBR) [6]. A bistatic configuration can be handled more economically than

its monostatic counterparts, provided that the concept can be combined with the passive

paradigm. Recently, there has been a move to a multistatic configuration, where multi-

ple differently-located transmitters are seen to illuminate a target and enhance the spatial

diversity of the target’s cross section, as well as provide greater resolution [7]. This idea

may then be extended to that of the Multiple-Input Multiple-Output (MIMO) passive ra-

dar, where differently located transmitters illuminate a target whereas receive signals are
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(a)

(b)

Figure 1.1: Configuration of (a) active radars with monostatic and bistatic; and (b) a

bistatic passive radar.

detected using multiple receivers. One of the major obstacles in the passive radar sig-

nal processing is the cancellation of the direct signal. Hack et al. [8], [9] proposed the

passive MIMO radar network, comparing the idea of centralised and decentralised Cross

Ambiguity Function (CAF) processing. In [8], multichannel receivers are utilised, along

with a generalized likelihood ratio and test statistic distributions. It has been shown that

the measurement data affords more correlations and concludes that the quality of passive
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radar depends on the direct-path signal. The author also dedicates one antenna for a re-

ference (direct) signal, whereas the reference signal is declared as interference in [9]. It

is accepted that state-of-the-art passive radar should use Orthogonal Frequency Division

Multiplexing (OFDM) waveforms, which have been recently used in Digital Audio/Video

Broadcasting (DAB/DVB), Wi-Fi and Worldwide Interoperability for Microwave Access

(WiMAX) standards for local area wireless computer networking or Long-Term Evolution

(LTE) for mobile communications as mentioned in [10]. The methods for data associa-

tion in MIMO-OFDM passive radars have been discussed in [11], as it is possible that

the transmitters send a nonorthogonal signal when they are operated in a single frequency

network [12], [13]. A similar discussion is also displayed in [14] when a Multiple-Input

Single-Output (MISO) system is mentioned inclusively.

This research aims to explore target detection in the OFDM passive radar. The pro-

blem of detecting targets is based on a Two-dimensional (2D) array of time delays and

Doppler frequencies. In order to facilitate 2D parameter extraction in terms of time de-

lay and Doppler frequency, the addition of closely-spaced receivers in the case of MIMO

passive radar would, in fact, allow for Three-dimensional (3D) parameter extraction [15],

because theAngle-of-Arrival (AoA) information also becomes evident. A key challenge

here is how to make this 3D parameter extraction tractable from an algorithmic point-of-

view. Another challenge with MIMO passive radar is that the device itself must listen to

a clean copy of what is being transmitted, and this naturally means that the passive radar

device must be placed near to a Base Station (BS). This creates the problematic effect

that the clean BS signal copy is at high power, and could overwhelm the reception of the

much weaker target-reflected signal copy. Thus, as an additional feature, some form of

null steering/beamforming is required.

1.3 List of contributions

The details of contributions in this thesis can be explained as follows:

1. The results from the literature where compressive sensing is used to detect the target

parameters of a two-dimensional channel estimates are extended by applying a mul-

tiple time samples algorithm and then deriving for MIMO-OFDM passive radars.

The comparisons are performed through multiple samples Compressive Sensing

(CS) and non-CS algorithms, as well as CS algorithms with a different number of

snapshots.

4



2. The three dimensional matched filter is derived for the OFDM passive radars with

MIMO using co-located antennas. This allows an increment of degree of freedom,

and the angle of arrivals can be extracted to discriminate each path of the received

signal, especially in a situation called single frequency network. The matched filter

output is then related to the channel estimates, which can be expressed in CS repre-

sentation. A spatial smoothing method is employed, and the sensing matrix for the

CS algorithms is designed.

3. The 2D and 3D Cramer-Rao bounds presented in this work are specifically for the

parameters of channel estimates which are also referred to the matched filter in the

passive radar using OFDM waveforms only.

4. A Bayesian Compressive Sensing (BCS) method, based on an approach known

as the Fast-BesselK method, can provide the exact degree of sparse sensing matrix

performance as in the previous approaches, e.g. Basis Pursuit (BP) and L1-Singular

Value Decomposition (l1-SVD), but with greater computational efficiency. This

thus renders the approach suitable for 3D parameter extraction. The results after

applying the algorithm in this thesis demonstrate satisfaction.

5. With regard to the second key challenge of the null steering/beamforming compen-

sation for the high power BS signal, it has been found that traditional techniques,

such as Minimum Variance Distortionless Response (MVDR), do not work well

with the proposed Fast-BesselK BCS method due to issues regarding the formation

of the correlation matrix that would, in turn, perform the beam steering. As a result,

this work proposes a novel BCS domain beamforming method to alleviate this pro-

blem. Throughout, the novel Fast-BesselK BCS based parameter extraction method

and the novel BCS domain beamforming method are compared with previous ap-

proaches.

6. This thesis studies and presents the possibility of passive radar networks, using

stochastic geometry to model and analyse the interference of the systems. The net-

works are modelled employing both bistatic and multistatic configurations which

are similar to ad-hoc and cellular networks in communications. Stochastic geome-

try theory provides the derivation of interference statistical characteristics and the

results are compared with simulations.
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1.4 Outline of the thesis

The remainder of this thesis is organized as follows.

Chapter 2 begins with the discussion of passive radar block diagrams followed by

OFDM signal characteristics in order to demonstrate the capability of radar signal ap-

plication. In this chapter, Multiple Signal Classification (MUSIC) algorithm and com-

pressive sensing techniques are compared. One time sample (Basis Pursuit) and multiple

samples (l1-SVD) are discussed as the candidates for a signal extraction scheme. Review

of beamforming concept and stochastic geometry foundations are also discussed in this

chapter.

Chapter 3 covers a modelling of the OFDM passive radar using widely spread anten-

nas. System and signal models are examined, along with an explanation of target characte-

ristics. The matched filter for multiple 2D channel estimates is derived. Basis Pursuit and

l1-SVD for multiple antennas are presented. Cramer-Rao lower bounds, which indicate

the efficiency of the signal extraction module via the estimation errors of each parameter

in the channel estimates, are derived for 2D version. The numerical simulations display

an extension of [16] regarding the multiple time samples and multiple receivers.

Chapter 4 introduces the OFDM passive radar using co-located antennas, along with

its system and signal model. The 3D matched filter is proposed. The problem in this the-

sis is formulated into compressive sensing representations using the formerly mentioned

algorithms, along with the proposal of the Bayesian CS-based method. Three-dimension

Cramer-Rao lower bounds are then derived. The application of beamforming to enhance

the ability of target detection for compressive sensing measurements are discussed, and

the proposed technique is compared with the Orthogonal Matching Pursuit (OMP) be-

amformer. The complexity of the relevent CS method is analysed in this chapter. This

chapter concludes with the numerical simulations illustrating the comparison of methods

discussed in this thesis, using different scenarios.

Chapter 5 studies the demonstration of interference using stochastic geometry. It starts

by constructing the scenario of Ad-Hoc bistatic radar networks. Then, multistatic passive

radars using cellular and heterogeneous networks are shown. Interference statistics are

derived for all configurations mentioned in this chapter. The statistical behaviours of in-

terference regarding their corresponding networks are displayed in the simulation results.

Chapter 6 summarises the most important conclusions drawn from the thesis, and

proposes several research paths for future work.
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Chapter 2

Literature review

In this chapter, the literature review is presented to provide some essential backgrounds

regarding OFDM passive radar and related techniques. To address the possibility of the

research area in passive radar, the first section displays its block diagram where all of

the components show many interesting research aspects. Then, the OFDM signal is dis-

cussed, followed by an introduction to compressive sensing. In OFDM section, crucial

information regarding the advantages of OFDM application is exhibited along with a dis-

cussion of MUSIC algorithm. In the CS section, basis pursuit and l1-SVD, signal ex-

traction methods which are demonstrated to make a comparison with MUSIC are then

presented. This chapter also reviews the beamforming concept and stochastic geometry

which are the necessary tools mentioned in chapter 4 and 5, respectively.

2.1 Components of the passive radar

This section reviews the concepts utilised by passive radar. The PBR system [6] typically

applies at least two antennas with one antenna reserved for the direct (reference) signal.

The system components, displayed in Fig. 2.1, can be described as follows.

1. Data Collection Process: In order to gather the required information, the PBR

might encounter the problem of the direct signal. The ability of target detection

decreases as the direct path maybe more than 50 decibels (dB) stronger than the

reflections from the targets. It leads to the requirement of efficient cancellation

methods. To reduce the strength of the direct component, the antennas may need

steering away and then the analogue canceller can be implemented prior to the

sampling step. Moreover, cancellation can be achieved by analogue beamforming

or even applying terrain features. Recent research claims that the fast block least
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mean squares filter is able to display good reference signal mitigation [17].

2. Condition on the reference signal: The matched filtering is performed by correla-

ting the reference and the target signal. In consequence, the reference signal may

be needed to be processed. This processing is crucial in a Single Frequency Net-

work (SFN). Berger et al. [16] mentioned that the SFN, a network of broadcast

stations transmits the signal in the same frequency band, can solve the problem of

target localisation and tracking but it can result in multiple detections from a single

target after correlating the signals. Then, the reference signal processing should

exploit the multipath-resistant features of the Coherent Orthogonal Frequency Di-

vision Multiplexed (COFDM) waveform in order to regenerate it.

3. Cancellation algorithms for direct signal and clutter: After decreasing the effect

of the direct signal, there is still the requirement of adaptive filtering in the time

domain. Cherniakov [6] (cited in [18] for passive radar using the FM radio signal)

referred to an adaptive noise canceller which utilise the reference signal to approx-

imate the noise in the target signal and eliminate it. Another example, Berger et

al. [16] suggested that significant leakage into the nonzero Doppler bins, which

is caused by the clutter as the shape of the ambiguity function is similar to a sinc

function, can be limited by the removal of the direct signals using adaptive signal

processing on the digital data. The received signal employs least-squares fitting to

a template assuming no time variation of an insufficient degree of change.

4. The matched and mismatched filter: The Doppler-shifted version of the reference

signal is correlated with the target signal for every probable Doppler frequency.

There are two objectives of the matched filter. Firstly, in order that target can be de-

tected, adequate signal processing gain needs to be above the noise floor. Secondly,

the bistatic range and bistatic Doppler shift of the target signal needs evaluating.

The derivation of the matched filter used in the OFDM passive radar is displayed

in Section 3.2.4 for a 2D version and 4.2.2 regarding a 3D version. For the com-

petent approach, the assumptions that the targets will not exist at every possible

Doppler shift or will only be seen at delays of the order of 2 milliseconds (ms) can

be applied.

The matched filter is the optimal choice of receiver filter for maximization of the

received Signal-to-Noise Ratio (SNR). Conventionally, the matched filtering pro-
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cess is based on correlating all the possible transmit waveforms with the received

waveform. In the case of MIMO passive radar, the transmitted waveform is as-

certained by listening to a nearby BS, thus by time-reversing and conjugating the

transmitted waveform, h(τ̂) = αmx∗(Tmax− τ̂), the matched filtering process may

be written as:

z(τ̂) =
∫

∞

−∞

y(t)h(τ̂− t)dt

= αm

∫
∞

−∞

y(t)x∗(t +Tmax− τ̂)dt. (2.1)

where αm is an arbitrary real positive constant, Tmax denotes the time at which max-

imum SNR occurs and the conjugation of the transmitted signal is represented by

x∗. Contrast to the matched filter, [19] presented the mismatched processing with

the reference signal alteration. The cross-correlation output was interested in order

to diminish the pilots influence. Demodulation and remodulation of the reference

signal were cautiously formed in consideration of clutter suppression and noise re-

duction. Briefly, a standards-based Digital Video Broadcasting - Terrestrial (DVB-

T) demodulator was applied in the first demodulation to acquire an error-free copy.

Next, the copy was remodulated and compared with unprocessed reference signal

to calculate the subtle phase offset. Two remodulation mechanisms were employed

with the error-free digital data. For adaptive clutter cancellation in the surveil-

lance signal, full-power pilots were applied to produce a clutter-free and noise-free

reference signal while pilot attenuation was used in a mismatched reference. Mis-

matched reference signal was built up by remodulating the error-free data and also

adjusting the amplitude of the pilot symbols. This weakened the amplitude of the

pilots in the mismatched signal. This method decrease ambiguity peaks as well as

the main zero-delay, zero-Doppler peak.

5. Detection of the target: Providing that the adaptive signal processing be achieved

and the direct signal leakages are discarded, target detection can be accomplished

by determining the peak signal in the correlation surface over the threshold along

with a Constant False Alarm Rate (CFAR) algorithm [20].

6. Association of the target: In this stage, a standard Kalman filter can be employed to

analyse the range, Doppler shift and Doppler rate as well as bearing angle and bea-

ring rate, recently shown in [21] . For better capability in detecting target motion,

the Interacting Multiple Model (IMM) technique [22] can be used.
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7. Estimation of the target state: The process is similar to the Extended Kalman Filter

(EKF) [23]. However, more accurate estimation can be provided if the stage of the

target association and the target state estimation can be combined. The challenge in

this stage is when multiple transmitters are used, and the system needs to associate

the target signals from different senders especially where false alarms and missed

detections exist. One solution is to distinctively associate the targets from each

transmitter and affiliate the tracks from each respective transmitter.

It can be concluded that each part of passive radar demands a challenging research, which

involves modern signal processing concepts. For instance, MIMO radar [24] can be ap-

plied for the improvement of targets recognition. Compressive sensing in the target de-

tection can be used if sparse signal representation is achieved. In addition, [25] [26]

suggest a promising filter to associate and estimate the targets. Before developing the per-

formance of passive radar system, it is important to understand the passive radar transmit

signals. It is discussed in the next section.

2.2 OFDM waveforms in radar

Due to the fact that the operated signals are not distinct from the commercial signals, the

activity of passive radar may not need additional transmit power. Currently, wireless inter-

net and mobile communications are functioned with the OFDM signals, whose orthogonal

characteristic between subcarriers is used to reduce the intersymbol interference and in-

crease the bandwidth efficiency. Further, the OFDM signals can be generated efficiently

with the Fast Fourier Transform (FFT). As a result, passive radar equipped with OFDM

signal has become an area of significant interest within the target detection research.

2.2.1 Characteristics of OFDM waveforms

There are many arising trends for modern communication technology which employ the

OFDM [27]. Inevitably, passive radar needs to be concerned with this new architecture

in order to successfully exploits its signal. In OFDM, the applicable channel bandwidth

is isolated into subbands. The Intersymbol Interference (ISI) in OFDM system could

be imperceptible as the channel frequency response is necessarily consistent across each

subband with sufficiently narrow interval (∆ f ). Orthogonality over the symbol interval

accomplishes by marking the symbol rate in each of the subchannels to be equal to the
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frequency disengagement of the neighbouring subcarriers. OFDM subcarriers may em-

ploy M-ary Quadrature Amplitude Modulation (QAM) and the signal can be declared

as:

uk(t) =

√
2
T

Aki cos2π fkt−
√

2
T

Akq sin2π fkt, (2.2)

where Aki and Akq are in-phase and quadrature-phase components of the signal point QAM

respectively. Given T is the OFDM symbol interval as well as fk is the frequency at the

kth subcarrier, the received signal can be:

yk(t) =

√
2
T
|Ck|Akc cos(2π fkt +φk)−

√
2
T
|Ck|Aks sin(2π fkt +φk)+nk(t). (2.3)

There are two channel parameters, |Ck| and φk, which are normally assumed to be

known at the receiver. Relying on awareness of the carrier phase at the receiver, the de-

modulation will be achieved by cross-correlation between yk(t) and the two basis functi-

ons. As a result, a parallel bank of 2N cross-correlators is expected. This leads to the use

of the more effective FFT algorithm due to the fact that the calculation of the DFT and

its inverse is comparable to the operation of the modulator and the demodulator. Regar-

ding an FFT algorithm implementation, the data flow is divided into frames of N f bits by

a serial-to-parallel buffer and then are decomposed into Ñ groups. The complex-valued

signal points corresponding to the information symbols on the subcarriers can be denoted

by Xk. A time series collected after reckoning the Ñ -point IDFT of Xk may not be identi-

cal to Ñ QAM-modulated subcarriers. Proakis [1] suggests devising N = 2Ñ information

symbols by explaining that:

XN−k = X∗k , k = 1, . . . , Ñ−1. (2.4)

To avert ISI, each block of N signal samples can apply a cyclic prefix (CP). CP is

attached to the inception of each block. The inclusion of the cyclic prefix to the block

of data broadens the length of the block to N+v samples, which may be indexed from

n = −v, . . . ,N − 1.Then if the sampled channel impulse response can be designated by

{Cn,0≤ n≤ v}, its convolution with {Xn,−v≤ n≥N−1} delivers the received sequence

{yn} which are interesting in the samples for 0 ≤ n ≤ N − 1, from which the N-point

DFT modulation can reclaim the transmitted sequence. The diagram of OFDM symbols

generation employing the DFT is shown in Fig. 2.2.

However, the OFDM signal along with multipath channel estimates produces high

complexity at the receiver. In this context, Palmer et al. [19] has proposed the ambiguity

function analysis for the passive radar employing DVB signals to estimate the channels
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and reduce the effect of the clutters. Moving-target detection via moving platform can

be found in [28] using Space Time Adaptive Processing. There are also some interesting

applications of the OFDM passive radar demonstrated on a passive Synthetic Aperture

Radar (SAR) [29] and the employment of Probability Hypothesis Density filter in the

OFDM passive radar for multi-target tracking is demonstrated in [25]. To emphasise

the target detection problem, this work reviews the OFDM passive radar developed by

Berger et al. [16], where the channel estimates are efficiently implemented as fast Fourier

transform and can be used directly for target detection. Berger et al. claimed a novel

matched filter which is generally employed in radar systems by correlating the transmitted

and received signal to determine the peak of delay-matched power. The first proposed

signal extraction method is the MUSIC algorithm, which is normally used to identify

the Direction of Arrivals (DOA). Chan et al. [30] has employed the MUSIC for DOA

detection of ground moving objects. The other recently proposed detection method is

compressive sensing which can achieve recovery of sparse signals along with a slower

sampling rate than Nyquist’s sampling theorem.

Table 2.1: DAB OFDM signal parameters [4]

Carrier frequency fc 227.36 MHz

Bandwidth 32 or 128 kHz

Number of subcarriers N 32 or 128

OFDM data symbol length T 1 ms

Cyclic prefix length Tcp 0.25 ms

OFDM block length T ′ 1.25 ms

OFDM blocks/frame L 16 or 64

Subcarriers spacing ∆ f 1 kHz

No. Tx antennas nt 2

No. Rx antennas nr 9

Antenna Array Spacing d λ /2

14



2.2.2 An example of OFDM signals

As this thesis discusses about passive radar employing OFDM signals as its source, the

first simulation works on how to simulate the OFDM waveforms. Regarding the charac-

teristic of the OFDM mentioned in Section 2.2.1, the algorithm can be presented as the

following:

1. Generate a binary data vector;

2. Reshape the binary data into a symbol of k bits (where k = log2 M);

3. Proceed M-ary QAM modulation;

4. Separate the modulated data into OFDM blocks;

5. Operate inverse FFT over each block;

6. Attach cyclic prefix to every block.

The algorithm is performed in MATLAB environment [31] using the specifications in

Table 2.1 which is modified from the DAB specifications displayed in [16]. The results

of generation is shown in Fig. 2.3. In Fig. 2.3a, it can be observed that the signals

on the right hand side (after 1 ms) are identical to the signal at the starting point on the

left. This is the example of how the cyclic prefix is appended. In order to verify the

creation of the OFDM, the demodulator is also implemented. The generated signals are

passed through the Additive white Gaussian noise (AWGN) channel (built-in function

in MATLAB). Then, the OFDM demodulator is operated to retrieve the symbols sent

by the transmitter followed by the calculation of Bit Error Rate (BER). The result is

displayed in the plot in Fig. 2.4 which is the illustration of the BER and the Energy

per bit to Noise Power Density ratio (Eb/No). The simulations have been altered in the

number of bits per symbol used in the QAM modulation. Passive radar is an important

technology for facilitating covert surveillance. Signals from DVB/DAB base stations,

which employ OFDM, are collected and analysed using a correlation process. This allows

for the extraction of a moving target’s parameters as a result of the fact that there is a signal

making a direct path from a BS to the passive radar device along with other signals that

are reflections from the target itself to the passive radar device. As well as offering covert

surveillance, due to the fact that the signals used can not be distinguished as traditional

radar monitoring activities,

15



(a)

(b)

Figure 2.3: Simulation of the OFDM signals generation in: (a) one block; and (b) 64

blocks.
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Figure 2.4: The plot of Bit Error Rate versus the energy per bit to noise power ratio for

the OFDM demodulation process.

this technology also inherently does not demand spectrum allowance. Furthermore, there

is also no requirement for transmitter design. However, these advantages must be traded

off against high complexity receiver design.

The information in this section signifies that the OFDM signals can be effectively im-

plemented and utilised in communication systems. With the radar applications; however,

this multicarrier transmission can cause more complexity for the multipath channel. As

the derivation of the OFDM channel estimates is challenging, it affects the ability of tar-

gets detection. There are a number of detection algorithms and this research has tried to

find the optimum solution for the passive radar. Regarding the detection methods applying

MUSIC algorithm, it is explained in general concepts in the next subsection.

2.2.3 Introduction to MUSIC algorithm

Subspace Algorithm

Due to the fact that whenever the received waveform incorporates Np plane-wave signals

plus uncorrelated noise, the problem could be lessened directly from an N-dimensional

problem to a Np-dimensional problem. The signal subspace is able to be completely
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provoked because the angles of arrival of the Np signals are known. An analogous result

detained for correlated noise, assuming that the spectral matrix of the noise is known. The

narrowband snapshot in the frequency-domain model can be utilised as:

Sx =V (ψ)S fV H(ψ)+σ
2
wI, (2.5)

where

V (ψ) = [v(ψ1)|v(ψ2)| . . . |v(ψNp)]. (2.6)

The matrix can be addressed in terms of its eigenvalues and eigenvectors which are

assumed to be in order of declining size. As there are Np signals, the first Np eigenvalues

are assigned to the signal-subspace (ÛS) along with their eigenvectors. The remaining

eigenvectors characterize a noise subspace (ÛW ). In practice, the eigenvalues and eigen-

vectors may be not known and might be deduced from the data. There are two prevalent

steps in diverse subspace algorithms. First, signal and noise subspace need working out.

Note that Np should have already assessed. Second, a null spectrum function Q̂(ψ) will

be ciphered and cast the Np minima of Q̂(ψ). The reciprocal values of ψ are the ψ̂i,

i = 1,2, . . . ,Np. Obviously, Q̂(ψ) is a one-dimensional function so that exploring over a

Np-dimensional space to find ψ is no longer needed [32].

MUSIC Algorithm

The MUSIC is the technique employed to estimate the parameters of multiple signals

arriving at an antenna array, exploiting the measurements of the received waveforms. As-

suming that the number of incident signals is not larger than the number of array elements,

the subspace algorithm can be used. Involving signal and noise eigenvectors subspace, the

One-dimensional (1-D) MUSIC algorithm is developed by Schmidt in [33]. In the case of

spectral MUSIC, Q̂(ψ) is asserted in terms of the eigenvectors of the noise subspace as:

Q̂MU(ψ) = vH(ψ)ÛWÛH
W v(ψ), (2.7)

equivalently, in terms of the eigenvectors of the signal subspace as:

Q̂MU(ψ) = vH(ψ)[I−ÛSÛH
S ]v(ψ). (2.8)

The advances in the algorithm are (i) either signal or noise subspace is enumerated

using the singular value decomposition (SVD) procedure. (ii) Q̂MU(ψ) will be plotted

over −π ≤ ψ ≤ π and the Np minima are elected. There are some asymptotically un-

biased estimations which can be supplied by MUSIC, i.e. the number of incident wave-

fronts, the direction of arrival, the strengths and cross correlations among the occurrence
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waveforms and the noise/interference strength. Schmidt [33] also suggested the special

properties apart from general and wide application techniques which include the conven-

tional interferometry, the monopulse direction finding using multiple colocated antennas

and the multiple frequency estimation. Since Sx as well as ÛW is asymptotically entirely

determined, it is clear that MUSIC is asymptotically unbiased and v(ψ) does not rely on

the data. Shan et al. [34] introduced the eigenstructure technique which applies the over-

lapping subarrays. It was proved that if the number of subarrays is larger than or equal

to the number of signals impinging on the antenna array, the modified covariance matrix

of the signals will be nonsingular and this literature showed that the favourable means to

this application is the nonsingularity of the covariance matrix of signals. In addition, if

the covariance matrix of the sources is block diagonal, i.e. there are definite uncorrelated

groups of coherent signals, the number of subarrays can be scaled down to the size of the

largest group of coherent signals. The robustness of profitably handling the eigenstruc-

ture method, however, could diminish effective aperture as this application required the

number of sensors to be at least double of the number of signals.

The above expressions are for the 1-D MUSIC algorithm. On the other hand, the target

detection problem for the passive radar is a 2D problem, which involves the Doppler

frequency and time delay. Berger et al. [16] have illustrated the derivation of the 2D

MUSIC as:

fMUSIC(τ̂, â) =
(
|bH(τ̂, â)UW |2

)−1

(2.9)

=

(
N′L′−|bH(τ̂, â)US|2

)−1

. (2.10)

Implementations exploiting noise subspace and signal subspace are shown in (2.9)

and (2.10) respectively. Berger et al. claimed that the interpretation of either (2.9) or

(2.10) can be achieved with 2D FFT. This fundamental concept has also been applied in

this research including the pseudo-code mentioned in Berger’s paper. To implement the

2D MUSIC algorithm, first, the direct signal should be eliminated from the observation

matrix by using high-pass filter or least-squares fitting the received data to a template

assuming no time variation of a very limited degree of change. This work assumes that

this step has been completed rather perfectly as the cancellation algorithm is beyond the

scope of this thesis. Secondly, there is an observation matrix R = [h1, . . . ,hM] where h is

from and M is the number of snapshots. An eigen-decomposition is calculated as shown:

RHR = UΣUH . (2.11)
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The matrix of eigenvectors U has been sorted according to the eigenvalue in Σ. The

number of eigenvectors and eigenvalues are then selected as the number of impinging

signal paths Np and Up can be generated as Up = [RU(:,1 : Np)Σ(1 : Np)]
−1
2 . Next, the

channel estimates h is projected on the space orthogonal to the stationary components as

the following:

hm = (I−UpUH
p )h. (2.12)

The steering vector b is created from the resulted hm and then formulate another obser-

vation matrix Rs = [b(1), . . . ,b(K)]. The eigen-decomposition is applied to the subarray-

version matrix before finding the matrix Bs = [Us(:,1 : Np)Σs(1 : Np)]
−1
2 . The MUSIC

spectrum is finally computed by applying 2D-FFT on the multiplication between Rs and

each column of Bs and then calculate the summation over all transformed results.

Next, the thesis focuses on one of the recent research topics, namely Compressive

Sensing. This concept is applicable when the interested signal can be represented as a

sparse signal and there is a proposal of this method to be used in the radar applications.

2.3 Passive radar in compressive sensing (CS) domain

With regard to the first challenge of algorithmic tractability, the emergence of sparse re-

presentation and CS concepts are influential in this work. The received passive radar

signals are used to construct a sensing matrix provided that the matrix properties known

as the Null-Space Property (NSP) and the Restricted Isometry Properte (RIP) of the sen-

sing matrix can be ascertained, it then becomes possible to develop a sparse representation

of the sensing matrix hence leading to more efficient parameter extraction algorithms. CS

in corporate with OFDM has been employed in some intriguing researches such as [35],

where CS along with OFDM waveforms application consistently matches a frequency

agility approach. OFDM waveforms are accessible in an agile paradigm where the arran-

gement of OFDM is applied to each pulse. This work then provides common matched

filter observation along with 1-D range profile and compares the proposed idea with the

chirp signal where pulse compression is used. A compressive OFDM also authorises an

operating adeptness of a Ground Penetrating Radar (GPR) [36], [37]. The fact that the

synthesized pulse signal duty cycle is very low, introduces time sparsity. Additionally, the

scatters of interests in GPR sensing are spatially sparse in the scanning area. In that work,

CS with OFDM signal permits a reduced set of frequency tones regardless conceding

precision and cross interferences between tones are underrated. The author also employs
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L1-optimisation to reorganise a full spectrum characterisation. Sparse reconstruction al-

ong with convex optimisation is also utilised in Frequency Diverse Array (FDA) antenna

[38], where a multi-carrier FDA practice creates a dot-shaped transmit to solve a defective

target localisation in the range-angle dimension.

2.3.1 Emergence of compressive sensing

Due to the increasing requirement of high frequency communication, the sampling pro-

cess may confront the resources constraint. The idea of compressive sensing (CS) is to

sample the required signal slower than Nyquist’s sampling theorem. Donoho [39] clai-

med that the signal reconstruction of x ∈ Rn can be accomplished via compressive sen-

sing using only m number of measurements where m� n, given that x is compressible

or sparse. There are three crucial features showing the dissimilarity between compressive

sensing and classical sampling as follows [40]

1. infinite-length, continuous-time signals are likely to be commonly recognised by

sampling theory while finite-dimensional vectors in Rn measurement is attracted

by a mathematical theory of CS,

2. measurements in the form of inner products between the signal and more gene-

ral test functions are consistently achieved by CS systems instead of sampling the

signal at particular points of time and

3. in order to rescue the initial signal from the compressive measurements, sinc inter-

polation, a linear process that demands slight calculation and has a straightforward

clarification, is employed in the Nyquist-Shannon framework. In contrast, highly

non-linear methods are necessary for CS.

One of two important prospects of CS is sparse representation. This is to mathemati-

cally convey a signal u0 as:

u0 =
p

∑
i=1

ψix0
i (2.13)

where all but a small number of entries x0
i are zero. Ψ = [ψ1ψ2 . . .ψp] is called a dictio-

nary. Han et al. [41] mentioned that p is generally chosen as 1 and 2, and ‖y‖p is illus-

trated as (∑i |yi|p)
1
p . The other aspect is CS encoding and decoding. The signal u0 = Ψx0

is encoded to b = Au0 where A is a sensing matrix with an orthogonal basis Φ. There is

a concept of coherence determining the kind of matrix A that allows the recovery of u0
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from b = Au given that x0 is sparse or nearly sparse. The coherence between the basis Φ

and the basis Ψ ,which quantifies how small the closest angle between any two elements

of Φ and Ψ, can be displayed as:

µ(Φ,Ψ) =
√

n max
1≤i, j≤n

|〈φi,ψ j〉|
‖φi‖2‖ψ j‖2

. (2.14)

It can be shown that, for low coherence, µ(Φ,Ψ) is much closer to 1 than
√

n, every

measurement is able to offer a fruitful amount of information of all the non-zeros of x0

regardless their positions whereas the quality of measurements relies on the locations of

the non-zeros of x0 if the coherence is high. As CS expects a sensing matrix A to be

independent of any particular signal or its existing measurements, it is surprising to find

that several kinds of random matrices satisfy the NSP and the RIP, with at least high

probability up to proper scaling. This includes sensing matrices whose entries are inde-

pendent and identically distributed (i.i.d.) samples from the standard normal distribution,

symmetric Bernoulli distribution, as well as other sub-Gaussian distributions. Manifold

structured random matrices also assure the RIP such as those formed by random rows

collection of a discrete Fourier matrix, as well as random circulant or Toeplitz matrices.

2.3.2 Compressive sensing with a single time sample: Basis Pursuit (BP)

A compressive sensing method using a single time sample, basis pursuit, has been used

in the scenario with one transmitter and multistatic receivers [42]. When the single time

sample is studied and the parameter estimation problem is nonlinear, the aim of this is

to approximate θ in the matrix B(θ) which is unknown. An overcomplete exhibition

B in terms of all possible parameter values is presented. The number of promising va-

lues Nθ is commonly higher than the total number of paths Np or the number of recei-

vers nr where a sampling grid of all values can be denoted as {θ̃1, . . . , θ̃Nθ
}. Matrix

B = [b(θ̃1),b(θ̃2), . . . ,b(θ̃Nθ
)] consists of steering vectors reciprocal to each value as its

columns. Regardless the true parameter values θ , B is known. Let Nθ ×1 vector a(t) des-

cribe the signal field. If the value of θ̃n is corresponded to the parameter of the incoming

signal path p, the n-th element, an(t) becomes nonzero, and equal to the attenuation cau-

sed by that path Ap, and zero any other elements. The problem of parameter estimation of

θ can be alternated with the problem of sparse spectrum estimation of a as a consequence

of the overcomplete exhibition. For instance, the resolution produces an approximate of

the signal energy by discovering superior peaks at the exact source locations included in

a function of hypothesized source location as in numerous nonparametric source locali-
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sation techniques [2]. With the assumption that the number of sources is small and they

can be explored as point sources, the inverse problem of this sparse spatial spectrum can

be clarified employing l1 methodology. The evaluations of parameter values complement

to the positions of the peaks in a after the algorithm achieves.

In order to detect the targets, the channel model according to the target problem, is

modified as a sparse representation problem. Given BNp(θ̃) = [b(θ̃1) . . .bNp(θ̃Np)] and

aNp = [A1 . . .ANp ], the basic narrowband observation model can be expressed as [2]:

h(t) = BNp(θ̃)aNp(t)+w(t), (2.15)

where M snapshots are assumed, and t ∈ {t1, . . . , tM}. In order to focus on a single sample,

the number of snapshots M is equal to 1. Being aware that a = aNp(t) is a sparse vector,

the problem can be evolved into:

min
a
‖h−Ba‖2

2 +λ‖a‖1, (2.16)

where λ denotes the regularisation parameter. In this case, however, a is a complex vector

where its l1-norm can be calculated by ‖a‖1 = ∑
Na
i=1
(
Re{ai}2 + Im{ai}2) 1

2 where the

number of elements in a is denoted by Na. Therefore, the problem cannot be computed

employing an l1-regularised least-squares program. The objective function in (2.16) is

devised as:

min
a

∥∥∥∥∥∥h̃− B̃

Re{a}

Im{a}

∥∥∥∥∥∥
2

2

+λ1T u

subject to
√

Re{ai}2 + Im{ai}2 ≤ ui, i = 1, . . . ,Na (2.17)

where the function data are

B̃ =

Re{B} − Im{B}

Im{B} Re{B}

 ∈ R2Nh×2Na ,

h̃ =

Re{h}

Im{h}

 . (2.18)

which is a Second-Order Cone Program (SOCP) problem. The algorithm applied to this

problem is found on an interior point method using approximate Newton search directions

[43]. The l1-regularised least-squares programs with complex variables is utilised in this

thesis as the elements of the sensing matrix Φ and the sparsity basis Ψ are complex and
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the real and imaginary parts of the matrices are not spread. The dictionary matrix B is a

matrix with complex elements, where B = ΦΨ−1. The optimal result using this method

conduces more simultaneous zero real and imaginary elements in the output than the

complex-extended algorithm since its institution jointly buckles the real and imaginary

parts of the expected matrix. The logarithmic barrier applied in the interior-point method

for the enclosed constraints −ui ≤ xi ≤ ui can be characterised as:

∆(x,u) =−
n

∑
i=1

log(ui + xi)−
n

∑
i=1

log(ui− xi) (2.19)

within the domain of ∆, that is {(x,u) ∈ Rn×Rn||xi|< ui, i = 1, . . . ,n}. Let ∆(Re{a},

Im{a},u) be the barrier function for the constraint of (2.17) as shown:

∆(Re{a},Im{a},u) =−
Na

∑
i=1

log
(
u2

i − (Re{ai})2− (Im{ai})2) . (2.20)

The associated centering problem applying the standard barrier function for second-

order cone constraints can be expressed as:

min
a

T

∥∥∥∥∥∥h̃− B̃

Re{a}

Im{a}

∥∥∥∥∥∥
2

2

+T λ1T u+∆(Re{a},Im{a},u) . (2.21)

The preconditioner that estimates the Hessian of the first term in the objective of the

centering problem (2.21) with its diagonal items can be shown as:

P = T diag(B̃T B̃)+∇
2
∆(Re{a},Im{a},u) , (2.22)

while the Hessian of the logarithmic barrier is preserved. The preconditioner becomes

a block diagonal matrix where Na 3× 3 matrices are contained after the suitable inter-

changing. The Hessian of the problem mentioned above is as follows:

H = T B̃T B̃+∇
2
∆(Re{a},Im{a},u) . (2.23)

Regarding the determination of the centering problem (2.21), the proconditioner shown

above performs rather productively. Equation (2.16) shows the compressive sensing for

a single snapshot using basis pursuit. For some applications, multiple snapshots can pro-

vide correlation between sources. To enable target detection, this problem is a bit more

difficult than a single snapshot case. One promising solution employs the SVD to achieve

correlation between snapshots and reduce computation complexity, namely l1-SVD [2].
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2.3.3 Compressive sensing with multiple time samples: l1-SVD

To determine each problem ordered by t individually is the first choice when converting to

multiple time samples. The number of outcomes, â(t), is M. This method is proper when

considering the fast-moving sources. However, integrating the liberated estimates â(t)

to get one ideal estimate of the values is preferred if the sources are immobile over time

samples. Although its directness is its principal interest as it is noncoherent processing,

to accomplish better precision and vitality to noise, the sufficiently coherent integrated

processing is required.

An understandable proposal that applies dissimilar time samples in collaboration is

considered in joint-time inverse problem. Define H = [h(t1), . . . ,h(tM)], and identical to

A and W, it can be shown that:

H = BA+W. (2.24)

As the signal a(t) is not ordinarily sparse in time, sparsity is only implemented in space

although matrix A is parameterised temporally and spatially. A distinctive prior is appoin-

ted to serve this problem. First, sparsity in the spatial dimension is desired but sparsity

in time is not needed. The algorithm is as follows: the l2-norm of all time-samples of

an appropriate spatial index of a is first computed as a(l2)i = ‖[ai(t1),ai(t2), . . . ,ai(tM)]‖2.

After the l1-norm of a(l2) = [a(l2)1 , . . . ,a(l2)Nθ
] is penalized, the cost function can be displayed

as:

min‖H−BA‖2
f +λ‖a(l2)‖1, (2.25)

where ‖H−BA‖2
f = ‖vec(H−BA)‖2

2. As a(l2) is a function of A, the optimisation is

executed over A. There is no sparsifying consequences on the 2-norm of the time-samples

aggregation. Sparsity is invoked on the composition of the spatial samples. Due to the

fact that the greater penalty is caused by the fact that supports of a(t) for particular t do

not accurately organise, the diverse time-indices of a strengthen each other. Calculation

cost is the major disadvantage of this algorithm. Whereas the size of the inverse problem

advances linearly with M, The enhancement in the demanded computational exertion is

much greater. The solution of the real-time system is not practicable when the number of

time samples is extensive.

In order to compare with the MUSIC, the expression introduced in Section 2.3.2 may

not be enough due to only one time sample. To realise the real system, multiple time sam-

ples technique is required. The application of sparse signal representation for practical

problems is broadened due to a utilisation of a large number of coherent time samples.
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The concept is retaining the signal subspace after disintegrating the data matrix, and the

multiple-sample sparse spectrum estimation problem reviewed above is employed along

with a curtailed-dimensions problem. On the other hand, the MUSIC algorithm usually

preserves the noise subspace. The singular value decomposition (SVD) of the Nh×M

data matrix at the receiver R = [h(t1) · · ·h(tM)] is applied for a degradation of the com-

putational complexity and the sensitivity to noise. Recall that Np is the number of path

whose parameter values are expected. The set of vectors {h(ti)}M
i=1 would stretch into a

Np-dimensional subspace provided that the noise on the receivers is eliminated. Sparse

connections of columns of B are approximated by maintaining Np basis vectors for the

subspace instead of M. In order that the M-dimension data matrix is reduced to Np-

dimension as the signal and noises subspaces are separated by the SVD and a basis for

the signal subspace is deposited; that is:

R = ULV′. (2.26)

It results in the reduced dimensional matrix RSV = ULDNp = RVDNp , which remar-

kable signal power is included and DNp = [INp0′]. INp is an identity matrix with the di-

mension Np×Np and 0 is a matrix of zeros with the dimension Np× (M−Np). Define

ASV = AVDNp and WSV = WVDNp , it can be shown that:

RSV = BASV +WSV . (2.27)

The column conforms to a signal subspace singular vector is determined as follows:

hSV (p) = BaSV (p)+wSV (p), p = 1, . . . ,Np. (2.28)

Apart from the singular vector number indexing instead of time, the equation above

resembles (2.15). The main difference of this method from the one mentioned above is

the decline of the size of the problem. If the number of time samples is in the order

of hundreds while the number of incoming paths is small, this complication decline is

considerable. In order to enforce sparsity in the matrix ASV only in the spatial dimension

but not in the singular vector index p, l2-norm of all time-samples (ã(l2)) is set, where each

element is the l2-norm of the column vector of ASV , i.e. ã(l2) =
√

∑
Np
p=1(a

SV
i (p))2,∀i.

The sparse spectrum, which is expressed by the derived Na× 1 vector of ã(l2), can be

determined by:

minimize‖RSV −BASV‖2
f +λ‖ã(l2)‖1, (2.29)
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and then the minimization is performed by Second-Order Cone (SOC) programming dis-

played in [2] for the details.

As seen in this section, compressive sensing provides a reduced dimension problem.

Start by designing the overcomplete matrix where all possible parameter values are illus-

trated. Both basis pursuit and l1-SVD decrease the size of the measurement matrix by

sub-Nyquist sampling. The performances of these algorithms are displayed in the next

chapter to confirm the ability of signal extraction without sensing all of the data existed

in the scenario.

2.4 Beamforming methods

In communication systems, the beamforming algorithm is also one of the interesting area

of research. The famous adaptive beamformer is shown in [44], where cyclostationary

characteristic of the communication signals was used for the accretion of the channel ca-

pacity and co-channel interference abolition. In the literature, a method, namely, blind

cyclic adaptive beamforming displayed impressive results in spatial reuse of frequency

spectrum. In the scenario of satellite and terrestrial networks coincidence [45], trans-

mit beamforming is also applied. To magnify the Signal-to-Interference plus Noise Ra-

tio (SINR) favouring the desired terrestrial downlink signal and lighten the interference

against the satellite terminals, Linearly Constrained Minimum Variance (LCMV) is pre-

sented. This beamformer does not require the prior information about the precise po-

sitions and the number of satellite terminals. Transmit beamforming is also discussed

in [46], where the transmitters send the identical data with various amplitudes and pha-

ses to achieve high signal power. The transmitted signal components are designed to be

summed destructively at the unexpected users. Expected users acquire large inner pro-

ducts while unexpected users acquire small inner products of the beamforming and the

channel vectors. In order to provide conditions for interference aligning in a subspace

orthogonal to the desired signals, beamforming technique is also presented in [47] to

maximise degrees of freedom in compounded MIMO broadcast channel with mixed clas-

ses of users. Another example of recent beamforming application is shown in [48], where

the uncertainty model in the channel state information is included. This literature presents

low-complexity power loading algorithm to enhance the beamforming ability.

Bayesian Cramer-Rao bound (BCRB) is another metric used as the optimisation cri-

terion for beampattern design [49]. In this literature, previous measurements are pro-
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gressively regulated by the transmitters and the beamforming algorithm is utilised for the

target tracking problem in a shallow underwater environment. Another type of array be-

amforming mentioned in the literature is the superdirective beamformers [50], where joint

diagonalization method is proposed to improve the beamforming performance. Subspace

superdirective beamforming algorithm is discussed in this literature and applied in the

microphone arrays problem.

Convex optimisation in conjunction with beamforming was shown in [51] where

interior-point methods were applied to synthesise the pattern of antenna array. This is

appealing as the problems of convex synthesis and robustness can inclusively be con-

ducted. In Millimetre Wave (mmWave) communications [52], alternate optimisation of

transmit and receive beamforming vectors is used for the large-scale antenna system in

the congested wireless communication. The product of the assertive singular values of

the divided channel matrices is escalated to achieve capacity gain. In [53], a novel spatial

diversity scheme for mmWave Radio Frequency (RF) beamforming is discussed where

incomplete information of the channel to the receiver is supposedly known. The geo-

metric mean of the projections of the RF precoder on the transmit steering vectors and

of the RF combiner on the receive steering vectors are enlarged in the spatial diversity

composition. Semidefinite relaxation and gradient ascent algorithm are utilised in this li-

terature. Regarding the passive radar, optimisation with the beampattern is also employed

in as in [54], where the circular-array antennas are equipped with digital beamforming,

whereas the space-time beamformer relied on constrained least mean squares algorithm is

displayed applying the recursively adaptive algorithm with multiple constraints [55]. The

angle mismatch problem can also be coped with the method presented in this literature.

Capon beamforming is discussed in [56], where diagonal loading is involved to deve-

lop the beamformer performance, specially when the desired steering vector is unknown.

It is claimed that the uncertainty set of the steering vector can provide an accurate amount

of diagonal loading. In this thesis, a modified convex constrained optimisation and com-

pressive sensing beamforming model is presented based on Capon beamformer. The

passive radar received signal, which is sparse according to spatial smoothing technique,

which will be introduced in Section 4.3.1, is reconstructed employing the BCS-based

Fast-BesselK method. The purpose of using a beamforming algorithm is to reduce the

power in the clean signal component, to which the passive radar device is listening, and

which is being emitted from a nearby BS. It should be noted that throughout, the term

’beamforming’ is used as a generic description of the technique that is being employed
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but in actual fact, the process effectively steers a null to this clean BS signal course. Such

techniques [57], [58], are able to demonstrate some impressive outcomes however they

require a complete measurement of the received signal to create the correlation matrix

upon which ultimately the beamsteering technique is based. Since the estimation relies

on sparse (incomplete) data, a novel modified beamforming technique has been develo-

ped here in order to incorporate into the CS domain applying MUSIC algorithm where,

in [59], the capability of MUSIC-based beamforming is compared with Bucci algorithm.

2.4.1 Compressive beamforming with Orthogonal Matching Pursuit

As the system considered can be operated under the dynamic scenario, the number of

snapshots captured might be insufficient. This matches the concept of applying CS algo-

rithm mentioned throughout this thesis since CS allows the reconstruction of the original

signal using a sub-Nyquist sampling. Oppose to what is included in this work, the OMP

algorithm is discussed here for the purpose of beamforming only. The reason that OMP

is opted out from the OFDM passive radar is shown in [60] where it cannot resolve the

problem of the direct signal leakages. Consequently, basis pursuit and Bayesian CS are

covered due to their superior in accuracy. In this work, the Fast-Besselk method is also

utilised for beamforming in the compressive domain. For comparison, OMP is discussed

in the following regarding its advantage of low complexity [61].

Refer to the parameters in the OFDM passive radar, given a discretionary Np-sparse

signal, α ∈ RNα , and a group of Nh measurement vectors, {x1, . . . ,xNh}. A matrix B is

assembled with a dimension of Nh×Nα with the measurement vectors as its rows. An

Nh-dimensional data vector after accumulation is shown as h = Bα . The columns of

the measurement matrix B is designated by b1, . . . ,bNα
. Recall that this thesis has not

mentioned the measurement vectors but worked with the columns of the measurement

matrix which is called steering vectors. The number of perfect data is Nα = N×L×Nθ ,

where N is the number of OFDM subcarriers, L is the number of OFDM blocks and Nθ

is the number of possible angle of arrivals, whereas, the number of measurement vectors

is Nh = N′×L′× nr where N′, L′ refer to the number of reduced subarrays in delay and

frequency domain respectively, as well as the number of antenna arrays is nr.

It can be considered that the data vector h is a linear combination of Np columns from

B and displays an Np-term representation over the dictionary B. OMP aims to resolve

which columns of B engage in the measurement vectors h using a greedy manner. The
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column of B which is most greatly connected to the remaining elements of h is selected

at each iteration. The subtraction of its augmentation to h is performed followed by

emphasising on the residual. The algorithm is expected to discover the precise set of

columns within Np steps.

From Algorithm. 1, Steps 5, and 6 can be more competently achieved. The columns

of Bti are consistently orthogonal to the residual rti . The matrix Bti has full column rank

and the algorithm chooses a new atom at iteration ti if rti−1 is nonzero. It is worth marking

that, in Step 6, the estimate and residual as well as xti considered in Step 5 are distincti-

vely concluded. There is a concern arose from the algorithm requirements above. The

system needs to determine the sparsity in the perfect data, i.e. the number of nonzero

values should be known. This is similar to the prior information of basis pursuit. In most

scenarios, however, it is not easy to come across the sparsity as the number of base sta-

tions and targets might not explicitly display. To the contrary, l1-SVD demonstrates that

the small error in sparsity approximation does not affect the efficiency of the algorithm.

The method which does not require the number of sparsity as a prior is the Fast-BesselK.

2.5 Introduction to stochastic geometry

2.5.1 Motivations

Apart from the diversity of multiple OFDM stations that will be determined in this the-

sis, the receiver diversity can accommodate a better target point of view as long as the

interference that a system takes into account is accurately modelled. Regarding modern

wireless communications, when interference is included in the system, the SINR is able

to determine the network performance rather than the SNR. Furthermore, the path loss

and the fading components are involved in the interference function and large wireless

networks engage a high magnitude of uncertainty. Therefore, the previous analysis of the

system-level performance and interference model for the communication networks was

mathematically intractable.

However, this has been solved by an approach called Stochastic Geometry, where the

network performance can be explicitly manipulated using the randomisation of transceiver

locations. The objective of stochastic geometry in passive radar is to determine the effect

of radar positions on the received target signal-to-noise ratio and whether or not clutter

exists. The locations of OFDM stations are also significant and then the inclusion of

reference signal might influence the efficiency of the radar receivers.
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Algorithm 1 Orthogonal Matching Pursuit [61]
Require:

An Nh×Nα measurement matrix B

An Nh-dimensional data vector h

The sparsity level Np

Ensure:

α̂ is an approximate of the expected signal

A set ΛNp consisting of Np elements of 1, . . . ,Nα

An Nh-dimensional estimate of h, i.e. ĥNp

An Nh-dimensional residual rNp = h− ĥNp

1: Initialise r0 = h, Λ0 = /0, and iteration counter ti = 1.

2: repeat

3: Figure out the optimisation problem

λti = argmax
j=1,...,Nα

|〈rti−1,b j〉|.

Split the link of the results if various indices take place.

4: Given that B0 is an empty matrix, expand Λti = Λti−1 ∪ {λti} and B =

[Bti−1 bλti
].

5: Answer a least squares problem

xti = argmin
x
‖h−Btix‖2.

6: Compute the new estimate of the residual and data

rti = h− ĥti

ĥti = Btixti.

7: ti = ti +1.

8: until ti > Np

9: The approximation of the perfect signal, α̂ , carries nonzero indices at the elements of

ΛNp and its content in the index λ j corresponds to the jth element of xti .
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In recent researches, random wireless networks of interest employ the Poisson Point Pro-

cess (PPP). In order to achieve the above configuration, the uplink communication may

be considered, whereby the regular base stations will be substituted by the passive radars.

In the regular uplink scenario, mobile users send the data to a base station and then the

latter estimates their channel for downlink transmission. From recent works, it is rational

to suggest that the radar receiver locations within the network can refer to a homogene-

ous PPP. This idea is motivated by the fact that base stations and mobile terminals in the

most recent works are also modelled using a PPP to enable understandable mathematical

expressions; this makes the scenario practical by facilitating different received signal-to-

noise ratios from the OFDM stations, clutter and targets regarding the locations of the

radar receivers. The next motivation is related to the number of investigations and chal-

lenges in radar works. Although [3] provides an interesting research, the insights of which

are outlined in the following sections, the applications of stochastic geometry in the radar

area are highly limited. Individually, in the passive radar where the OFDM base stations

are the transmitters of opportunity, the challenge of manipulating the interferences needs

to be recognising and the strong transmitter signals cannot be neglected. To accept the

motivations outlined above, the following subsection explains the literature review in re-

lation to stochastic geometry. This will fill the gap between communication and radar

exercises.

2.5.2 Applications of stochastic geometry

Modelling of passive radar networks can be categorised in three types when applying sto-

chastic geometry. The first is the incorporation of ad-hoc networks with a bistatic passive

radar. In large multihop-mobile wireless networks using an ALOHA-type access control

[62], Poisson arrangements for the position of interferences were averaged in order to

optimise the production of the number of concurrently fruitful transmissions per unit of

space based on the average range of each transmission. Significantly, stochastic geometry

provided mathematical gadgets for their spatial reuse ALOHA; that is, the locations of the

stations followed a mark PPP, the medium access indicators of stations were independent

random variables, and an assumed general distribution was imposed on the random trans-

mitted powers. Specifically, with the PPP, the intensity of the transmitters regarding the

distance only can be formulated for general power distribution. Since stochastic geome-

try displays an impact on interference studies, interference properties of ad-hoc networks
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were developed in [63], where a singularity of the path loss function was included. The

work also demonstrated upper and lower bounds on the Cumulative Density Function

(CDF) of the interference. The characterisation of CDF was evaluated given that there is

a sender at the origin. Their simulations compared PPP with the Thomus cluster and hard

core (minimum distance) point processes and it was shown that the Gaussian distribution

assumption for interference distribution provided worse outcomes than inverse Gamma

and inverse Gaussian distribution. Apart from its properties, spatial and temporal correla-

tion of the interference could decrease the performance of communication systems, such

as transmission capacity. Given that a PPP is assigned to the units in ad-hoc networks,

[64] assessed the consequence of this correlation in which ALOHA multiple-access was

applied. It was shown that spatial and temporal correlation incurred link outages of the

system and should be included when examining the networks.

When considering multistatic passive radar systems, cellular networks can be exploi-

ted. A comprehensive comparison of the PPP and the hexagonal grid models was pro-

posed in [65]. From the results, the PPP model offered upper bounds of the coverage

probabilities and higher accuracy. Another cellular-related research is in [66], where the

author presented a stochastic geometry-based unified three-dimensional channel model

for land mobile radio cellular systems with an assumption of uniformly distributed scat-

tering objects. The work presented closed-form joint and marginal Probability Density

Functions (PDFs) of azimuth and elevation AoA. The performance bounds of partial fa-

ding and Rayleigh fading wireless cellular networks were derived in [67]. In this work, the

Laplace transform of the inverted SINR was employed. The bounds for average Shannon

and outage rates were also found in closed-form. Regarding the more complex interfe-

rence environment in the passive radar networks, heterogeneous networks are presented.

[68] considered downlink performance in a fixed-size cell, which is imprinted in a weig-

hted Voronoi cell in a Poisson field of interferers; this was done by adopting stochastic

geometry. The work contained a nearest out-of-cell interferer, out-of-cell interferers out-

side a guard region, and cross-tier interferers; it discussed whether the total interference

could be defined by its Laplace transform. The Gamma distribution was exploited to es-

timate the interference distribution. The results demonstrated that the sum interference

in the cellular systems could be succeeded by an equivalent interference random varia-

ble. An application with uplink heterogeneous cellular networks was also shown in [69],

where all tiers of multiple-antenna base stations were distributed following homogeneous

and independent PPP. Stochastic geometry assisted in the formulation of mathematically
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tractable coverage probability and average rate. This work also discussed the dependen-

cies of coverage and rate and compared the gain of Maximum Ratio Combining (MRC)

and Optimum Combining (OC). Stochastic geometry also supplies solutions for the per-

formance analysis of dense cellular networks [70]. The most energy-efficient method

indicated in the paper for the forthcoming dense urban environments is a homogeneous

pico deployment for the data plane with a separate layer of signalling macro-cells.

One research has also considered massive MIMO, a modern technology that can be

equipped with passive radar receivers. It was then performed in the following two works.

In the first paper [71], beamforming was operated in the cellular system under stochastic

geometry. The author developed an outage probability for three different reuse factors for

the case of orthogonal pilots. Handling Gauss hypergeometric function, the complemen-

tary CDF for Signal-to-Interference Ratio (SIR) was subsequently acquired. Secondly,

stochastic geometry was also operated to characterise the spatially distributed users in

an uplink large-scale MIMO system [72]. The author practised large dimensional random

matrix theory to obtain deterministic approximations of the sum rate, and generated close-

form approximations for deterministic rates at low and high SNR regimes in this work.

Stochastic geometry is famous in spectrum sensing and cognitive radio. In [73], the aut-

hor found the result for large wireless networks by working out the Euclidean distances

whose distribution is PPP, while the spatial throughput of a multi-antenna Poisson cog-

nitive radio network was measured in [74] with the presence of optimal medium access

probability. The author of [75] employed stochastic geometry to confront the various

signal-to-noise ratios based on the generalised likelihood ratio test detector. Another chal-

lenging spectrum scenario was spectrum sharing between a drone small cells network and

cellular networks [76]. The network was formed by the three-dimensional PPP. The op-

timal density of drone aerial base stations was discovered, and the author examined its

scaling behaviour with respect to the outage probability constraint under different heights

of drones. The particular primary regions were also considered as the cellular networks

needed protection.

One of the most significant researches in the area of radar is [3], discussing the

statistics of radar interference in automotive radar. Two spatial distributions, a Pois-

son Point Process and a Bernoulli Lattice Process, were mentioned and the interference

statistics and systematic expressions for the probability of favourable range estimation

were acquired. According to the review in [77], executions of the connectivity, the ca-

pacity, the outage probability, and other fundamental limits of wireless networks are
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achieved by stochastic geometry and random geometric graph theory. The author also

claimed that stochastic geometry is one of the mathematical techniques able to represent

a communication-theoretic conclusion to justify the network’s geometrical configuration.

Stochastic geometry can also be employed to calculate the mean cost of route and its fluc-

tuation in routing protocols. The joint modelling of point processes and fading, which is

practical for networks with uncertain distance, can be regarded as other applications of

stochastic geometry.

2.5.3 Related mathematical foundations

There are some theoretical foundations that should be addressed. These backgrounds are

crucial and they will frequently be discussed in the chapter 5. This subsection begins with

a point process, along with its properties. The point process is applied when the locations

of base stations and passive radars are discussed. Its properties assist tractable mathe-

matics in computation. Then, the Gamma random variable is demonstrated. Specifically

in a cellular network configuration, some statistical matrices can be represented by the

Gamma distribution. This is also helpful when the interference function is formulated.

A point process

This section begins by discussing a point process (also known as a spatial point pro-

cess). Denoting the sequence φ ⊂R2, the set of all sequences can be signified as N, which

should comply with the following conditions: (a) the number of points in any bounded

set A ⊂ R2 should also be bounded (finite condition); (b) if there are two variables i and

j where i 6= j, it should be shown that xi 6= x j (simple condition). According to [78] and

[79], a point process in R2 can be briefly explained as a random variable whose values are

collected from the space N. A point process can be symbolised as Φ = ∑i δxi , where

δxi(A) =

 1 if x ∈ A,

0 otherwise,
(2.30)

is the Dirac measure at x. φ designates an instance of the point process, and Φ(A) refers

to the number of points of the point process in a set A. A point process characterisation

will be discussed in the following paragraph.

Two point processes are equivalent if they have the same void probability distribution,

which can be shown as P(Φ(K) = 0) for K ⊂ R2. If the distribution of a point process is

invariant concerning translation, it is called a stationary point process, whereby it provides

a statistically analogous display to any point in space and cannot be interpreted based on a
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subset of R2. The density of a stationary point process can be illustrated as E[Φ(B)]
|B| , where

B ⊂ R2 and its selection does not need to be specific. In this work, the point process

of interest is the stationary PPP, which is the most extensively applied model for spatial

locations of nodes. Node positions in PPP are not conditioned among one another. PPP

can also be outlined in the complete space. The characterisation of PPP will be mentioned

in the following paragraph.

With a Poisson random number of points in a set A ⊂ R2 where its mean is equal to

λ |A|, the distribution can be shown as

P(Φ(A) = n) = exp(−λ |A|) (λ |A|)
n

n!
, (2.31)

where λ refers to the intensity of PPP and does not depend on the set A. Note that uncon-

nected sets produce an independent number of points. The points are independently and

uniformly distributed in the set A. The next property is related to the PPP transformation,

which is called as the independent thinning. Assuming there are two point processes,

that are, the yellow point process, Φy, and blue point process, Φb. With probability p, a

node x ∈ Φ becomes yellow and will be blue with probability 1− p. It can therefore be

concluded that Φ = Φy∪Φb; hence, a yellow PPP is of density λ p, whilst a blue PPP is

of density λ (1− p) and Φy and Φb are independent. This follows the void probabilities

of two PPP. In case of modelling Carrier-Sense Multiple Access (CSMA) in media access

control (MAC), dependent thinning or Matern’s hard-core process is used in a minimum

distance mechanism. Dissimilar to independent thinning, each node will independently

receive a mark mx, which is uniformly distributed. To denote a ball centralised at point x

with a radius R, B(x,R), a node is chosen regarding the following:

Ψ = {y : y ∈Φ,my ≤ mx,∀x ∈ B(y,R)∩Φ}. (2.32)

Thus, the lowest mark among all the points in the ball will be elected. The dependent

thinning eventually has a density of:

λm =
1− exp(−λπR2)

πR2 , (2.33)

provided that Φ has an intensity of λ .

In many researches, there is a point denoted as a typical point to allow for tractable

calculation. The reason for this is a reduced Palm probability that is conditional to the

presence of a node at a specific location. Regarding the Slivnyak theorem, reduced Palm

distribution of a PPP equals the initial distribution. As a result, an introduction of a new
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point does not upset other locations of the PPP. The following paragraph discusses some

critical theories related to the mathematical operation of PPP.

To perform the summation over a PPP, Campbell’s theorem provides assistance. Given

a PPP, Φ, of intensity λ and assuming a function f (x) : R2→ R+, Campbell’s theorem

states that [80]

E

[
∑

x∈Φ

f (x)

]
= λ

∫
R2

f (x)dx. (2.34)

Another tool, Probability Generating Functional (PGFL), is a method that aids the

product operation over PPP. Given a PPP, Φ, of intensity λ and assuming a function

f (x) : R2→ [0,1] to be a real valued function, the PGFL of the homogeneous PPP can be

shown as [81]

E

[
∏
Φ

f (x)

]
= exp

(
−
∫
R
[1− f (x)]λ (dx)

)
, (2.35)

where λ (dx) is the intensity measured on the infinitesimal volume dx. The integration is

performed over the region of interest R.

Voronoi tessellation

A tessellation refers to a collection of open, pairwise disarrange polyhedra, the union

of whose closures blanket the space, and which is locally finite [82]. Subject to R2 is

considered, polygons are commonly used. Given a simple point measure µ on Rd and a

point x ∈ Rd , an open set Voronoi cell, Cx(µ), of the point x ∈ Rd with respect to µ can

be described as the closure of the last set of the following

Cx(µ) = {y ∈ Rd : |y− x|< inf
xi∈µi,xi 6=x

|y− xi|}. (2.36)

Given a simple point process Φ = ∑i εi on Rd , the Voronoi tessellation or mosaic

instituted by Φ is defined to be the marked point process

V = ∑
i

ε(xi,Cxi(Φ)−xi). (2.37)

In other words, Cxi(Φ) of xi is the set of all those points of Rd that are more adjoining

to this xi than to any other point of Φ. Frequently, the Voronoi cell might be determined

as the closure of the set. It can also be shown that not every section in Rd is enclosed by

some Voronoi cell. Providing a Voronoi tessellation is founded by a homogeneous PPP

and the typical cell C0(µ) under the palm distribution is recognised, it is shown that all

cells are bounded with a probability of 1.

Another important definition related to the Voronoi tessellation is about its neighbours.

Let Cx(µ) be the Voronoi cell of x ∈ Rd achieved by a point pattern µ , for simplicity,
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Figure 2.5: An example of Voronoi tessellation using Poisson Distribution with mean =

50

assume that µ({z}) = 0 or 1, any point y∈ µ such that y 6= x and |a−x|= |a−y| for some

a ∈ Cx(µ), where Cx(µ) is defined to be the closure, is called a Voronoi neighbour of x.

Moreover, a graph with a set of vertices µ and edges linking y ∈ µ to any of its Voronoi

neighbours is called the Delauney triangulation where µ is a simple point measure. The

example of Voronoi tessellation created using Matlab function is illustrated in Fig. 2.5.

Gamma random variables

One of the objectives of stochastic geometry is to understand the characteristic of

the interference. The design of the system usually includes shadowing and fading cor-

responding to the source signal. There is a tool that allows for the modelling of fading

distribution, estimation of the product of shadowing and fading, as well as interference

power. This application was introduced in [68], referred to as Gamma random variables

utilisation. Useful descriptions and theorem are discussed below.

Definition: the PDF of a Gamma random variable, X = Γ[k,θ ], where k > 0 and θ > 0

are finite shape and scale parameters respectively, can be shown as

fX(x) = xk−1 exp[−x/θ ]

θ kΓ(k)
. (2.38)

The cumulative distribution function is

FX(x) =
γ(k,xθ)

Γ(k)
, (2.39)
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where x ≥ 0 and γ(a,b) =
∫ b

0 ta−1 exp(−t)dt is the lower incomplete Gamma function.

The first two moments and the variance can be shown as

E[X ] = kθ E[X2] = k(1+ k)θ 2 var[X ] = kθ
2. (2.40)

Regarding the scaling property, with scalar a > 0, if X is Γ[k,θ ], then aX is Γ[k,aθ ].

Gamma 2nd Order Moment Match: two distributions are acknowledged. Denoting

µ = EX ,µ(2) = EX2, and variance σ2 = µ(2)−µ2, the distribution Γ[k,θ ] with the same

first- and second-order moments has the parameters:

k =
µ2

σ2 θ =
σ2

µ
. (2.41)

Given the random variable for the fading Γ[kg,θg] and log-normal shadowing with para-

meter σ , the product distribution can be rationally approximated using a Gamma distri-

bution over a sensible bound of σdB by matching the first and second central moments;

this leads to the next Lemma.

Gamma Approximation of Product Distribution: let G be Γ[kg,θg], L is log-normal

with variance σ and Pt as a constant, parameters of the Gamma random variable, Γ[kp,θp],

the same first-order and second-order moments can be calculated by:

kp =
1

(1/kg +1)exp[σ2]−1
(2.42)

θp = (1+ kg)θg exp[3σ
2/2]− kgθg exp[σ2/2]. (2.43)

In this thesis, the techniques above are essentially utilised in the discussion of some sta-

tistical channel characteristics, specifically in cellular networks.

2.6 Summary

This chapter has presented the literature review, regarding OFDM waveforms, compres-

sive sensing, beamforming, and stochastic geometry. A passive radar system consists of

the components where there are a lot of current research relavant. In this thesis, mat-

ched filtering is selected to deal with a problem of target detection. Since the OFDM

technology is available throughout communication areas, the passive radar can exploit its

multiple subcarriers and extract the target signatures. The example of OFDM waveforms

generation using MATLAB has also been shown in this chapter. Subspace algorithm

is one of extraction methods to understand the parameters of incoming signals. Multi-

ple snapshots MUSIC algorithm has been presented in both one and two dimensions. A
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sub-Nyquist method, compressive sensing, has been discussed to displayed fundamental

concepts of signal reconstruction. In order to increase the target received power, beamfor-

ming equipped with OMP has also been presented. The final section in this chapter has

concerned about the literature review of stochastic geometry and some useful mathemati-

cal resources.

Beginning in the next chapter, the concept of OFDM passive radar is provided. The

results of OFDM application, along with the extraction methods, are illustrated. Com-

pressive sensing has displayed some impressive results with lower dimension of a measu-

rement matrix. Beamingforming with compressive domain is discussed in chapter 4 and

passive radar networks with stochastic geometry are determined in chapter 5.
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Chapter 3

OFDM passive radar using MIMO with

widely-separated antennas

3.1 Introduction

One of the major issues with passive radar occurs when the receiver simultaneously acqui-

res a reference signal with high power and a relatively low power target signal. This re-

sults in a difficulty in the target detection. Two groups of receivers: one for the reference

signal and the other for surveillance signals, can be dedicated to reduce the effect of the

direct channel. This solution requires the cancellation method to be of a high quality

[6]. Nowadays, MIMO concept is proposed in the radar area to overcome this difficulty

by employing spatial diversity. Spatial distribution of transmitters and receivers is credi-

ted with major advancements in wireless communications, as well as in the conventional

radar domain. The hereditary location ambiguity can be waived by extra pairs of trancei-

vers. This involves an additional location dimension and errors in term of variance or bias

regarding shadowed links can also be decreased [83].

MIMO radar can be categorised into two configurations: widely separated antennas

and co-located antennas. In widely-spread antennas, the OFDM base stations are conti-

nuously emitting their signals, the transmit signals impinging on the target in various

angles are synchronously gathered at separate receiver locations. The accomplishment

of localisation patterns can be promoted by the effective alliance of MIMO and passive

radars, providing spatial diversity of the transmit and receive elements. MIMO passive

radars are able to take the advantage of spatial diversity in order to lower the missed

detection rate [11]. A Radar Cross Section (RCS) aspect is also key to MIMO passive

radars with separated antennas. In [24], the author discusses noncoherent and coherent
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processing. To identify the target and measure the parameters, noncoherent processing is

manipulated to acquire a diversity gain of RCS spatial fluctuations. On the other hand, a

better resolution can be supplied by coherent processing. The passive radars, which apply

the signals of opportunity and demand for high performance in target detection, are likely

to exploit this profit. The MIMO concept utilised in the passive radar also facilitates the

ability to locate the transmitters and targets in Cartesian space by joining the detection

across the receivers [8]. Many works discuss multistatic receiver [12][84][85], which is

similar to MIMO in its widely spread antennas, but it has centralised processing.

MIMO-OFDM radar supplies data with regard to the number of subcarriers. In order

to process the incoming signals, all of the information should be perceived by the recei-

vers. Moreover, the summation of all transmit signals requires high computational cost,

whereas most of the values represent noise effects. Incorporated with compressive sen-

sing, sparse signal and image can be completely recovered without the effort of Nyquist-

rate sampling. Regardless of the reduced efficiency of the sensor network, group sparsity

has been engaged in the passive radar using a Wireless Local Area Network (WLAN)

for the decline of required data rate [86]. This chapter begins by discussing the MIMO-

OFDM passive radar model, employing both widely-separated antennas, and multiple 2D

matched filters. The problem is then formulated into CS representations, followed by the

application of the multiple snapshots CS algorithm. The two-dimensional Cramer-Rao

Lower Bounds (CRLB) for OFDM passive radar is derived and the simulation results

conclude this chapter.

3.2 System and signal model for widely separated receivers

The configuration in this chapter consists of multiple base stations, which are normally

spread throughout the area. The passive radar receivers are also located separately from

one another in order to achieve spatial diversity. The example regarding one receiver is

shown in Fig. 3.1 in a MISO scheme. The figure displays an instance of MISO trans-

mission of one receiver; the others can be operated in the same way. This section begins

by illustrating the OFDM waveforms transmitted by the broadcast stations. Then, the

distributed target review is displayed in the following.
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Figure 3.1: The example scenario of MIMO passive radar with widely spread antennas as

discussed in this thesis. In this figure, red ellipses show the operation of the passive radar

applying Multiple-Input Single-Output.

3.2.1 Transmitter signal model

Suppose that, in the MIMO-OFDM passive radar system, there are nt transmitters high-

lighting a target situated at positions (xk,yk,zk), k = 1, . . . ,nt . Passive radar receivers,

which are deposited at arbitrary locations (xm,ym,zm), m = 1, . . . ,nr, listen to the target

reflections. The bistatic pair between the k-th transmitter and the m-th receiver is denoted

as the (k,m)-th pair. The passive radars acquire the OFDM signal, which is a multicarrier

modulation scheme with N subchannels. Suppose that M-ary QAM is used, then on the

n-th subcarrier, the signal is:

u(k)i,n (t) = sni cos2π fnt− snq sin2π fnt

= S(k)n e jθne j2π fnt

= s(k)i [n]e j2π fnt , (3.1)

where S(k)n =
√

s2
ni + s2

nq and θn = tan−1 (
snq
sni
) are the amplitude and the phase of a complex

data symbol s(k)i [n] respectively. Note that other types of modulation, such as Phase-

Shift Keying (PSK), are also possible without affecting the OFDM characteristic. Each

n-th subcarrier frequency is denoted fn and the subcarrier frequencies are assumed to

be orthogonal with a separation of ∆ f . Each data segment period of OFDM block is
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T = 1/∆ f long. In order to avoid inter-carrier interference, a cyclic prefix, which consists

of a copy of the time domain signal samples at the end of the block, is placed at the

beginning. The entire OFDM block length is therefore T ′ = T + Tcp long where Tcp

denotes the cyclic prefix length in time. Given the rectangular window q(t) defined as:

q(t) = rect
(

t
T +Tcp

)
, (3.2)

=

 1, t ∈ [−Tcp,T ],

0, otherwise.
(3.3)

One block of the OFDM signal transmitted from the k-th transmitter can be written

as:

xk
i (t) =

N/2−1

∑
n=−N/2

sk
i [n]e

j2πn∆ f tq(t), (3.4)

The signal from each k-th transmitter can now be written as [16]:

xk(t) =
∞

∑
i=−∞

xk
i (t− iT ′). (3.5)

3.2.2 Two-dimensional receiver signal model

Similar to MIMO communication, the signals received at nr receivers can be expressed as

the matrix multiplication between the channel estimates H ∈ Cnr×nt and the transmitted

signal x ∈ Cnt . The received signal in a matrix notation can be derived as:

y = Hx+w, (3.6)

where y = [y1(t) · · ·ynr(t)]T , x = [x1(t) · · ·xnt (t)]T and w = [w1(t) · · ·wnr(t)]T represents

the noise experienced by the receivers, where wm(t) = ∑k wkm(t). The channel estimates

for all transceiver pairs are given as:

H =


H(t)11 · · · H(t)nt1

... . . . ...

H(t)1nr · · · H(t)ntnr

 . (3.7)

The channel matrix above performs an important role in this work and it will be de-

rived in detail using the matched filter below. Considering that the signal impinges upon

the m-th distributed receiver, m ∈ 1, . . . ,nr, y(m) is the combination of the reference (di-

rect) signal xk
r(t), the target signal xk

s(t) and the clutter (unwanted strong scatterers) signal

xk
c(t). This can be expressed as [87]:

y(m)(t) =
nt

∑
k=1

xk(m)
r (t)+

nt

∑
k=1

xk(m)
s (t)+

nt

∑
k=1

xk(m)
c (t)+wk(m)(t). (3.8)
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Throughout this thesis, time delays or phase shifts of the impinging signals are only

considered in relation to the sense of the transceivers/target sites. Therefore, the system

ignores path loss issues. The signals impinging on the receiver consist of both the direct

signal and target reflections. The echo, either from a clutter or a target, is described by a

delay and a Doppler shift. Given the centre frequency of the k-th transmitted signal f k
c ,

the existing Doppler shift of the target signal illuminated by the k-th transmitter and then

received by the m-th receiver can be given as f km
D = akm f k

c , where akm denotes a quotient

of range-rate divided by the speed of light, c, along the (k,m)-th transceiver pair. τkm
p is

the delay for the p-th path of the (k,m)-th bistatic pair, where p ∈ {1, . . . ,Nkm
p } and Nkm

p

identifies the total number of multiple paths for this pair. Let Akm
p and wkm(t) respectively

refer to the attenuation and additive white Gaussian noise in the (k,m)-th bistatic pair.

The signal received at the m-th receiver is expressed as:

ym(t) = ∑
k

∑
p

Akm
p e j2πakm

p f k
c txk(t− τ

km
p )+wkm(t). (3.9)

From (3.9), the path index p corresponds to the path of the reference signal if τkm
p =√

(xk− xm)2 +(yk− ym)2 +(zk− zm)2/c and it belongs to the path of the surveillance sig-

nal if τkm
p = τ

kq
p + τ

qm
p where τ

kq
p =

√
(xk− xq)2 +(yk− yq)2 +(zk− zq)2/c and τ

qm
p =√

(xq− xm)2 +(yq− ym)2 +(zq− zm)2/c where the target characteristic is discussed in

Section 3.2.3. As seen from the discussion above, at each receiver, the received signal re-

flects a multipath scenario where the paths that correspond to the reference signals provide

stronger power. The rest of the impinging signals correspond to the target reflections and

clutter signals. At the processing stage, the system aims to reconstruct the noise-free sig-

nal in order to extract the parameters of interest. Regarding multiple OFDM transmitters,

this results in a large amount of data as the waveforms consist of numerous subcarriers

and their corresponding blocks. CS becomes attractive in this case since the measurement

size should be reduced.

3.2.3 Discussion of the distributed target model

One of the advantages of MIMO passive radar with widely-spread antennas is the RCS

spatial diversity, which means that a distributed target identification can be employed.

Suppose there is a scene illuminated by multiple OFDM base stations and there are mul-

tiple radar receivers in different locations, a target resides in that space and provides Q,

independent, isotropic distributed reflectors. The coordinates where a target appears can

be denoted as (xq,yq,zq). A complex random variable ζq that is zero-mean, independent
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and identically distributed (i.i.d) can be employed to create the reflectivity of a reflector

with variance 1
Q . A Q×Q diagonal matrix, Σ = diag(ζ1, . . . ,ζq), can be used to contain

target reflectivity values. According to [24], the target average RCS is equal to 1 regard-

less of the number of reflectors in the design. The model of the target can be applicable

to a Swerling case I providing that the RCS fluctuations are stabilised amid a scan and

they alternate freely from scan to scan [88]. The bandwidth of the transmitted signals is

supposed to be incapable of undertaking particular target reflections. Let an RCS centre

of gravity of the target locate at (x0,y0,z0), then the time delay components corresponding

to the surveillance path can be displayed as:

τ
kq
p =

√
(xk− x0)2 +(yk− y0)2 +(zk− z0)2/c

τ
qm
p =

√
(x0− xm)2 +(y0− ym)2 +(z0− zm)2/c. (3.10)

From the conclusion in [24], the MIMO radar antennas need to be adequately isolated.

Spatial decorrelation upholds a diversity of path gains as each element of the channel

matrix H serves as the path gain of a transceiver pair. This means that the elements of

the channel matrix decorrelate if the target’s beamwidth cannot concurrently irradiate two

sensors, provided that the distributed target is judged as an antenna. Individual reflectivity

and position lead to a different fading signal at the receivers. Unlike a single spherical

reflector with uniform RCS, the elements of the channel matrix ultimately correlate as no

fading signals are constituted. Thus it can be concluded that distributed targets can be

detected more precisely by applying the MIMO concept. The usefulness of the MIMO

passive radar system is confirmed, and in the following part, the matched filter regarding

the signal received at the radar is discussed.

3.2.4 Two-dimensional matched filter

The passive radar system applies the matched filter in order to search for peaks of out-

put where the parameters of the signals are equal. This subsection reviews the two-

dimensional (2D) matched filter from [16] utilising the MIMO radar. Similar to [16],

the m f -th correlator in (2.1), which is considered at every τ̂ with selected integration time

Ti interval, along with a fixed value of Doppler frequency âm f f k
c , can be displayed in the

following (let Tmax = 0):

z(m)
m f (τ̂) =

nt

∑
k=1

∫ Ti

0
e− j2π âm f f k

c tx∗k(t− τ̂)yk(m)(t)dt. (3.11)
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With the derivation in Section A.1 in the Appendix, the output of the overall 2D mat-

ched filter can be shown as:

z(m)
m f (τ̂) =

nt

∑
k=1

L

∑
i=1

N
2−1

∑
n=−N

2

e− j2π(iâm f f k
c T ′−n∆ f τ̂)Hk(m)

n(i) . (3.12)

The above equation shows that the matched filter output can be effectively genera-

ted using a 2D discrete Fourier transform of the channel estimates. The result of this

implementation will be displayed in Section 3.5.1. If the base stations ensure their ortho-

gonality, the matched filter output provides simple extraction as the signal from different

transmitters cannot deliver the correlation outcomes and the transmitter signal association

is not too complicated. However, in the SFN, the OFDM stations transmit a nonorthogo-

nal signal. Without the proper association methods, the receiver cannot understand which

transmitter the signals belong to.

3.2.5 Problem formulation

The channel has been demonstrated to be equivalent to the signal model where Np wave-

fronts impinge on a URA sensors. Let bkm denote the steering vectors of the URA corre-

sponding to the (k,m)-th bistatic pair. This is expressed as bkm(τ̂p, âp)= vec{Gkm(τ̂p, âp)},

where Gkm ∈ CN′×L′ is a subarray matrix resulting from the spatial smoothing technique,

a method used for generating a full-rank set of observation vectors while applying a smal-

ler equivalent aperture, N′ and L′, with the entries gn,i = e j2π(iâ fcT ′−n∆ f τ̂). The channel

for the (k,m)-th bistatic pair represented by the steering vector is thus given as:

hkm = ∑
p

Akm
p bkm(τ̂p, âp), (3.13)

where Akm
p is the amplitude of the p-th path in the bistatic pair. In this context, target

detection is equivalent to signal processing with 2D uniform rectangular arrays (URA),

where each array element’s position is defined by the delay τ̂p and Doppler shift âp.

3.3 Signal extraction using the multiple snapshots CS-based method

The objective of this problem is determining the delay(τ̂) and the Doppler frequency

(â fc) of the impinging signals. The sparse representation problem begins with creating

an overcomplete representation B in terms of all possible delays and Doppler frequencies

which are τ̂ = 0, T
N′ , . . . ,(N

′− 1) T
N′ and â = 0, 1

fcT ′L′ , . . . ,
(L′−1)
fcT ′L′ . In this case, the matrix

Bm is known. a(t) can be described as an (N′ ·L′)×1 vector, where there are Np nonzero
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elements. Without the knowledge of the Np pairs of (τ̂p, âp), this problem can be realised

as l1-norm reqularization in BP. In contrast to Section 2.3, this subsection discusses the

basis pursuit and l1-SVD with some modifications for multiple antennas. For a single

time sample (M = 1), the sparse signal can be recovered by l1-norm regularisation. With

the assumption that αm =

[A1m(t) · · ·Antm(t)]T is a sparse vector in a single snapshot case and a sparse matrix (Am)

applying multiple snapshots, a suitable choice of an optimisation benchmark is min‖αm‖1

subject to ‖hm−Bm
αm‖2

2 ≤ γ2, where γ is a parameter designating how much noise is

granted. This problem can be developed into:

minimize‖hm−Bm
α

m‖2
2 +β‖αm‖1, (3.14)

where Bm = [B1m(τ̂, â, θ̂) · · ·Bntm(τ̂, â, θ̂)] is the matrix of the overcomplete representa-

tions in terms of all possible delays, Doppler frequencies and angle of arrivals for each

bistatic pair. β denotes the regularisation parameter, which regulates the tradeoff bet-

ween the sparsity of the spectrum and the residual norm. The l2-term causes the residual

hm−Bm
αm to be small, whereas the l1-term imposes sparsity of representation.

When only a single snapshot is used, the objective equation (3.14) can be solved by

the basis pursuit. There is a promising solution available that involves employing Singular

Value Decomposition (SVD) to achieve correlation between snapshots and reduce com-

putation complexity. The l1-SVD process starts with the data matrix for the m-th receiver

Rm = [hm(t1) · · ·hm(tM)]. The M-dimensional problem is reduced to an Np-dimensional

one (Np = ∑k Nkm
p ) by the SVD of the data matrix, that is:

Rm = ULV′. (3.15)

This results in a reduced dimensional matrix Rm
SV =ULDNp = RmVDNp , where DNp =

[INp0′]. INp is an Np×Np identity matrix and 0 is a matrix of zeros with a dimension of

Np× (M−Np). Defining ASV = AVDNp and WSV = WVDNp , it can be shown that:

Rm
SV = BmASV +WSV . (3.16)

In order to enforce sparsity in the matrix ASV , l2-norm of all time-samples (ã(l2)) is

set, where each element is the l2-norm of the column vector of ASV . The sparse spectrum

of ã(l2) can be determined by:

minimize‖Rm
SV −BmASV‖2

f +β‖ã(l2)‖1. (3.17)
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Figure 3.2: Diagram of the l1-singular value decomposition method adapted from [2].

The diagram concluding the l1-SVD algorithm is illustrated in Fig.3.2. The regulari-

sation parameter (β ) is determined by analysing the constrained version of (2.29), which

is identical to Lagrange Multipliers for some parameter γ . The γ is accordingly selected

assuming that the noise distribution is known.

3.4 Two-dimensional Cramer-Rao lower bounds

In many applications, CRLB is used to place a lower bound on the variance of any unbi-

ased estimator; therefore, it is valuable for determining local estimation efficiency. This

thesis applies this bound to the area of OFDM passive radar. The reason for this is to pro-

vide an indicator for detection algorithms as well as the effect of each variable in system

and signal model. The CRLB of any estimator can be determined by [89]:

var(θ̂)≥ 1
I(θ)

, (3.18)

where I(θ) is the Fisher information matrix. In the case of the distributed OFDM passive

radar, θ is a vector parameter and it is equal to [τ a]T . In this section, the 2× 2 Fisher

information matrix is first derived and can be declared as:

I(θ) =


−E[∂ 2 ln p(h;θ)

∂τ2 ] −E[∂ 2 ln p(h;θ)
∂τ∂a ]

−E[∂ 2 ln p(h;θ)
∂a∂τ

] −E[∂ 2 ln p(h;θ)
∂a2 ]

 . (3.19)

In this work, the channel estimates (A.12) discussed in Section 3.2.4 are applied as

the measurement signals according to the bandlimited signal representation [16]. Using a
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model similar to (2.15), the measurements referring to km-bistatic pair can be shown as:

Ĥk(m)
n(i) =

Np

∑
p=1

Ak(m)
p e j2π(iâk(m)

p f k
c T ′−n∆ f τ̂

k(m)
p )+wk(m)

n(i) , (3.20)

which has been formerly interpreted as a 2D channel estimates with a dimension of N×L.

Since the antennas are widely separated, Hk(m)
n(i) are statistically independent for dissimilar

transceiver pairs, which is caused by free looks of the target. The additive zero-mean

white Gaussian noise with variance σ2
w is represented by wk(m)

n(i) and the path attenuations

Ak(m)
p can be declared as zero-mean Gaussian distributed variables with variance σ2

A. In

order to calculate each element of I(θ), the log-likelihood function [7] can be shown as:

ln p(h;θ) = ∑
m

∑
k

ln p(hk(m);θ), (3.21)

and

ln p(hk(m);θ) = ∑
i

∑
n

ln p(Hk(m)
(n,i) ;θ), (3.22)

where

p(h;θ) = ∑
m

∑
k

∑
i

∑
n

p(Ĥk(m)
n(i) ;θ),

=
1

(2πσ2
w)

NLnt nr
2

exp

− 1
2σ2

w
∑
m

∑
k

∑
i

∑
n

(
Ĥk(m)

n(i) −∑
p

Ak(m)
p e j2π[iak(m)

p f k
c T ′−n∆ f τ

k(m)
p ]

)2
 .

(3.23)

is the likelihood function of the estimated channel parameters. According to the calcula-

tion in Appendix B.1, the final derivations can be:

[I(θ)]11 =−
2π2∆ f 2N(N +1)(2N +1)Lnr

3σ2
w

∑
k
(Ak)2, (3.24)

[I(θ)]12 = [I(θ)]21 =
π2∆ f T ′N(N +1)L(L+1)nr

σ2
w

∑
k

f k(Ak)2, (3.25)

[I(θ)]22 =−
2π2T ′2NL(L+1)(2L+1)nr

3σ2
w

∑
k
( f k)2(Ak)2, (3.26)

Finally, matrix inversion is performed and the CRLB for each parameter can be deter-

mined as:

var(τ̂)≥ [I−1(θ)]00,

var(â)≥ [I−1(θ)]11.
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Figure 3.3: The result of the matched filter in two dimensions.

3.5 Performance analysis

Current research on passive radar aims to provide similar functionalities to active radar,

for example, target detection, tracking and imaging. This thesis will also display some

techniques that can increase the capabilities of passive radar. Before considering the main

contributions in the following chapter, this work begins with one of the configurations

of the passive radar and the application of compressive sensing algorithms. The section

discusses the combination with compressed domain, along with some crucial results that

lead to the proposal in the following chapter.

In order to compare the target detection performance of the MUSIC and compressive

sensing methods, this research simulates the scenario of a static OFDM passive radar

capturing the reflections from the moving targets and stationary clutters, along with the

direct signals, so as to be able to test various detection algorithms proposed in the recent

literature, including 2D MUSIC and compressive sensing. The MUSIC algorithm, which

is implemented by modifying the pseudo-code presented in [16], is able to identify the

target parameters; however, many snapshots of the incoming signals should have been

applied. On the other hand, the basis pursuit presented in [16] with a single snapshot may
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not be sufficient to recover signals in noise. This thesis also proposes a method employing

multiple time samples compressive sensing called l1-SVD and compares its performance

with the MUSIC algorithm as well as with its single sample counterpart. This thesis also

displays a comparison between MUSIC and compressive sensing for very close targets in

order to understand the resolution provided by these methods.

In this section, the ability of compressive sensing is first illustrated when an individual

pair of transceivers is analysed. The MUSIC algorithm with multiple time samples is

applied in comparison with a single time sample basis pursuit and l1-SVD. As the passive

radar system in this section does not require central processing, noncoherent examination

of the receiver is presented. This section then discusses the effect of multiple transmitters

and receivers. The simulations here demonstrate how each extraction algorithm functions

and leads to the possible approach suggested in the last chapter of this thesis.

3.5.1 The matched filter for the OFDM passive radar

Regarding the realisation of the system, standard Digital Audio Broadcasting (DAB) spe-

cifications are applied with some modifications, as seen in Table 2.1. The carrier fre-

quency used in this simulation is 227.36 MHz, along with 1 kHz spacing between the

subcarriers. This makes the symbol length 1 ms. In contrast to Table I in [16], this si-

mulation uses 128 subchannels, along with 64 blocks per frame due to the computational

constraints. Hence, the amount of bandwidth is reduced, along with the size of the cyclic

prefix, which is normally equal to a quarter of symbol time. From the two-dimensional

matched filter derivation discussed in Section 3.2.4, it can be understood that the matched

filter of the OFDM passive radar can be generated using two-dimensional FFT function.

Applying the OFDM parameters discussed above, the channel estimates can be created

using (A.12) and then employed with 2D-FFT function in MATLAB [31], as shown in

(A.13). Fig. 3.3 displays the two-dimensional results of the matched filter employing five

multipath components, which are: 1) a direct signal; 2) two clutter reflection signals; and

3) two moving-target reflection signals with equal received signal power.

Fig. 3.4, however, illustrates the scenario when the direct signal is approximately 50-

dB higher than the targets. The direct signal path possesses the shortest delay, while the

targets’ path delays are longer. The first target velocity is about 591 m/s, whereas the

second travels around 887 m/s. The results illustrates one dimension of the output signal,

where time domain is shown in Fig. 3.4a and frequency domain is shown in Fig. 3.4b.
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(a)

(b)

Figure 3.4: Simulation results from the output of the matched filter in: (a) time delay

domain; (b) Doppler frequency domain.
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The peaks of all impinging signals can easily be determined from the figures. In addition,

it can be predicted that the target signals may be hard to identify if the strength of the

direct signal becomes larger. The results in this subsection are also presented in [90].

3.5.2 Comparison between the MUSIC algorithm and compressive sensing

In order to implement the MUSIC algorithm, 500 snapshots (M = 500) have been inclu-

ded. The number of subarrays applied here is equal to 3200. The first result comes after

applying the MUSIC algorithm to the observation matrix (mentioned in Section 2.2.3).

There are five multipath components and each component is composed of the same le-

vel of power, as shown in Fig. 3.5. The number of multipath signals can be determined

by the number of significant peaks in the delay domain in Fig. 3.5a. From the Doppler

domain in Fig. 3.5b, however, two targets are only captured as one of the three peaks

with zero value. Utilising the MUSIC algorithm, if the power of the direct component is

much higher, the results are not sufficiently apparent, as shown in Fig. 3.6. The leakages

from the reference signal can cause false peaks in both Fig. 3.6a and Fig. 3.6b. In order

to overcome this issue, direct signal cancellation must be applied before trying to detect

targets. It might be possible therefore to conclude that the MUSIC algorithm can produce

satisfying results as the direct signal can be weaker, due to the number of snapshots used

by the algorithm. In addition to this, a significant level of noise and interference are still

demonstrated.

In the following simulation results, the direct signal power is set to be lower, but still

greater than zero, as the cancellation method might not be good enough to completely

cancel the direct signal. For comparison, the same observation matrix has also been ap-

plied with single time sample compressive sensing and the results are displayed in the

same figure. The compressive sensing in this work utilises CVX programming in order

to compute the SOCP problem [91]. The regularisation parameter (λ ) employed in this

experiment is calculated by the formula in [43], which is λ ≥ λmax = ‖2BT h‖∞. There is

no simulation result from l1-SVD compressive sensing for the five-component multipath

scenario because of the constraint of memory size in the PC workstation. For clarity of the

comparison, and to address the problem of computational size, the number of wavefronts

is decreased to three: a single direct transmission and two moving-target illuminations, as

displayed in the 2D mesh in Fig. 3.7.
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(a)

(b)

Figure 3.5: The results from the MUSIC algorithm with the same level of power among

the paths in: (a) time delay domain; (b) Doppler frequency. The number of snapshots is

equal to 500.
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(a)

(b)

Figure 3.6: The MUSIC algorithm results with 50-dB stronger direct path in: (a) time

delay domain; and (b) Doppler frequency domain. The number of snapshots is equal to

500.
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Figure 3.7: The result of the l1-SVD compressive sensing in two dimensions applying

500 snapshots

A comparison between this l1-SVD and the MUSIC over each dimension is demon-

strated Fig. 3.8a and Fig. 3.8b, where the targets with their parameters consistent with the

former simulations are determined. The pictures show that these two methods can achieve

comparable outcomes, but l1-SVD produces the lower level of noise. In order to clarify

the efficiency of the algorithms, the experiments have been conducted for very closed tar-

get parameters. Firstly, the target parameters have been set to be 0.0204 ms apart in time

domain and 32 Hz apart in frequency domain (the smallest virtual Uniform Rectangular

Arrays (URAs) grid). Fig. 3.9a and Fig. 3.9b display a comparison between different

numbers of snapshots, l1-SVD, and basis pursuit in delay and Doppler domain respecti-

vely, while Fig. 3.10a and Fig. 3.10b show a comparison between outputs from the same

number of snapshots, the MUSIC algorithm and l1-SVD. Both figures determine that all

methods lack the ability to distinguish these two targets. The other simulations in Fig.

3.11 illustrate that the two targets are able to be separated at 0.0408 ms (12.24 km) in de-

lay in Fig. 3.11a and 64 Hz (84.45 m/s) in Doppler frequency in Fig. 3.11b. In this case,

the simulations show that both algorithms can unambiguously detect the targets. This

means that the intervals between adjacent possible steering vectors in the overcomplete
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(a)

(b)

Figure 3.8: Comparison between the results from the MUSIC algorithm and l1-SVD with

multiple time samples: (a) time delay domain; (b) Doppler frequency domain. The num-

ber of snapshots for both algorithms is 500.
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Figure 3.9: Compressive sensing with single time sample experiments on two close targets

with five multipath components detected: (a) time delay domain; (b) Doppler frequency

domain. The number of snapshots for l1-SVD is 500.
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(a)

(b)

Figure 3.10: Comparison between the results from the MUSIC algorithm and l1-SVD on

the non-distinguishable targets with multiple time samples: (a) time delay domain; (b)

Doppler frequency domain. The number of snapshots for both algorithms is 500.
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(a)

(b)

Figure 3.11: Comparison between the results from the MUSIC algorithm and l1-SVD on

the very close target parameters with multiple time samples: (a) time delay domain; (b)

Doppler frequency domain. The number of snapshots for both algorithms is 500.
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Table 3.1: CPU time for an iteration of target detection algorithms

Methods Elapsed time (sec)

MUSIC 96.81

One-time sample CS (BP) 15488.94

Multiple-time samples (l1-SVD) 9367.13

matrix, which is determined by OFDM parameters, could be able to affect the capacity

for detection. Fig. 3.12a displays the sparse signal of the multipath components (ASV in

(2.29)), where the two closed targets are included, and Fig. 3.12b shows the result after

applying the l1-SVD algorithm over the observation matrix alone. As mentioned above,

the resolutions in the system displayed in the previous figures are unacceptable owing to

the fact that the size of the channel estimates (the number of subchannels N and symbols

L) is limited by the computational cost of compressive sensing and matrix multiplication

for the MUSIC algorithm. This size is less than the standard DAB configuration. The-

refore the smaller dimensions of the subarray matrix are produced, the wider separation

between the receiver grid arrays is supplied.

Nevertheless, no evidence of the maximum subarray size could be computed, which

might be determined in future work. Fig. 3.13a and Fig. 3.13b show the simulation

when applying a single time sample compressive sensing onto five paths of signals (with

additional cluster signals) involving two close targets. It is able to detect the targets, but

the simulation results display a greater level of noise. From the figures, it can be predicted

that l1-SVD is able to work with a higher power of direct signal, whilst this is not likely

for its counterpart. The computational time for each algorithm when applying a three-

multipath scenario (as in Fig. 3.8 and Fig. 3.11) is shown in Table 3.1.

In conclusion, the new compressive sensing algorithms extend favours in target reso-

lution and clutter suppression by eliminating sidelobes, but they are more complex. OMP,

a low intricacy compressive sensing algorithm, has been actualised in [60]. It was found

that OMP cannot control direct arrivals in the experimental data and it had to be reinsta-

ted by more expensive computation basis pursuit for a single time sample and l1-SVD for

multiple time samples.

62



(a)

(b)

Figure 3.12: The simulation result from l1-SVD for two closed target parameters, com-

pared with the signal representation where: (a) sparse signal representation (ASV ) is dis-

played; and (b) the extraction result from l1-SVD in two dimensions is shown. The num-

ber of snapshots is equal to 500.
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(a)

(b)

Figure 3.13: Compressive sensing with single time sample (BP) experiments on two close

targets in: (a) time delay domain; and (b) Doppler frequency domain.
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Figure 3.14: Comparison between the MIMO and SISO system using instantaneous com-

pressive sensing algorithms (BP vs l1-SVD) where: (a) power of received target signals

are shown; and (b) average power of noise leakages are shown.
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3.5.3 Signal extractions using widely-separated radar receivers

This work considers two transmitters and two receivers in MIMO-OFDM radar. In this

case, all the antennas are separately located. Each transmitter uses 227.36 MHz in carrier

frequency, along with 1 kHz spacing between the subcarriers. The number of subchannels

is 64, whereas 32 blocks per frame are sent. The difference between the two transmitters

lies in the complex data symbols. For comparison, there is also a simulation model for one

transmitter and one receiver, where the same configurations are assumed. The delay time

from the first transmitter (the same transmitter in the SISO system) is 0.1818 ms received

by the first receiver, and the time of signal reflected by the target is 0.4242 ms from the

first sender to the first receiver. The target Doppler frequency is assumed to be constant

in a period of sampling that is equal to 423.5294 Hz. In the simulations, the difference

between the attenuations in power (dB) of the direct and the target paths are varied. It is

assumed that the smallest direct signal power received at the receiver is equal to the target

signal power.

Fig. 3.14a and Fig. 3.14b display the results of target power and noise power using

compressive sensing methods respectively. These figures demonstrate the characteristics

of extracted received signal while contrasting the direct signal power and the target po-

wer. It is not surprising that basis pursuits for both MIMO and SISO systems produce the

smallest amount of noise leakages as they use only one single time sample. It is worth

emphasising that basis pursuit for both MIMO and SISO systems provides similar results

for both target and noise signal. Regarding the target power, the MIMO and SISO basis

pursuit, as well as its counterpart SISO l1-SVD, performs better than MIMO l1-SVD if the

difference between the reference signal and the surveillance signal is lower than 40 dB. In

the higher difference, however, the target signatures from all algorithms are below -100

dB, where the signal strength from l1-SVD are higher. These simulation outcomes do not

infer the disadvantage of MIMO but they show the worthwhile consideration which lead

to presentations in the following chapters. It is also shown by referring to the simulations

that diversity from l1-SVD might not be achieved. The following presents a discussion of

the numerical results comparing between MIMO and SISO are followed. The compari-

sons are shown in both the delay time and Doppler frequency domain. It is shown that all

the methods have the capability to detect the target if the direct signal power is not higher

than 10 dB corresponding to the target.
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Figure 3.15: Instantaneous numerical results when applying centralised l1-SVD over the

MIMO and SISO systems in delay time domain where: (a) the power of direct path and

target path is equal; and (b) direct path power is 20 dB higher. The number of snapshots

is 200.
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Figure 3.16: Instantaneous numerical results when applying centralised l1-SVD over the

MIMO and SISO systems in Doppler frequency domain where: (a) the power of direct

path and target path are equal; and (b) the direct path power is 20 dB higher. The number

of snapshots is 200.
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Figure 3.17: Instantaneous numerical results when applying centralised basis pursuit over

the MIMO and SISO systems in delay time domain where: (a) the power of the direct

path is 10 dB higher; and (b) the power of the direct path is 50 dB higher.
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Figure 3.18: Instantaneous numerical results when applying centralised basis pursuit over

the MIMO and SISO systems in the Doppler frequency domain where: (a) the power of

the direct path is 10 dB higher; and (b) the power of the direct path is 50 dB higher.
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In the MIMO scenario, the results display more peaks in the delay domain due to two

illuminations from another transmitter. This is an advantage of using MIMO transcei-

vers when the extracted parameters can determine the locations of the transmitters, and

the target in the xy-plane by applying the available association techniques. In order to

avoid data associations, this thesis performs centralised compressive sensing by stacking

the received signals from each receive antenna together. The overcomplete matrix B is

enlarged and the signals are reconstructed with the larger dimensions. In Fig. 3.15b, the

target reflections from the MIMO scenario are decreased when the direct signal is stronger

compared to the SISO version, whereas this impact is not displayed in Fig. 3.15a if the

multipath powers are equal. This is similar to the simulation in Fig. 3.16a and Fig. 3.16b,

l1-SVD, with MIMO still exhibiting a problem. The Doppler signature of the detected

signal for multiple antennas is much lower in power in Fig. 3.16b. This means that the

target signature can be obviously captured if the power difference between the direct and

target path is less than 20 dB. On the other hand, basis pursuit provides some promising

results, as shown in Fig. 3.17a and Fig. 3.17b although the signal power difference rea-

ches 50 dB as in Fig. 3.17b. In Fig. 3.18a and Fig 3.18b, the simulation results confirm

the detection of the target at the same power difference. With a 50 dB difference in Fig.

3.18b, the system allows for the receiving of the reference signal without concerning the

performance of the cancellation ability. The inferior l1-SVD is caused by the correlation

between noise in the channel as the number of transceivers increases. This also demons-

trates that the centralised processing for widely separated antennas needs the association

between the received signal.

Finally, the last set of figures concerns the extraction ability in a comparison between

the MUSIC algorithm and l1-SVD. Contour plots are utilised where the plots show the

parameter values, such as time delays and Doppler frequencies. The greater the contour

intensity, the stronger the power received. To demonstrate the exact scenario, Fig. 3.19a

and Fig. 3.19b show that the expected sparse signal should be received at the first and

the second radar receivers respectively. Fig. 3.20a and Fig. 3.20b display the extraction

ability as seen from the first antenna, using l1-SVD and MUSIC respectively, while the

second antenna numerical simulation is shown in Fig. 3.21a and Fig. 3.21b. It is evident

that l1-SVD performs better than MUSIC as the correct location of path parameters are

determined. On the other hand, in the Doppler domain, the contours extracted by the

MUSIC algorithm are not solid and the flaws occur similarly for both antennas. The

reason for the contour plot is to demonstrate how difficult it is for the received parameters
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Figure 3.19: Original sparse signals for: (a) the first receiver; (b) the second receiver
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Figure 3.20: Contour plots for the first receiver applying: (a) l1-SVD; (b) MUSIC
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Extractions of multi-path signals using L1-SVD with reciever 2
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Extractions of multi-path signals using MUSIC with reciever 2
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Figure 3.21: Contour plots for the second receiver applying: (a) l1-SVD; (b) MUSIC
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from different antennas to be combined without an impressive associated techniques. As

this is beyond the scope of this thesis, however, the details of receiver association and

localisation techniques will be discussed in future works.

3.6 Summary

In this chapter, the MIMO-OFDM passive radar setup is focused, in terms of widely-

spread transceiver pairs. This thesis adapts the 2D signal model presented in the litera-

ture to derive MIMO passive radar equation. This chapter also provides basic concept

of OFDM passive radar signal and channel model. With widely-separated antennas, the

radars are suitable for distributed target detection, unlike the next chapter. 2D matched

filter is also discussed and manipulated in MIMO configuration. Regarding signal ex-

traction algorithms, compressive sensing methods with different number of snapshots are

proposed in both SISO and MIMO scenarios. l1-SVD has been applied to the multiple

snapshots measurement signal and supplies impressive results compared to the MUSIC

algorithm. However, the multiple samples CS did not provide satisfaction when multiple

antennas were equipped and processor performs the algorithm centrally. As mentioned in

[11], dealing with signals of multiple transmitters where it is not ensure which transmit-

ters are belong to is not a trivial issue. In order to receive the expected diversity gain and

accurate estimation, suitable association techniques are required. The idea of one-time

sample CS become interesting and other algorithm should be discussed as Basis Pursuit

requires much resources. The extracted parameters from this chapter are also not suffi-

cient in target localisation, as the data from each receiver need to be associated. In [92],

MIMO radars with co-located antennas increase the capability of parameter identification

and allow the arrays to be applied with some adaptive techniques. Due to lacking of the

joint parameters or the fact that beamformer is not feasible in widely-spread receivers,

the next chapter presents co-located receivers, along with a new algorithm which is more

efficient than the previous methods.
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Chapter 4

OFDM passive radar using MIMO with

co-located antennas

4.1 Introduction

In co-operating with the SFN, the 2D channel estimates of OFDM signals increase com-

plexity in extracting and associating the signals with their source, because the same fre-

quency is transmitted. The possibility of utilising 3D channel model becomes tempting,

which was studied in [93] using MIMO co-located antennas. The co-located receiver

requires less space than the separate platforms. Furthermore, in some applications, espe-

cially military operations, it is difficult to associate the data with each widely separated

antennas. System security can be monitored centrally as the receivers are located in the

same place.

Without the algorithm of data fusion between each widely-separated antenna, this

research employs the antenna array receiver to improve parameter identifiability [92]. The

2D channel model for the OFDM waveforms is extended to 3D for extracting the angle

of arrivals. Here, the signal extraction methods employ compressive sensing which was

already presented in the passive radar signal processing [16]. Employing the CS theory,

the 3D sparse signal can be analysed. A method which can be applied to increase the

SINR should also be discussed. Array beamforming is an algorithm that has been utilised

in many areas of research. The significant impact of beamforming starts from [57], where

the MVDR technique is proposed. As the robustness of the system can be quantified

by a gain against white noise caused by the uncorrelated errors, a quadratic inequality

constraint on the array gain against the uncorrelated noise was also proposed in [57],

where the output power condition on multiple linear equality constraints is diminished.
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The projection of undecided weights in the subspace orthogonal to the linear constraints

can be exploited. MVDR is also used in the direct position determination concept in the

electromagnetic energy emitting source localisation [94]. This technique is an alternative

to the maximum likelihood in case that the number of sources is unknown and their powers

are fragile.

This chapter begins with the modelling of the system and signal employed in co-

located receivers. In contrast to the 2D matched filter in widely-spread receivers, this

chapter proposes 3D matched filter followed by a discussion of sensing matrix used for CS

algorithm. Then, a statistical-based compressive sensing algorithm for signal extraction,

namely, Fast-BesselK is presented. It is a method relied on the Bayesian Compressive

Sensing, which is impressive in a modern area of research [95]. The Cramer-Rao Lower

Bound for this 3D channel estimates is also derived. This chapter also presents the ap-

plication of compressive beamforming. The simulations at the end of this chapter starts

by comparing the extraction output using multiple time samples CS, l1-SVD, between 2D

and 3D channel estimates models. For the 2D problem, it is shown in the previous chap-

ter that the CS-based method is suited for an application with the passive radar. Applying

to 3D problem, however, the CS-based algorithms do not provide satisfactory results.

Fast-BesselK results are illustrated and demonstrate the 3D signal reconstruction with the

analysis. Beamforming results and the illustrations of CRLB conclude this chapter.

4.2 System model for co-located receivers

A MIMO-OFDM passive radar system is shown in Fig. 4.1. The omnidirectional MIMO

transmitter is comprised of nt distributed BSs while the MIMO receiver is equipped with

an array of nr collocated antennas. The OFDM signal being transmitted has parameters

according to the DAB standard (see Table 2.1).

4.2.1 Three-dimensional receiver signal model

Using the transmitter signal discussed in Section 3.2.1, each of the components in (3.8)

will now be discussed individually. First assume that at the transmitter, the transmit power

is Pk and any transmit antenna gain is Gk(·), hence the (linear) Effective Isotropic Radiated

Power (EIRP) of k-th communication transmitter is: PkGk(·). Next, τkm = Dkm/c is the

time delay as the signals travel the distance, Dkm, from the k-th BS to the m-th Uniform

Linear Array (ULA) receiver element. φk is the angle of arrival of each k-th transmitter’s
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Figure 4.1: MIMO passive radar system model. (1) is the OFDM base station and (2) is a

co-located receive antenna

ray. vrel refers to the relative velocity of the target and c is the speed of light.

Reference Signal: The expected reference signal observed at the m-th receive antenna

can be written:

x(m)
r (t) =

nt

∑
k=1

xk(m)
r (t)

=
nt

∑
k=1

√
PkGkm

Dkm(t)
xk(m)(t− τkm(t))e

j2π[akm f kt+(m−1) d
λk

sin(φk)], (4.1)

where akm means the ratio between relative velocity and speed of light (= vk(m)
rel /c). The

Doppler shift with respect to the (k,m)-th transmitter/receiver pair is defined: f k(m)
d =

akm f k, where f k denotes the narrowband carrier frequency of k-th transmitting BS.

Surveillance (Target) signal: The target is thought of as being composed of a series

of Q unresolvable moving scatterers. As a result, the expected signal received at the m-th

antenna is expressed as:

x(m)
s (t) =

nt

∑
k=1

xk(m)
s (t)

=
nt

∑
k=1

Q

∑
q=1

√
PkGkqσkq

Dkq(t)Dqm(t)
xk(m)(t− τkq(t)− τqm(t))e

j2π([akq+aqm] f kt+(m−1) d
λk

sin(φq)),

(4.2)

where Dkq is the distance between the kth BS and qth target scatterer and Dqm is distance

between the qth target scatterer and the mth receiver. The parameters of time delays (τkq
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and τqm), along with the range-rate ratios (akq and aqm), are declared in the same way

as the reference signal parameters above. Taking a distributed targets approach similar

to [96], the fading contributions of each target scatterer are modelled using the term,

σkq, which is defined as a function of RCS, σ(x0,y0,z0), with respect to the source of

transmitted signal k, where:

σ(x0,y0,z0) =
Q

∑
q=1

αqδ (x0− xq)δ (y0− yq)δ (z0− zq), (4.3)

where a centre of mass of the target locates at the point (x0,y0,z0) and a random variable

αq ∼Nc (0,1) is denoted and δ (·) denotes the Dirac delta function. For less complexity,

the simulation in this thesis assumes the point target and also have an assumption that the

power scattered by the target is much lower than the reference and clutter signal.

In passive radar [5], the spatially dependent bistatic RCS, target dynamics and the

radar design parameters can be combined into the target detection and location. Using

processing approaches, targets can be detected in range, Doppler and angle. The target

bistatic RCS, σkq may differ from the monostatic version, especially for stealth targets.

The forward scatter region is determined as the bistatic angle can be expanded to 180◦

and the target cross-sections can be significantly raised. Refer to Babinet’s principle,

the forward scatter from a perferctly-absorbing target is comparable to a target-shaped

aperture in a perfectly-conducting sheet. If A designates a physical cross-sectional area

of a target, a radar cross-section can be σkq = 4πA 2/λ 2 whereas φkq = λ/dt denotes the

angular width of the scattered signal in the horizontal or vertical plane, where the target

linear dimension in the corresponding plane is denoted by dt . In [5], it is also shown that

the forward scatter is more suitable if low frequencies are operated. This sufficiently wide

angular range leads to an accomplishment in target detection. The range approximation,

however, is not straightforwardly calculated employing forward scatter.

Clutter signal: The clutter signal arises from reflections from non-target related scat-

terers. Assuming Pc of these statistically independent scatterers, the clutter signal can be

written as:
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x(m)
c (t) =

nt

∑
k=1

xk(m)
c (t)

=
nt

∑
k=1

Pc

∑
c=1

√
PkGkcσkc

DkcDpm(t)
xk(m)(t− τkc(t)− τcm(t))e

j2π([akc+acm] f kt+(m−1) d
λk

sin(φc)).

(4.4)

As seen from (4.1), (4.2) and (4.4), the terms:
√

PkGkm
Dkm(t)

,
√

PkGkqσkq
Dkq(t)Dqm(t)

,
√

PkGkcσkc
DkcDpm(t)

quantify a

different attenuation depending on each category of received signal components between

a transmitter k and an antenna element m, denoted as Ak(m)
re f , Ak(m)

q and Ak(m)
c respectively.

Obviously, these signal components perform a multipath scenario within each transceiver

pair. Therefore, the attenuation at the received element can be derived as Ak(m)
p . Now,

substituting (4.1), (4.2) and (4.4) into (3.8), a complete expression for received signal

may now be written:

y(m)(t) =
nt

∑
k=1

Np

∑
p

Ak(m)
p (t)e

j2π(ak(m)
p f kt+(m−1) d

λk
sin(φ k(m)

p ))
xk(m)(t− τ

k(m)
p (t))+wk(m)(t).

(4.5)

Regarding (4.5), apart from the attenuation mentioned above, three substantial pa-

rameters are also replaced. Their subscripts are altered to p instead of each individual

category. This representation displays multipath scenario which is caused by the direct

signal, the reflected signals from the clutters and the target where the total number of path

is denoted by Np.

4.2.2 Three-dimensional channel estimation using matched filter

The idea of matched filter in Section 2.1 leads to the following proposition.

Proposition 1. Given the idea of matched filtering with respect to a known transmitted

waveform, the matched filter output may be written in terms of a 3D Discrete Fourier

Transform of:

Hk(m)
n,i = Ak(m)

0 [sk(i)[n]]
2Te

j2π[ak(m)
0 f kiT ′+(m−1) d

λk
sinφ

k(m)
0 −n∆ f τ

k(m)
0 ]

, (4.6)

where Hk(m)
n,i is the channel estimates of MIMO-OFDM passive radar using co-located

antennas.
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The proof of the above proposition is in Section A.2. In simulation, a multidimensi-

onal Fourier transform can be performed using a function fftn(x) in MATLAB. In reality,

however, to examine the matched filter output might require all of the incoming OFDM

subcarriers and blocks. Therefore, a sensing method which employs sub-Nyquist sam-

pling is of interest.

4.3 Application of compressive sensing

As mentioned, one of the key aims of this work is to extract the 3D target parameters in

a computationally tractable and efficient manner. The concept of sparse signal manipula-

tion is first introduced followed by a discussion about the sensing matrix in compressive

sensing. Furthermore, the Bayesian compressive sensing technique, known as the Fast-

BesselK algorithm, is then described.

4.3.1 Sparse representation

Signals received by MIMO passive radar receiver can be represented as a Fourier trans-

form comprising 3D channel target parameters (4.6). Within this Fourier transform, the

received signal is composed of a few of non-zero elements while all the other values are

close to zero. This kind of sparsity initiates the idea of using compressive sensing met-

hods for signal reconstruction. With the CS, sub-Nyquist sampling rates are permitted.

This means the number of measurements at the receiver will be reduced. Assume x is

sensed linearly through projections on the rows of a sensing matrix Φ† ∈ CN′L′×NL, for

each antenna m, consider the measurement y(m) ∈ CN′L′ which can be written as:

y(m) = Φ
†x+w(m), (4.7)

where x∈CNL corresponds to the matched filter output of the OFDM signal whose dimen-

sions relate to the number of subcarriers(N) and the number of blocks(L). The sensing

matrix which is designed in this work is discussed as follows. Taking a similar approach

to the spatial smoothing method in [32], a subarray matrix, Gk(m), is now initialised:

Gk(m)(τ̂, â, φ̂) =


gk(m)

1,1 . . . gk(m)
1,L′

...
...

gk(m)
N′,1 . . . gk(m)

N′,L′

 (4.8)

The notation N′ and L′ stand for the sensing dimensions where: N′� N, L′� L. It

should be noted that the number of antennas nr is less than the possible values of angle of
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arrivals φ . Regarding the elements of the subarray matrix, these terms are defined:

gk(m)
n,i (τ̂, â, φ̂) = e

j2π[â f kiT ′+(m−1) d
λk

sin φ̂−n∆ f τ̂]
, (4.9)

where (τ̂, â, φ̂) corresponds to the expected estimated target parameter. Next, a vectoriza-

tion operation is applied that a vector is generated from the subarray matrix in a column-

wise manner in order to acquire a steering vector bk(m)(τ̂, â, φ̂) = vec{Gk(m)(τ̂, â, φ̂)}.

By stacking the steering vectors over each other, the channel estimates in (4.6) may be

rewritten as:

h(m) =
nt

∑
k=1

∑
p

Ak(m)
p bk(m)(τ̂p, âp, φ̂p). (4.10)

By performing the following manipulations, h(m) can be rewritten in the same form

as the well-known CS equation in (4.7), where the channel estimates are applied as the

measurements y(m) according to [16], thus re-arrange Bk(m)
Np

and define α
k(m)
Np

as:

Bk(m)
Np

= [bk(m)(τ̂1, â1, φ̂1) . . .bk(m)(τ̂Np, âNp, φ̂Np)] (4.11)

α
k(m)
Np

= [Ak(m)
1 . . .Ak(m)

Np
]T , (4.12)

where α
k(m)
Np

can be referred to x in (4.7). Thus, h(m) can be rewritten as:

h(m) =
nt

∑
k=1

Bk(m)
Np

α
k(m)
Np

+wk(m). (4.13)

In theory, it may be possible to use a least-squares method to solve for α
k(m)
Np

however

the approach taken here will be to construct a larger list of possible parameters, which will

in turn make the sensing matrix Bk(m) fat. The overall process described here is depicted

in Fig.4.2 and in the analysis that follows, CS algorithms will be used to extract the target

parameters from Bk(m)αk(m). It should be clear at this point that Bk(m)αk(m) contains many

zero elements, i.e., has a sparse structure, due to the opening comments in this subsection

regarding 3D Fourier transform.

4.3.2 Discussion of sensing matrix for OFDM passive radar

Apart from the sparsity in the vector to be recovered, the numerical structure of the sen-

sing matrix, Bk(m), also needs to be considered. For CS algorithms to be applicable, the

sensing matrix needs to satisfy two important properties known as the null space pro-

perty (NSP) and restricted isometry property (RIP) [97]. As mentioned in the reference

(see theorem 2.12), both Gaussian and Bernoulli random matrices satisfy the NSP and

82



Figure 4.2: Illustration of sparse representation and manipulation for passive radar.

the RIP properties, however, it is not clear whether a MIMO passive radar will provide

measurements with such a convenient structure. In order to ensure that Bk(m) will satisfy

NSP and RIP properties, it should be noted firstly that it is orthonormal in structure, due

to the fact that is derived from a DFT, and using this in combination with theorem 4.4

in [97] will facilitate NSP and the RIP provided that the number of measurements, Nmes,

satisfies:

Nmes ≥Ccoh2Np ln4(Nα), (4.14)

Nmes is in fact equal to the product of N′,L′ and nr. C > 0 is a suitable constant, Np

is the number of multipath components and determines the sparsity in the vector αk(m)

which totally consists of Nα elements. In this work, coh stands for the coherence between

the random measurement basis and Fourier sparsity basis, which can be defined as:

coh =
√

Nα max
1≤i, j≤Nα

|〈bi,F j〉|. (4.15)

The expression in (4.14) guarantees the sparse recovery with probability of at least

1−N−(C1/C2) ln3(Nα )
α , where C1,C2 > 0 are some constants.

4.3.3 Bayesian-based compressive sensing: Fast-BesselK method

In [90] and [98], the viability of the basis pursuit (BP) algorithm, the interior point method

and the l1-SVD algorithm was examined in an attempt to produce algorithmic tractability.

It was found that the results for 2D parameter extraction were acceptable, but 3D para-

meter extraction was not tractable. Along with this issue, problems arose in the low SNR

regime. In contrast to the convex optimisation used in this work, the BP equation has also
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been solved by other techniques, such as iterative shrinkage [99], where it was used in

time-domain least square channel estimator for the OFDM system with IQ imbalances.

Its complexity, however, is still greater than matching pursuit and other CS methods. Alt-

hough, adaptive orthogonal matching pursuit is applied in the full duplex OFDM systems

as well [100], it has been shown in previous passive radar works that the reconstruction

signal is subject to more leakages and errors than BP. Therefore, statistical engagement is

of interest.

In [98] it was seen that a common CS algorithm, known as the basis pursuit (BP)

algorithm, was too computationally expensive for 3D target parameter extraction. In this

subsection, Bayesian compressive sensing (BCS) [101] is introduced to solve this pro-

blem. BCS adopts a two-layer hierarchical prior model, where a conditional prior and a

hyperprior probability density function (PDF) are associated. Previously, BCS has been

applied to real-valued data while MIMO passive radar utilises complex data. This the-

sis, therefore, employs the Fast-BesselK [102] in order to reconstruct an expected signal

from noisy MIMO measurements. In the following, the derivation of a model as a pro-

babilistic expression is discussed. The objective function is then considered and finally

the parameter updates are accomplished using an Expectation-Maximization (EM) [103]

algorithm.

Probabilistic Model: The BesselK model for (4.13) amplified by the 2-Layer prior for

α is written as:

p(h,α,γ) = p(h|α)p(α|γ)p(γ). (4.16)

Given that C N (·|x,Y) signifies a multivariate complex Gaussian PDF with mean vec-

tor x and covariance matrix Y, then p(h|α) = C N (h|Bα,β−1I) for the complex data

system. β indicates the noise precision and the identity matrix is denoted by I. The con-

ditional prior pdf p(α|γ) is chosen to partition in a product of zero-mean Gaussian PDF

as p(α|γ) = ∏i p(αi|γi), where

p(αi|γi) = (
ρ

πγi
)ρe(−ρ

|αi|2
γi

)
. (4.17)

When α is complex, the assignment ρ = 1 is made. It is mentioned in [102] that a

sparsity-inducing prior for real weights is not automatically sparsity-inducing for com-

plex weights. The mixing density p(γ) is taken by p(γ) = ∏i p(γi;ε,η) with p(γi;ε,η),

Gamma(γi;ε,η). The prior PDF for α can be written as p(α;ε,η)=
∫

p(α|γ)p(γ;ε,η)dγ =
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∏i p(αi;ε,η), where

p(αi;ε,η) =
2(ρη)

(ε+ρ)
2

πρΓ(ε)
|αi|ε−ρKε−ρ(2

√
ρη |αi|). (4.18)

and Kv(·) is the modified Bessel function of the second kind and order v. By definition of

the gamma PDF, Gamma(·|y,z) = zy

Γ(y)x
y−1 exp(−zx), where y is a shaping parameter and

z is a rate parameter.

Cost Function: The vector, h, is used to establish the Maximum-a-Posteriori (MAP)

estimate of γ as:

γ̂(h) = argmax
γ

p(γ|h)

= argmax
γ

log
∫

p(h|α)p(α|γ)p(γ)dα. (4.19)

Closed-form solution is not available for the MAP estimate in (4.19). The Relevance

Vector Machin (RVM) [104], an iterative inference method, must be applied. Employing

the framework in [105], this algorithm is considered as a fast version. Then, the minimizer

of

L , ρhHC−1h+ρ log |C|− log p(γ), (4.20)

is the estimator of γ , i.e., γ̂ , where C , β−1I +BΓBH and Γ = diag(γ). Given Γ̂ =

diag(γ̂(h)) and the expectation with respect to the pdf p(a) is defined as: 〈·〉p(a). The

estimator of α is:

α̂(h) = 〈α〉p(α|h;γ̂(h)) = (BHB+β
−1

Γ̂
−1)−1BHh (4.21)

Correspondingly, by enforcing Theorem 2 in [106], α̂(h) is the minimizer of

L (α), ρ‖h−Bα‖2
2 +β

−1r(α), (4.22)

with r(α) = ∑i r(αi) is the penalty function, where:

r(αi;ε,η) = min
γi
{ρ |αi|2

γi
+ρ log(β−1 + γi)+(1− ε) logγi +ηγi} (4.23)

Estimation using EM-based Sparse Bayesian Inference: The EM algorithm handles {α,h}

as the complete data for γ . An estimate of γ , which is calculated in the M-step is the max-

imizer of:

〈log p(h|α)p(α|γ)p(γ)〉p(α;γ̂) (4.24)
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with p(α|γ̂) already calculated in the E-step. The parameter β is encompassed in the

framework since it notably affects the sparsity-inducing property on r(α). This means to

find the MAP estimate of {γ,β}, which is the maximizer of

L (γ,β ) = log p(h,γ,β ) = log(p(h|γ,β )p(γ)p(β )). (4.25)

It is necessary that {α,h} be the complete data for {γ,β}. From this, the EM algo-

rithm solves the conditional expectation

〈log p(h,α,γ,β )〉p(α|h,γ [t],β [t]) (4.26)

where p(α|h,γ [t],β [t]) = C N (α|µ [t],Σ[t]). The notation (·)[t] designates the estimate of

the argument at iteration t. The parameters of the conditional pdf of α indicate

Σ
[t] = (β [t]BHB+(Γ[t])−1)−1, (4.27)

µ
[t] = β

[t]
Σ
[t]BHh. (4.28)

Given that Nα refers to the total number of α elements (or columns of B) and i =

1, . . . ,Nα , it is possible to subsequently update the estimate of {γ,β} from eqn (4.26) to

acquire:

γ
[t+1]
i =

ε−ρ−1+
√
(ε−ρ−1)2 +4ρη〈|αi|2〉[t]

2η
, (4.29)

β
[t+1] =

N′L′nr

‖h−Bµ
[t]‖2

2 + tr(BHBΣ[t])
, (4.30)

where tr(·) is the trace operator and 〈|αi|2〉[t] is the ith diagonal component of Σ[t] +

µ [t](µ [t])H .

As in the Appendix of [102] with the function ϕ
[t]
i parametrised by ε , η , a[t]i , cT

i Σ
[t]
−ici,

and b[t]i , β [t]cT
i Σ

[t]
−iB

Hh, the update of an estimate of γi can be written:

γ
new
i = ϕ

[t]
i (γold

i ), (4.31)

where Σ
[t]
−i , (β [t]BHB+∑ j 6=i(γ

[t]
j )
−1c jcT

j )
−1 and ci signifies an Nα×1 vector of all zeros

but 1 at the ith position. γi is updated as follows. The fixed points of the function ϕ
[t]
i are

calculated by determining the fourth order equation:

0 = γi

(
ηγ

3
i + γ

2
i
[
2ηai− (ε−ρ−1)

]
+ γi
[
ηa2

i −2(ε−ρ−1)ai−ρ(ai + |bi|2)
]

− (ε−1)a2
i

)
(4.32)
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γ
[t+1]
i can be set γ

[t+1]
i = 0 provided that there are no strictly-positive fixed points

of ϕ
[t]
i , i.e., the fixed point of ϕ

[t]
i is 0. On the other hand, the fixed point γ̃i, which

corresponds to the largest value among all strictly positive fixed points, will be chosen if

the solutions exist. In conclusion, the algorithm mentioned above is written in the steps

with connection with the beamforming algorithm as shown in Section 4.4.4.

4.4 Compressive beamforming for MIMO-OFDM passive radar

The following starts by the modifying the signal model for applying beamforming techni-

que and then the novel convex constrained optimisation-based beamforming algorithm

procedure is described.

4.4.1 Signal formulation

Comparing the signal model in (4.5) with the corresponding channel estimates in (4.10)

and recall that there is one target reflection and Np− 1 unwanted reference and clutter

signals and Np < nr. At time sample t, the N′L′nr × 1 receive signal model for ULA

beamforming can be written as:

h(t) =
nt

∑
k=1

(
Ak

0(t)b
k(τ̂0, â0, φ̂0)+

Np−1

∑
p=1

Ak
p(t)b

k(τ̂p, âp, φ̂p)+wk(t)
)

(4.33)

According to the above expression, the N′L′nr×1 expected surveillance signal steer-

ing vector is denoted by bk(τ̂0, â0, φ̂0). The receiver array steering vectors which belong

to the other incoming signals are declared as bk(τ̂p, âp, φ̂p). Similar to the previous chap-

ter, τ̂, â, φ̂ refer to the parameters that are extracted using the proposed compressive sen-

sing algorithms, i.e., time delay, Doppler frequency and angles of arrivals, respectively.

Additionally, the signal attenuation is denoted by Ak
p(t) and wk(t) represents N′L′nr× 1

additive noise which is statisically independent from the source waveforms. From this

explanation, the first addend in the expression above determines the surveillance signal

whereas the unwanted signals are shown by the other. The steering vectors are derived

as in Section 4.3.1. Given that the signal and noise are uncorrelated, at a time sample t,

t ∈ {t1, . . . , tM}, the correlation matrix of the data at the nr-array receiver is:

R = α
2
0 b(τ̂0, â0, φ̂0)bH(τ̂0, â0, φ̂0)+

Np−1

∑
p=1

α
2
pb(τ̂p, âp, φ̂p)bH(τ̂p, âp, φ̂p)+Rw (4.34)

where α2
p = E{|Ap(t)|2} designates the power of each path, and Rw embodies the system

noise correlation matrix.
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4.4.2 Conventional beamformers

An assortment of N′L′nr complex weights residing in the narrowband beamformer can be

considered as a linear filter [107]. The desired signal should be approximated as the result

of the beamformer as in:

y(t) = Â0(t) = ω
Hh(t). (4.35)

The purpose of the beamformer is to increase the target-of-interest from the expected

steering vector b(τ̂0, â0, φ̂0) and reduce unwanted signals from other angles. The beam

response can be defined as [108]

B(τp,ap,φp), ω
Hb(τp,ap,φp). (4.36)

The antenna pattern of this passive radar can be calculated from |B(τp,ap,φp)|2 and the

beamformer output power can be shown as

Pr(τ̂0, â0, φ̂0), ω
HRhhω. (4.37)

In order to appoint the weights, the optimisation benchmarks, e.g. minimum mean square

error (MMSE), minimum variance distortionless response (MVDR) and minimum power

distortionless response, can be employed. Using MMSE, it can be shown that the estima-

tor of A0(t) refers to the conditional mean of the expected signal given the measurements

as shown:

ÂMMSE(t) = E{A0(t)|h(t),h(t−1),h(t−2), · · ·} ≈ E{A0(t)|h(t)}. (4.38)

Due to the fact that the estimator should be linear, the spatial Wiener filter weights are

utilised to minimise the mean square error as follows:

ωMS(τ̂0, â0, φ̂0) = [E{h(t)hH(t)}]−1E{h(t)A∗0(t)}= R−1
hh b(τ̂0, â0, φ̂0)α

2
0 . (4.39)

Then the estimator is shown as:

ÂMMSE(t) = ω
H
MS(τ̂0, â0, φ̂0)h(t). (4.40)

Also, the maximum a posteriori (MAP) can be used if the signals and noise are Gaus-

sian. The MVDR, however, minimises the estimation error variance with respect to a dis-

tortionless constraint. Denote Rint be corresponded to a covariance matrix of the unwan-

ted signals and noise, i.e. Rint = ∑
Np−1
p=1 α2

pb(τ̂p, âp, φ̂p)bH(τ̂p, âp, φ̂p)+Rw. The MVDR

weights are calculated by:

ωMV =
R−1

int b(τ̂0, â0, φ̂0)

bH(τ̂0, â0, φ̂0)R−1
int b(τ̂0, â0, φ̂0)

. (4.41)
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The beamformer output utilising the minimum power distortionless response by sub-

stituting Rhh over Rint can equivalently provided if Rhh,Rint ,α
2
0 , and b(τ̂0, â0, φ̂0) are

approachable. Comparing (4.39) to (4.41), it can be shown that the formula of beam-

former should be [107], ω0(τ̂0, â0, φ̂0) = υR−1
hh b(τ̂0, â0, φ̂0), where υ is a scaling factor.

The spatial Wiener filter is applied if υ = α2
0 , and the MVDR weights are acquired if

υ = (bH(τ̂0, â0, φ̂0)R−1
hh b(τ̂0, â0, φ̂0))

−1. Additionally, the beamformer can be called opti-

mal if the weight vector can optimise the output SINR.

As discussed in [109], a fine covariance matrix can be invented allowing that a de-

vice is in a low dynamic scenario. In an extremely dynamic scheme, the receiver can be

manoeuvred rapidly. Specifically, in the three-dimensional territory, this makes the inter-

related stationary time decrease. When the receiver array is drifting at an angular velocity

ωr, one of the parameters of interest, φ̂ , will alter from φ1 to φ2 and φ2− φ1 = ωrT int ,

providing that T int corresponds to the stationary time. For a limited number of snapshots

M, the actual correlation matrix can be determined. M can be related to the actual sam-

pling time, Ts, that is M = Ts fs, where fs is the sampling rate of the system. The actual

correlation matrix can be written as:

R̂M =
1
M

tM

∑
t=t1

h(t)hH(t) (4.42)

Covered by stationary and ergodic assumptions, R̂M will converge to Rhh as M→ ∞.

The MVDR weights evolve into:

ωMV =
R̂−1

M b(τ̂0, â0, φ̂0)

bH(τ̂0, â0, φ̂0)R̂−1
M b(τ̂0, â0, φ̂0)

. (4.43)

There are two problems in this scenario. First, the computational speed for the be-

amforming algorithm may not be able to cope with the alternating angular velocity. Se-

condly, conventional beamforming might not be constructed as the number of snapshots

is not adequate.

4.4.3 Convex-Constraint Optimization using MUSIC algorithm

The beamforming applied in this thesis is based on the Capon beamforming [56] where

the signal to interference plus noise ratio is magnified. This method aims to diminish

clutter signal and noise while conserving the target reflection. As mentioned in the former

chapters, the surveillance signal is known to be very weak compared to the direct and

clutter path.To achieve the beamforming goal, the classic Capon’s beamformer selects the
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weights ω as the minimiser of the output power (4.37) while the beam corresponding to

a specific direction of the target (τ̂0, â0, φ̂0) is constrained to be unity.

min ω
HRhhω

s.t. ω
H b̄(τ̂0, â0, φ̂0) = 1, (4.44)

where b̄(τ̂0, â0, φ̂0) is the actual target signal steering vector and ω denotes the optimal

weight from the conventional beamforming method. The target SINR of the array can be

written as:

SINR =
|ωHb(τ̂0, â0, φ̂0)A0(t)|2

ωHRintω
, (4.45)

where b(τ̂0, â0, φ̂0)A0(t) is the expected target signal. Substitute into (4.45) with the op-

timisation expression of the beamforming in (4.44), the resulted equation can be shown

as:

SINR =nrα
2
0 bH(τ̂0, â0, φ̂0)R−1

int b(τ̂0, â0, φ̂0)

×
|bH(τ̂0, â0, φ̂0)R−1

int b̄(τ̂0, â0, φ̂0)|2(
bH(τ̂0, â0, φ̂0)R−1

int b(τ̂0, â0, φ̂0)
)(

b̄H(τ̂0, â0, φ̂0)R−1
int b̄(τ̂0, â0, φ̂0)

) , (4.46)

where

0≤
|bH(τ̂0, â0, φ̂0)R−1

int b̄(τ̂0, â0, φ̂0)|2(
bH(τ̂0, â0, φ̂0)R−1

int b(τ̂0, â0, φ̂0)
)(

b̄H(τ̂0, â0, φ̂0)R−1
int b̄(τ̂0, â0, φ̂0)

) ≤ 1. (4.47)

In [109], it was claimed that the mismatch between the estimated target steering vec-

tor b(τ̂0, â0, φ̂0) and the actual target steering vector b̄(τ̂0, â0, φ̂0) leads to the aggravation

of the effectiveness of the SINR. As a result, the steering vector b(τ̂0, â0, φ̂0) can be cal-

culated by applying the multiple signal classification (MUSIC) [110] principle which can

be stated as:

Rhh = E{h(t)hH(t)}= B(τ̂P, âP, φ̂P)RAABH(τ̂P, âP, φ̂P)+β
2
wI, (4.48)

where B(τ̂P, âP, φ̂P) demonstrates a matrix of stacked steering vectors, which can be defi-

ned as {b(τ̂0, â0, φ̂0), . . . ,b(τ̂Np−1, âNp−1, φ̂Np−1)} and RAA is a signal correlation matrix.

B(τ̂P, âP, φ̂P)RAABH(τ̂P, âP, φ̂P) is a full-rank matrix since the expected signals are inde-

pendent. The noise variance is denoted by β 2
w. Given that {δ0, . . . ,δnr−1} refers to the

eigenvalues of Rhh, and the eigenvector, corresponding to the eigenvalue δi, is ∆i, it can

be shown that |Rhh−δiI|= 0. This leads to cvi = δi−β 2
w becomes the characteristic va-

lue of B(τ̂P, âP, φ̂P)RAABH(τ̂P, âP, φ̂P). Furthermore, B(τ̂P, âP, φ̂P)RAABH(τ̂P, âP, φ̂P) is a
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positive semidefinite nr× nr matrix with rank Np when the number of array elements nr

is higher than the number of impinging paths Np. The number of zeros in the eigenvalues

of B(τ̂P, âP, φ̂P)RAABH(τ̂P, âP, φ̂P) is equal to nr−Np and it can be displayed as:

cv0,cv1, . . . ,cvNp−1 > cvi = 0, (4.49)

where the index i in the above equation refers to the range of Np,Np +1, . . . ,nr−1. Con-

sequently, the eigenvalues of Rhh can be demonstrated as:

δ0,δ1, . . . ,δNp−1 > δNp = . . .= δnr−1 = β
2
w. (4.50)

As the eigenvector can be shown as (Rhh− δiI)∆i = 0, for the vectors of nr −Np

smallest eigenvalues, this can be written as:

(Rhh−δiI)∆i = B(τ̂P, âP, φ̂P)RAABH(τ̂P, âP, φ̂P)∆i +β
2
wI∆i−β

2
wI∆i = 0, (4.51)

which leads to B(τ̂P, âP, φ̂P)RAABH(τ̂P, âP, φ̂P)∆i = 0. As a result, BH(τ̂P, âP, φ̂P)∆i = 0

due to the fact that RAA is nonsingular and B(τ̂P, âP, φ̂P) is full rank. This means there are

nr−Np eigenvalues whose values are β 2
w and they coincide with the eigenvectors which

belong to a noise subspace. The conjunction between the noise and Np signal steering

vectors can be determined as:{
b(τ̂0, â0, φ̂0), . . . ,b(τ̂Np−1, âNp−1, φ̂Np−1)

}
⊥
{

∆Np, . . . ,∆nr−1
}
. (4.52)

Therefore, a noise eigenvector matrix can be constructed as Uw = {∆Np, . . . ,∆nr−1}.

Given the orthogonality mentioned above, it can be seen that:

BH(τ̂P, âP, φ̂P)UwUH
w B(τ̂P, âP, φ̂P) = 0. (4.53)

Further to this, function f (τ̂, â, φ̂) may be defined as:

f (τ̂, â, φ̂) = BH(τ̂P, âP, φ̂P)UwUH
w B(τ̂P, âP, φ̂P), (4.54)

where f (τ̂, â, φ̂) can attain the minimum output power if B(τ̂P, âP, φ̂P) (the signal steering

vectors) is orthogonal to Uw (the noise subspace eigenvectors). Consequently, a convex

constrained optimization beamforming (CCOB) algorithm is applied in order that the ro-

bustness is increased and the target signal protection is complimented. The optimization

used in this research is written as:

min
B̂

B̂H(τ̂P, âP, φ̂P)UwUH
w B̂(τ̂P, âP, φ̂P)

subject to
∥∥∥∥(I− B̄(τ̂P, âP, φ̂P)B̄H(τ̂P, âP, φ̂P)

B̄H(τ̂P, âP, φ̂P)B̄(τ̂P, âP, φ̂P)

)
B̂(τ̂P, âP, φ̂P)

∥∥∥∥2

≤ ζ , (4.55)

91



where B̄(τ̂P, âP, φ̂P) is the assumed steering vector matrix of the desired signal that will

be erroneous with respect to the actual steering vector matrix. ζ is the small positive

number. The optimal estimated value B̂(τ̂P, âP, φ̂P) can be reached. With the assumption

that the power of unwanted signal is much higher than the power of the surveillance

signal (α2
p >> α2

0 ), the total output power of the receiver array is minimised in order

to maximise the SINR. Regarding the alterations in the numerator and denominator, the

constrained optimization problem in (4.44) can be written as:

min ω
HRω

s.t. ω
HB̂(τ̂P, âP, φ̂P) = 1. (4.56)

where the optimal weight can be calculated by:

ω0 =
R−1B̂(τ̂P, âP, φ̂P)

B̂H(τ̂P, âP, φ̂P)R−1B̂(τ̂P, âP, φ̂P)
. (4.57)

The estimated desired target-reflection steering vector can be calculated from (4.55).

In conclusion, this section exploits the property of MUSIC algorithm regarding the noise

subspace and derive the optimisation expression using its orthogonality. This technique is

performed in the passive radar systems along with the compressive sensing methods. In

this thesis, the Fast-Besselk algorithm has been applied. In the literature, however, one of

the low-computation method in CS, namely, the Orthogonal Matching Pursuit (OMP), is

utilised. To complete the discussion in this chapter, the explanation of OMP is presented

next and the outcomes from both CS algorithms are demonstrated in the last section.

4.4.4 Compressive-domain beamforming algorithm

The beamforming algorithm, as well as signal reconstruction applying Fast-BesselK, is

described as in Algorithm. 2. The input parameters for Fast-BesselK algorithm are the

measurement vector h and its variance var(h) applied for the noise variance in the algo-

rithm. The other parameter required is the overcomplete matrix B which consists of the

possible steering vectors as its columns. First, the value of ρ in (4.17) is selected to 1

as the algorithm deals with the complex number. The number of iteration as well as the

value of stopping criterion are set. Then the method can choose one of the Bayesian CS

algorithm by fixing the values of ε and η . Next, the variable of the mixing density, γ ,

the noise precision, β , the parameters of the conditional PDF of α , i.e. µ and Σ and the

parameters a and b appear in (4.32) are initialised utilising the input parameters.
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Algorithm 2 CCOB with Fast-BesselK Reconstruction

1: procedure FAST-BESSELK(h,B,var(h))

2: Pick ρ = 1 for complex value.

3: Appoint an iteration counter and a termination criterion.

4: Mark ε and η for the selected method (ε = 0.5 and η = 1 for Fast-BesselK).

5: Initialise γ,β ,µ,Σ and a,b appear in (4.32)← h,B,var(h);

6: for iteration count = 0 to max iteration do

7: update ai,bi;

8: update γ ← (4.32);

9: update Σ← (4.27), µ ← (4.28), a,b and β ← (4.30);

10: if ‖µ [t−1]−µ [t]‖2 < termination criterion then

11: exit for loop.

12: end if

13: end for

14: Conclude α̂ ← µ [t] with corresponding basis functions.

15: end procedure

16: procedure CCOB(α̂)

17: Calculate ĥ = Bα̂;

18: Find R̂← ĥ(t)ĥH(t);

19: Institute (4.55) using Uw = {∆Np, . . . ,∆nr−1};

20: Compute optimal B̂(τ̂P, âP, φ̂P)← (4.55);

21: Determine ω0← (4.57)

22: end procedure

In each iteration, the parameters mentioned above are updated using (4.27)-(4.32), as

shown in the algorithm. The operation exits the loop when either the iteration counter

reaches the maximum value or the change in the value of µ is less than the stopping cri-

terion. At the end of the algorithm, the outputs include the approximation of the original

signal α and the support vector which can be recovered. The following steps regarding

the beamforming algorithm are concluded from the explanation in Section 4.4.3. The

approximated result then projects on the overcomplete matrix in order to find the chan-

nel estimates. The correlation matrix is figured out and the eigenvalue decomposition is

performed. Using the eigenvalues, the noise subspace can be construct according to the

details described. Next, the optimisation problem in (4.55) is analysed and finally the

93



antenna weights can be calculated using (4.57).

4.5 CS algorithm complexity analysis

In this section, the complexity of BCS algorithms used efficiently for the less computati-

onally demanding extraction 2D channel parameters is analysed and compared with the

Fast-BesselK approach taken by this work. Each method is compared in Table 4.1. In

Fast-BesselK, for each iteration, the calculation of (4.27) is the most complex operation.

The computation time of the matrix inversion process for matrices the size of Nα ×Nα

might be as slow as O(N3
α). Fortunately, the development of the fast relevant vector

machine algorithm [105], which applies the marginal likelihood maximisation, allows a

useful addition and deletion of candidate basis functions (columns of B). It should be

noted that complexity of this algorithm is more dependent on Np than Nα [101]. Uti-

lizing the matrix inverse identity [104], the inverse operation discussed earlier can also

be realized with reduced complexity. In conclusion, the complexity of the Fast-BesselK

algorithm can be O(NαN2
p).

Regarding the BP algorithm, the truncated Newton interior-point method [43], with

extension to complex variables as used in [16], [90], and [98], is considered. The problem

has been devised as the convex problem, Precisely, a second-order cone programming

(SOCP) problem and the computational complexity is mainly calculated from the precon-

ditioned conjugate gradients steps, which provide O(Nα) of running time. However, it is

also necessary to include the norm-operation loop for each bit according to the SOCP for-

mulation. The complexity of the BP algorithm becomes O(N2
α). Another algorithm con-

sidered in Table 4.1 is the l1-SVD. As mentioned in [2], to optimise the l1-SVD objective

function, the SOCP framework is also used and complexity is seen to be O
(
(NpNα)

3).
Regarding the OMP algorithm discussed in Section 2.4.1, the highest calculation is de-

manded for Step 3. The cost of computation is O(NpNhNα) while it requires O ((ti)Nh)

for the least squares problem at iteration ti. Better effective utilisation of OMP can be

achieved if the structured measurement matrix is used. The cost of efficient OMP is only

O(Np logNα) [111]. It is clear from Table 4.1 that the complexity of the Fast-BesselK

approach proposed by this work is comparable with other approaches and hence is reaso-

nable. Graphical illustrations of CS complexity are shown in Fig. 4.3 where the number

of measurement data is constant. The CS complexity where the number of signal paths is

constant is shown in Fig. 4.4.
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Table 4.1: Complexity of some compressive sensing reconstruction algorithm

Algorithm Complexity

Fast-BesselK(BCS) O(NαN2
p)

Basis Pursuit O(N2
α)

l1-SVD O((NpNα)
3)

SpaRSA[112] O(Nα logNα)

OMP[111] O(Np logNα)

CoSaMP[113] O(Np log2 Nα)

4.6 Three-dimensional Cramer-Rao lower bounds

In case of the MIMO passive radar with co-located antennas, θ is a vector parameter and

is equal to [τ a φ ]T . Since there are three variables, this leads to 3×3 Fisher information

matrix, which may be written as:

I(θ) =



−E[∂ 2 ln p(h;θ)
∂τ2 ] −E[∂ 2 ln p(h;θ)

∂τ∂a ] −E[∂ 2 ln p(h;θ)
∂τ∂φ

]

−E[∂ 2 ln p(h;θ)
∂a∂τ

] −E[∂ 2 ln p(h;θ)
∂a2 ] −E[∂ 2 ln p(h;θ)

∂a∂φ
]

−E[∂ 2 ln p(h;θ)
∂φ∂τ

] −E[∂ 2 ln p(h;θ)
∂φ∂a ] −E[∂ 2 ln p(h;θ)

∂φ 2 ]


. (4.58)

From (4.6), rk(m)(φpth) is defined as (m−1) d
λk

sinφ
k(m)
pth , therefore:

Hk(m)
(n,i) =

mpth

∑
pth=1

Ak(m)
pth e j2π[iak(m)

pth f kT ′−n∆ f τ
k(m)
pth +rk(m)(φpth)]+wk(m), (4.59)

consists of a 3-D channel signal and additive Gaussian noise with variance σ2
w. In order

to calculate each element of I(θ), the log-likelihood function can be shown as:

p(h;θ) =
1

(2πσ2
w)

NLnt nr
2

exp
[
− 1

2σ2
w

∑
m

∑
k

∑
i

∑
n

(
Hk(m)
(n,i)

−
mpth

∑
pth=1

Ak(m)
pth e j2π[iak(m)

pth f kT ′−n∆ f τ
k(m)
pth +rk(m)(φpth)]

)2
]
. (4.60)
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ln p(h;θ) =− NLntnr

2
ln2πσ

2
w−

1
2σ2

w
∑
m

∑
k

∑
i

∑
n

(
Hk(m)
(n,i)

−
mpth

∑
pth=1

Ak(m)
pth e j2π[iak(m)

pth f kT ′−n∆ f τ
k(m)
pth +rk(m)(φpth)]

)2
. (4.61)

Using the derivation in Appendix B.1, the rest of the Fisher information matrix can be

shown as:

[I(θ)]13 = [I(θ)]31 =
2π2∆ f dN(N +1)L

σ2
w

∑
m

∑
k

(m−1)(Ak)2 cosφ k(m)

λk
, (4.62)

[I(θ)]23 = [I(θ)]32 =−
2π2T ′dNL(L+1)

σ2
w

∑
m

∑
k

f k(m−1)(Ak(m))2 cosφ k(m)

λk
, (4.63)

[I(θ)]33 =−
4π2d2NL

σ2
w

∑
m

∑
k
(
(m−1)Ak(m) cosφ k(m)

λk
)2. (4.64)

The final part of the CRLB process involves inverting the Fisher matrix to obtain the

CRLBs for each parameter as:

CRLBτ̂(θ)≥ [I−1(θ)]11,

CRLBâ(θ)≥ [I−1(θ)]22,

CRLBφ̂ (θ)≥ [I−1(θ)]33.

CRLBs for the system in this thesis are crucial when it is equipped with the new

extraction schemes. The bound can be seen as the baseline for the algorithm and consider

how efficient it is. The derivation above can be regarded as a noncoherent CRLB and the

system exploits spatial diversity of the target. In order to achieve high resolution for the

passive radar, the processing should determine the phase coherence and a coherent CRLB

will be used. The simulation of the bound is displayed in the Appendix B.3.

4.7 Performance analysis

4.7.1 Comparison of BP and l1-SVD over 2D and 3D MIMO-OFDM passive radar

systems

The considered MIMO passive radar system employs nt = 2 OFDM transmitters and nr =

4 elements of ULA receiver with d = λ

2 element spacing.
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Figure 4.5: The sparse representation of the multipath signal in: (a) time delay and Dop-

pler domain; (b) time delay and angular domain; and (c) Doppler and angular domain.
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Figure 4.6: The signal extraction in Doppler frequency and time delay domain with the

same level of power in the multipath scenario using: (a) l1-SVD; (b) Basis Pursuit; and

(c) 2D l1-SVD.
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The OFDM parameters are listed in Table 2.1. In this simulation scenario, it is assumed

that there is only one target. The analysis of many targets is going to conduct in the fu-

ture work as the Matlab programming displays the memory problem while increasing the

number of multipath fading. The CPU time when running CVX programming for the

basis pursuit is roughly 3500 seconds when it consumes about 2000 seconds for the l1-

SVD. These results are simulated on Intel Core i3 Windows workstation. After applying

the proposed method, two multipath which corresponds to the target have to demonstrate

the same non-zero Doppler frequencies. Time delay from the first transmitter is 0.125 ms,

while from the second transmitter is 0.4375 ms. The time delay for the signal reflected

from the target illuminated by the first transmitter is 0.75 ms, whereas the signal illumi-

nated by the second transmitter causes the time delay of 0.9062 ms. The target is moving

and provides the Doppler frequency of 725.72 Hz. The angle of arrivals for the reference

signals from transmitter 1, transmitter 2, surveillance signals as seen from transmitter 1

and transmitter 2 are 75, 63, 45 and 25 degrees respectively. Both of the sources are

stationary.

In order to display the extraction capability of the proposed method, there are the

original sparse representations shown in Fig. 4.5. Each figure presents the 2D version

manipulated from the original 3D signals in the delay-Doppler domain, delay-angular

domain and Doppler-angular domain respectively. The parameters value is set as descri-

bed above. With regard to clear presentation, all of the multipath power are set to be equal.

Although this assumption is unrealistic, it is arguable that the reasonable reference-signal

cancellation method in the surveillance channel is supposed to be used.

Fig. 4.6a displays the signal extraction in 3D channel estimates when using l1-SVD

with 200 time samples. Due to the CS theory, the dimension of the observation matrix

is only 15× 7 in time delay and Doppler frequency domain. It is shown that the target

parameters can be determined correctly while there are some small leakages around the

expected values. Basis pursuit result (Fig. 4.6b) shows a very good signal extraction.

From the literature [2] and [90], however, a single time sample may not be suitable

for source localisation application and is not likely to work when the reference signal

power is too high. The other figure (Fig. 4.6c), shows the result from l1-SVD when

applied to the 2D channel estimates. It can display the peaks with higher power. This

is expected as the size of noise subspace is relatively small compared to the 3D case.

These figures also demonstrate the ability of the l1-SVD in terms of noise and leakages

reduction. The angular domain only exists when using 3D model. Fig. 4.7 and Fig. 4.8
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show the results from the l1-SVD signal extraction in comparison with the basis pursuit.

The l1-SVD results display a number of unwanted peaks; nevertheless, the peaks are

very close to the expected parameter values. With some errors, the results may be used

for target detection applications but there is a requirement for an adaptive approximation

between each estimated domain. Both figures are still able to determine the angle of

arrivals for each source signals.

While the target detection may be achieved by both 2D and 3D channel extraction,

the mean square error signifies the interesting information. After applying the Mean

Square Error for both channel models, it is shown that the extraction signals from 3D

channel estimates provide fewer errors. In this case, the amount of power received from

the reference signal is varied. This means that the correlation between each dimension

contributes a successful extraction from noisy measurements. The results can predict that

the system can let the reference signal power be much higher than the target signal but the

optimised power will be evaluated in the future work.

4.7.2 Scenario for the simulation applying Fast-BesselK

In this section, the performance of the novel Fast-BesselK compressive sensing algorithm

for 3D parameter extraction in MIMO passive radar along with the appropriately develo-

ped beamforming algorithm is compared with other more conventional approaches. The

results discussed in the following are also displayed in [114]. Firstly, the normalised mean

square error of the estimated signals with respect to the actual signals is calculated as me-

ans of determining how well the algorithm is performing by comparison with the BP and

l1-SVD algorithms introduced in [90], [98]. Further to this, the reconstructed signal and

the original signals are compared visually among three domains.

In order to further strengthen the case for the Fast-BesselK approach proposed by this

work, a similar normalised mean square error comparison is performed with respect to two

more algorithms, namely a ’Fast Relevance Vector Machine (Fast-RVM)’ method [105],

and a ’Fast-Laplace’ method [115]. The former discusses the highly accelerated algorithm

for maximizing the marginal likelihood function while the latter utilised a hierarchical

form of the Laplace prior to model the sparsity of the unknown signal. Finally, in this

section the performance of the proposed CS domain beamforming technique is examined

in terms of the target SINR. For this, it is assumed there are two 10 dB-higher reference

(direct) signals impinging on the receiver array coming from two single-antenna
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Figure 4.7: The comparison between signal extraction of the multipath signal in time

delay and angular domain using: (a) l1-SVD; and (b) Basis Pursuit.
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Figure 4.8: The comparison between signal extraction of the multipath signal in Doppler

frequency and angular domain using: (a) l1-SVD; and (b) Basis Pursuit.
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OFDM BSs. Throughout, the analysis that follows, the OFDM signal parameters are des-

cribed in Table 2.1 and are based on the DAB standard in [4], and is assumed that there

is only one target and no clutterers. This scenario is a sufficient comparison regarding the

performance of extracting the direct and target signal from the noise background and in-

creasing the number of paths in the scenario decelerate the computation of BP. Moreover,

the clutter suppression method is not mentioned in the current work. Signal parameters

that are being estimated are chosen randomly according to a suitable uniform distribution

with the time delays(τ) being chosen from 0− 1 ms, a, the ratio between range-rate and

speed of light, being chosen from 0−3.3×10−6 and the angles of arrivals being chosen

from 1−179 degrees.

4.7.3 Comparison of proposed Fast-BesselK method with BP and l1-SVD methods

Here, the actual signal and the reconstructed signal in the delay-Doppler domain (Fig.

4.9), the delay-AoA domain (Fig. 4.10) and the Doppler-AoA domain (Fig. 4.11) are

compared using the proposed Fast-BesselK approach as well as the BP approach and

l1-SVD approach from previous works. As can be seen from the actual signals, the al-

gorithm’s task in each case is to ascertain: four time delay values (two values from the

transmitter and two scatterers), two Doppler frequencies, of which one element is close to

zero, and three (or four) AoA values. Next the true values determined in each figure are

described for the purpose of comparison. In a Bayesian scenario, Fig. 4.9a, Fig. 4.10a and

Fig. 4.11a, two strong signals form the sources which hold 0 ms and 0.4063 in time delay

are expected. This means the farther base station is 121.89 km away from the closer one.

Both base stations provide zero Doppler frequencies. Two target signals carry 0.5 ms and

0.8438 ms in delay which can be interpreted as the signal travel 150 km and 253.14 km in

bistatic distances from the transmitters. Doppler frequency of the target displays 700 Hz

or equally 923.64 m/s in range-rate. Actual angular point for the reference source is 37

degree whereas the other source provides 169 degree. The target signal’s AoA in this case

is 105 degree. Regarding an l1-SVD scenario, Fig. 4.9b, Fig. 4.10b and Fig. 4.11b, the

values of 0.0938 ms and 0.3125 ms are required. This shows that the closer transmitter

is 28.14 km away and 93.75 km belongs to the second transmitter. The reflected signal

from the target which is emitted from the closer station should travel 178.125 km (0.5938

ms) in a bistatic distance and the longer path should travel 215.625 km (0.7188 ms). The

target in this scenario travels at 197.925 m/s or 150 Hz in Doppler frequency.
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(a) Left:Original Right:Reconstructed

(b) Left:Original Right:Reconstructed

(c) Left:Original Right:Reconstructed

Figure 4.9: Reconstruction signal comparison in Delay-Doppler domain for target signal

SNR = -10dB using: (a) Fast-BesselK; (b) l1-SVD; and (c) Basis Pursuit.
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(a) Left:Original Right:Reconstructed

(b) Left:Original Right:Reconstructed

(c) Left:Original Right:Reconstructed

Figure 4.10: Reconstruction signal comparison in Delay-angular domain for target signal

SNR = -10dB using: (a) Fast-BesselK; (b) l1-SVD; and (c) Basis Pursuit.
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(a) Left:Original Right:Reconstructed

(b) Left:Original Right:Reconstructed

(c) Left:Original Right:Reconstructed

Figure 4.11: Reconstruction signal comparison in Doppler-angular domain for target sig-

nal SNR = -10dB using: (a) Fast-BesselK; (b) l1-SVD; and (c) Basis Pursuit.
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The angle of arrival for the signal emitted from the closer transmitter is 9 degree and 165

degree of the other. The target’s AoA in this event is 113 degree. Subsequently, Basis

Pursuit scenario, Fig. 4.9c, Fig. 4.10c, Fig. 4.11c, the signal travelling from the closest

transmitter provides 0.0938 ms and the other source spends 0.2813 ms. This demonstrates

that the farther transmitter is 84.375 km away and the other is 28.125 km away from the

receiver array. The time delays corresponding to the target in this scenario are 0.625 ms

and 0.75 ms respectively which means the transmitted signals impinge on the target and

at the receiver through 187.5 km and 225 km in total. Actual target’s Doppler frequency

display 300 Hz while travelling at 395.848 m/s. Transmitted signals’ AoAs in this BP

case are 13 and 153 degree respectively whereas the reflected target signal retains an AoA

of 125 degree.

In all domains, the BP algorithm, which consumes the most computation resources,

exhibits reasonable reconstruction by comparison with the other two approaches, while l1-

SVD seems to exhibit the highest degree of erroneous reconstruction. It may be concluded

that l1-SVD is not appropriate for this task due to error while BP, although very precise,

has an inhibitive degree of complexity. However, the Fast-BesselK approach provides the

best performance out of the three with much lower complexity than BP. To further clarify

this, in Fig. 4.12 the normalised mean-square error of the reconstructed signals versus the

reference signal SNR is plotted. The NMSE in this case is calculated by

NMSE ,
〈‖α̂−α‖2

2〉
〈‖α‖2

2〉
. (4.65)

As expected, the Fast-BesselK exhibits the minimum error among the three algorithms

while BP provides lower error than l1-SVD but slightly higher than Fast-BesselK especi-

ally in the lower SNR area. It is worth to mention that the NMSE for the l1-SVD is higher

than 1 as its results provide non-zero values for most expected zero elements. The norm

of error as seen in the above equation may be much higher that the norm of the original

signal itself. The total number of channel realisations for fast-BesselK is 20, whereas

l1-SVD and Basis Pursuit can be realised only 2 experiments due to the processing time

problem of the workstation. The number of l1-SVD snapshots is 200.

4.7.4 Comparison of proposed Fast-BesselK method with other Bayesian CS methods.

In order to further exemplify the efficiency of the Fast-BesselK method, it will now be

compared with some other BCS-based methods. As mentioned in Section 4.3.3, the two

parameters: ε and η , are chosen as: ε = 0.5 and η = 1, as a means of implementing the
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Figure 4.12: Reconstruction Performance in NMSE comparison versus SNR between

Bayesian CS and previously applied CS algorithm.

Fast-BesselK algorithm in this work. On the basis of this, the following comparisons are

made:

• ε = 0.5 and η = 1 for the specific Fast-Besselk method used throughout this work;

• ε = 0 and η = 0 for applying the Jeffreys prior for each γi;

• ε = 1 and η = 0 for applying Fast-RVM;

• ε = 1 and η = 1 for applying Fast-Laplace.

These approaches are compared under Normalised Mean Square Error (NMSE) in Fig.

4.13a. It can firstly be seen that the Fast-BesselK using Jeffreys prior presents the least

amount of errors with respect to the other approaches. Without utilising the prior, the

Fast-BesselK has its functioning between Fast-RVM and Fast-Laplace in the low SNR

range, however the Fast-BesselK approach proposed here employs the least amount of

iterations and computational time with respect to the other three algorithms. Consider the

support of a vector α , which is defined as a set of {i : αi 6= 0}, it is clear that
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Figure 4.13: Reconstruction performance comparison versus SNR for Bayesian CS met-

hods by: (a) NMSE; and (b) Support Error Rate. The number of channel realisations is

20.
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Figure 4.14: MVDR array pattern when the covariance matrix is incomplete and recon-

structed using one channel realisation of: (a) Fast-BesselK; and (b) OMP.
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Figure 4.15: Performance in SINR versus input SNR with and without Compressive Dom-

ain Beamforming for one channel realisation Fast-BesselK.

the Fast-BesselK provides the smallest error rate, where the support error rate can be

calculated as follows:

The support error rate ,
#{{i : α̂i = 0 and αi 6= 0}∪{i : α̂i 6= 0 and αi = 0}}

Nα

. (4.66)

This further strengthens the appropriateness of the Fast-BesselK approach proposed by

this work as an excellent candidate for practical 3D parameter extraction in MIMO passive

radar.

4.7.5 Beamforming results

Despite the fact that Fast-BesselK results demonstrate low NMSE and support error rate,

there is still the matter of the high powered clean signal, to which the MIMO passive

radar listens, to contend. As mentioned, while this signal is useful for the matched filter

correlation process, if it is too strong it can have a perturbing effect on the functioning of

the Fast-BesselK parameter extraction algorithm. Since beamforming in the compressive

domain cannot be achieved by conventional means; this work has proposed a novel CCOB

method.
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Figure 4.16: An instance of performance comparison in SINR versus input SNR applying

Compressive Domain Beamforming in: (a) full figure; and (b) closer view for weight uti-

lisation. The algorithm has been implemented for one channel realisation and the results

demonstrate that most of the OMP outputs are a bit worse than Fast-BesselK.
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It is shown that the beamforming for compressive measurements needs to be specific

as the covariance matrix may contain incomplete data. Fig. 4.14a displays the result of

MVDR beamformer used for the covariance matrix from the fast-BesselK method. The

location of the expected beam can be indicated as well as the incorrect beam in other an-

gles, whereas the result in Fig. 4.14b shows that the weight of the receiver antenna cannot

be steered in the correct direction. Then, we calculate the target signal to interference plus

noise ratio (target SINR) as shown in (4.45) and treat the direct signal as interference. The

target SINR of each reconstruction algorithm can inform the target-only detection perfor-

mance. Without beamforming, the target SINR after Fast-BesselK algorithm in Fig. 4.15

is very low, which means the target parameters may not be extracted as we expected. The

beamforming approach achieves an improvement in the same figure. Fig. 4.16 then com-

pares the target SINR of the Fast-BesselK approach with and without CCOB. As it is a

useful illustration, we also apply Orthogonal Matching Pursuit (OMP)-CCOB [109] in

our work. Both compressive sensing methods provide satisfactory results while incorpo-

rating with CCOB, however, a more accurate approximation can be achieved by Bayesian

compressive sensing than OMP since OMP continues selecting the possible basis functi-

ons without any removal mechanism [101] . It is clear that the CCOB is mitigating the

effect of the clean BS signal in an appropriate manner, which would in turn facilitate the

correct functioning of the Fast-BesselK algorithm in a manner that would be in line with

an expected SNR performance.

4.8 Summary

Drawing from the conclusion in chapter 3, the widely-spread receivers can be replaced

by the co-located antennas as the purpose of array processing. Co-located receiver pro-

vides the extension from two-dimensional matched filter to three-dimensional version.

This chapter discusses the 3D signal model along with the configuration of radar recei-

vers. A number of measurements are also increased while the multiple antennas supply

a feasibility of angular domain detection. Matched filter corresponding to three parame-

ters is also considered in order to show the extraction scheme for a full-dimension mea-

surements. To reduce the size of the measurement matrix, compressive sensing methods,

which was introduced in the previous work, can also be used. This chapter also presents

the design of CS sensing matrix which is suitable for OFDM passive radar. Basis Pursuit

outperforms the l1-SVD when the problem dimension is increased due to the number of
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antennas. Concerning the resources consumption, a statistical-based algorithm applying

sparse Bayesian learning is proposed. Fast-BesselK utilises probabilistic model and two-

layer prior for the expected parameter. It also efficiently employ the fast mechanism from

the RVM. The outcomes from the fast-BesselK method display better signal extraction

both in illustrations and in mean-square error values. Regarding low-complexity met-

hods, such as other Bayesian-based and OMP, fast-Besselk has a mechanism of better

accuracy. The attractive performance is then utilised with the beamforming algorithm,

where a complete covariance matrix is not available. Regarding the beamforming, this

thesis proposes the convex-optimisation beamformer where the expected target signal is

reserved when the unwanted signals are diminished. Fast-BesselK with CCOB also pro-

vides satisfactory outcomes compared to OMP-version beamforming. From this chapter,

compressive measurements present a dimensionality reduction, along with the signal ex-

traction is impressively achieved by the algorithm mentioned. Beamforming results also

allow the system to be operated in the interference-limited scenario provided that the in-

terference characteristics are known at the receiver. This will be discussed in the next

chapter.
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Chapter 5

Interference modelling for OFDM

passive radar networks using stochastic

geometry

5.1 Introduction

In the previous chapter, the beamforming in OFDM passive radar that applies the com-

pressive measurements was discussed. It was shown that the beamforming technique

provides an advantage in target detection by weighing the antenna probes for the enhance-

ment of the surveillance signal, while the power of the reference signal is reduced. The

convex-constrained optimisation beamforming, along with MUSIC algorithm, is able to

successfully create the beamforming weights. When the state-of-the-art compressive sen-

sing is utilised, the technique proposed in Section 4.4 supplies a feasible solution to in-

complete data. Thus, it is shown that equipping the receiver with multiple antennas can

allow the beamforming towards the target of interest without filtering the direct path.

Given the parameter extraction methods and the beamformer previously discussed in

this thesis, the system considered is regarded as one multi-antenna receiver. In chapter 3,

the separately-located antennas were considered, while the antenna array was introduced

in chapter 4. Both passive radar structures can be merged into the group of receivers.

This configuration becomes a class of large wireless systems. The passive radar network

in which each receiver is equipped with an antenna array will potentially enable a larger

area of coverage.

The derivation from [3], where the automotive radar was used, is applied for bistatic

passive radar networks modelling and from [68], a cellular networks, is applied for multi-
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static radar networks in this chapter. The bistactic radar equation is employed, as well as

the target signal to interference (plus noise) ratio are presented. In contrast to communi-

cation research, the fading channel considered here is Nakagami-n fading as the channel

includes one strong line-of sight and many weak signals. The statistical characteristics

for the interference in both systems are then derived by applying stochastic geometry as

reviewed in Section 2.5. Specifically, in a multistatic radar networks, the density of radar

receivers determine a cell radius and the target signal is emphasised. The approximation

of interference is also compared with the simulated scenarios in this work.

5.2 Bistatic passive radar networks using stochastic geometry

In this section, the model of the system that imitates the geometric diagram of passive

radar operations is composed. There is a radar receiver established at the origin and this

is regarded as the typical receiver. The statistical attitude of the typical receiver is common

to all other receivers. As usual, a transitory snapshot of the target movement, which can

be acknowledged as immobile, is examined. It should be noted that although the radar

scenario statistics are not actually fixed, the phase rotation caused by the Doppler shift is

approximately continual over a block duration T ′[16] and can be harmlessly considered

as static over a justifiable observation period.

5.2.1 Ad-hoc system model

Following on from an automotive radar in [3], this subsection applies a simple paradigm

of the passive radar networks scenario. It assumes that a passive radar is operated in

bistatic configuration and listens to the closest base station where the reference signal

is clear and appropriate to apply the extraction algorithms. For the sake of simplicity,

there is one target present for each transceiver pair. To emphasise this, each base station

transmits the same OFDM signals, but with different characteristics, such as operational

frequency, bandwidth and the number of subcarriers. This means that the passive radar

can only utilise the transmitted signal from its pair to perform the matched filter. Hence,

the signals from other base stations, as well as the target scattering due to their signals,

are considered interference. Considering the signal scattered from the target to the passive

radar receiver, the bistatic radar equation [5] can be shown as:

Pxr =
PtGt

4πDα
kx
· σb

4πDα
xr
· Grν

2

4π
, (5.1)
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Figure 5.1: An example of passive radar in ad-hoc networks using stochastic geometry:

(a) the OFDM base stations (blue dots) and the passive radar receivers (red dots); (b) the

OFDM base stations (green icons), the passive radar receivers (blue icons), the expected

signals (blue arrows) and the interfering signals (red arrows).
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where the transmitters are assumed to broadcast with the same amount of power Pt and

this refers to the transmitted signal sent by the chosen base station. Gt and Gr denote the

gain of the transmit antenna and receive radar antenna respectively. σb is the bistatic radar

cross section corresponding to the kth transmitter, and the operated signal wavelength is

denoted by ν . The notation for wavelength in this chapter is altered so the point process

density is not replicated. The distances from the k-th transmitter to the target and the

target to the radar receiver are respectively expressed by Dkx and Dxr.

In fitting with the property of a right triangle inside an ellipse, the OFDM station

accepted by the receiver is at the Euclidean distance d0, therefore; Dkr = d0 =
√

D2
kx +D2

xr.

An inverse α-law is introduced instead of an inverse square-law for the flexibility boos-

ting of the radar equation. α is the path loss parameter that can be marginally greater than

2. The volatility in the positions of both OFDM stations and passive radar receivers is

occupied by a Poisson Point Process (PPP). Assuming that the passive radars are distri-

buted as a point process Φ(r) of density λ (r), there is a target reflection impinging on each

receiver in a random direction. The locations of OFDM stations are also randomised as

a part of the process Φ(t) of density λ (t). The example of our ad-hoc networks scenario

is displayed in Fig. 5.1a where the blue dots refer to the base stations and red dots show

the passive radar. The bistatic configuration is also illustrated in Fig. 5.1b, as well as

the distinction between the desired and interference signals. Densities λ are regulated in

stations or radars per unit area. The fading for each transmitter-receiver pair is considered

independent and identical. PPP admits an evolution of manageable investigation using

Campbell’s theorem (2.34).

In order to appraise the effectiveness of the passive radar system, the idea of signal-to-

interference-plus-noise ratio (SINR) is employed. The interferences provoked by denied

base stations, as well as their target-related interferences, can be understood as white

noise in the receiver. Referring to the bistatic signal power equation in (5.1), the unwanted

signals arising from all interfering OFDM stations are then typified by locating the radar

at origin to compute the typical link performance, the SINR between the radar and its

corresponding target of interest at point x where ‖x‖= Dxr is

TSINRbr =
Pxr

σ2
N + I

, (5.2)

where I is the sum of interferences at the passive radar receiver. σ2
N is the variance of

the additive noise. By using an α-law for the signal deterioration, similar aspects to the

desired target channel can be managed. Similar to [3], the interference at the passive radar
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induced by an interferer at point y is defined as:

Iy = Pthy‖y‖−α · G
kGrν

2

(4π)2 , (5.3)

where the Euclidean distance calculated from the k-transmitter to the origin is denoted by

‖y‖. In this expression, a statistical fading process in the channel hy between the interfe-

ring transmitter k and the receiver is involved. This random variable vector is composed

of multipath propagation because of echoes from the environment. As a result of this, if

all reflections appear within the integration time of the expected signal, this fading model

will include the effect of target reflections, as well as clutters. In this simplified case,

the interferences caused by the interfering signals that impinge on the target of interest

are not separated from the expression above. Due to the homogeneous fading environ-

ment, the elements of this random variable vector are i.i.d. The channel statistical process

mentioned above can be described as follows [116]:

Fast-fading: As the signals from the base stations to the passive radar are composed of

one strong line-of sight and many randomised components, which are weaker. It is then

assumed to be Nakagami-n (Rice) fading. The fast-fading can be denoted by hyr or hy if a

typical receiver is being discussed; Hence, the power gain |hyr|2 follows a noncentral chi-

square distribution with a mean value of µ , where the PDF can be formulated as follows:

f|hyr|2(ξ ) =
(1+n2)e−n2

µ
exp
[
−(1+n2)ξ

µ

]
B0

(
2n

√
(1+n2)ξ

µ

)
, (5.4)

where the Euler’s number is denoted by e, n ∈ {0, ...,∞} is the Nakagami-n fading para-

meter and B0(·) represents the zero-order modified Bessel function. In case of shadowing

is included in the channel, consider:

Shadowing: denoted by Lyr. It is assumed to follow a log-normal distribution [69],

where the PDF is as follows:

fLyr(ξ ) =
10log10(e)√

2πσ2ξ
exp

[
−
(
10log10(ξ )−µ

)2

2σ2

]
, (5.5)

where µ and σ are the mean and variance of the random variable 10log10(Lyr), respecti-

vely. Let us designate β1 for GkGrν2

(4π)2 , the sum of the interference observed at a typical

passive radar at the origin is shown as:

I = ∑
y∈Φ(t)\d0

Pthy‖y‖−α
β1. (5.6)

The interference expression for the ad-hoc scenario can be formulated as in the above

equation. Regarding the configuration and TSINRbr presented in this part, the following
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subsection discusses the statistical characteristics of the interfering signals when they are

embedded in the passive radar processing.

5.2.2 Interference model in bistatic passive radar networks

To understand the interference characteristic, its mean, variance and distribution are for-

mulated in this section by applying stochastic geometry theory.

Mean of interference

In order to acquire a primary significance on the major parameters that influence the

interference, the mean value is realised. Beginning with the expression in (5.6), the sum

over a PPP can be considered as follows

E[I] = EhEΦ(t)

 ∑
y∈Φ(t)\d0

hyPt‖y‖−α
β1

 , (5.7)

where the expectation of the stochastic process of the channel is designated by Eh and the

geometric expectation of all attainable realisations of the points of interferers is denoted

by E
Φ(t) . Using Campbell’s theorem (2.34), the interference mean can be derived as:

E[I] = Eh[h]
∫

∞

d0

λ
(t)

β1Ptu−αdu, (5.8)

where the interference is limited by the distance from the receiver compared to the paired

transmitter. If the interferer locates at point (yi,y j), the distance ‖y‖ can be calculated

from
√

y2
i + y2

j . Given that d0 is the Euclidean distance of the transmitter that provides a

signal correlation of the source and the target, the Euclidean distance of interferer ‖y‖ can

be anywhere in a space outside a circle with a radius d0, so that it can be replaced with

u. From (5.7) to (5.8), the acceptance that the geometrical point process has an unrelated

distribution from i.i.d propagation channels is adopted. With the assumption that the

average channel gain is normalised, E[h] = 1 mean of the interference after performing

the integration produces:

E[I] =
λ (t)β1Ptd

−(α−1)
0

α−1
, (5.9)

=
λ (t)β1Pt(D2

kx +D2
xr)
−(α−1)/2

α−1
, (5.10)

where, in (5.10), the transmitter distance is substituted with the corresponding distances

of the target. Obviously, the mean of interference in bistatic ad-hoc radar networks pro-

vides similar expressions as in [3], where the derivation is followed. However, the author
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simplifies the system by cancelling the space between the adjacent lanes. In this thesis,

the distance d0 can determine whether the base station is outside the prospect area. Still,

the bistatic passive radar configuration is not only concerned with the characteristic of

interference; it is also aware of how the target-reflected signal is affected. There should

be more consideration of TSINRbr, as is discussed in Section 5.2.3.

Variance of interference

Apart from the interference mean, this thesis also presents the variance of the sum of

interference, which is not mentioned in the reference. To fulfil the statistical analysis, the

variance calculation can start from:

var(I) = E
[
(I−E[I])2

]
= E[I2]−E[I]2, (5.11)

where

E[I2] = EhEΦ(t)


 ∑

y∈Φ(t)

Pthy‖y‖−α
β1

2


= EhEΦ(t)

 ∑
y∈Φ(t)

Pthy‖y‖−α
β1

( ∑
z∈Φ(t)

Pthz‖z‖−α
β1

)

= EhEΦ(t)

 ∑
y∈Φ(t)

Pthy‖y‖−α
β1

Pthy‖y‖−α
β1 + ∑

z6=y∈Φ(t)

Pthz‖z‖−α
β1



= EhEΦ(t)

 ∑
y∈Φ(t)

(
Pthy‖y‖−α

β1
)2

+EhEΦ(t)

 ∑
y,z∈Φ(t)

(
Pthy‖y‖−α

β1
)(

Pthz‖z‖−α
β1
)

(5.12)

= Eh[h2]λ (t)
∫

∞

d0

(Ptu−α
β1)

2du+
(
Eh[h]

∫
∞

d0

λ
(t)

β1Ptu−αdu
)2

. (5.13)

From (5.12) to (5.13), the assumption of i.i.d over the fading channels is employed.

Referring to (5.8) with the subtraction of the mean square term, the variance can be dis-

played as

var(I) = Eh[h2]λ (t)
∫

∞

d0

(Ptu−α
β1)

2du. (5.14)

After evaluating the integration, the variance of interference can be derived as:

var(I) = Eh[h2]
λ (t)(Pt)

2β 2
1 d−(2α−1)

0
2α−1

. (5.15)
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From the equation above, the channel fading still exists. When Eh[h2] becomes

known, the result can be explicitly calculated and this is applied to any fading schemes.

Moreover, the Gamma variable techniques mentioned in Section 2.5.3 might be useful to

approximate the fading of the channel.

Interference distribution

The last part in this subsection in the ad-hoc networks refers to the distribution. The

interference characteristic function is acquired, and its cumulative distribution function

(CDF) is then developed. Considering the definition of the Characteristic Function (CF)

of a random variable, the CF of the interference in the PPP model can be disclosed as:

ϕI(ω) = E[e jωI]

= EhEΦ

exp

 jω ∑
y∈Φ(t)

Pthy‖y‖−α
β1

 . (5.16)

Due to the fact that the geometrical stochastic process and the channel random variable

are liberated, the equation above becomes:

ϕI(ω) = EΦ

 ∏
y∈Φ(t)

Eh exp
(

jωPthy‖y‖−α
β1
) . (5.17)

Implementing the probability generating functional of the homogeneous PPP [81], as

in (2.35). (5.17) can be clarified as:

ϕI(ω) = exp
(
−Eh

∫
∞

d0

[1− exp( jωPthu−α
β1)]λ

(t)du
)

(5.18)

where the y notation in hy is ignored due to an i.i.d random variable. The CDF can be

accessed by employing the Gil-Pelaez’s inversion theorem in the integral [117]:

FI(ζ ) =
1
2
− 1

π

∫
∞

0

1
ω

Im [ϕI(ω)exp(− jωζ )]dω, (5.19)

where the integration in (5.18) is performed with some simplification, whereby α ≈ 2 is

the common case and d0 is positive. The derivations shown above resemble the expressi-

ons in [3]. In this system, however, the CF of interference can be displayed as:

ϕI(ω) = exp

(
−Eh

[
λ
(t)d0 exp

(
jωPthβ1

d2
0

)
−λ

(t)d0

−
(

λ
(t)( jπωPthβ1)

1/2erfi
(√

jωPthβ1

d0

))])
(5.20)
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The equation (5.19) above can be calculated numerically. However, the approximation

in [3], as well as the comparable literature with an inverse Gamma distribution, is referred

to. Regarding tractability, the distribution can be simplified as:

FI(ζ ) = efrc

(√
πλ 2β1Pt

4ζ

)
, (5.21)

where the superscript t is dropped to ensure a readable expression with the understanding

that the density of the transmitters is usually discussed.

5.2.3 TSINR probability in ad-hoc Networks

As the interference is included into the system, the performance of the passive radar re-

ceiver to detect the target follows the TSINRbr, as shown in (5.2). The threshold θ is

denoted for an acknowledged detection. The probability of TSINRbr achieving the target

detection can be calculated as follows:

P(TSINRbr > θ) = P
(

Pxr

σ2
N + I

≥ θ

)

= P
(

I ≤ Pxr

θ
−σ

2
N

)
. (5.22)

From (5.22) above, the distribution derived in Section 5.2.2 can be employed and it

can be shown as:

P(TSINRbr > θ) = FI

(
Pxr

θ
−σ

2
N

)
, (5.23)

with the assumption that the reference and surveillance signal can be completely distin-

guished, so the reference may not be the disturbance. However, the reference signal is

relatively strong so it can interfere with the target signature after correlation. In this case,

the reference signal from the paired transmitter can be regarded as the interference. The-

refore, the probability becomes:

P(TSINRbr > θ) = P(I + ID ≤
Pxr

θ
−σ

2
N)

= P(I +PthDd−α

0 ≤ Pxr

θ
−σ

2
N)

= FI

(Pxr

θ
−PthDd−α

0 −σ
2
N

)
, (5.24)

where hD follows the same distribution as hy, which was discussed in Section 5.2.

In this section, the ad-hoc networks of passive radars that operate in bistatic configu-

ration are modelled. This scenario could be a good beginning for more complex scenes.
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Here, the interference statistics are derived using the formulation in [3]. Apart from un-

derstanding the interfering signals, passive radar processing requires an acknowledgment

of the target detection ability where the differences from the literature become notable.

The explanations of the plots regarding the interference statistics discussed in this section

are displayed in the last section in this chapter.

5.3 Multistatic passive radar networks using stochastic geometry

In a more complex scheme, a passive radar can integrate many incoming signals in order

to increase the chance of detection. This multistatic configuration also provides spatial

diversity similar to a MIMO radar, with the assumption that there are many tiers of trans-

mitters that can communicate inside their own group, but not to others. The radar receiver

can emulate the cellular networks by locating one receiver in each cell. As the results

show, the interference from the neighbouring cells require some understanding. This the-

sis adopts the interference modelling in cellular networks, as shown in [68]. The passive

radar networks, however, can be considered in two different cell association scenarios

which are:

1. Downlink communication scenario: this can resemble the system model in [68].

The typical base station can be located at the origin, while the radar receiver is at

the point (d0,0). The transmitters send the reference signal to the receiver, while the

signals impinge on the target and arrive at the receiver, alike the stations transmit

their signals to the users in the cell. A technique called a small ball approximation

can be used as the location of the receiver is non-symmetric with the cell border.

Although the uplink scenario can be exploited if the radar receiver works as the

base station, the target information is excluded from the analysis. This model is

only cencerned with the association between the transmitter and the passive radar,

which is considered inappropriate.

2. Target included scenario: the network is then modelled regarding the location of

the target. It can be located either at the origin or at the point (Dxr,0) and the

radar receiver can be vice versa. In this case, the derivation includes Dxr and the

target signal is more important than the direct path. Note that the locations of

target and the radar receiver in this case do not provide any significant differences.

In this thesis, the location of the target is chosen to be at the origin as the small

ball approximation is used to provide the upper bound of the interference impact.
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Simply, less interference will be involved if the receiver is located at the origin.

The density of the target in this work is set to be equal to the density of the radar

receiver in order to limit the number of the target to one per cell. Consequently, this

cell association is chosen in this work.

5.3.1 Cellular networks system model

Conforming to the configurations in ad-hoc networks, the transmitters and radar receivers

are established on the plane R2 symbolised by two independent stationary point processes,

Φ(t) and Φ(r). The target distribution also follows Φ(r). Each passive radar PRc ∈ Φ(r)

listens to the stations in a geographical zone that are patterned on its hybrid Voronoi cell

CPRc(Φ
(r)). Note that the system assumes the multistatic passive radar receiver can only

correlate the signal of the transmitters BSk
c from nc

t closest stations, where BSk
c ∈ Φ(t). A

passive radar receiver in the cell c is only able to decode the signals in its own cell as

the transmitters in each cell process their own Single Frequency Network framework and

there should be no more than one randomly-located target in each cell to avoid multiple-

target processing. Additionally, the intensities λ (t), λ (r), regarding the PPP Φ(t), Φ(r)

respectively, are the parameters applied to the system model. In this case, the density

of broadcasting stations is set to be higher than that of the receivers. Assuming that all

transmitters transmit at the same power Pt , the target SIR of the typical passive radar

received from the x reflector at the origin is

TSIRmr =
∑

nc
t

k=1 Pxr

∑y∈Φ(t)\CPR
hy‖y‖−α

. (5.25)

where the passive radar receiver gathers the incoming signals from the transmitters inside

a cell, ∑
nc

t
k=1 Pxr, to enhance its ability in target detection. ∑y∈Φ(t) hy‖y‖−α refers to the total

interferences from the base stations at the point y travelling through the fading channel hy.

In this thesis, the cell configuration employs hybrid Voronoi Tessellations, as discussed

below.

Hybrid tessellations

In this thesis, the hybrid tessellations proposed in [68] are applied to the model of the

multistatic passive radar networks. The configuration considered here consists of a typical

ball engraves a Voronoi cell [82], whose shape and size are fixed and radius is denoted by

Rc. The illustrations of the Voronoi cell, as well as an embedded ball, are shown in Fig.

5.2. As some concealed sections at the cell edge fail in the Voronoi cell, its independent

functioning is not thoroughly constituted by the ball.
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Figure 5.2: An example of a cellular network of passive radars with: (a) a conventional

Voronoi cell where the locations of passive radar in red rectangle and base stations are

randomised; and (b) an appearance of the embedded ball with a fixed radius, guard region

and one transmitter located on it.
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The OFDM stations, where the interference originates, are modelled according to a PPP

outside of the fixed ball (cell).

To guarantee that the passive radar receives the most potent signal power from the

transmitter, even from the edge of the cell, and it limits the number of radar receivers

in the cell to one, a guard region at a distance of Rg from the cell edge is introduced.

In conventional stochastic geometry model, in contrast to this network, the size of the

inscribing ball of a Voronoi cell is random and the size of the corresponding guard region

is verified by the closest neighbouring base station. In a homogeneous network, there

is an assumption of a dominant interferer that is uniformly distributed at the edge of the

guard region. Rc and Rg could be selected as a function of PPP density, λ (r). A target of

interest is inhabited at the cell centre and the radar location is secured at (Dxr,0). Note

that the cell index c is dropped if the typical cell is referred. Let the distance between the

target and the passive radar be proportional to the radius of the cell, Dxr = qRc, where

0 < q≤ 1, the total reference signal power received at the passive radar can be displayed

as:

Stot =
nt

∑
k=1

PtLkrhkrD−α

kr β1. (5.26)

While L refers to log-normal shadowing, G is assigned to a fading power. Employing

a Gamma-distributed random variable, G can be modelled as Γ[kg,θg] for many types

of fading, such as G = Γ[1,1] for conventional Rayleigh fading and G = Γ[nr,1] indi-

cating Rayleigh fading with an nr-receive antenna along with maximum ratio combi-

ning. According to Section 2.5.3, LG can be approximated using another Gamma random

variables with the same first- and second-order moments whose distribution is equal to

Γ[kp,θp]. Statistically, the distribution of reference signal power can also be cast as a

Gamma random variable of Γ[kp,PtD−α
xr β1θp].

Regarding the target signals, (5.1) in bistatic radar networks is straightforwardly deri-

ved using a multistatic scenario. This can be shown as:

nt

∑
k=0

Pxr =
nt

∑
k=0

PtGt

4πDα
kx
· σkb

4πDα
xr
· Grν

2

4π
=

PtGtGrν
2

(4π)3Dα
xr

nt

∑
k=0

σkb

Dα
kx
, (5.27)

where it is assumed that all transmitters carry the same amount of power and antenna gain.

The equation above merely displays the target diversity as a consequence of multistatic

configuration.
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5.3.2 Interference model in cellular networks

As the system employs the cellular network model in [68], the derivation discussed below

might be similar to the reference paper with the application to the passive radar networks.

In contrast to the literature, this system imitates the uplink scenario in the case that the

base stations broadcast their signal to the radar receiver, which replaces the serving sta-

tion in the communication domain. There is only one radar receiver in a cell, along with

multiple accepted transmitters. The interference mentioned in the following includes ho-

mogeneous and heterogeneous interference.

Homogeneous interference

If a single category of interferer is considered, the interference received at the passive

radar is homogeneous. Distinct interferer-receiver channel information can be used in a

marked process where each transmitter is marked according to their signal power distri-

bution. Employing Gamma random variables, the log-normal shadowing in (5.5) can be

denoted as Lε , and the fading distribution (5.4), hε can be represented as Γ[εg,θg]. ε

is the interferer index. In a single antenna case, Nagakami fading along with Gamma

randomisation can be represented as Γ[µ, nm
µ
] where nm = (1+n2)2

1+2n2 .

The interference power is enumerated at the passive radar receiver where the target of

interest is situated at origin; hence the receiver in each cell locates at (Dxr,0), as is shown

in Fig. 5.3. Assuming that Dkx,Dxr ≤Dkr ≤ Rc and Rg = Rc =
1

4
√

λ (r) as the homogeneous

interference is considered, and both target and radar receiver should be illuminated by the

uniformly transmitted signal. There are two types of interference that can be measured at

the receiver: I1 is the interference from the superior interferer at the border of the guard

region, while the interference from all other OFDM stations outside the guard region is

donated by I2. Then, the homogeneous interference is equal to Iho(Dxr) = I1(Dxr) +

I2(Dxr). The dominant interference can be derived as:

I1(Dxr) =
h1L1Ptβ1

‖y1‖α
. (5.28)

Using the law of cosines, the distance between the interference at the guard region

edge and the receiver is ‖y1‖ =
√

4+4qcosη +q2Rc. η is a uniform random variable

over the range (0,2π]. To work out I2, it is shown that the distance to the closest edge of

the circle is Rc +Rg−Dxr, while the distance to the furthest edge is Rc +Rg +Dxr. As a

consequence, the elimination distance to the adjacent interference is asymmetric. To solve

this, the interference contribution in a ball of radius Rc +Rg−Dxr around the receiver
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Figure 5.3: An example of a multistatic cellular networks scenario where blue arrows refer

to the expected target and reference signals, the orange arrows refer to the interference.

Note that there are other interfering signals from the multipath fading, including the target

reflection, but they are not shown in this figure due to visibility.

denoted B(Rc +Rg−Dxr) is calculated to produce an upper bound on the interference

power because less space is suspended from the aggregation of the interference. This

is known as a small ball approximation where the passive radar is at the centre of the

miniaturised interference field. The second type of interference can be shown as:

I2(Dxr) = ∑
ε∈Φ(t)\B(Rc+Rg−Dxr)

hεLεPtβ1

‖yε‖α
. (5.29)

The small ball approximation can be applied to I1 to get

I1(Dxr) =
h1L1Ptβ1

(Rc +Rg−Dxr)α
. (5.30)

The distribution of random interference, Iho(Dxr), can be characterised by its Lap-

lace transform. Let the interference be marked by hεLε , which follows an arbitrary but

identical distribution for all ε , and thus the Laplace transform can be derived as:

LIho(Dxr)(s) = EI1(Dxr) [exp(−sI1(Dxr))]EI2(Dxr) [exp(−sI2(Dxr))] . (5.31)

The first term related to I1(Dxr) can be calculated through the integration given the

distribution of h1L1. On the other hand, the Laplace transform of I2(Dxr) can be illustra-
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ted as:

LI2(Dxr)(s) = EI2(Dxr) [exp(−sI2(Dxr))]

≈ E
Φ(t),hε ,Lε

exp

−s ∑
ε∈Φ(t)\B(Rc+Rg−Dxr)

hεLεPtβ1

‖yε‖α



= E
Φ(t),hε ,Lε

 ∏
ε∈Φ(t)\B(Rc+Rg−Dxr)

exp
(
−s

hεLεPtβ1

‖yε‖α

) . (5.32)

Due to the fact that hεLε holds i.i.d distribution, which is independent of a PPP, the

above expression can be shown as:

LI2(Dxr)(s) = E
Φ(t)

 ∏
ε∈Φ(t)\B(Rc+Rg−Dxr)

Eh,L

(
exp
(
−s

hL Ptβ1

‖yε‖α

))
= exp

(
−2πλ

(t)
∫

∞

Rc+Rg−Dxr

(
1−Eh,L

[
exp(−shL Ptβ1u−α)

])
udu
)
,

(5.33)

where the last expression is derived using PGFL. Similar to [68] with the assumption that

the distance Rc+Rg−Dxr is greater than the typical target-receiver distance of the system,

the above expression is further calculated by denoting Z = hεLεPt and introducing

Fα,x,β1(s) = Ezz
2
α

[
Γ

(
− 2

α
,sβ1zx−α

)
−Γ

(
− 2

α

)]
. (5.34)

If Z is approximated using a gamma distribution Γ[εg,θg], the above function can be

shown as:

Fα,x,β1(s) =
(sβ1x−α)−

2
α
−εgαθ

−εg
g

2+ εgα
2F1

(
εg,εg +

2
α
,1+ εg +

2
α
,− 1

sβ1x−αθg

)

−θ
2
α

g B
(

εg +
2
α
,− 2

α

)
. (5.35)

Finally, the Laplace transform of the total interference apart from the dominant inter-

ferer can be displayed as:

LI2(Dxr)(s) = exp

(
λ
(t)

π(Rc +Rg−Dxr)
2− 2πλ (t)(sPt)

2
α

αβ
2/α

1

Fα,Rc+Rg−Dxr,β1(s)

)
, (5.36)

where 2F1 is the Gauss hypergeometric function and B(x,y) is a Beta Euler function. Note

that there is also a choice in that the passive radar receiver can reside at the origin and the

small-ball approximation is not needed. This thesis proposes the cellular networks by
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setting a typical target of interest at the origin. The reason for this is that the interference

discussed here can become an upper bound for other interference modelling in the future.

Heterogeneous interference

In this part, the system considered is composed of the macrocellular networks in com-

bination with a variety of frameworks, such as low-power nodes like small-cells, femto-

cells, fixed relays, and distributed antennas. There are two scenarios discussed here. First,

out-of-cell interference could comprise of the interference from both high power stations

and low power distributed antenna. The appearance of a guard region could be incon-

sistent and the transmission power of different tiers become heterogeneous. The concept

of the dominant interferer and the guard region can be developed from the homogene-

ous network. Second, this kind of heterogeneous interference arises from the second tier

of low-power node, like small-cells or femtocells in the form of cross-tier interference.

Details of the two types of interference are explained in the following.

Out-of-cell interference: assume the number of dissimilar sorts of framework homo-

geneously redistributed throughout the network is K . A marked PPP with marks regar-

ding the composite fading distribution, Γ[ki,θi], where i = 1, . . . ,K , can be employed for

each interferer. Given that the transmitters are modelled using a PPP with intensity λ
(t)
i

and transmit their power denoted by P(i)
t , the radar receiver and the target of interest hold

the same density λ
(r)
i ; the process is parametrised by (ki,θi,P

(i)
t ,λ

(t)
i ,λ

(r)
i ). The station

connected to the fixed cell is assumed to be in tier 1. With a known Rc, the radius of the

guard region for tier i can be denoted as:

R(i)
g = (ai−1)Rc, (5.37)

where ai = 1+(P(i)
t /P1

t )
1/α . Given P(i)

t ,λ
(t)
i ,λ

(r)
i , the average radius of the inscribing

ball of the typical Voronoi cell can be figured as:

Rc =
1

2
√

∑
K
i=1 a2

i λ
(r)
i

. (5.38)

The total intensity of interference (OFDM base stations), λ (t), can be defined as

∑
K
i=1 a2

i λ
(t)
i . With probability a2

i λ
(t)
i

λ (t) , it establishes a dominant interferer residing in tier

i at the edge of tier i’s guard region. The overall interference in the K -tier network is

counting K +1, where the interference from the dominant interferer is denoted by I1 and

the interference from the stations outside the guard region of the i-th tier is designated as

Ii,(2 < i ≤K + 1). Applying the small ball approximation, the overall interference is
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shown as:

Jovr =
K +1

∑
i=2

∑
κ∈Φ

(t)
i \(Rc+R(i)

g −Dxr)

h(i)κ L
(i)

κ P(i)
t β1‖y

(i)
κ ‖−α + I1 (5.39)

The Laplace transform of the heterogeneous out-of-cell interference regarding an in-

dependent K Poisson Point Processes can be displayed as:

LJ(s) =
K +1

∏
i=1

LIi(Dxr)(s), (5.40)

where the Laplace transform of Ii(Dxr) is donated by LIi(Dxr)(s).

Cross-tier interference: Cross-tier interference is initiated by some frameworks that

are unrelated to the macro base station. Femtocells can assemble another tier of nodes. It

is possible to denote an exclusion area around the aimed for radar receiver with radius Rcr

as Bcr. In order to avoid the gathering between the low-power node and the receiver, this

area is set to be small. Let the transmitting power of the cross-tier interferer be Pcr and

the transmitters are drawn from a PPP, Φcr with the density λcr; the received interference

power is denoted as:

Icr = ∑
κ∈Φcr\Bcr

hκLκPcrβ1‖yκ‖−α . (5.41)

Because of the shifting invariance property of PPP, the above equation displays that

the cross-tier interference is invariable and does not depend on the location of the radar

receiver.

5.3.3 Interference distribution approximation using the Gamma distribution

Laplace transform is utilised for the characterisation of the interference distribution and

unique choices of the parameters and the mark distribution enable further simplification.

Two equations from [82], which can be employed for the calculation regarding the mo-

ments for interference distribution, are introduced here as shown.

E[I(o)] = E[I] = E[P]λ
∫
R2

1
l(‖y‖)

dy

=
∫

∞

0
(1−G(s))ds ·2πλ

∫
∞

0

r
l(r)

dr, (5.42)

and

E[I2(o)] = (E[I])2 +E[P2] ·2πλ

∫
∞

0

r
(l(r))2 dr, (5.43)

where the receiver at the origin acquires the interference at point y with the path-loss

function l(r) of a distance r. Let Z = hεLεPt [68] be the random variable reciprocal to
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Table 5.1: Parameters for passive radar networks using stochastic geometry

Symbol Numerical Value Explanation

Rtx Variable [m] Distance from transmitter to target

Dxr Variable [m] Distance from target to receiver

Pxr Variable [w] Reflected target power

d0 Variable [m] Distance from the closest transmitter to receiver

Pt 10k W Power of the transmitter

α 2,2.1,2.2 Path-loss exponent

ν 1.3195 m [4] Carrier wavelength

σb 48.58 dBsm Bistatic radar cross-section

λ (t) Variable [unit/m2] Density of broadcasting stations

λ (r) Variable [unit/m2]] Density of passive radar receivers

h Random variable Small-scale fading of the channel

L Random variable log-normal shadowing of the channel

Rc Variable [m] Radius of the cell

Rg Variable [m] Distance of the guard region

the mark distribution for the case of a homogeneous interference supply. Applying (5.29)

and (5.30), the mean of the homogeneous interference can be shown as

E [Iho(Dxr)]≈
E[Z]β1

(Rc +Rg−Dxr)α

[
2πλ (t)(Rc +Rg−Dxr)

2

α−2
+1

]
. (5.44)

The variance of the homogeneous interference can be displayed as:

var(Iho(Dxr))≈
β 2

1
(Rc +Rg−Dxr)2α

[
πλ (t)E[Z](Rc +Rg−Dxr)

2

(α−1)
+var(Z)

]
. (5.45)

The moments of the sum are employed in case of the heterogeneous interference with

equivalent mark distribution. The mean of the heterogeneous interference can be illustra-

ted as follows:

E[I1(qRc)] =
β1

λ (t)R4
c

K

∑
i=1

λ
(t)
i E[Z(i)]a2

i (a
2
i +q2)

(a2
i −q2)3 (5.46)

E[I2
1(qRc)] =

β 2
1

λR8
c

K

∑
i=1

λ
(t)
i E[(Z(i))2]

a2
i (a

2
i +q2)(a4

i +8a2
i q2 +q4)

(a2
i −q2)7 (5.47)

E[Ii(qRc)] =
2πλ

(t)
i E[Z(i)]a2

i β1

2Rc(q2−a2
i )

2 . (5.48)
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The variance of the heterogeneous interference can be shown as:

var(Ii(qRc)) =
2πλ

(t)
i E[(Z(i))2]a2

i (a
4
i +6a2

i q2 +3q4)β 2
1

6R6
c(a2

i −q2)6 , (5.49)

where Z(i) = h(i)ε L
(i)

ε P(i)
t . Thus, the cross-tier interference can be considered using the

supplementary term by choosing the other appropriate parameters and substitute Rc +

Rg−Dxr with Rcr. Simple or closed-form solutions to the distribution defined by the

Laplace transform are often ambitious. It is shown that the approximation of interference

can be represented by the random variable Γ[kI,θI] with the same mean and variance as

I(Dxr) where

kI =
(E[I])2

var(I)
θI =

var(I)
E[I]

. (5.50)

In this section, a network of passive radars in multistatic configuration has been ana-

lysed. The system denotes a passive radar as a node along with a typical base station in

a cell. Based on the references followed this section, a small ball approximation has also

been applied. An approximation using Gamma distribution reviewed in Chapter 2 has

been utilised to estimate the interference. Consequently, the simulations regarding this

scenario are displayed in the next section.

5.4 Performance analysis

As has been seen throughout this chapter, stochastic geometry is applied in the passive

radar networks in two configurations. First, this chapter discussed bistatic ad-hoc net-

works, where a simple scenario was examined. Second, a PPP was utilised in cellular-

heterogeneous networks, where the systems become more complicated. Stochastic geo-

metry has demonstrated tractable mathematics for interference modelling. In this section,

all of the outcomes derived above are illustrated. The results in this section are also shown

in [118].

The parameters in Table 5.1 are simulated to produce the results using (5.9) and (5.15)

for mean and variance of the interference respectively. By setting the antenna gains of the

transmitter and the receiver to be equal and this does not affect the results, Fig. 5.4

provides the plot of interference mean versus the inverse intensity (1/λ (t)). This graph

compares different values of the path-loss exponent (α) and this is also comparable to the

outcome from the literature [3]. Regarding the mean figure, the higher path-loss reduces

the effect of interference, same as the decrease of base station density.
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Figure 5.4: Interference mean comparison between analytical and simulated outputs, al-

ong with various α values. (a) from the reference of automotive radar [3] and (b) this

thesis OFDM passive radar in ad-hoc networks
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Figure 5.5: Comparison of interference variance of OFDM passive radar with various α

values applying Rayleigh and Rician fading channel over a numerical expression where

the analytical results employ (5.15) with the approximation E(h2) = 1. The results are

averaged over 60 simulations.

The order of interference power in the literature is in milliwatts while the results here de-

monstrate only microwatts. The reason is that the distance of interest in our work is much

greater than the automobile spacing in the traffic although the sending power of the auto-

motive radar is much lower. Monte-Carlo simulations for the two types of fading channel,

Rayleigh and Rician channel, are also produced. The results are shown in Fig. 5.5, where

both of the channels perform equally and are comparable in terms of the analytical ex-

pression. The reason for this presentation is that the Rayleigh channel is mostly used in

stochastic geometry research, while the channel for passive radar inevitably includes the

direct path. The Rician channel is worth considering as part of an interference model.

The distribution of the interference using (5.21) is also demonstrated in Fig. 5.6 by

comparing the analytical expression with the approximation using inverse Gamma dis-

tribution. The performance of target detection is illustrated in Fig. 5.7 with a very low

threshold of -60 dB. The plot also demonstrates the results in different OFDM station

densities. The noise level is assumed to be 0 dB compared to the target signature. It is

shown from the figure that if the density of the transmitter is closed to 0.1 unit per area,
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Figure 5.6: Cumulative Distribution Function of the interference by using inverse Gamma

approximation in comparison with numerical integration with various α values. where (a)

from the reference of automotive radar [3] and (b) for OFDM passive radar using bistatic

ad-hoc networks in this thesis
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Figure 5.7: Successful range detection probability in bistatic ad-hoc radar networks com-

paring various interference intensities. (a) referring to the reference [3] and (b) for the

passive radar systems in this thesis
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only 50 percent of detection can be achieved for the target distance at 10 km. This perfor-

mance is not impressive while the target can be detected with probability of 0.5 at about

80 km when the transmitter density is expanded to 0.01 unit per area. However, when the

interference caused by the closest transmitter is taken into account, the threshold needs

adjusting until the appearance of the target signal is sufficient. With the efficient reference

cancellation method, the threshold will be more realistic and not too low.

Regarding the multistatic passive radar systems, the simulations employ (5.44) and

(5.45) in order to illustrate the statistical characteristics of the homogeneous interference.

Fig. 5.8a displays the mean of the cellular network interference with the passive radar

receiver at the location (Dxr,0) in a typical cell. This is plotted versus the inverse den-

sity of the OFDM base stations, 1/λ (t). The mean plot displays the same pattern as in

ad-hoc configuration. The interference power, however, is in order of milliwatts. The

variance of the cellular network interference is shown in Fig. 5.8b with the same label.

Both figures indicate the difference of path-loss exponent (α). Employing the Gamma

approximation of small-scale fading allows for the estimation of fading characteristic for

multiple-antenna receivers, i.e. hε ≈ Γ(nr,1). Fig. 5.10 displays the mean and variance of

the interference versus the number of antenna at the radar receiver. It should be mentioned

that the results using Gamma approximation for Rayleigh channel with multiple antennas

receiver provide consistency when the number of receive antennas is greater than 10.

As the maximum ratio combiner idea for passive radar networks is excluded from this

thesis, the approximation results need to be verified. As the statistical characteristics of

the channel, such as fading and shadowing, are included in the system, Fig. 5.11 illustrates

the impact of shadowing on the incoming interference by plotting its mean and variance

versus the variance of log-normal shadowing. It is shown that the channel with shadowing

can have an impact for the system. Not only the interference power decreases, but the ca-

pability of target and reference detection is also affected. The density of passive radar

receivers determines the radius of the cell in this case. Hence, Fig. 5.12 shows the effect

of receiver density where lower density refers to larger cell in the networks. The results

determine that the cell radius does not dramatical alter the strenght of the interference but

its variance can be highly affected.The homogeneous interference plot concludes with the

illustration of the ratio between surveillance signals and reference signals as this determi-

nes the necessity of the direct path cancellation process. Fig. 5.13 displays the received

signal ratio in a comparison between the effect of log-normal variance and the density of

radar receivers. As mentioned, the variance of shadowing provides a significant impact to
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Figure 5.8: The interference characteristics in multistatic passive radar networks where:

(a) mean of interference; and (b) variance of interference, are displayed.
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Figure 5.9: The interference characteristics in multistatic passive radar networks where:

(a) mean of interference; and (b) variance of interference, are displayed.
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Figure 5.10: The interference characteristics in multistatic passive radar networks versus

the number of receive antennas using the Gamma approximation where: (a) mean of

interference; and (b) variance of interference, are displayed.
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Figure 5.11: The interference characteristics in multistatic passive radar networks versus

the variance of log-normal shadowing where: (a) mean of interference; and (b) variance

of interference, are displayed.
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Figure 5.12: The interference characteristics in multistatic passive radar networks versus

the inverse of passive radar density.
146



the target reflections. On the other hand, the radar density, which provides slow distortion

to the interference, also becomes an attenuator for the detection process. To complete the

discussion for cellular network interference, a heterogeneous system is simulated. The

simulation applies five tiers of communication cells. The interference resulting from each

tier is shown in Fig. 5.14 by plotting the statistical characteristics versus the ratio (q)

between the distance of radar receiver (Dxr) and the cell radius (Rc) corresponding to the

target at the origin. Fig. 5.14a displays the mean of interference, whereas the variance

is exhibited in Fig. 5.14b. Mean of the dominant interference is the lowest among all

tiers and the interference from each tier tends to get stronger when the passive radar

moves away from the target. It can also be seen that the variance of dominant interference

decreases when the passive radar is closed to the cell border.

Performance of multistatic-cellular passive radar networks is demonstrated in the fol-

lowing figures. In this case, Monte-Carlo simulations for four kinds of channel are em-

ployed, i.e., Rayleigh channel, Rayleigh channel with shadowing, Rician channel and Ri-

cian channel with shadowing. The results are compared with the channel approximation

using Gamma random variables. In Fig. 5.15, it illustrates the surveillance and reference

signal to interference ratio and the outcomes from each type of channel are similar though

not exactly equal. As frequently mentioned, target reflections are the major problem in

passive radar which can be very sensitive to acquire. The reference signal, however, the

results show that the receiver is able to collect 5 dB or higher in power. As the results

from SIR might not interpret the performance directly, successful probability of detection

are then demonstrated. In Fig. 5.16, the simulation performs Monte-Carlo simulations for

interference regarding type of channel in comparison with the analytical interference pre-

viously shown. It is shown that, with the threshold as low as -20 dB, the target detection

can be achieved if the passive radar is less than 15 km from the target of interest, by pro-

bability of 0.5. It is important to observe that, using simulated interference, the Gamma

approximation performs a lower bound to the other channels and most of the values are

matched, whereas the Gamma approximation demonstrates the upper bound when ana-

lytical expression is used. This can be interpreted as: (i) the Gamma approximation is

a good choice to estimate the Rayleigh coefficients although Rayleigh channel is con-

ceptually not suitable for passive radar channel characteristics; (ii) analytical expressions

along with the Gamma approximation provides over-estimate performance of the system,

where, in the real scenario, the results may be much worse. To fulfill the discussion in

this chapter, the simulation results for reference signal detections are also illustrated in
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Figure 5.13: The ratio between the target reflections and the reference signals in multista-

tic passive radar networks versus: (a) the variance of log-normal shadowing; and (b) the

inverse of passive radar density, are displayed.
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Figure 5.14: The heterogeneous interference characteristics in multistatic radar networks

versus the ratio between the distance of the radar receiver to the target at the origin and

the radius of the cell.
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Figure 5.15: Received signal to interference ratio observed by the passive radar in cellular

network where: (a) refer to the target reflections; and (b) refer to the reference signals,

using 10 Monte-Carlo experiments

150



0 10 20 30 40 50 60 70 80 90 100

Distance from the target to the radar receiver (km)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l p

ro
ba

bi
lit

y 
fo

r 
ta

rg
et

 s
ig

na
l

Rayleigh with Gamma
Rayleigh
RayleighwithShadow
Rician
RicianwithShadow

(a)

0 10 20 30 40 50 60 70 80 90 100

Distance from the target to the radar receiver (km)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l p

ro
ba

bi
lit

y 
fo

r 
ta

rg
et

 s
ig

na
l

Rayleigh with Gamma
Rayleigh
RayleighwithShadow
Rician
RicianwithShadow

(b)

Figure 5.16: Successful probability of surveillance signals applying (a) Monte-Carlo in-

terference; and (b) analytical interference in this thesis, using 10 Monte-Carlo experi-

ments
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Figure 5.17: Successful probability of reference signals applying: (a) Monte-Carlo inter-

ference; and (b) analytical interference in this thesis, using 10 Monte-Carlo experiments
152



Fig. 5.17. In contrast to the previous outcomes, Gamma approximation values are quite

different from the Monte-Carlo results. From the figure, the system are capable to detect

the base station signals in multistatic configuration. It should be concluded that better

reference signals can improve the performance of reference reconstruction as the input of

the correlator in the matched filter, however, the target signatures are more crucial to be

obvious at the end of the process.

5.5 Summary

Since the passive radar can be configured into bistatic and multistatic. Interference from

the adjacent passive radar systems requires consideration when multiple receivers are

utilised. In this chapter, networks of passive radar receivers are introduced. This the-

sis employ radar equation to analyse the received power. Without stochastic geometry,

the problem of interference modelling becomes mathematical intractable. Two major

tools, Campbell’s theorem and PGFL, enable the summation and multiplication among

the random points. This work assumes the location of passive radar receivers, target of

interest and the OFDM base stations are randomised using Poisson point process. The

statistical characteristics of interference in bistatic and multistatic passive radar networks

are derived. For bistatic configuration, the ad-hoc concept is adapted, whereas the cellu-

lar concept is exploited for the multistaic counterpart. Interference derived in this chapter

can be employed to calculate the SINR of the receivers. In contrast to communication

systems, the target reflection is more crucial at the receivers and is sensitive to the in-

terference. Channel fading in passive radar is also different as this system considers

Nakagami-n instead of Rayleigh fading. As a result, the interference integration is li-

mited by the distance between a target and a receiver instead of a transciever pair. The

results show that the density of both transmitters and radar receivers produce an impact

to the systems, as well as variance of the shadowing and the target-radar distance. To in-

crease detection capability, either reference cancellation processs or target beamforming

could be efficient candidates. The algorithms proposed in this thesis can be applied in the

high-level system of passive radars.
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Chapter 6

Conclusion and future works

6.1 Conclusion

This thesis studies the target detection ability of the OFDM passive radar regarding MIMO

configuration using compressive sensing. Previously, the MUSIC algorithm was found to

work very well for the signal detection but in passive radar, there is a requirement for a

large number of snapshots as well as producing some interference from the direct signals.

In order to employ CS, a sparse representation is needed and this thesis has discussed the

overcomplete matrix design. A single time sample compressive sensing which consumes

high computational resources was applied and satisfaction was not assured. Therefore,

this thesis has suggested l1-SVD, which has an impressive capability of targets detection

in the passive radar paradigm. The results shown in this thesis indicate the performance of

compressive sensing for MIMO-OFDM passive radar. l1-SVD, as well as basis pursuit,

can detect a target as long as the power of the direct signal is not higher than 20 dB

compared to that of the target, whereas it is shown in [16] that the direct signal should

be 20 dB to be recovered with error free. The difference between target and direct signal

power is set to as low as -50 dB in this reference. The simulation results stated the

improvement in passive radar employing the MIMO system, and a diversity gain can

be achieved from the data collected from all receivers. Simulation results from the CS

algortihms show that it is possible to increase the resolution of the CS detector, while it is

unlikely for the MUSIC algorithm. Consequently, incomplete sensing behaviour allows

for a fewer number of snapshots and is suitable for moving sensors.

Additionally, a MIMO passive radar system model comprising differently located BS

transmitter antennas and collocated array-based receiver antennas is considered with re-

gard to the extraction of 3D target parameter sets using broadcast OFDM signals. With
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the co-located antennas receiver, the MIMO scheme is also capable of determining the

direction of arrivals of the sources. 3D channel estimates extend the detection capability

of the MIMO passive radar using OFDM waveforms for the angular domain. In the case

where a Single Frequency Network is used over the Digital Broadcasting base stations,

this proposed model can determine the angle of either the reference or surveillance sig-

nal. The level of requirement for data association between transmitters and each received

signal may be reduced. It has been shown that a novel compressive technique, known as

Fast-BesselK, could be used to extract this 3D parameter set in a computationally efficient

manner, thus indicating for the first time that a MIMO passive radio employing OFDM

signals could perform this task, which was hitherto assumed to be too computationally

intractable. Furthermore, the computational efficiency of this approach has been verified

by complexity analysis in comparison with other compressive sensing approaches that are

used for the less intensive 2D case. Moreover, a novel CCOB-based beamforming techni-

que, which was specifically designed to be compatible with the Fast-BesselK technique,

was devised to reduce the effect of the high power of the clean copy of the OFDM signal

that was necessary to be received from an assigned nearby BS, thus improving the per-

formance of the MIMO passive radar in the low SNR regime. Concerning the operation

scene, the interference which affects the radar system has also been derived using sto-

chastic geometry. This enables a network of passive radars where they can be operated

utilising bistatic or multistatic configuration. Stochastic geometry allows the modelling

of interference, which is crucial in the target detection of a passive radar system.

6.2 Possible future works

There are some possibilities presented in this section in order to continue exploring the

area of passive radar.

• Association problems

This problem is significantly related to the OFDM passive radar with widely-spread

receivers, whose association algorithms are replaced by the co-located receivers in

this thesis. The three-dimensional matrix, however, may require higher computati-

onal resources than a simple association method, provided that the maintenance of

the distributed receiver is in control. [11] and [14] proposed an association algo-

rithm which can be straighforwardly applied to the system discussed in this thesis.

This is quite interesting in terms of complexity comparison, and the results can be
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used for a better localisation scheme than without the effective association.

• Localisation problems

The localisation of an unknown target, as well as the partially known OFDM base

stations for the widely-separated receivers, is rather difficult. Doppler and bearing

estimation can assist the localisation process [119]. Without the angle of arrivals

information, however, the receivers can extract only the time delays, which can

be transformed to Euclidean distances. Fortunately, a technique called Euclidean

Distance Matrices [120] is presented to be impressive. The system does not need to

understand complete data matrix in order to perform the algorithm. Equipped with

the OFDM passive radar, the method seems to provide a promising result, with

efficiency, for widely-spread configuration.

• Tracking problems

After the parameter extraction step is complete, the process of target tracking should

be initiated. In chapter 5, the passive radar networks display a challenge in this

research area. There are many tracking algorithms applied in the radar, as well

as the passive radar scheme. As a suggestion, the probability hypothesis density

(PHD) filter [26] has been shown to be attracted to the multiple-sensor multiple-

target area of research. There is a conviction that the PHD filter can improve the

tracking ability of the OFDM passive radar.

• Large-scale antennas problems

Recently, the concept of Fifth Generation (5G) has extensively been discussed. Not

only can the broadcasting stations be equipped with a massive array of antennas, but

the radar stations can also exploit the advantage of a massive MIMO paradigm. The

receiver where the antennas are located can perform multiple target detection and

tracking, as well as simultaneous beamforming. The techniques employed in the

large-scale system can be adapted in other areas of research, including passive radar,

such as [121] with a full-dimension massive MIMO along with a 3D spatial channel

model. A massive MIMO can be configured in distributed arrays and this can lead to

an enormous increase in the surveilance area. Although [122] presented a massive

MIMO based on communications concept, the sparsity of channel estimates can

be exploited. This means compressive sensing can be an interesting method for a

large-scale antennas receiver with an appropriate adaptation. Hence, this problem
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becomes attractive to future researchers.

• Extension to chapter 5

Due to the fact that the number of base stations is increasing, a dense cellular net-

works are of interest [70]. The cell association in passive radar networks needs to

considered not only the distance of the reference transmitter, but also the receive

power from each transmitter. Multiple-antennas at both base stations and radar re-

ceivers can be another evolution. Similar to a discussion in [123] and [69], MIMO

scenarios are presented with multi-tier heterogeneous cellular network. The system

model in chapter 5 also resembles those in the references in case of heterogeneous

environment except that Rayleigh fading channel might not be suitable. Maximum

Ratio Combining technique can be employed for the receiver with multiple anten-

nas.

• Stealth target consideration

One of the advantages of the passive radar is related to the characteristic of the

broadcasting waveforms. As the transmitted signals are aimed to be received by

the subscribers, low-altitude aircraft, as well as countermeasure-design stealth plat-

forms, can be detected. Evaluation of RCS referred to a multi-static configuration

is considered in [124], along with low flight elevation coverage. As a result, digital

broadcasting signals can be employed to detect unmanned aerial vehicles (UAV).

It has been shown in [125] that with a multi-static passive radar system, a drone

or slow aircraft parameter can be measured. The idea in this thesis can be applied

to the available systems, providing the sparsity to increase the detection efficiency.

This concept attracts the application of passive radar regarding the present increase

in drone usage.

• Off-grid compressive sensing

As seen thoughout this thesis, the value of extracted parameters from the CS method

is indicated by the elements of an overcomplete matrix. Since it is arbitrarily desig-

ned, the real parameters can demonstrate a value which is within the grid provided.

This is a reasonable development of the system in order to improve its precision,

and this also allows an adaptive grid to be employed. [126] explained the idea of

off-grid compressive sensing applying an atomic norm minimisation with a semi-

definite program, and the off-grid CS signal model with the remedy approaches to
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radar domain is suggested in [127]. To extend the analysis provided in this thesis,

this problem is of interest and its outcome are important to this area of research.
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Appendix A

Matched Filter Derivation

A.1 Derivation of 2D matched filter

To demonstrate the matched filter from (3.11), the limitation of the integration is first

changed and this results in:

z(m)
m f (τ̂) =

nt

∑
k=1

Ti
T ′

∑
i=1

∫ iT ′+T

iT ′
e− j2π âm f f k

c (t+iT ′)x∗k(t + iT ′− τ̂)yk(m)(t + iT ′)dt (A.1)

=
nt

∑
k=1

Ti
T ′

∑
i=1

e− j2π âm f f k
c iT ′

∫ Ti

0
e− j2π âm f f k

c tx∗k(t + iT ′− τ̂)yk(m)(t + iT ′)dt (A.2)

=
nt

∑
k=1

Ti
T ′

∑
i=1

e− j2π âm f f k
c iT ′z(i)m f (τ̂), (A.3)

where

z(i)m f (τ̂) =
∫ Ti

0
e− j2π âm f f k

c tx∗k(t + iT ′− τ̂)yk(m)(t + iT ′)dt. (A.4)

The next step is to consider only the matched filter output of the ith block (A.4) (for

i ∈ {1, . . . ,L}). This is feasible due to the occurrence of cyclic prefix. Substituted by

(3.4). The result will be shown as:

z(i)m f (τ̂) =
∫ T

0
e− j2π âm f f k

c t

N
2−1

∑
n=−N

2

s∗k(i)[n]e
− j2πn∆ f (t−τ̂)yk(m)(t + iT ′)dt (A.5)

=

N
2−1

∑
n=−N

2

(
e j2πn∆ f τ̂s∗k(i)[n]

∫ T

0
e− j2πn∆ f t [e− j2π âm f f k

c tyk(m)(t + iT ′)]dt
)
. (A.6)

Using the approximation in [16], i.e. e− j2π âm f f k
c t ≈ e− j2π âm f f k

c (
T
2 ) ∀t ∈ [0,T ], the

160



above equation can be simplified to:

z(i)m f (τ̂) = e− jπ âm f f k
c T

N
2−1

∑
n=−N

2

e j2πn∆ f τ̂s∗k(i)[n]
∫ T

0
e− j2πn∆ f tyk(m)(t + iT ′)]dt. (A.7)

Focusing on the term s∗k(i)[n]
∫ T

0 e− j2πn∆ f tyk(m)(t + iT ′)]dt with an assumption that

there is one existing target without noise, the amplitude of the reflected signal is Ak(m)
0 ,

along with the delay τ
k(m)
0 and the Doppler frequency ak(m)

0 f k
c . Substitute yk(m)(t + iT ′)

using (3.9), this term can be shown as:

= s∗k(i)[n]
∫ T

0
e− j2πn∆ f t(Ak(m)

0 xk(i)(t− τ
k(m)
0 )e j2πak(m)

0 f k
c (t+iT ′)dt), (A.8)

and it is possible to replace xk(i)(t− τ0) applying (3.4). The result is:

= s∗k(i)[n]
∫ T

0
e− j2πn∆ f t(Ak(m)

0

N
2−1

∑
m=−N

2

sk(i)[m]e j2πm∆ f (t−τ
k(m)
0 )e j2πak(m)

0 f k
c (t+iT ′))dt (A.9)

= Ak(m)
0

N
2−1

∑
m=−N

2

sk(i)[m]s∗k(i)[n]e
− j2πm∆ f τ0

∫ T

0
e− j2π(n−m)∆ f te j2πa0 fc(t+iT ′)dt (A.10)

≈ Ak(m)
0 T |sk(i)[n]|2e j2π(iak(m)

0 f k
c T ′−n∆ f τ0). (A.11)

(A.11) is approximated employing the phase rotation estimation mentioned above and

the orthogonality of all frequencies. This equation is similar to the channel estimation of

the uniform rectangular array (URA) receiver, where its elements are identically isolated

by T ′ in Doppler domain and ∆ f in time domain. Ignoring the constant coefficients,

(A.11) the channel estimates can be written in the general form as:

Hk(m)
n(i) =

Np

∑
p=1

Ak(m)
p e j2π(iâk(m)

p f k
c T ′−n∆ f τ̂

k(m)
p ). (A.12)

Substituting (A.12) into (A.7) and then into (A.3), the output of the overall matched

filter can be derived as:

z(m)
m f (τ̂) =

nt

∑
k=1

L

∑
i=1

N
2−1

∑
n=−N

2

e− j2π(iâm f f k
c T ′−n∆ f τ̂)Hk(m)

n(i) . (A.13)

A.2 Derivation of 3D matched filter

As seen from (2.1), the matched filter can be implemented as a correlator for the cross-

correlation between the transmitted and received signals. For each m-th antenna, the co-th
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correlator with a fixed Doppler shift âco f k generates a 2D grid for every τ̂ and φ̂ as:

z(m)
co (τ̂, φ̂) =

nt

∑
k=1

π

2

∑
φ=− π

2

e
− j2π(m−1) d

λk
sin φ̂

∫ Tint

0
e− j2π âco f ktx∗k(t− τ̂)yk(m)(t)dt (A.14)

As in (3.5), if an integer, which is a multiple of T ′, is elected as the integration time,

the total output of the correlators will be realised as the summation of the output of the

correlator for the ith block and the transmitted signal is divided into the block of time T ′,

where T ′ = T +Tcp, the correlator then can be rewritten as:

z(m)
co (τ̂, φ̂) =

nt

∑
k=1

π

2

∑
φ=− π

2

e
− j2π(m−1) d

λk
sin φ̂

Tint/T ′

∑
i=1

∫ iT ′+T

iT ′
e− j2π âco f ktx∗k(t− τ̂)yk(m)(t)dt

(A.15)

=
nt

∑
k=1

π

2

∑
φ=− π

2

e
− j2π(m−1) d

λk
sin φ̂

Tint/T ′

∑
i=1

∫ T

0
e− j2π âco f k(t+iT ′)x∗k(t + iT ′− τ̂)yk(m)(t + iT ′)dt

(A.16)

=
nt

∑
k=1

π

2

∑
φ=− π

2

e
− j2π(m−1) d

λk
sin φ̂

Tint/T ′

∑
i=1

e− j2π âco f kiT ′z(i)co (τ̂). (A.17)

From (A.17), it can be shown that:

z(i)co (τ̂) =
∫ T

0
e− j2π âco f ktx∗k(t + iT ′− τ̂)yk(m)(t + iT ′)dt. (A.18)

is the correlator output of the i-th block for each m-th antenna (superscript (m) is tem-

porarily ignored) and has the same form as discussed in [16]. The conjugation of the ith

block transmitted signal x∗(t + iT ′− τ̂) can be represented as x∗k(i)(t − τ̂). Recall from

(3.4) that:

x∗k(i)(t− τ̂) =
N/2−1

∑
n=−N/2

s∗k(i)[n]e
− j2πn∆ f (t−τ̂), (A.19)
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Utilising the cyclic prefix, the correlation is periodic with the length of T . Then:

z(i)co (τ̂, φ̂) =
∫

φmax

−φmax

∫ T

0
e
− j2π[âco f kt+(m−1) d

λk
sin φ̂ ]

x∗k(i)(t− τ̂)yk(m)(t + iT ′)dtdφ (A.20)

=
∫

φmax

−φmax

∫ T

0
e
− j2π[âco f kt+(m−1) d

λk
sin φ̂ ]

N/2−1

∑
n=−N/2

s∗k(i)[n]e
− j2πn∆ f (t−τ̂)yk(m)(t + iT ′)dtdφ

(A.21)

=
N/2−1

∑
n=−N/2

e− j2πn∆ f τ̂s∗k(i)[n]
∫

φmax

−φmax

e
− j2π(m−1) d

λk
sin φ̂

∫ T

0
e− j2π[âco f k+n∆ f ]t

× yk(m)(t + iT ′)dtdφ .

As it will produce very small value when T ′ is multiplied with the Doppler shift,

the phase rotation in one OFDM block, i.e. e− j2π âco f kt can be replaced by a constant

e− j2π âco f k(T/2), same as in [16]:

z(i)co (τ̂)≈ e− jπ âco f kT
N/2−1

∑
n=−N/2

(
e j2πn∆ f τ̂s∗k(i)[n]

∫ T

0
e− j2πn∆ f tyk(m)(t + iT ′)dt

)
. (A.22)

Then substitute the result from (A.22) regardless the constant phase rotation out front,

(A.17) becomes:

z(m)
co (τ̂, φ̂) =

nt

∑
k=1

π

2

∑
φ=− π

2

e
− j2π(m−1) d

λk
sin φ̂

Tint/T ′

∑
i=1

e− j2π âco f kiT ′

×
N/2−1

∑
n=−N/2

(
e j2πn∆ f τ̂s∗k(i)[n]

∫ T

0
e− j2πn∆ f tyk(m)(t + iT ′)dt

)
. (A.23)

Therefore, the matched filter output can be shown as:

z(m)
co (τ̂, φ̂) =

nt

∑
k=1

π

2

∑
φ=− π

2

Tint/T ′

∑
i=1

N/2−1

∑
n=−N/2

exp(− j2π[rk,m(φ̂)+ âco f kiT ′−n∆ f τ̂])Hk(m)
n,i ,

(A.24)

where rk,m(φ̂) = (m−1) d
λk

sin φ̂ and the channel estimates are defined as:

Hk(m)
n,i = s∗k(i)[n]

∫ T

0
e− j2πn∆ f tyk(m)(t + iT ′)dt. (A.25)

Assume that there is one path impinging on the m-th antenna at angle φ
k(m)
0 . Its at-

tenuation is equal to Ak(m)
0 including τ

k(m)
0 and ak(m)

0 f k of delay and Doppler frequency

respectively. The channel estimates demonstrate:

Hk(m)
n,i =s∗k(i)[n]

∫ T

0
e− j2πn∆ f t

(
Ak(m)

0 xk(m)(t− τ
k(m)
0 )e

j2π[ak(m)
0 f k(t+iT ′)+(m−1) d

λk
sinφ

k(m)
0 ]
)

dt.

(A.26)
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Using (A.19), then

Hk(m)
n,i = s∗k(i)[n]

∫ T

0
e− j2πn∆ f t

(
Ak(m)

0

N/2−1

∑
g=N/2

sk(i)[g]e
j2π[ak(m)

0 f k(t+iT ′)+(m−1) d
λk

sinφ
k(m)
0 ]

× e j2πg∆ f (t−τ
k(m)
0 )

)
dt (A.27)

Hk(m)
n,i = Ak(m)

0

N/2−1

∑
g=N/2

sk(i)[g]s
∗
k(i)[n]e

− j2πg∆ f τ
k(m)
0 e

j2π[ak(m)
0 f kiT ′+(m−1) d

λk
sinφ

k(m)
0 ]

×
∫ T

0
e− j2π(n−g)∆ f t · e j2πak(m)

0 f ktdt. (A.28)

As in [16], e j2πak(m)
0 f kt is approximated as e jπak(m)

0 f kT and this has also been used in

(A.22). Regardless the constant resulted from the approximation and recall that each

frequency is mutually orthogonal, the outcome of the channel estimates after performing

the integration is:

Hk(m)
n,i = Ak(m)

0 [sk(i)[n]]
2Te

j2π[ak(m)
0 f kiT ′+(m−1) d

λk
sinφ

k(m)
0 −n∆ f τ

k(m)
0 ]

. (A.29)

Finally, the channel estimates can be subtitute into (A.24) and the intepretation of this

derivation is the same as shown in proposition 1.
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Appendix B

OFDM passive radar Cramer-Rao

lower bounds

B.1 Derivation of 2D Cramer-Rao lower bounds

The log-likelihood function can be displayed as:

ln p(h;θ)=− ln[2πσ
2
w]

NLnt nr
2 − 1

2σ2
w

∑
m

∑
k

∑
i

∑
n

(
Ĥk(m)

n(i) −∑
p

Ak(m)
p e j2π[iak(m)

p f k
c T ′−n∆ f τ

k(m)
p ]

)2

,

(B.1)

Each element of I(θ) can be first computed by finding the first-order partial derivative

with respect to each parameter as shown:

∂ ln p(h;θ)

∂τ
=− j2π∆ f

σ2
w

∑
m

∑
k

∑
i

∑
n

n
(

Ĥk(m)
n(i) Hk(m)

n(i) − (Hk(m)
n(i) )2

)
,

∂ ln p(h;θ)

∂a
=

j2πT ′

σ2
w

∑
m

∑
k

∑
i

∑
n

i f k
(

Ĥk(m)
n(i) Hk(m)

n(i) − (Hk(m)
n(i) )2

)
.

The second partial derivative can be derived as:

∂ 2 ln p(h;θ)

∂τ2 =− 4π2∆ f 2

σ2
w

∑
m

∑
k

∑
i

∑
n

n2
(

Ĥk(m)
n(i) Hk(m)

n(i) −2(Hk(m)
n(i) )2

)
,

∂ 2 ln p(h;θ)

∂τ∂a
=

4π2∆ f T ′

σ2
w

∑
m

∑
k

∑
i

∑
n

ni f k
(

Ĥk(m)
n(i) Hk(m)

n(i) −2(Hk(m)
n(i) )2

)
,

∂ 2 ln p(h;θ)

∂a2 =− 4π2T ′2

σ2
w

∑
m

∑
k

∑
i

∑
n
(i f k)2

(
Ĥk(m)

n(i) Hk(m)
n(i) −2(Hk(m)

n(i) )2
)
,

where the substitution is performed using (A.12) in order to allow for compactness. The

next step is to calculate the negative expectation of the second derivative shown above.
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This can be demonstrated as:

−E
[

∂ 2 ln p(h;θ)

∂τ2

]
=− 4π2∆ f 2

σ2
w

∑
m

∑
k

∑
i

∑
n

n2

(
∑
p

Ak(m)
p e j2π[iak(m)

p f k
c T ′−n∆ f τ

k(m)
p ]

)2

,

−E
[

∂ 2 ln p(h;θ)

∂τ∂a

]
=

4π2∆ f T ′

σ2
w

∑
m

∑
k

∑
i

∑
n

ni f k
c

(
∑
p

Ak(m)
p e j2π[iak(m)

p f k
c T ′−n∆ f τ

k(m)
p ]

)2

,

−E
[

∂ 2 ln p(h;θ)

∂a2

]
=− 4π2T ′2

σ2
w

∑
m

∑
k

∑
i

∑
n
(i f k)2

(
∑
p

Ak(m)
p e j2π[iak(m)

p f k
c T ′−n∆ f τ

k(m)
p ]

)2

,

The results shown above can be substituted into (3.19) with an assumption that no tar-

get exists along with summation properties; however, the above expression can be further

simplified, as shown in Section 3.4.

B.2 Derivation of 3D Cramer-Rao Lower Bounds

For three-dimensional CRLB, it is to assign:

H∗ =
mpth

∑
pth=1

Ak(m)
pth e j2π[iak(m)

pth f kT ′−n∆ f τ
k(m)
pth +rk(m)(φpth)].

Because of the property of partial derivative, the results for τ and a from the 2D

CRLB can be used. Considering the first derivative of the other elements in the Fisher

information matrix, it can be shown that:

∂ ln p(h;θ)

∂φ
=

j2πd
σ2

w
∑
m

∑
k

∑
i

∑
n

m−1
λk

(
Hk(m)
(n,i) H∗cos−H∗H∗cos

)
,

where

H∗cos =
mpth

∑
pth=1

Ak(m)
pth cosφ

k(m)
pth e j2π[iak(m)

pth f kT ′−n∆ f τ
k(m)
pth +rk(m)(φpth)].

For the second derivatives:

∂ 2 ln p(h;θ)

∂τ∂φ
=

4π2∆ f d
σ2

w
∑
m

∑
k

∑
i

∑
n

n(m−1)
λk

(
Hk(m)
(n,i) H∗cos−2H∗H∗cos

)
,

∂ 2 ln p(h;θ)

∂a∂φ
=− 4π2T ′d

σ2
w

∑
m

∑
k

∑
i

∑
n

i f k(m−1)
λk

(
Hk(m)
(n,i) H∗cos−2H∗H∗cos

)
,

Due to the compactness, let introduce:

H∗sin =
mpth

∑
pth=1

Ak(m)
pth sinφ

k(m)
pth e j2π[iak(m)

pth f kT ′−n∆ f τ
k(m)
pth +rk(m)(φpth)],
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and

H∗cos2 =
mpth

∑
pth=1

Ak(m)
pth cos2

φ
k(m)
pth e j2π[iak(m)

pth f kT ′−n∆ f τ
k(m)
pth +rk(m)(φpth)].

Therefore:

∂ 2 ln p(h;θ)

∂φ 2 =
j2πd
σ2

w
∑
m

∑
k

∑
i

∑
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m−1
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[
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d
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Hk(m)
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2
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−
(

Hk(m)
(n,i) H∗sin−H∗H∗sin

)]
.

Then taking the negative expectation of the second derivatives, the outcomes are:

[I(θ)]11 =−E

[
∂ 2 ln p(h;θ)

∂τ2

]

=− 4π2∆ f 2

σ2
w
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k
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(a)

(b)

Figure B.1: Cramer-Rao Lower Bounds for two-dimensional passive radar signal ex-

traction in comparison with three-dimensional version in corresponding domain where:

(a) Time delay domain; and (b) Doppler frequency domain (in a form of parameter

a = v/c).
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Figure B.2: Reconstruction error after applying Fast-BesselK method for three parame-

ters.
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pth e j2π[iak(m)

pth f kT ′−n∆ f τ
k(m)
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∂φ 2

]

=−4π2d2
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w
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m
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∑
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(
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( mpth
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k(m)
pth e j2π[iak(m)

pth f kT ′−n∆ f τ
k(m)
pth +rk(m)(φpth)]

)2

.

The above equations can be simplified further, assuming that there is one path per a pair

of transmitter and receiver as well as the attenuations between each receive antenna are

nearly equal. Using summation and complex exponential properties, the results are even-

tually displayed as in Section 4.6.
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B.3 Illustrations of Cramer-Rao lower bound for the MIMO-OFDM passive ra-

dars

Finally, the simulations of 2D and 3D Cramer-Rao Lower Bounds derived in Section 3.4

and 4.6 respectively, are illustrated. Given that the x-axis determine the SNR values, Fig.

B.1 displays the comparison between 2D CRLBs and 3D CRLBs in time delay domain

and Doppler frequency domain. Specifically in frequency domain, the bound displayed

is corresponded to the parameter a, which is the ratio between range-rate and speed of

light. It can be seen that 2D version of the bound are higher. Likewise, the 3D CRLBs

themselves are shown in Fig. B.3. Obviously from previous figures, the error in variance

becomes less if the SNR gets larger. The simulated reconstruction errors resulted from

Fast-BesselK are shown in Fig. B.2. In order to demonstrate the capability of the proposed

algorithm, the CRLBs between theorical 3D matched filter are compared with the NMSE

from selected Fast-BesselK methods in Fig. B.4. It is worth to analyse the extraction

performance of the algorithm at the SNR of -5 dB. It is shown that Fast-BesselK, which

is demonstrated more accurate than the others in this thesis, still supplies some error and

the amount of SNR in the real application might be lessened due to the properties of the

target. This can be improved when beamforming is operated or other candidate methods

are proposed.
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Figure B.3: Cramer-Rao Lower Bounds for three-dimensional passive radar signal ex-

traction in: (a) Time delay domain; (b) Doppler frequency domain; and (c) angular dom-

ain.
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Figure B.4: The normalised mean square error from the Fast-BesselK algorithm in com-

parison with 3D CRLB in corresponding domain where: (a) Time delay domain; (b)

Doppler frequency domain; and (c) angular domain. The visible lines are the error from

the Fast-BesselK while the bounds are much lower and lie on the x-axis.
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