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Abstract 

Non-destructive testing and evaluation (NDT&E) systems using open-ended waveguide (OEW) 

suffer from critical challenges. In the sensing stage, data acquisition is time-consuming by raster 

scan, which is difficult for on-line detection. Sensing stage also disregards demand for the latter 

feature extraction process, leading to an excessive amount of data and processing overhead for 

feature extraction. In the feature extraction stage, efficient and robust defect region 

segmentation in the obtained image is challenging for a complex image background. 

Compressed sensing (CS) demonstrates impressive data compression ability in various 

applications using sparse models. How to develop CS models in OEW NDT&E that jointly 

consider sensing & processing for fast data acquisition, data compression, efficient and robust 

feature extraction is remaining challenges. 

This thesis develops integrated sensing-processing CS models to address the drawbacks in 

OEW NDT systems and carries out their case studies in low-energy impact damage detection 

for carbon fibre reinforced plastics (CFRP) materials. The major contributions are:  

(1) For the challenge of fast data acquisition, an online CS model is developed to offer faster 

data acquisition and reduce data amount without any hardware modification. The images 

obtained with OEW are usually smooth which can be sparsely represented with discrete cosine 

transform (DCT) basis. Based on this information, a customised 0/1 Bernoulli matrix for CS 

measurement is designed for downsampling. The full data is reconstructed with orthogonal 

matching pursuit algorithm using the downsampling data, DCT basis, and the customised 0/1 

Bernoulli matrix. It is hard to determine the sampling pixel numbers for sparse reconstruction 

when lacking training data, to address this issue, an accumulated sampling and recovery process 

is developed in this CS model. The defect region can be extracted with the proposed histogram 

threshold edge detection (HTED) algorithm after each recovery, which forms an online process. 

A case study in impact damage detection on CFRP materials is carried out for validation. The 

results show that the data acquisition time is reduced by one order of magnitude while 

maintaining equivalent image quality and defect region as raster scan.  

(2) For the challenge of efficient data compression that considers the later feature extraction, a 

feature-supervised CS data acquisition method is proposed and evaluated. It reserves interested 



 

 

features while reducing the data amount. The frequencies which reveal the feature only occupy 

a small part of the frequency band, this method finds these sparse frequency range firstly to 

supervise the later sampling process. Subsequently, based on joint sparsity of neighbour frame 

and the extracted frequency band, an aligned spatial-spectrum sampling scheme is proposed. 

The scheme only samples interested frequency range for required features by using a 

customised 0/1 Bernoulli measurement matrix. The interested spectral-spatial data are 

reconstructed jointly, which has much faster speed than frame-by-frame methods. The proposed 

feature-supervised CS data acquisition is implemented and compared with raster scan and the 

traditional CS reconstruction in impact damage detection on CFRP materials. The results show 

that the data amount is reduced greatly without compromising feature quality, and the gain in 

reconstruction speed is improved linearly with the number of measurements. 

(3) Based on the above CS-based data acquisition methods, CS models are developed to directly 

detect defect from CS data rather than using the reconstructed full spatial data. This method is 

robust to texture background and more time-efficient that HTED algorithm. Firstly, based on 

the histogram is invariant to down-sampling using the customised 0/1 Bernoulli measurement 

matrix, a qualitative method which only gives binary judgement of defect is developed. High 

probability of detection and accuracy is achieved compared to other methods. Secondly, a new 

greedy algorithm of sparse orthogonal matching pursuit (spOMP)-based defect region 

segmentation method is developed to quantitatively extract the defect region, because the 

conventional sparse reconstruction algorithms cannot properly use the sparse character of 

correlation between the measurement matrix and CS data. The proposed algorithms are faster 

and more robust to interference than other algorithms. 
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Chapter 1. Introduction 

This chapter briefly introduces the research background and motivations, defines the research 

scope, and highlighting the main contributions of this thesis. The thesis layout is also 

summarised. 

1.1 Background and Motivation 

Sensing technologies convert the physical world into a computable digitalised world. The 

digitalised data is convenient for storage, transmission and processing. However, the excessive 

scale of data from sensors brings challenges to extracting information that supporting decision-

making. It also brings a heavy burden to transmission and storage. For example, 26 sensor 

arrays were used on the monitoring of Vincent Thomas Bridge in San Pedro California, 

generating 3TB of data per year [1]. 720P HD video camera at one engineering quality 

supervision site generates more than 2TB data per month. Extracting information for decision-

making from such amount of data is challenging for ordinary computers. Extracting information 

from data is an important supporting technique for the Internet of Things and Industry 4.0 era. 

Despite the computation ability keeps improving with technologies like Cloud Computing and 

supercomputers, the more critical points are to understand first, what information is necessary 

to operate and compete; and second, how this information is sensed and applied, as mentioned 

in a workshop report ‘The Future Directions Workshop on Compressed Sensing and the 

Integration of Sensing and Processing’ in 2016 [2].  

As an important enabling technology to give quality or health information in the quality 

management of Industry 4.0 era, non-destructive testing (NDT) technology also needs to 

efficiently manipulate between data and information. NDT is the process of inspecting, testing, 

or evaluating materials, components or assemblies for discontinuities, or differences in 

characteristics without destroying the serviceability of the part or system. Modern NDTs are 

used in manufacturing, fabrication and in-service inspections to ensure product integrity and 

reliability, to control manufacturing processes, lower production costs and to maintain a 

uniform quality level. During construction, NDT is used to ensure the quality of materials and 

joining processes during the fabrication and erection phases, and in-service NDT inspections 
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are used to ensure that the products in use continue to have the integrity necessary to ensure 

their usefulness and the safety of the public. 

Today, most NDT technologies are in an on-platform test model. On-platform means the object 

under test is forced to stop service and been tested on professional testing platforms. For 

example, periodically, some power plants are shut down for inspection. Inspectors feed eddy 

current probes into heat exchanger tubes to check for corrosion damage. The current business 

model for NDT inspection services is increasingly coming under threat. Shifting from the on-

platform test model into in-service condition-based maintenance (CBM) is more economically 

efficient in the value chain of the maintenance-as-a-service business ecosystem [3, 4]. As shown 

in Figure 1.1, the next generation of NDT services needs to transition from just on-platform 

inspection to predictive maintenance advice delivered from a remotely located office. The 

office is supported by technologies like edge computing, cloud computing, big data, artificial 

intelligence, etc. Continuous and time-efficient measurements are made from deployed on-site 

inspection devices, the monitoring data are delivered to the monitoring centre with support such 

as 5G. Maintenance teams carry out maintenance service following the guidance of monitoring 

centre. One major realm of CBM is finding features that reflect the current health state of the 

asset or component under observation. Most of the existing NDT approaches are accompanied 

by high data volume and high computational costs during the different feature processing 

phases, making them infeasible in an on-site CBM scenario. Developing smart sensing 

technologies that efficiently support the information-based decision by integrating sensing and 

processing as one unit is increasingly important for current NDT technologies [2].  

 

Figure 1.1 Maintenance-as-a-service in Industry 4.0 

Predictive maintenance advice 
supported by Cloud 

Computing, Edge Computing, 
Big Data, Artificial Intelligence…

Transmission based 
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Sensing techniques is the front-end of NDT. Various physical parameters can be used for NDT. 

NDT techniques that based on sound and vibration are: acoustic emission testing (AE), guided 

wave testing (GW), ultrasonic testing (UT), vibration analysis (VA); visible light such as visual 

testing (VT); electromagnetic wave such as electromagnetic testing (ET), ground penetrating 

radar (GPR), microwave testing, radiographic testing (RT); magnetics such as magnetic flux 

leakage (MFL), magnetic particle testing (MT); and laser testing methods (LM) for laser, 

thermal/infrared testing (IR) for temperature, etc. Due to their basic principles, these NDT 

techniques show various characters in suitable testing materials, detection depth and resolution. 

The table below [5] presents a brief summary of the characters of some commonly used 

techniques.  

Table 1.1 Character of commonly used NDT techniques 

Techniques Capabilities Limitations 

Visual inspection Macroscopic surface flaws small flaws are difficult to detect, 

no subsurface flaws 

Microscopy Small surface flaws not applicable to large structures, 

no subsurface flaws 

Radiography subsurface flaws 

Smallest detectable defect is 2% of 

the thickness, radiation protection. 

No subsurface flaws not for porous 

materials 

Dye penetrate surface flaws No subsurface flaws not for porous 

materials 

Ultrasonic subsurface flaws material must be a good conductor 

of sound 

Magnetic particle surface/near surface and layer 

flaws 

limited subsurface capability, only 

for ferromagnetic materials 

Eddy current subsurface and near subsurface 

flaws 

difficult to interpret in some 

application, only for metals 

Acoustic emission entire structure difficult to interpret, expensive 

equipments 

Open-ended Waveguide (OEW) testing is using open-ended waveguide to emit and receive 

microwaves based on near-field radio frequency (RF) reflectivity. It has advantages over others 

like contactless measurement, high resolution, and safe for human. Figure 1.2 shows the overall 

principle. The specimen under test (SUT) is illuminated by microwave or millimetre wave with 

a waveguide probe. The scanner carries a waveguide probe to scan the SUT using a raster scan 
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of a spatial area with a step size. When the step size for raster scan in X and Y direction becomes 

small, there is no much difference between nearby measurement results while the measurement 

time is increasing significantly. A sub-millimetre level step size is enough for defect detection 

as recommended in [6]. The complex reflection coefficient (S11 parameter) is measured by 

microwave sensors [7] or vector network analyser with frequency sweep. This reflection 

coefficients carry the material property information such as magnetic permeability ( ), electric 

permittivity ( ) and electrical conductivity ( ) of SUT. Since defects change the local material 

property which results in the change of local reflectivity, the whole spatial reflection image of 

the S11 parameter will reveal the defect pattern caused by the defect. From the frequency point 

of view, the spatial image for different frequency frames is usually different due to the complex 

internal structure of SUT such as composite materials and skin effect. The complex internal 

structure interacts with the excitation signal in the form of reflection, transmission, scattering, 

and absorption etc. The skin effect constrains deep defect detection capability for all 

electromagnetic wave-based techniques. Estimation of skin depth is necessary to access how 

deep a sub-surface defect can reveal in theory. For a given frequency ( f ), the skin depth ( ) 

is determined by: 

1

f


 
=  

( 1.1 ) 

 

Figure 1.2 Open-ended Waveguide NDT 

OEW NDT systems also meet challenges to thrive in the new CBM business ecosystem. Figure 

1.3 summarises some challenges. The most significant drawback is the time-consuming data 

acquisition by raster scan. For example, scanning a 30mm×30mm area with 0.3mm of step size 

and 1601 frequency sweep points takes around 3 hours, leading to more than 300MB of data. 

Smaller stepsize greatly increases the scanning time as the sampling data and time increase 

linearly with the number of sampling points. The massive data amount is challenging for 

SUT

Defect Waveguide probeRaster scan
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transmission and storage; it is also challenging for processing because feature extraction is 

performed in post-processing steps on the bulky data. The feature extraction calls for much 

expert knowledge to deal with the background pattern and noise, efficient and robust feature 

extraction methods are also one challenge. Given that the defect information is what matters 

for decision-making, the post-processing should feed data acquisition, i.e., developing 

integrated sensing-processing models is necessary. 

 

Figure 1.3 Diagram for research motivations 

As one potential solution for the above challenges, compressed sensing (CS) provides a new 

sensing and signal processing framework which demonstrates impressive data compression 

ability in various applications. It thrives from 2006 by E. Candés, J. Romberg, and T. Tao [8] 

who demonstrated the rationale of CS theory from the mathematical perspective. Different from 

Shanon-Nyquist sampling theorem, CS can reconstruct signals from far fewer samples than that 

of Nyquist sampling rate by finding sparse solutions to underdetermined linear systems. Sparse, 

which serves as the prior information to CS, means only a small number of components in a 

signal are non-zero. The number of non-zero elements is called sparsity. This prior information 

in CS is in analogy with the prior bandwidth information in Shanon-Nyquist sampling theorem. 

Since then, CS has witnessed an increasing interest in many fields [9, 10]. One pioneer 

application for CS is the single-pixel camera [11], which sets a classic example of compressing 

image while taking. This single-pixel idea still inspires industrial designs [12-14]. Down-

sampling capability makes CS attractive in medical fields. Application in magnetic resonance 

imaging (MRI) [15, 16] requires less scanning time, which incurs less radiation exposure to 

patients. Other fields like synthetic aperture radar tomography [17] and localisation [18] also 

witness the value of CS. Beyond downsampling ability of CS, integrated sensing-processing is 

a future direction for CS as indicated in the workshop report of ‘The Future Directions 

Challenges:
• Raster scan is time-consuming which prevent online detection;

• The sensing stage disregards the need for feature extraction, which 
generates excessive amount of data for transmission/storage/defect feature 
extraction;

• Need more efficient and robust defect feature extraction methods.

Traditional OEW 
NDT&E

Sensing with raster scan & 
frequency sweep

Defect feature 
extraction

Compressed 
sensing based 

OEW NDT

Defect
Information that 

support decision-
making

Sparse models for sensing 
and defect feature extraction
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Workshop on Compressed Sensing and the Integration of Sensing and Processing’ in 2016 [2]. 

How CS adapts to the open-end waveguide NDT&E systems and contributes to extracting 

defect information to support decision-making is a remaining challenge.  

1.2 Aims and Objectives 

Based on the CS future direction of integrated sensing-processing and the challenges for open-

ended waveguide NDT systems in Figure 1.3, this thesis aims to develop integrated sparse 

sensing-processing models for OEW NDT systems to address the challenges.  

The objectives of this thesis are summarised below. 

(1) Undertake a literature survey on the state-of-the-art CS technology and application 

instances in NDT&E systems to identify challenges and key issues of applying CS to solve 

the problem in traditional OEW NDT systems in Figure 1.3. 

(2) Develop CS solutions to address the challenges of  

— time-consuming data acquisition using raster scan in traditional OEW NDT systems, 

which prevents online detection. 

— large data amount and processing overhead for the feature extraction process due to the 

front compressed sensing process did not consider the needs for the later feature 

extraction process in traditional OEW NDT systems. 

— robust and time-efficient feature extraction, such as defect region segmentation from 

texture background. 

(3) Undertake case studies of low-energy impact damage detection for carbon fibre reinforced 

plastics (CFRP) materials for validation of the proposed CS solutions. 

(4) Evaluate the proposed CS solutions and gives recommendation for future researches. 

1.3 Overall methodology 

The following overall methodology is adopted for the above aims and objectives. Firstly, 

conduct a literature review on sparse representation, measurement matrix design, sparse 

reconstruction of CS theory and its applications in NDT filed. Find out the state-of-the-art of 

CS and its application in the NDT field. Secondly, build up case study system for the aims and 

objective. Based on the case study system, investigate CS solutions for the challenges and 

objectives in the literature review. Finally, validate the proposed solution in the case study 
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system. The process of design measurement matrix starts from sparse representation, i.e., build 

sparse models for the case study objectives. Then design measurement matrix that can be 

physically implemented. Followed by performing the proposed CS measurement in the case 

study system and extract the defect information. Reconstruct the whole data is not compulsory, 

because the ultimate goal is to extract defect information rather than get the full data. Finally, 

design defect region segmentation methods to give quantitative defect information. 

 

Figure 1.4 Overall methodology 

1.4 Major contributions 

This thesis develops CS sensing-processing models to address the three challenges in traditional 

open-ended waveguide NDT&E systems, the key issues and major contributions as briefly 

summarised in Figure 1.5 regarding the aims and objectives. More specifically, the major 

contributions are summarised hereunder:  

(1) A review of CS theory regarding its sparse representation, measurement matrix design and 

sparse reconstruction is carried out to give a state-of-the-art of CS. Subsequently, review 

on NDT systems that use CS in their sensing, feature extraction, and classification stage is 

carried out to guide the CS solution design for OEW NDT systems. The key issues in using 

CS and different applications in Figure 1.3 are identified in section 2.5.4. Related works 



Chapter 1   Introduction 

 

8 

 

including CS methods to address corresponding issues are reviewed to highlight the 

advantage of the proposed solutions. 

(2) For the challenge of time-consuming data acquisition by raster scan that prevents on-line 

detection, an on-line compressed sensing model is developed to offer faster data acquisition 

and reduce sampling data amount without any hardware modification. The method explores 

the sparsity of spatial OEW NDT images. Instead of scanning the whole image as a raster 

scan, only a small part of pixels is scanned according to a customised 0/1 Bernoulli 

measurement matrix. The missing pixels are reconstructed with orthogonal matching 

pursuit algorithm. To address the issue of hard to determine the sampling pixel numbers 

that required for sparse reconstruction when lacking training data, an accumulated sampling 

process is developed. Compared to traditional raster scan designs which require complete 

spatial scanning for defect evaluation, this method achieves defect extraction in the data 

acquisition process without any hardware modification. Thus forming an on-line process. 

The case study in impact damage detection on CFRP materials shows the data acquisition 

time is reduced by one order of magnitude while maintaining comparable spatial image 

quality as traditional raster scan process. 

  

Figure 1.5 Diagram for research scope and main contributions 

(3) In the on-line CS model, a histogram threshold edge detection (HTED) algorithm for 

damage region segmentation is proposed for low energy impact damage detection on CFRP 
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Corresponding key issues:

• How to implement CS down-sampling when the sparsity K
is unknown? How the sampling process adapts to on-line 
detection demand?

• How to efficiently sample as less data as possible while 
reserving the interested feature?

• How to efficiently extract the defect region from complex 
image background, e.g. texture?

Corresponding solutions:

• Chapter 3 develops an on-line CS model, which reduces 
the sampling time by one order of magnitude. Feature 
extraction can be fulfilled while scanning is conducting.

• Chapter 4 develops feature-supervised CS data acquisition 
that reduces data amount while reserving the interested 
feature efficiently. 

• Chapter 5 develops damage detection methods that 
directly detect/extract defect on CS data without the need 
to reconstruct the full data. It is time-efficient and robust 
to the background texture.
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materials. The algorithm makes use of the histogram of spatial images to roughly segment 

the defect pattern first; then a clustering process is used to refine the segmentation. It is 

robust to background texture comparing to other image segmentation methods.  

(4) To reduce the large data amount while researving the interested feature efficiently, a feature-

supervised CS data acquisition method is developed. The frequencies which reveal the 

feature only occupy a small part of the frequency band, this method finds the sparse 

frequency range with CS sampling and sparse reconstruction. Subsequently, based on joint 

sparsity of neighbour frame, an aligned spatial-spectrum sampling scheme is proposed. The 

scheme only samples interested frequency range by using a customised 0/1 Bernoulli 

measurement matrix. The interested spectral-spatial data are reconstructed jointly which has 

much faster speed than frame-by-frame methods. The case study in impact damage 

detection on CFRP materials shows that the data amount is reduced greatly without 

compromising feature quality, and the gain in reconstruction speed is improved linearly 

with the number of measurements. 

(5) Based on the above CS data acquisition methods, CS models are developed to directly detect 

defect from CS data rather than the reconstructed full spatial data as HTED. Firstly, based 

on the histogram is invariant to down-sampling using the customised 0/1 Bernoulli 

measurement matrix, a qualitative method which only gives binary judgement of the defect 

is developed. High probability of detection and accuracy is achieved compared to other 

methods. Secondly, a new greedy algorithm of spOMP-based defect pattern extraction 

method is developed to quantitatively extract the defect pattern, because the conventional 

sparse reconstruction algorithms cannot properly use the sparse character of correlation 

between the measurement matrix and CS data. The proposed algorithms show a fast 

detection speed and robustness than other algorithms in damage detection on CFRP 

materials. 

(6) For research delivery during my PhD study, I have 5 peer-reviewed journal publications as 

first author, two international conference presentations, and more than 3 papers as co-author 

for the joint works with others. My google scholar citation reaches 215 in total, with h-index 

9 and i10-index 9 for all my publications. 
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1.5 Thesis Layout 

The layout for this thesis is summarised hereunder: 

Chapter 2 gives an overview of compressed sensing. The state-of-the-art of CS in sparse 

representation, measurement matrix design and sparse reconstruction algorithms are reviewed. 

NDT applications that use CS in their sensing and feature extraction stage are reviewed. The 

key issues of applying CS in OEW NDT systems are highlighted. 

Chapter 3 presents the CS-based on-line detection model for OEW NDT systems. The basic 

theory of OEW NDT for impact damage detection on CFRP and related works to address the 

time-consuming problem of raster scan are introduced firstly, followed by presenting each 

block of the proposed on-line detection framework. A case study in low-energy impact damage 

detection is carried out to compare the performance of the proposed method and raster scan 

method. The results of each block of the proposed method are evaluated before the chapter 

summary.  

Chapter 4 elaborates feature-supervised CS data acquisition model. Based on the model in the 

last chapter, it begins with summarising the remaining problem of low reconstruction speed and 

large data amount for feature extraction due to independent sensing and processing. The related 

works are reviewed, followed by introducing the diagram of the proposed CS model, which 

consists of spatial-spectral sparsity representation, feature constraint for CS and joint 

reconstruction. Experimental implementation of the proposed feature-supervised CS model in 

impact damage detection for CFRP materials is introduced. The evaluation results for each stage 

of the algorithms are evaluated.  

Chapter 5 presents the proposed qualitative and quantitative damage detection model using the 

obtained CS data with two subsections. Related qualitative and quantitative detection method 

from downsampling data with or without reconstruction are discussed. Their overall diagram, 

validation schemes and evaluation results with other methods are presented. 

Chapter 6 summarises the overall project, derives conclusions and points out possible future 

work based on these investigations.  
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Chapter 2. Overview of Compressed Sensing 

This chapter gives an overview of compressed sensing. The state-of-the-art of CS theory in 

sparse representation, measurement matrix design and sparse reconstruction algorithm are 

reviewed. NDT applications that use CS in their sensing and feature extraction stage are 

reviewed to get a state-of-the-art of how CS solves NDT problems. The key issues of applying 

CS in OEW NDT systems are highlighted from the review. 

2.1 Introduction to Compressed Sensing 

According to Nyquist–Shannon sampling theorem, the original information is perfectly 

reserved if the sampling rate is higher than two times of the highest signal frequency in a signal. 

However, compressed sensing (or compressive sampling, CS) enables a much lower sampling 

rate with sparse representation. A signal x  is sparse if there are few (K) non-zero elements, the 

rest of the elements are zero or with very small absolute value, which are called K-sparsity. It 

is mathematically denoted as 

0
Kx  

( 2.1 ) 

where K is much smaller than the length of the signal x. Donoho [19] first proposed the original 

concept of CS. Candès, J. Romberg, and T. Tao [8], from the mathematical perspective, 

demonstrated the rationale of CS theory. Compressed sensing samples signals from different 

perspective comparing to Shanon-Nyquist sampling theorem. Sparse information is used in the 

former as prior information instead of bandwidth information in the latter. A signal may not be 

sparse in the time domain but some other transform domains, e.g. frequency domain, wavelet 

domain. The overall principle of CS is mathematically stated here. 

Consider a signal 1nx , if x can be represented on a basis n nΨ as =x Ψs , and s 

has only K  non-zero values ( K n ), the signal can be measured using a measurement matrix 

m nΦ  as: 

= = =y Φx +ξ ΦΨs +ξ As +ξ  
( 2.2 ) 
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where 
1m

y  and 𝑚 ≪ 𝑛; m nA , and the i-th column of A  is denoted as iA ; 1mξ  is 

the noise term. 

To recover s  using y  and A  is to solve the following optimisation problem: 

( )
0

min    s.t.    ,H 
s

s y As  
( 2.3 ) 

where 
0

 is the 0  -norm, which means the number of non-zero elements in a vector; ( ),H    

is a cost function that penalises the distance between the vectors As  and y , and   is a 

tolerance. Note that Equation ( 2.3 ) is an NP-hard problem. A popular solution is to substitute 

0  -norm by the closest 1 -norm.  

( )
1

min    s.t.    ,H 
s

s y As  
( 2.4 ) 

When 
0 1=  holding is a key to CS, which leads to many conditions like the restricted 

isometry property (RIP) condition [20]. Matrix A  satisfies the RIP of order K if there exists a 

( )0,1   such that 

( ) ( )
2 2 2

1 1 −   +x Ax x  ( 2.5 ) 

holds for all  0
:x x x K  . However, RIP is not computationally feasible to verify for a 

given matrix [21], and RIP is proved to be too restrict [22]. So mutual incoherence property 

(MIP) [23] is preferable in an industrial process: 

( )
1

K



A

 
( 2.6 ) 

where ( ) max ,i j
i j

A


= A A , ,  is the inner product and  is the absolute value function. 

Mutual incoherence measures the greatest correlation coefficient between any two columns; 

this is also not an easy task to calculate. Fortunately, it usually automatically satisfied by 

choosing Φ  from some random matrix like 0/1-Bernoulli matrixes [24] and independent 

identically distributed Gaussian matrixes [20] in most cases. The constraint for sample numbers 

for reconstruction guarantee is  
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2 logK n m   ( 2.7 ) 

where   is a factor corresponding to different instances. So, smaller mutual incoherence leads 

to fewer required samples.  

Based on these conditions, the optimisation problem can be solved by recovery algorithms. 

Finally, x  is obtained using x = Ψs . Interestingly, the measured signal is far smaller than the 

original signal since 𝑚 ≪ 𝑛, which means the original signal is compressed when it is sampled. 

Diagram representation of the compressive sensing theory is given out in Figure 2.1. Among 

all the operation process, there are three key elements: sparse representation, design 

measurement matrix and sparse reconstruction algorithm. 

 

Figure 2.1 Diagram of compressed sensing 

The above signal model is a one-dimension vector, but lots of signals are in multi-dimension 

such as images and videos. Some signal even consists of multi-domain information, e.g. 

frequency sweep measurement of a spatial area. Although these high-dimensional signals can 

be reshaped into one-dimension signals, the size of the measurement matrix will grow rapidly 

and results in rapid growth in reconstruction time as well. Fortunately, if these high dimension 

signals (denote as X) share the same sparsity pattern on the same basis, i.e., all one-dimensional 

signal for each column share similar non-zeros positions, but with different values, they can be 

reconstructed jointly. This is called group sparsity or joint sparsity [25]. Using the same notation 

Find a basis  where signal  sparse on it,     (1) Sparse representation

Find a measurement basis  which uncorrelated with  (2) Design measurement matrix

(3) Data acquisition

(4) Sparse reconstruction

                 

   
 
                       ;  x   
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in the previous discussion and substitute with matrix form, reconstruction of group sparsity 

signal can be modelled as:  
 

( )
2,0

min    s.t.   ,H 
S

S Y AS  ( 2.8 ) 

where 
,x y

S  means imposing x -norm on columns then y -norm on rows to the matrix S .  

This problem can be solved using the same reconstruction algorithm as solving Equation ( 2.3 ) 

by adapting to matrix forms like ADM [26], CoSaOMP [27]. The reconstruction time for group 

sparsity signals can be reduced greatly than sequential reconstruction.  

2.2 Sparse Representation in Compressed Sensing 

In practical applications, sparse representation (i.e. find the sparse basis Ψ ) is the first and 

foremost step of CS. The goal is decomposing the original signal 1nx  in a small number 

of terms or a series with significantly decaying coefficients as Equation ( 2.9 ), where K n . 

=x Ψs  s.t. 
0

Ks  ( 2.9 ) 

 
Figure 2.2 A demo for sparse representation. The original image is decomposed onto DCT 

basis, and sparse property is observed for the DCT coefficients. 
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Figure 2.2 gives a demo for sparse representation. The example signal (x) is the grayscale of a 

cloud image in size 256×256. The discrete cosine transform (DCT) of the original signal shows 

only a small part of the dominant components, most of the DCT coefficients (s ) are close to 0. 

The sparse basis is the DCT basis (Ψ ) in this example. When sorting the absolute value of the 

DCT coefficients in descend order, a rapid decay is observed, which illustrates the sparse of s. 

The K value can be found by thresholding the sorted absolute value of DCT coefficients. For 

example, the 70th sorted coefficient decays to around 0.01 of the max coefficient. The rest of 

the coefficients contribute little to the overall image, thus can be discarded. So, K is 70 in this 

case. 

There are two main categories of sparse representation method, i.e., decompose on a fixed 

dictionary [28, 29] and the dictionary learning approach [30-32]. 

Fixed dictionary are some known transform basis based on the prior knowledge of specific 

applications, such as [28] Fourier dictionary, wavelets, complex wavelets, Gabor dictionary, 

wavelet-packs and cosine-packets. For some one-dimension signals, the wavelet transform may 

be the best choice, while for images curvelet or contourlet may be the best. It is also possible 

that a combination of several bases is most suitable for some applications [29]. 

Dictionary learning approaches suggest inferring the dictionary from a set of examples by 

machine learning techniques when the prior sparse knowledge is difficult or impossible to 

obtain. Enough training data is necessary. Dictionary learning algorithms range from the well-

known and simple principal component analysis (PCA), to the K-SVD [33], the Sparse K-SVD 

[34], 1 -K-SVD [35], the multi-scale dictionary learning [36, 37], the online dictionary learning 

[38], the RLS-DLA [39], etc. 

2.3 Design Measurement Matrix in Compressed Sensing 

Sparse representation gives a new perspective to understand signals beyond frequency, it also 

leads to new data acquisition model that differs from Shannon-Nyquist sampling theorem. This 

data acquisition is mathematically supported by the measurement matrix Φ . As introduced in 

section 2.1, the multiplication of measurement matrix and sparse basis need to meets some 

constraints like RIP and MIP to guarantee sparse reconstruction. According to the MIP 

condition, random matrix usually has a low correlation with sparse basis, which leads to low 
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( )A . So random matrix can be adopted as measurement matrixes for most cases [40], e.g. 

independent identical Gaussian matrix, random Bernoulli matrix, partially orthogonal matrix, 

cyclic matrix, etc. 

 

Figure 2.3 Demo measurement matrices with size 16×32 for (a) random Gaussian matrix; (b) 

random 0/1 Bernoulli matrix; (c) Hadamard matrix 

Random measurement matrices have wide applicability, but they are not convenient to generate 

in some cases. Structured measurement matrix is proposed for this reason [41, 42]. Examples 

are random Hadamard matrices, Toeplitz matrices, random demodulator (RD) matrices, random 

convolution (RC) matrices, structurally random matrices (SRM). Structured measurement 

matrices normally have less storage requirement, reproducibility and reduced transmission 

overhead. However, structured measurement matrices usually require a higher number of 

measurements than random matrices [41, 42].  

Measurement matrix will influence the physical implementation of data acquisition. The 

random Bernoulli matrix and Hadamard matrix [43] can be implemented by individually control 

the on/off status of each element, examples are spatial light modulator (SLM) [11], digital 

micromirror devices [12, 44, 45], 2-bit programmable metasurface [46]. As a representative 

method to implement on/off status control, digital micromirror devices have a mechanical 

structure that switches the two tilt angles of the individual pixel as shown in Figure 2.4(a) [47]. 

Only one of the tilt angles can reflect the corresponding light intensity into a sensor that 

measures the summation of all reflected light intensity. A single row denotes the tilt angle status 

of all mirrors for a measurement, the measurement number is decided by the number of rows 

in the measurement matrix. Random Gaussian matrix is implemented with elements that have 

random signal gain, examples are metasurface [13, 48, 49], external-cavity semiconductor 

lasers [50]. Metamaterials/metasurface is a typical way to implement random matrices that have 
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multi-value elements. Metamaterials are man-made metal or dielectric structures that show 

properties that not found in nature, such as a negative index of refraction [51, 52]. This class of 

artificial material can be fabricated into nanoscale and 3D structures [53], which attracts wide 

application interest in microwave [13, 54], Terahertz [55, 56], acoustic [57], and optical [58, 

59] systems. Meta-surfaces are planar metamaterials with subwavelength thickness, this 2D 

structure can greatly suppress the undesirable losses in the wave propagation direction. One 

field of application of metamaterials is the imaging system [13, 46, 48, 60]. Figure 2.4(b) [48] 

shows a metasurface structure. The metasurface consists of an array of electric-field-coupled 

(ELC) resonator, which has a different frequency response curve for an individual element. The 

measured frequency response in the far-field is the superposition of frequency response for 

individual elements. The measurement matrix is usually calibrated in an element-wise manner, 

which makes each rows corresponding to a unique element in the array.  

              

(a)                                                            (b) 

Figure 2.4 Measurement matrix implementation demo of (a) Bernoulli matrix [47] and (b) 

Gaussian matrix [48]. 

2.4 Sparse Reconstruction Algorithms in Compressed Sensing 

From a mathematical point of view, reconstruction is solving undetermined equations under 

sparse constraints. From an implementation point of view, it is using as less weighted atom (the 

column of A) as possible to represent the measurement results y. Concerning the analytical 

solution and optimisation viewpoints, the available sparse reconstruction methods are 

categorized into four groups, i.e. the convex optimisation-based methods, greedy algorithms, 

combinatorial algorithms and Bayesian methods [10, 25, 61-63]. The reconstruction problem is 
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same as many machine learning problem [64-66], which indicates some interesting link 

between CS and artificial intelligence (AI). 

Convex optimisation-based methods: The core optimisation problem for CS reconstruction in 

Equation ( 2.3 ) is equivalent to the unconstrained problems for an appropriate penalty 

parameter   

( )
0

arg min   + ,H
s

s y As  
( 2.10 ) 

For convex programming algorithms, the most common choices of ( ),H    is 

( )
2

1
,

2
H = −y As y Ax , and 

0

s  is relaxed to convex form 
1

s . This is a typical Lasso 

problem. For more general cases, 
0

s  can be substitute by 
p

s  with proper ( ),H   . Figure 2.5 

presents the solution of substituting by 
p

s  in Equation ( 2.10 ) for a tilted hyperplane (serving 

as the constraint-set) with various p. It becomes non-convex for 0<p<1, which is difficult to 

solve. When 1p  , it is a convex optimisation problem, which means the standard convex 

analysis methods can be applied. Some example algorithms are gradient projection [67], 

interior-point based methods [68], alternating direction method [69], proximal algorithms [70], 

Bregman iteration methods [71]. 

 

p=0.7                             p=1                                p=1.5                              p=2 

Figure 2.5 The intersection between the p-ball and the set Ax = y defines the solution of 
p

s . 

Greedy algorithms: Greedy algorithms deal with 
0

s  minimisation directly. Recall that the 

goal of sparse recovery is to recover the sparsest vector s which explains the linear 

measurements y. Greedy algorithms pursuit this goal by greedily selecting columns of A and 

forming successively better approximations to y. It aims to search for the best local optimal 

solution in each iteration with the goal of achieving the optimal holistic solution [72]. This 

section takes the Orthogonal Matching Pursuit (OMP) algorithm [73] as an example.  
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Figure 2.6 Orthogonal matching pursuit (OMP) algorithm 

OMP algorithm first projects the measurement results on the orthogonal subspace. This 

projection is achieved by inner product operation, because 
2 2

, cosi i =A r A r . The inner 

product is exactly the projection of r  on iA  when divided by 
2iA . This orthogonal 

projection represents the correlation of r to each atom. The atom which has a larger correlation 

with r contributes more to the measurement results, so it is selected in an iteration. Then the 

selected atom is used to represent the measurement results. The weighting of each atom is 

decided by least square estimation to minimise the representation error. The selected atoms are 

removed from the candidate atoms for the latter iterations to avoid repetitive work. To get a 

smaller representation error, the residual is sent to the projection step to find more atoms. By 

greedily finding the most correlated atoms to explain the residual, the representation error will 

convergent to a pre-defined threshold. If the measurement results are corrupted by noise, the 

representation error cannot reach 0 because the noise term is uncorrelated to the measurement 

matrix. So the stop threshold can be found by estimating the noise level. 

MIP condition in Equation ( 2.5 ) defines a sparse reconstruction condition. Cai et al. [21] prove 

that ( )1 2 1K  −  is a sufficient condition to recovering K -sparsity signal exactly using 

OMP. An essential problem in OMP is the stop rule for iteration, which depends on the noise 

structure. The iteration stops if the residual (r ) is below a certain threshold. This threshold for 

OMP under Gaussian noise environment is given in Theorem 7 in [21] as: 
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2

2 logn n n +r  
( 2.11 ) 

where   is the standard deviation of the Gaussian noise. Using this threshold will reconstruct 

successfully with probability at least 1 1 n− . 

Some example algorithms for this category are Matching Pursuit (MP) [74], Series of Matching 

Pursuit [75], Hard Thresholding Pursuit (HTP) [76], Subspace Pursuit (SP) [77], CoSaMP [27], 

Iterative Hard Thresholding (IHT) [78].  

Combinatorial algorithms: Combinatorial algorithms are algorithms for investigating 

combinatorial structures from the graph theory perspective. Combinatorial structures are 

collections of K-subsets/K-tuple/permutations from a parent set (finite), this is similar to the 

concept of sparse. Basic steps include generation, enumeration and search. For a particular type, 

generation is constructing all combinatorial structures. Enumeration is computing the number 

of all different structures. Search is finding at least one example of a combinatorial structure (if 

one exists). The optimisation problems in CS is also a type of search problem. These search 

problems can be solved by ripe algorithms like hill-climbing, simulated annealing, Tabu-search, 

genetic algorithms. This idea is adopted in sparse signal reconstruction [79-81].  

Bayesian methods: Bayesian methods assume the sparse signal obeys a known probability 

distribution and regarding the stochastic measurements y = Ax as a probability distribution 

related to each nonzero element of x. The distribution of x needs to ensure x is compressible, 

usually by a two-state Gaussian mixture distribution, with each signal element taking either a 

large or small value. The process to estimate x is a Bayesian inference problem. The marginal 

distributions of elements in x conditioned on the observed measurement need to be 

approximated. x can be estimated following the Maximum Likelihood Estimate (MLE) or 

Maximum a Posteriori (MAP) from their distributions. This estimation can be solved by 

methods like belief propagation method (BP) [64, 82-84] or Relevance Vector Machines 

(RVMs) [85, 86]. A key advantage of the Bayesian methods is that it enables the evaluation of 

error bars on x. These error bars services as a guide in selecting the linear projections to reduce 

uncertainty in the signal, which provides an intriguing connection between CS and machine 

learning techniques such as active learning [66, 87, 88]. 
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Among all these categories, convex optimisation algorithms require least measurements but are 

computationally more complex. Bayesian methods can get the quantitative remaining 

estimation errors but have considerable computation complexity. Combinatorial algorithms are 

fast in some scene but call for many measurements, which lessens the advantage of CS. Greedy 

algorithms are in a good trade-off between those extremes. 
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By far, the key issues and the state-of-the-art methods in CS theory are reviewed. Figure 2.7 

gives a knowledge tree for CS theory, which summarises the above review for CS theoretical 

background. CS provides a way of using sparse models to solve sensing and signal processing 

problems, which has the potential to solve challenges like an excessive amount of data using 

Shannon-Nyquist sampling for NDT applications. Note that NDT&E is not only about data 

compression, feature extraction for quantitative evaluation is another major concern. The next 

section reviews the CS theory in the sensing, feature extraction and feature classification stage 

of NDT&E systems.  

2.5 Compressed Sensing in NDT&E Applications 

As discussed previously, developing smart sensing technologies that efficiently support the 

information-based decision by integrating sensing and processing is increasingly important for 

condition-based maintenance in NDT in the Industry 4.0 era. As an NDT technique which has 

an advantage over others like contactless measurement and high resolution, current OEW NDT 

systems have separate sensing and feature extraction which meets challenges to thrive in the 

trend. From the sensing side, firstly, the time-consuming data acquisition by raster scanning 

prevents on-line detection. Secondly, the sensing stage disregards the demand for the latter 

feature extraction, leading to an excessive amount of data for transmission/storage and feature 

extraction. From the feature extraction side, OEW NDT systems need robust and time-efficient 

feature extraction methods to segment the background and foreground from the scanned images. 

This thesis aims to solve these problems in OEW NDT systems with CS models.  

Compressed sensing is widely used in field like medical imaging [15, 89-92], SAR imaging 

[93-96], channel parameter estimation [97-102], etc. However, to the best of the author’s review, 

there is few CS application in OEW NDT&E systems, and the related research in other NDT&E 

systems are in an initial state. This section gives an overview of CS application in sensing, 

feature extraction and defect classification in NDT&E fields to inspire the design in OEW 

NDT&E systems, and heights the issues of current CS methods for OEW NDT systems in the 

last sub-section. 
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2.5.1 Sensing with Compressed Sensing 

Sensing is the first and foremost step for NDT&E. There are little hardware sensing systems 

based on CS for NDT applications. Most studies still use simulated CS data for investigation. 

This section organises the CS sensing implementation in NDT applications according to the 

signal domain, i.e., time domain, frequency domain, and spatial domain. 

Time & frequency domain: This kind of signal type is usually found in vibration-based NDT 

like acoustic emission [103], lamb wave inspection [104, 105]. These NDT systems use the 

traditional method for sensing. CS data is simulated by imposing measurement matrix on the 

original data. Frequency data is obtained by Fourier transform. Other examples are [106-116]. 

Spatial domain: This kind of signal type is usually found in microwave NDT, laser scanning, 

THz, etc. Spatial domain signal witnesses more hardware level CS sensing which implements 

the measurement matrix by hardware or virtual spatial masks. These masks lead to various 

weighted summation of the full signal, which corresponds to the CS measurement Φx . The 

virtual masks are commonly implemented by random scan pattern. A random line scanning 

method in a laser scanning system is presented in [117]. Random scanning pattern is presented 

in [118] for a microwave imaging system. Hardware masks are structures that will block or 

modulate the interested signal. A rotating multi-mask is used in [119] for human situation 

recognition via a pyroelectric infrared sensor. The rotating multi-mask generates different 

masks under different rotation angle as shown in Figure 2.8(a). A digital micromirror device 

(DLP3000 with the DLP LightCrafter from Texas Instruments) is used as the mask in a near-

field THz imaging system [44] to detect hidden objects. A spatial light modulator (SLM) for 

THz image is implemented in [120]. The SLM achieved different absorption for Hadamard 

mask as shown in Figure 2.8(b). 

 

(a)                                                           (b) 

Figure 2.8 Demo of hardware masks for (a) human situation detection with the pyroelectric 

infrared sensor [119] and (b) an SLM for THz imaging [120]. 
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For spatial domain signals, there is another category of CS instance that not based on masks. 

They use the data from standard defect samples are the sparse dictionary and regard the defect 

signal as the weighted sum of the dictionary signal. The sparse dictionary signals are pre-

calibrated and no hardware modification is required for CS data acquisition. An example is 

compressed sensing for the detection and positioning of dielectric objects inside metal 

enclosures using microwave measurements in [121]. The dielectric objects are inside the metal 

enclosures, and six waveguide probes are used for measurement as shown in Figure 2.9(a). 

Measurement region with a dielectric cylinder placed at 2379 different positions that shown as 

a honeycomb pattern in Figure 2.9(b). 

 

(a)                                                                         (b) 

Figure 2.9 A demo of calibration-based CS for NDT [121]. (a) The experimental setups; (b) 

The calibration dictionary. 

2.5.2 Feature extraction with Compressed Sensing 

Concerning when feature extraction is realised related to the sparse reconstruction stage, 

methods of feature extraction with CS in NDT applications can be categorized as post-

reconstruction extraction, pre-reconstruction extraction, and in-reconstruction extraction. 

Post-reconstruction extraction: This category only uses CS in the data acquisition stage to 

compress signal and performs feature extraction on the reconstructed signal. CS and the 

subsequent feature extraction procedures are sequentially realised. This is the most primitive 

and most popular application category [10], especially for image data. A CS-based sparse time-

frequency representation is presented for finding buried linear structures and impulsive 

signatures [107]. The design requires less time and space to store the time-frequency 
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information without bringing in significant artefacts in the time-frequency signal in fault 

diagnosis of bearings. A CS design in the post-processing on the measured S21 parameter in 

mm-wave NDT in composite panel is presented in [108]. The design reduces measurement time 

by removal of a reference measurement while maintaining image quality. An application of CS 

for reconstructing spatially dependent Raman spectra for spatial and spectral flame diagnostics 

is shown in [110]. They prove that similar spectra can be obtained with the CS scheme within 

short acquisition times. A method which uses the difference of the recovery image under 

different sparse basis for damage localisation in lamb wave testing is presented in [104]. 

Acquisition time is significantly reduced without losing in detection accuracy. In damage 

localisation in lamb wave inspection, [122] use wrapped frequency transform for sparse 

representation. The original impulse response can be reconstructed, and the impulse response 

can indicate the scatter position together with the reflectivity function.  

Pre-construction extraction: This category extracts feature on the CS measurement results 

before the reconstruction stage. It is popular for features that are invariant to downsampling [90, 

103, 106, 117] and features that learned by machine learning such as a deep neural network 

(DNN). The CS data is directly used as a feature in [106] for diagnostics and prognostics in 

electromagnetic solenoids, because it is observed that the values of some sampling points have 

a linear correlation with cycle number. The energy of compressively-sensed data is used as a 

feature for analysis in acoustic emission signal processing for rolling bearing running state 

assessment [103]. The proposed feature and traditional time-domain feature have the same trend 

of the running state of rolling bearings. Spectral-energy distribution is chosen as a feature in an 

EEG acquisition and biomarker extraction system [90], because the distribution of energy of 

compressed measurement is approximately the same as that of the original signal. Also use 

distribution as a feature, [117] uses the histogram of CS data from misalignment and bearing 

damage laser-scanning signal as a feature, because the histogram is invariant to downsampling. 

[123] proposed an algorithm to extract centroid feature of the star from CS data in star images. 

Another subcategory uses machine learning to automatically learn a vector as feature. Example 

applications are CS in EEG signal [124], pyroelectric infrared motion sensor-based gesture 

detection [119], bearing fault diagnosis [113, 114], diagnosis of large linear arrays [125]. 

In-reconstruction extraction: This category directly reconstructs feature from the CS data. 

Sparse representation to the features rather than the original data is adopted. Some feature is 
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sparse such as frequency harmonic components, while more manipulation such as subtract 

measurement data from the reference data is needed for sparse representation. For the former 

case, the original vibration signal is sparse in the frequency domain for wind turbine monitoring, 

so the periodic impulsive feature in the frequency domain can be directly reconstructed in [109]. 

Similarly, in a vibration signal-based roller bearing faults detection system [111], the position 

of the high frequency is the target feature because faults lead to high-frequency components in 

the spectrum. The fault features can be detected far before the full reconstruction if the fault 

feature is significant in the spectrum, because algorithm like OMP always finds the most 

significant atom in each iteration. The harmonic components and the period information of 

impulsive components are used as features to identify a fault in vibration test on machines in 

[112]. Out-race fault influences on the period of impulsive components, misalignment fault 

brings harmonic frequency, they are sparse in the spectrum. For the latter case, the difference 

between the excitation coefficient and excitation of a reference failure-free array is sampled in 

an array diagnosis application [126]. When the number of fault elements is small, the difference 

is sparse and will indicate the fault location. The same method is used in diagnosing the process 

faults in multi-station assembly processes by subtracting measurement from specification [127]. 

Instead of using defect-free data as a reference, another way is using defect data as a reference. 

In a system for detection and positioning of dielectric objects inside metal enclosures by 

microwave measurements [121], each position for unit dielectric objects is pre-obtained as the 

sparse dictionary, then do CS reconstruct with the measured superposition signal. The 

reconstruction image indicates the object position.  

2.5.3 Defect classification with Compressed Sensing 

CS is used in NDT applications for defect classification. The basic idea is using the different 

defect class as a sparse dictionary and find the most sparse representation of the measurement 

on the sparse dictionary. The number of dominant sparse coefficients indicate the probability 

of belonging to each class. This in line with the purview of pattern recognition in the computer 

science field [128]. The idea is witnessed in a partial discharge pattern recognition of XLPE 

cables system [129]. It is worth noting that when the dictionary is trained from defect-free 

samples, defect detection can be achieved by check the representation error. A defect data 

brings in large sparse representation error while defect-free data have small representation error. 
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This is a special case of defect classification. An example is a fault detection system via sparse 

representation for semiconductor manufacturing processes [130]. 

2.5.4 Challenges of CS methodology in open-ended waveguide NDT&E 

From the CS theory point of view, experts in mathematics side put considerable effort into 

digging sparse representation, measurement matrix design and sparse reconstruction algorithms. 

A workshop of Future Direction in Compressed Sensing and the Integration of Sensing and 

Processing is held in January 2016 at Duke University in Raleigh-Durham [2]. This workshop 

gathers experts in CS research. The workshop report outlines the future direction of CS for the 

next 10 to 15 years. One of the future goals is ‘Sensing + X’ or Task Oriented Sensing, which 

jointly consider sensing and processing for integrated sensing-processing solutions. Based on 

this benchmark, this thesis works on integrated sensing-processing solutions with CS for open-

ended waveguide NDT systems, instead of focusing on the theory side of CS such as non-

convex optimisation algorithms. 

The review of CS application in NDT&E indicates that there is no CS design in open-ended 

waveguide systems for NDT&E, and CS in NDT applications are still in its infancy. CS 

witnesses some application in laser scanning systems which use down-sampling to reduce the 

scanning time, and some frequency harmonic components feature extraction in vibration-based 

NDT&E systems. There are many remaining issues for CS in NDT&E applications, especially 

for OEW NDT&E systems. As mentioned in Chapter 1, waveguide NDT systems have some 

critical challenges in sensing and feature extraction. The corresponding key issues of using CS 

in OEW NDT&E systems to address these challenges are summarised as follows: 

(1) The data acquisition is time-consuming using raster scan and frequency sweep in traditional 

open-ended waveguide NDT systems, which prevents on-line detection. Open-ended 

waveguide NDT systems use raster scan to acquire spatial images, and each scanning point 

needs frequency sweep to obtain frequency response. This process is very time-consuming 

when the scanning area becomes large. There are some designs using a waveguide antenna 

array to reduce scanning time [131], but it leads to more expensive and more power-

consuming data acquisition devices. On the other hand, less scanning point contributes to 

reducing sampling time. In the literature review in section 2.5.1 to 2.5.3, CS is a state-of-

the-art solution which implements down-sampling without losing any information. There 
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are few works design rotating masks in THz imaging, which increases cost but difficult to 

interface with current waveguide systems. Some literature uses random down-sampling 

pattern in laser-scanning and microwave imaging systems. However, there are many 

remaining issues. Firstly, the related literature did not mention how to deal with a down-

sampling percentage when the sparsity K is unknown. Secondly, no on-line detection 

solutions in OEW NDT systems are observed. So feature extraction is possible only after 

the scanning. Jointly sensing-feature extraction design is more time-efficient. 

(2) The sensing stage of traditional OEW NDT systems did not consider the needs of the latter 

feature extraction. For example, traditional OEW NDT systems sample large data amount, 

but if the interested feature only contains in a small part the obtained data, they will incur 

large processing overhead for the feature extraction process. Data compression protocols 

are the straightforward technical route to compress data, but data compression protocols 

compress data only after sampling. On the contrary, CS already demonstrates joint sensing-

compression ability in many fields, which eliminates data compression hardware or the 

storage space need to perform compression protocols. According to the review, there are 

CS down-sampling instances in laser scanning systems and THz imaging systems. However, 

there is still no literature considering optimise the measurement data from the defect 

extraction side, i.e., what data is enough for preserving the feature for decision-making, 

only capturing these data is more time/storage/computation-efficient. How to capture and 

efficiently reconstruct these data is a key issue. 

(3) Feature extraction algorithms for OEW NDT systems need to be robust and time-efficient. 

The traditional feature extraction procedure that imposed on the reconstructed full data is 

not time/storage-efficient, this kind of procedure brings benefit for sensing but no benefit 

for feature extraction. Robust feature extraction such as defect region segmentation from a 

complex background is also challenging. OEW NDT systems need to segment defect areas 

from the spatial reflection/transmission coefficients image. Some materials have a complex 

image background. For example, composite materials have a texture which interfering 

damage detection. Furthermore, there is an inevitable nonparallel between the specimen 

surface and the scanning plane, which causes variation in lift-off distance and makes some 

part of the spatial image has large values. According to the review, few works are using the 

difference of image from health sample and defect sample for damage localisation; they can 
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be used to segment the damage region in open-ended waveguide systems. However, they 

are not robust to complex image background such as texture. Traditional image 

segmentation methods also cannot properly address this issue. On the other hand, almost all 

CS solutions for NDT systems handle feature extraction from spatial data on the 

reconstructed full data according to the literature review. This is not time-efficient because 

the sparse reconstruction process is time-consuming. Efficient and robust damage region 

segmentation from complex image background is a key issue.  

2.6 Chapter Summary 

This chapter gives an overview of compressed sensing. The state-of-the-art of CS theory in 

sparse representation, measurement matrix design and sparse reconstruction algorithm are 

reviewed. NDT applications that use CS in their sensing and feature extraction stage are 

reviewed to get a state-of-the-art of how CS solve NDT problems. The key issues of applying 

CS in OEW NDT systems to address its critical challenges are highlighted from the review.  

The following chapters will address these challenges and key issues accordingly. In summary, 

Chapter 3 develops on-line CS model to address the challenge of time-consuming data 

acquisition, which reduces the sampling time by one order of magnitude. Chapter 4 investigates 

a feature-supervised CS-based CS data acquisition to address the challenge of reserving 

interested features while reducing data, and efficiently reconstruct the interested data; Chapter 

5 elaborates robust and time-efficient damage detection methods directly on CS data without 

reconstructing the full data. More details are discussed in each chapter respectively. 

 



Chapter 3. On-line CS Model for Open-ended Waveguide NDT&E 

This chapter proposes an on-line CS model to address the challenges of time-consuming data 

acquisition by raster scan in open-ended waveguide NDT systems. As highlighted in the last 

chapter, the sparsity K is a key parameter in many spare reconstruction algorithms, and it is 

used to guide the number of measurement. However, it is usually difficult to estimate K in 

practical applications when there is no enough training data. To achieve downsampling without 

knowing the sparsity K, the proposed on-line CS model implements accumulated sampling and 

recovery with a customised 0/1 Bernoulli measurement matrix by using historical sensing 

results to guide the on-going data acquisition. The measurement number is decided by the 

quality of the recovery data. Compared to traditional raster scan designs which require complete 

sampling to obtain all data, this model can obtain the whole data and defect information while 

the scanning is conducting, thus forming an on-line process. Furthermore, the proposed model 

does not require any hardware update, which is easy to implement. Damage region in the 

reconstructed image can be extracted using a proposed histogram threshold edge detection 

(HTED) algorithm. The experimental results in low-energy impact damage detection illustrate 

the time efficiency of the CS model and more accurate damage region segmentation using 

HTED. The proposed compressed sensing technique is attractive in quality control of CFRP 

production. This technique can also be applied to situations where the sampled data is partly 

lost. Dispensing with hardware updates incurs minimum disruption and also benefits cost 

control and improves productivity. The work in this chapter is published on IEEE Transactions 

on Industrial Electronics. 

3.1 Problem Statement & Related Works

This section states the impact damage detection on CFRP materials and reviews related 

techniques (Not only CS methods) for it. CFRPs materials have a high strength-to-weight ratio, 

high modulus-to-weight ratio, good corrosion and fatigue resistance ability. These impressive 

mechanical properties make them attractive in numerous industrial fields, e.g. aerospace [132], 

medical science [133] and electric system [134]. However, due to the lack of through-thickness 

reinforcement, CFRPs are vulnerable to impact forces [135]. Impact forces can induce a wide 

30 
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variety of composites failure modes such as disbanding, micro-cracking and delamination. 

These damages put CFRP structures in safety risk, which calls for effective integrity testing and 

evaluation techniques. To this end, some non-destructive testing and evaluation techniques have 

been applied for investigating CFRPs impact damage, such as eddy current thermography [136, 

137], X-ray [138], guided wave [139] and optical fibre bragg grating sensors [140]. Eddy 

current thermography is largely influenced by environmental temperature, and the polymer 

matrix in CFRPs is vulnerable to the heat-affected zone in thermography [141]. X-ray is 

hazardous while guided wave and optical fibre bragg techniques suffer from coupling and 

complex installation issues. 

OEW NDT techniques are widely used for evaluation of CFRP structures [142-144]. Yang et 

al. [145] use 65~67GHz millimetre wave which successfully detected impact damage with 9J 

of impact energy on CFRP. Dong et al. [146] use terahertz frequency to detect a low-velocity 

impact on hybrid fibre-reinforced composite laminate. OEW NDT systems use raster scan to 

get the spatial-spectral reflection coefficients of CFRP. Reflection coefficients are affected by 

the angle between the electrical field vector direction of the electromagnetic wave and the 

carbon fibre direction in the CFRP surface. As CFRP is anisotropic material, when the angle is 

zero, reflection coefficients from with and without damage areas are easily distinguished. 

Furthermore, impact damages cause some change in material property of the damage area, 

which changes the intrinsic impedance of it as a result. The spatial image for different frequency 

frames is usually different due to the complex internal structure and skin effect.  So, VNA works 

in a frequency-sweeping mode in order to get multiple frequency resonances and thus revealing 

the defects at certain frequencies, as shown in Figure 3.1.  

 

Figure 3.1 Demo of a dataset for impact damage detection with OEW NDT. 
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All these literature use raster scan to sample the RF reflectivity of all target area with certain 

step size. When the step size is small or the target scanning area is large, the raster scan process 

becomes very time-consuming. For example, Salski et al. [147] use printable RF inductive 

sensors which are operating on 10~300MHz to detect crack/delamination/voids in CFRPs based 

on raster scan. The number of measurement points in a single line of sensors is N-1, where N 

is the number of individual inductors per line. When using N = 8 RF inductive sensors on a 

single line and choosing 1 mm step size to scan 160×200 mm2 area, about 4500 translations of 

the scanner are needed to acquire all 32000 measurement points, which will take about 30 

minutes. To reduce this time, they point out that using a large array of sensors is helpful. S. 

Yuan et al. [148] use large-scale wireless impact monitoring sensors to localise the impact 

damage.  

These hardware-based methods will increase the cost. Compressed sensing (CS) offers a 

possibility to reduce the acquisition points as shown in Chapter 2. CS is originally from medical 

applications where CS leads to less radiation exposure to patients, such as magnetic resonance 

imaging (MRI) [89, 149]. Inspired by CS application in MRI, some literature use compressed 

sensing for down-sampling in scanning systems as reviewed in section 2.5.1. However, they 

did not address the unknown sparsity K and the measurement number as a result. In addition, 

the afore-mentioned efforts are based on post-processing of sampled data, which is not efficient 

for an industrial process. This chapter proposes a CS-based on-line model for waveguide NDT 

systems with a case study of on-line and automatic evaluation of CFRP structures’ integrity. 

3.2 The Proposed On-line CS Model for Open-ended Waveguide NDT&E 

A novel accumulated sampling & recovery process and an automatic impact damage region 

segmentation algorithm which enables on-line detection is proposed in this section. This model 

is more time-efficient than the damage detection process in traditional OEW imaging which 

detects damage after raster scan. The method keeps the sampling number as low as possible 

under the condition that the sparsity K is unknown. A stability detection method is also proposed 

to balance time efficiency and damage detection accuracy. The overall methodology diagram 

is shown in Figure 3.3 below. 
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Figure 3.2 Methodology diagram for the proposed on-line CS model 

Traditional method uses raster scan and frequency sweep to get the whole spatial-spectral data, 

as shown in the blue blocks. The proposed method performs sparse analysis firstly with the full 

spatial-spectral data. Then a 0/1 Bernoulli measurement matrix is proposed for accumulated 

sampling and recovery. More sampling percentage leads to better reconstruction image. When 

the sampling percentage is high enough, the recovered image tends to be stable, so a stability 

detection process is designed to judge if the sampling is stable. This stability detection block 

ensures that the system will not suffer from undersampling or oversampling, because when the 

sampled data is not enough for the latter processing, the system will keep sampling new data, 

and it stops once the stability condition is met. Defect region is segmented with a proposed 

histogram threshold edge detection algorithm when the recovered image is stable. For 

validation, the reconstructed images from the image recovery step are compared with the raster 

scan results. The damage region segmentation results are compared with other image 

segmentation methods. Alternatively, one can perform defect pattern detection after each 

reconstruction, which forms an on-line process. The details are discussed in the following sub-

sections. 

3.2.1 Sparsity analysis and CS accumulated sampling & recovery  

The reflection coefficients from SUT can be mathematically modelled as a three-dimensional 

representation as ( ), ,f x yI k k k , where fk , xk ,
+

yk   are the index for sweeping frequency 

and location in X and Y direction of the scan area. They have maximum value fN , xN , yN  

respectively. For certain kf, it degrades into a 2D form 
+ x yN N

I
，

, which can be represented 

as an image. Most of the image is smooth texture with a dominant low frequency. So the image 

is sparse in discrete cosine transform (DCT) domain. I  is reshaped as a vector + 1ni ，  

(where x yn N N= ) and represented as:  
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i = Ψi  ( 3.1 ) 

where n nΨ  is the sparse basis and i  is sparse. Sparse representation is not the key concern 

for this Chapter, the commonly used sparse basis for images are DCT and DWT. This sparse 

representation lays the foundation for compressed sensing in open-ended waveguide NDT&E 

systems for CFRP impact damage detection. 

Based on Equation ( 3.1 ), an accumulated 0/1-Bernoulli matrix 
m n

i

Φ  (𝑚 ≪ 𝑛 ) is 

generated to measure the reflection coefficients: 

1

=

i i i

ii

m n
i

+










 +

= 



y =Φ Ψi ξ

Φ Φ Φ

Φ Φ 0

 ( 3.2 ) 

where +i ,
+ 1m

i

y ，
, 

m n

 Φ  is augmented measurement matrix, 1m

i

ξ  is the 

Gaussian noise with zero mean and variance 2 ,  is binary space, ‘ ’ and ‘ ’ are the logical 

And and Or respectively. Figure 3.3 gives a diagram representation of the CS accumulated 

sampling & recovery process. 

 

Figure 3.3 The diagram of CS accumulated sampling & recovery. 

This sampling process starts from a sampling map with size 𝑁𝑥 × 𝑁𝑦 , which has an initial 
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be sampled. Subsequently, the sampling maps is reshaped as a 1×n vector and projected to the 

measurement matrix 
iΦ  by a random projector. The random projector which implemented as 

Matlab code ensures that those ‘1’ from sampling map randomly distributed on each row of 
iΦ  

to form a 0/1-Bernoulli matrix, it also makes sure that each row has at least one ‘1’. Then these 

sample data are saved to the data logger corresponding to 
iΦ . Then data in data logger is 

accumulated by row to get the final measurement results for store, iy . Thus, the 𝑁𝑥 × 𝑁𝑦 

reflection coefficients are compressed into m×1 CS measurements results.  

Finally, this measurement results together with the measurement matrix and sparse basis (Ψ ) 

are used to reconstruct the whole reflection coefficients image by solving the problem in 

Equation ( 2.3 ). OMP algorithm is chosen for reconstruction due to its simplicity and fast 

convergence speed. The current reconstructed ii  are reshaped into a 2D image 
iI . If the current 

reconstructed image 
iI  cannot meet the stability requirement discussed in the next sub-section, 

this process will repeat until the requirement is met. For each new sampling and recovery 

iteration, an augmented measurement matrix (
Φ ) which meets the condition = m n

i



Φ Φ 0

and 1i i+ = Φ Φ Φ is applied. = m n

i



Φ Φ 0  means the sampling locations in new sampling 

map are different from any previous sampling location so that every new sampling iteration 

will get data from new locations. The random projector will also project the reshaped new 

sampling map into a new position in 
iΦ . 1i i+ = Φ Φ Φ  means when reconstructing the image, 

all historical data are used. These constraints form an accumulated sampling and recovery 

process. For an extreme case, there is only one ‘1’ in Φ , which means every single sampling 

location will lead to a new reflection coefficients image.  

Figure 3.4 gives pseudocode for generating a measurement matrix that satisfies Equation ( 3.2 ). 

The inputs are additive sampling percentage and the size of CS data and all pixel number. The 

output is the on-line measurement matrix and the corresponding sampling percentage. After 

some necessary initialisation, the online-Bernoulli measurement matrices are generated with an 

iteration process. The stop criteria is the stability detection result in the next sub-section. Figure 

3.5 shows a demo of a measurement matrix and sampling map using this pseudocode, where 

the white pixels is the location to sample.  



Chapter 3   On-line CS Model for Open-ended Waveguide NDT&E 

 

36 

 

 

Figure 3.4 Pseudocode to generate on-line 0/1 Bernoulli measurement matrix 

 

(a)                                                                      (b) 

Figure 3.5 A demo of (a) measurement matrix and (b) sampling map using the pseudocode. 

This demo considers a n =10×10 scanning grid and 20 sampling number. All the number on 

both axis are pixel index. 

3.2.2 Stability detection 

The diagram of stability detection is given in Figure 3.6. Noise perturbs the reconstructed 

images, which harms stability detection. So, edge-preserving filtering is used to reduce the 

recovery noise and thus to improve recovery stability. 

 

Figure 3.6 The diagram of stability detection. 
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Edge-preserving filtering is a technique to smooth images while preserving basic significant 

features like gradients, jumps, spikes, edges and boundaries. A bilateral filter is adopted here 

as introduced in detail in [150]: 

  ( ) ( ) ( )( ) ( )
1

BF
s rp

qp

I g q p g f q f p f q
W

 



= − −  
( 3.3 ) 

( ) ( ) ( )( )
s rp

q

W g q p g f q f p 


= − −  
( 3.4 ) 

where Wp shown in Equation ( 3.3 ) is the normalization factor; ( ) ( )( )2 2exp 2
x xg t t = −  is 

the Gaussian weighting function; s
 and r

 denotes the standard deviation for the domain and 

range kernel, the behaviour of these two parameters are discussed in section 2.3 in [150]; f(.) 

and   denotes the signal and a discrete bounded set of pixels where the image signals are 

defined; p, q are pixel index. 

After edge-preserving smoothing, normalised root mean square error (NRMSE, 1 ) and 2D 

correlation coefficient ( 2 ) between consecutive reconstructed images are calculated to assess 

the stability of the recovered image, they are given by: 

1

1

2

2

i i

i


+
−

=
I I

I
 

( 3.5 ) 

2

2 2
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p q

A B

p q p q
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  
  
  



 

I I
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( 3.6 ) 

where  1, 1A i pq i+ += −I I I ;  ,B i pq i= −I I I ;  E   is mean value operator; p, q are the index of 

the two images. Both parameters are used here because they fail to distinguish different 

intensity and intensity distribution between images concurrently and individually. With the 

sampling percentage increasing, the recovered images tend to be stable, i.e. NRMSE tends to 

be 0, and 2D correlation coefficients tend to be 1. More sampling data contributes little to the 

reconstruction quality. The threshold can be set for both these parameters to judge whether the 

reconstructed image is stable enough. 
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3.2.3 Defect region segmentation with the proposed histogram threshold edge detection 

Defect region is a feature widely used in NDT to quantitatively show the damage degree in 

composite materials [151-153]. Automatic defect detection improves efficiency in the industrial 

process. Detecting defect pattern is referred to as image segmentation in the image processing 

field. There are [154] threshold-based segmentation (e.g. Otsu’s method and histogram-based 

methods [155]), edge-based segmentation like watershed techniques and Canny edge detection, 

etc. For defect pattern detection, authors in [6] propose an event-based automatic damage 

detection method for defects on metal. They use Monte Carlo approach to decide the threshold 

for a defect event. Their method cannot get the whole defect information before scanning all 

defect area. Besides, their method is useful in metal cracks localisation but not reliable and 

efficient in OEW NDT image of CFRP, because the CFRP images have woven texture and non-

horizontal placement of specimen will cause a significant difference in the final image as our 

research in [156]. These features bring the idea of using texture filters [157] to extract the defect 

pattern in CFRP, but this method gives false detection in non-defect specimens easily. These 

techniques have their preferable application scene, which fails to address the characters of 

impact damage image from open-ended waveguide imaging systems. 

 

Figure 3.7 Histogram for impact damage image in Figure 3.14. The images from 4J to 10J 

specimens have long tails comparing to the 2J image, which can be used to extract the 

general defect pattern. 
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Figure 3.8 The proposed histogram threshold edge detection (HTED) algorithm 

In this system, the amplitudes of reflection coefficients of the low impact energy defect area 

are different from the non-defect area, and the defect area only accounts for a small part of the 

total scanning area. These characters make the histogram right/left/bilateral long-tailed as 

shown in Figure 3.7, which enables using upper/lower/bilateral thresholds to get the general 

defect pattern. 
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Figure 3.9 Results for HTED for the 6J image in Figure 3.14. (a) The threshold value; (b) The 

upper and lower threshold areas; (c) The clustered candidate defect pattern; (d) The final 

defect pattern. 

Based on the characteristic of the histogram of defect image on CFRP materials, a computer 

vision-based algorithm called histogram threshold edge detection (HTED) is proposed to 

segment the damage region by detecting the damage edge and location. The proposed algorithm 

is shown in Figure 3.8. This algorithm automatically finds an upper threshold and a lower 

threshold in the intensity histogram, as shown in Figure 3.9(a). T1 and T2 are based on the defect 

area only account for a small part of the total scanning area. They can be set as a small fraction 

of the maximum bin value Vi and the bin number NH respectively. These two thresholds together 

ensure extracting more detail of damage region but cannot distinguish the background 

texture/noise and damaged areas, as shown in Figure 3.9(b). So a clustering process is proposed 

to remove wrong candidates. All the candidate areas are clustered into the individual group as 

shown in Figure 3.9(c). Only the groups which have relatively large maximum value is reserved, 

which is controlled by T3. As the maximum and minimum value in I are normalised to 1 

respectively, T3 can be a value which is slightly smaller than 1. Figure 3.9(d) shows the final 

extracted defect pattern, which reserves details for the defect pattern while robust to the texture 

background. These parameters can be optimised using training data. 

(a) (b)

(c) (d)
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3.3 Experimental Setup for Evaluating the On-line CS model 

3.3.1 Hardware systems 

The following hardware systems are used for validation. An open-ended rectangular waveguide 

(ORWG) probe with the dominant mode 10TE  is used in this study. The probe has an inner 

dimension a b , where a and b are the longer edge and shorter edge respectively. The CFRP 

specimen is characterized by magnetic permeability ( ), electric permittivity ( ) and electrical 

conductivity ( ). 0d  is lift-off distance.  

 

Figure 3.10 Diagram of the experimental system 

The devices for the experimental system are shown in Figure 3.11. An X-Y scanner which 

carrying an ORWG probe is used to scan arbitrary point on specimens. The scanner scans 

random location according to the sampling map shown in Figure 3.11. The reflection 

coefficients are measured by vector network analyser (Agilent PNA E8363B) working in 

frequency-sweeping mode at different points in X-Y plane through a coaxial cable connected 

to the waveguide probe. The lift-off distance in Z direction keeps constant. MATLAB 

implementation of our algorithms together with a scanner and general purpose interface bus 

interface control synchronize probe location and measurement of VNA. Calibration is done for 

the VNA and the coaxial cable using a calibration kit (open, short and loaded) to compensate 

the cable characteristic and channel delay of the measurement results. The experiment 

parameters are shown in Table 3.1. The electromagnetic skin depth of CFRP at 100kHz is 

calculated to be 50mm in [158], which can be expanded to K-band using Equation ( 1.1 ).  
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Figure 3.11 Devices for the experiment 

Table 3.1 Parameters settings 

Parameters 
Value 

Frequency band 18 GHz~26.5 GHz 

Number of linear 

frequency points 
1601 

Scan area 30 mm × 30 mm around the impact point 

a×b 10.668 mm × 4.318 mm 

W 2, 4, 6, 8 10 J 

x y   0.3 mm  0.3 mm 

,10cf  14.0607 GHz 

d0 1 mm 

  0.971 ~ 0.118 mm 

To validate the proposed method, the damage region needs to be covered in the scanning area. 

However, it is not necessary to scan the whole specimen in this validation, because the sparse 

property of the spatial image will not be influenced much by the size of the final image. This 

OEW imaging system emits same wave power for each scanning grid, and the distance from 

each scanning point to the probe keeps same, so the final image of received signal power should 

be smooth. This smooth property makes the image sparse in DCT domain, the size of image 
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almost has no influence on the sparse property. Scan large area will take much more time as 

well and the impact point is known in this case. For these reasons, the scanning area is 30 mm 

× 30 mm around the impact point. The impact point can be found by using the white lines as 

shown in Figure 3.13. However, in practical applications where the potential damage area is 

not known, scanning the whole area is necessary. By using the proposed CS measurement 

method, it is much faster than the raster scan for the whole area. 

3.3.2 Specimens 

The CFRP specimens have 12 layers of 5H satin balanced carbon fibre woven fabrics as shown 

in Figure 3.10, manufactured by TenCate Advance Composites, Netherlands. The polymer 

matrix is made of polyphenylene sulphide and a thermoplastic resin system. Specimens are in 

a rectangular shape with a size of 100×130 mm2 and with 3.78∓0.05 mm of average thickness. 

Impact damages are created with different impact energy (W) by a free-fall hammer with mass 

m = 2kg over the specimen centre from various height (h), as is shown in Figure 3.12. The 

hammer has a hemispherical bumper head with 20mm diameter. W is calculated by: 

W mgh=  ( 3.7 ) 

where g is the acceleration of gravity. Figure 3.13 shows five different specimens with various 

impact energy from 2J to 10J. Those scales on each specimen are used for deciding the impact 

point. 

 

Figure 3.12 Schematic for generating impact damage on CFRP materials 
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Figure 3.13 CFRP specimens under different impact energy. These damages caused by low 

impact energy are almost invisible, which may be evaluated as healthy using visual 

inspection. OEW NDT is capable of detecting such low impact energy damage. 

Figure 3.14 shows the spatial images around the impact point obtained at 19.0041GHz with 

open-ended waveguide probe. Images for 4J, 6J, 8J, 10J specimens shows an obvious distortion 

in the centre, which indicates impact damage. The 2J specimen does not have significant 

distortion, which means that the 2J impact energy did not cause any damage or the damage fails 

to reveal in this method. The background of the image contains a texture pattern, which 

indicates the woven structure of specimens. Damage pattern in the 4J specimen looks differently 

from the 6J, 8J and 10J specimen, more repeat scanning to this area also shows a similar pattern. 

The reason may be that the 4J specimen suffers from other defect besides the 4J impact energy, 

or more likely, the 4J impact energy cases some disbanding just like the right side of the 10J 

specimen. 

Figure 3.14  Raster scan results with open-ended waveguide NDT system. From left to right, 

2J, 4J, 6J, 8J, 10J 

Using the settings in Table 3.1, both 𝑁𝑥  and 𝑁𝑦  are 100. The total scanning location is

x yn N N= . We reconstruct the whole image for every 3% of total locations. In a real application,

if the reconstruct device is powerful enough, one can reconstruct the whole image for every 

single additional sampling location, which saves measurement time most. With the 

development of parallel reconstruction methods like [159] and Cloud computing as well as 

Super Computer, this becomes practical. 
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3.4 Evaluation Results 

3.4.1 CS accumulated sampling and recovery results 

In order to verify our sparse analysis, we apply DCT to the traditional raster scan image for 

specimens shown in Figure 3.14. Our previous study [156] indicates that the frequency frame 

with large standard deviation value can reveal the defects. We choose frequency 19.0041GHz 

which is the first lobe of standard deviation between all reflection coefficients that can reveal 

the defects. 

 

Figure 3.15  Normalised amplitude of sorted DCT results 

The frequency components are normalised and sorted in descend order as shown in Figure 3.15. 

It is obvious that small percent of DCT results have dominant amplitude and the curve decays 

rapidly, which means the reflection coefficients are sparse in DCT domain. 

After applying the accumulated sampling and recovery in Figure 3.8, the reconstruct results 

using OMP for different sampling percentage of different specimens at 19.0041GHz is shown 

in Figure 3.16. Only 3% of sampling percentage already reveals a general defect pattern in 6J 

to 10J specimens compared to the corresponding raster scan results in Figure 3.14. The 

reconstructed images with higher sampling percentage are more visually close to the raster scan 

results for all specimens, because more sampling percentage contains more information from 

the original image.  
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Figure 3.16 Recovery results under different sampling percentage for different specimens. 

 

Figure 3.17 Average NRMSE between CS recovered images and raster scan images for 

different specimens. 

The 
1  and 2  between CS recovered images and raster scan image with 3% of step size are 

shown in Figure 3.17 and Figure 3.18 for quantitative analyse. It is the average results for 

multiple frequency points under the same specimens. The reconstructed images approach raster 

scan image with sampling percentage increasing. In a real application, the time for moving the 

waveguide probe from one location to another location is much less than getting reflection 
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coefficients from fN  inquiry frequency, and frequency sweeping is necessary in order to find 

the frequency that can reveal the texture and defect. The curves order in Figure 3.17 generally 

the same as that in Figure 3.15, which coincides with a truth that higher sparse level needs less 

sampling data. The 4J specimen one alienated from others as shown in Figure 3.18. The reason 

is that the correlation coefficient is sensitive to intensity distribution. If the small defect area in 

4J specimen located in a different location in the reconstructed image, the correlation coefficient 

will suffer greatly. 

 

Figure 3.18 Average 2D correlation coefficients between CS recovered images and raster 

scan images for different specimens. 

 

Figure 3.19 Average NRMSE between consecutive images for different specimens. 
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3.4.2 Stability detection results 

According to the method in Figure 3.3, the NRMSE and 2D correlation coefficients between 

two consecutive recovered images for all specimens are shown in Figure 3.19 and Figure 3.20. 

With the sampling percentage increasing, the NRMSE is decreasing generally. By contrast, the 

2D correlation coefficients are increasing. This means the reconstructed image becomes more 

stable. Setting threshold for 
1  and 2  can judge the stability of recovery results. There is a 

trade-off between sampling time and the accuracy of damage pattern detection. Empirically, 

1 0.02   and 2 0.95  is recommended in low impact energy damage detection. 

 

Figure 3.20 Average 2D correlation between consecutive images for different specimens. 

3.4.3 Evaluation of defect region segmentation with the proposed HTED 

This subsection shows the results for the proposed edge detection algorithm for automatic 

damage detection. The recovery results with 18% of sampling location are chosen as stabled 

results to perform our algorithm. We choose histogram bin number 50 in our study, and T1 = 

0.2max(Vi), T2 = 6, T3 = 0.7 in Figure 3.8. These parameters are not strictly so.  

The damage pattern detection results for different detection techniques and specimens are 

shown in Figure 3.21. Otsu’s threshold method and Canny edge detection method have good 

performance on large defect pattern, but response poorly for the small pattern. The watershed 

algorithm already shows over-segmentation problem and texture filter method fail to give solid 

defect area. The proposed method gives the most accurate defect pattern. For 2J specimen, there 
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is no damage pattern revealed, but all other algorithms find the illusive texture. The first two 

rows in Figure 3.21 also compare the damage detection accuracy between CS recovery results 

with 18% of sampling percentage and raster scan results. The 18% sampling percentage one 

has approximately the same detected damage pattern as the raster scan one although missing 

some details. This means more than 80% of sampling time is saved. More sampling percentage 

leads to more accurate detection results, but the reconstruction time will suffer. The trade-off 

between them should be considered in a real application. 

 

Figure 3.21 Damage pattern detection results for different detection techniques and 

specimens. All these techniques are performed using CS recovered results with 18% of 

sampling percentage except the first row, which is based on the raster scan image. The read 

pattern is the detected defect pattern. 

Comparing with other works, this paper manages to detect impact damage with energy as low 

as 4J, lower than 9J which is reported in [145], thus achieving state-of-the-art detection level 

as reported using eddy current pulsed thermography [136]. More importantly, this framework 

is an on-line process, which means damage pattern detection is performed concurrently with 

data collection. 
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3.4.4 Evaluation of time-efficiency for the proposed CS method 

The overall time-consumption consists of the probe moving time, frequency sweep time and 

delay time after moving the probe to make sure the probe already stable. For the proposed CS 

solution, it further includes measurement matrix generation time and reconstruction time. These 

time-consumption factors are denoted respectively in Table 3.2 below.  

Table 3.2 Time-consumption factors 

Notation Description 

pt  Total probe moving time 

ft  frequency sweep time for each pixel 

dt  delay time after moving the probe 

mt
 

measurement matrix generation time 

ct  Sparse reconstruction time 

 

For n sampling pixels, the raster scan time ( RT ) can be denoted as: 

( )R p f dT t n t t= + +  
( 3.8 ) 

The CS methods time can be denoted as: 

( )CS p f d m cT t m t t t t= + + + +  
( 3.9 ) 

where m is the number of measurement for CS methods. ct  and mt  depends on the computation 

power and the software algorithms to implement it, they are relatively short when comparing 

to the raster scan. For example, recovery whole reflection coefficients using 18% of sampling 

percentage takes around 2 minutes on a Windows computer with Intel® Core™ i5-4690 CPU. 

This time is far less than raster scanning, which takes around 35 minutes. Besides, ct  and mt

keeps reducing with the development of cloud computing and supercomputer. As for 
pt , the 

probe moving time for raster scan and CS methods are similar. Even if the CS methods only 

need to sample a part of the full image, the time for moving probe randomly in the image 

counteract the downsampling benefits. With the increase of n, the time complexity of CS 

methods comparing to raster scan are: 



Chapter 3   On-line CS Model for Open-ended Waveguide NDT&E 

 

51 

 

CS

R

T m

T n

 

=  
 

 
( 3.10 ) 

where m is much smaller than n. The scanning burden reduced to m n  of raster scan. For 

example, m n =18% sampling percentage using CS method has approximately the same 

detected damage pattern as the raster scan in the case study in this chapter. This means around 

80% of sampling time is saved. 

3.5 Chapter Summary 

This chapter develops an on-line CS model to offer faster data acquisition and reduce sampling 

data amount than the traditional raster scan in OEW NDT systems. A case study in impact 

damage detection for CFRP structure using open-ended rectangular waveguide probe is carried 

out for validation. The spatial images for CFRP specimens are sparse in DCT basis in the case 

study; a customised 0/1 Bernoulli measurement matrix is designed for downsampling under CS 

scenario based on this sparse condition. Orthogonal matching pursuit algorithm is used to 

reconstruct the full image with the downsampling data, DCT basis, and the designed 

measurement matrix. To address the issue of hard to determine the sampling pixel numbers that 

required for reconstruction, an accumulated sampling process is developed. The measurement 

number is decided by the quality of the reconstructed image. When the reconstructed image is 

stable enough, the defect pattern is extracted with the proposed histogram threshold edge 

detection (HTED) algorithm. One can perform defect detection for every accumulated sampling 

and recovery, which forms an on-line process. The case study shows that HTED algorithm is 

robust to texture and lift-off distance variation comparing to other image segmentation methods, 

and the data acquisition time and data amount is reduced to m n  of raster scan while 

maintaining equivalent image quality and defect region as that of the traditional raster scan. 

There are additional advantages for the proposed on-line CS model. Firstly, this is a software 

algorithm, which means no hardware update is needed for waveguide imaging system while 

improving scanning efficiency. Secondly, compressed sensing recovers the whole image with 

only a fraction of sparse samples, which makes this framework also applicable for situations 

where the sampled data is partially lost using a sparse representation, e.g., data recovery from 

fault nodes in large-scale sensor networks.  

The proposed method has some limitations. It is worth noting that the image recovery process 

in the accumulated sampling & recovery block may take a relatively long time, although it is 
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much faster than the raster scan. One the one hand, the development of cloud computing and 

supercomputer can address this shortage. On the other hand, new sampling model which 

reduces the reconstruction overhead is a more fundamental issue that improves computation 

power. Furthermore, the feature extraction is performed on the reconstructed data for this model, 

which leads to large data amount for feature extraction as what raster scan suffers. The next 

chapter develops CS models to speed up reconstruction processes for applications. Specifically, 

the next chapter will develop a feature-supervised CS model that considers the latter feature 

extraction process to reduces the data amount for feature extraction and efficiently reconstruct 

the data. The proposed stability detection method relies on the reconstructed image for each 

iteration, and it works as the stop rule for the accumulated sampling process. Investigating one 

way that can directly use the CS sampled data as input rather than the constructed image is a 

potential improvement for this method, because the repeat the reconstruction is a relatively 

time-consuming process. The proposed HTED algorithm is based on the histogram character 

(i.e. there is long tail in one or both side of the histogram) of the CFRP damage, so it is only 

applicable to cases where the damage region only accounts for a small part of the whole image, 

such as small crack detection and low energy impact damage detection. 
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Chapter 4. Feature-supervised CS Data Acquisition 

The last chapter points out that develops new sensing model that considers the latter feature 

extraction process to reduces the data amount while reserving interested feature is necessary. 

This chapter proposes feature-supervised compressed sensing (FsCS) which involves feature 

extraction process to supervise the sensing process in waveguide imaging systems. Besides 

sparsity information of the spatial reflection coefficients, the feature extraction process 

becomes another constraint input to supervise measurement matrix design. Compared to 

traditional spatial-spectral sweep and compressed sensing solutions, only the data which can 

extract the interested features is sampled in FsCS. Furthermore, FsCS contains one aligned 

spatial-spectral sensing (ASSS) scheme which jointly reconstructs each block using their joint 

sparsity to speed up the recovery. The proposed scheme is validated in an open-ended 

waveguide imaging system for impact damage detection. The work in this chapter is submitted 

to IEEE Transactions on Instrumentation and Measurement.  

4.1 Problem Statement 

Open-ended waveguide NDT systems use spatial-spectral sweep to get spatial and spectral 

response of SUT. Figure 4.1 recalls the overall diagram of waveguide NDT systems. The 

waveguide probe emits microwaves to a pixel on the SUT and captures reflection signals. 

Multiple frequency responses are obtained with frequency sweep. Then the probe sweeps to the 

next pixel with spatial scanning. The obtained data can be represented as a 3D cube as shown 

in Figure 4.1. Each horizontal frame is a spatial reflection coefficients image that either using 

amplitude or phase, which can be used for non-destructive testing and evaluation. Each vertical 

frame for a pixel is the responses at different frequencies, which can be used for material 

characterization. As mentioned in the conclusion part of the last chapter, the proposed on-line 

CS model suffers from the problem of heavy reconstruction overhead. Because all frames in 

the sampling frequency band are sampled and reconstructed for feature extraction, which brings 

problems from both feature extraction and sampling perspective. 
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Figure 4.1 Diagram for open-ended waveguide NDT systems. 

From the feature extraction point of view, the sampled data are usually highly redundant for 

feature extraction. As mentioned before, spatial images for different frequency frames are 

usually different due to the complex internal structure of SUT such as composite materials and 

skin effect. For example, spatial image (b) in Figure 4.1 reveals a significant difference in 

magnitude for some area while image (a) only shows a fuzzy image. The bottom part of Figure 

4.1 shows the close-up presentation of the dataset. The multiple frequency reflections of each 

pixel are plotted as a line vs frequency index. In fact, only a small part of spatial-spectral blocks 
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which have good contrast among spatial responses is suitable for feature extraction, the rest of 

the data are redundant. Pre-processing the data to find these blocks is a key step in the feature 

extraction process, which traditionally extracted by imposing operation like standard deviation 

to each frame on the whole frequency range. Spatial images that reveal defect is corresponding 

to high standard deviation value in this case as shown in Figure 4.1. Compressed sensing 

indicates that there is no need to sampling the part of data that will be finally discarded, which 

is one of the motivations for the work in this chapter. 

From the sampling point of view, the CS model in the last chapter sequentially reconstructs 

each spatial image, which is a relatively time-consuming process. As shown in the bottom of 

Figure 4.1, the frequency response for spatial pixels are highly correlated, and neighbour spatial 

images are highly correlated as well. This correlation lays the foundation for the joint sparsity 

scenario, where correlated data can be jointly reconstructed to improve reconstruction speed. 

4.2 Related Works 

CS witnesses some application in reducing data amount in waveguide and microwave imaging 

systems. The last chapter [160] reduce the spatial sampling data in a waveguide NDT system 

based on a customised measurement matrix and discrete cosine basis. X. Yang et al. [161] show 

that 30% randomly under-sampled spatial pixels can get good images. H. Kajbaf et al. [162] 

also report 20% to 30% spatial pixels of the fully-sampled uniform measurements can 

reconstruct the image in synthetic aperture radar (SAR) systems. 3D SAR systems also reduce 

time cost and data in data acquisition [163]. Time-critical systems benefit from CS due to down-

sampling. M. T. Bevacqua et al. [164] propose a CS-based method for 3D breast cancer 

microwave imaging, which reduces patient exposure to radiation. The measurement 

number/data of CS can be reduced to the order of sparse level normally. Besides reducing 

sampling time and data, CS also brings other benefits with proper sparse representation. S. H. 

Jung et al. [165] propose using CS in millimetre-wave SAR systems with reduced samples but 

obtained higher resolution. M. N. Stevanović et al. [166] devise a CS strategy to select the 

optimal orders to consider in the imaging procedure without needing any prior information on 

the perfect electric conducting target. B. Gao et al. [6] apply sparse representation in non-

destructive defect detection in metals. There are also applications of CS in defect detection in 

other materials [108]. 
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The above CS applications have common problems. The reconstruction process is time-

expensive for frame-by-frame recover for the whole spatial-frequency data, although much 

faster than spatial-spectral sweep. To address these challenges, some papers explore the joint 

sparsity for situations where multiple signals have a same sparse pattern. Z. Du et al. [167] 

propose a model to adaptively control sparse level to simultaneously enforce all segments 

sharing a same active atom set. L. Wan et al. [168] use multimodal joint sparse representation 

to improve the performance of biometrics recognition. They represent the received data by a 

sparse linear combination of potential steering vectors while constraining the observations from 

different frequencies subject to sharing the same sparsity pattern. Similar multimodal joint 

sparse representation also applied in face recognition [169]. D. Bi et al. [170] investigate a 

multifrequency CS model for 2D near-field microwave SAR imaging system. Spatial data of 

each frequency are represented as a hierarchical tree structure under a wavelet basis, and spatial 

data of different frequencies are modelled as a joint structure. G. Xia et al. [171] propose a joint 

kernel sparse representation model, which uses a kernel-induced space with a geodesic 

exponential kernel for sparse representation. All these methods reduce sensing time and data 

amount by the downsampling ability of compressed sensing. However, they bring in substantial 

reconstruction burden in reconstructing the full data, and they did not take the feature extraction 

process into consideration.  

There are few works on feature extraction-oriented sensing in other fields. X. Zhang et al. [172] 

design specific CS for moving-target imaging by exploiting the geometry information of the 

defocused results. Z. Du et al. [109] propose CS based impulsive feature detection for wind 

turbine systems. B. H. Chen et al. [173] propose a novel rain streak removal method that is 

based on error-optimized sparse representation. For microwave imaging systems, M. Cetin et 

al. [17] review the sparse representation in SAR imaging systems, but no literature offers joint 

sensing and feature extraction design. 

4.3 The Proposed Feature-supervised CS Data Acquisition 

The overall methodology diagram of this chapter is given in Figure 4.2. The traditional method 

uses raster scan with frequency sweep to acquire the full spatial-spectral data, however, most 

of the data are discarded when extracting the damage region. The last chapter proposes a method 

that samples a part of the spatial data, but the method also obtains the full spatial-spectral data 

by reconstruction. Instead of performing feature extraction in the whole reconstructed spatial-
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spectral data which involves a laborious reconstruction and feature extraction process as in 

traditional CS methods, this section proposes feature-supervised CS (FsCS) scheme to reduce 

the processing burden in feature extraction and reconstruction burden, and innovatively 

integrate the feature extraction process into the sensing process. 

 

Figure 4.2 Methodology diagram for the proposed feature-supervised data acquisition 

The proposed method uses the location of the damage region as a feature constraint to supervise 

sensing. Based on this feature constraint and the joint spatial-spectral sparsity of OEW data in 

this case study system, an aligned spatial-spectral sensing algorithm is designed. This sensing 

algorithm only obtains the spatial data in the frequency that can review the damage. The post 

feature extraction is greatly simplified and reduced data amount. This scheme is applicable to 

cases where features embedded in small segments of whole data. Taking time and storage 

efficiency into account, only acquiring these data is enough for feature extraction. For 

validation, the proposed method is compared with the traditional methods in terms of feature 

quality and time efficiency. More details are discussed in next subsections. 

4.3.1 Spatial-spectral sparsity 

This subsection explores the sparsity between neighbour frames and frequency response 

between pixels, aiming to sparsely represent them for joint reconstruction. As shown in Figure 

4.1, the frequency sweep data of raster scan from waveguide NDT system is a 3D signal 

sampled from frequency/time/spatial domain, denoting as fNx Ny n 
Γ , which can be 

regarded as video on the frequency domain. There are fn  frames, and each frame is a 2D image 

with size Nx Ny . The data has 2D forms when reshaping each frame into a vector
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where sn NxNy=  and i = 1,2,3,…,nf. The individual spatial data ii  can be expanded on a more 

compact dictionary like discrete cosine transform (DCT) s sn n
D  as i i=i Ds , where 

1sn

i


s  are the sparse coefficients. Under such decomposition, neighbour frames usually have 

the same sparse patterns, i.e., they have the same non-zero positions but with different values. 

Denoting the measurement results for the individual frequency with measurement matrix 

s sm n
Φ  and some noise in  as +i i i=y ΦDs n , the whole measurement results for all 

frequency is 

+=Y ΦDS N  ( 4.1 ) 

where 1 2 3   s f

f

m n

n

  
 

Y = y y y y  and 1 2 3   s f

f

n n

n

 = 
 

S s s s s , N  is the Gaussian 

noise term. Thus, S  has some zero rows. Then we can seek the row-sparse matrix S  by solving 

the following joint optimisation problem according to Equation ( 4.2 ):  

( )
2,0

arg min   + ,H
S

S Y ΦDS  
( 4.2 ) 

When choosing ( )
2

1
,

2
H = −y As y Ax , the optimisation problem becomes: 

2

12 2,1
1

1ˆ =argmin
2

fn

i i

i


=

− +S y ΦDs S  ( 4.3 ) 

where 1  including different subscript variant are Lagrange factor. After obtaining Ŝ , the data 

can be simply obtained by =Γ DS . Likewise, the frequency response of each pixel can be 

sparsely represented as well. The overall process is the same as the above analysis, the only 

difference is that substituting fn  with sn  and switching sn  and fn  when they show together 

as an index. 

The sparse dictionary can be found empirically or using all kinds of transform like DCT or 

discrete wavelet transform (DWT) or singular-value decomposition (SVD) on the training data. 

There are also some blind dictionary learning solutions [124]. The sparsity K can be found by 

thresholding the sorted absolute cumulate summation of decomposed coefficients on the 

corresponding sparse dictionary. The threshold can be 95% empirically, which means the 
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largest K coefficients dominant 95% of total power. When there is no enough training data, the 

accumulated and recovery process in the last Chapter can be used. 

4.3.2 Feature constraint for supervising data acquisition 

As shown in Figure 4.3, traditional feature extraction processes impose data screening function 

(denote as ( )f  ) on each frame ii  to obtain an indicator, then the frequency position that 

reveals damages (denote as k) is extracted by thresholding the indicator values. Then the 

interested feature is extracted from the refined spatial-spectral data. The data screening process 

for each frame from i = 1 to i = nf  can be denoted as 

( )i if = i     
( 4.4 ) 

( )1 = −k σ  ( 4.5 ) 

where 1  is a threshold, greater 1  lead to less data. 1 2 3    
fn    =

 
σ  is the 

corresponding feature data screening indicator for each frequency point. ( )  max ,0
d

x x
dx

 =  

is the unit step function. For traditional feature extraction, equation ( 4.4 ) is laborious when ii  

is in large volume or ( )f   is a very complex process. 

 

Figure 4.3 The diagram of feature constraint. 
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Instead of imposing Equation ( 4.4 ) on ii  for traditional feature extraction, this paper 

innovatively uses CS to reconstruct the feature data screening indicator. This is based on one 

fact that σ  is usually sparse. For example, the standard deviation shown in Figure 4.1 is smooth 

that has dominant low-frequency components when decomposed with DCT. A downsampling 

block is introduced first for this purpose. 

fy =Φ σ  
( 4.6 ) 

where f fm n

f


Φ  is the spectral measurement matrix, the detail generation process for this 

measurement matrix will be introduced in the next subsection. 
1fm 

y  is the measurement 

results. However, σ  cannot be measured directly because it is not a physical parameter that can 

be measured. Alternatively, sample value can be used to estimate the population value 

according to statistic theory. For example, the sampling standard deviation can be used to 

estimate the population standard deviation by modifying the standard deviation formula from 

Equation ( 4.7 ) to Equation ( 4.8 ) to provide an unbiased estimation. 

( )
2

1

1 sn

i

is

x
n

 
=

= −  
( 4.7 ) 

( )
2

1

1

1

sm

s i

is

x x
m


=

= −
−
  

( 4.8 ) 

where sm  is the sample number on each spatial frame.   and x  are the population mean and 

sample mean respectively. So we can use Equation ( 4.10 ) to substitute Equation ( 4.6 ) by 

employing Equation ( 4.8 ) as ( )f   and specially design the measurement matrix Φ , 

( )  

( )

1B 1, , = ,                      

column of 2,  row of 1  s.t. 

log /

m n

f f f f f f

p s f

K n n m n p n

 

 

 



 


   =


   =  

 

Φ

Φ ΦΦ  ( 4.9 ) 

where p  is compression ratio. So, Equation ( 4.6 ) can be rewritten as 
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( )

( )

( )( )
1

1

              

              

f f

f s

T

f s

f

f

f

=

=

=

y = Φ σ Φ Γ

Φ Φ Γ

Φ Φ Γ

    
( 4.10 ) 

The first two constraints in Equation ( 4.9 ) means that the p  percentage of ‘1’ in fΦ  and 

1sΦ  are located in different rows and columns, which ensures that 1sΦ Γ  is a sample of Γ

without any scaling. It also ensures ( ) ( )( )1 1

T

f s f sf f=Φ Φ Γ Φ Φ Γ . The last constraint offers 

successful reconstruction condition on σ . fm  and   can be empirically set in practical 

applications. 
sm  does not have such constraint because no spatial reconstruction is needed. The 

reconstruction problem for σ  becomes  

( )
0

ˆ min    s.t    , fH = 
σ

Φσ σ y σ  ( 4.11 ) 

The data which can reveal feature sn n
 Γ Γ  is the frequency location where Equation 

( 4.5 ) has ‘1’, n  is the number of these frequency locations. 

The proposed feature data screening method only samples sp  subset of spatial pixels and fp  

subset of their frequency responses and obtains the full feature data extraction indicator value, 

which will be used to supervise the sensing process.  

4.3.3 Aligned spatial-spectral sensing that supervised by feature constraint 

Based on the above modelling, an aligned spatial-spectral sensing (ASSS) scheme is proposed 

in Figure 4.4 to down-sample and jointly reconstruct the spectral-spatial responses which 

contain defect information. Besides the joint sparse information, feature constraint is another 

input for sensing. After the sampling, only a small part of spatial data in frequency axis that can 

review the damage are sensed and jointly reconstructed. The reconstructed data are used to 

segment the damage region. 
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Figure 4.4 The diagram of aligned spatial-spectral sensing. 

Figure 4.5 gives the process in a more rigid way. The inputs are the feature constraint (denote 

as k) obtained in the feature constraint subsection. It defines the specific sensing range which 

has the feature information and influences the dimension of Φ . K  and D  are obtained in 

the spatial-spectral sparsity section. Compression ratio is the last input which is defined by the 

user. It is worth noting that fn n  of data compression ratio already achieved using the feature 

constraint. 

Two measurement matrices Φ  obeying 0/1 Bernoulli distribution for spatial and spectral 

sampling is designed in the first three steps under the feature constraint. Firstly, m should be 

greater than the sparse level K  for successful reconstruction. The sampling location which 

denotes as ‘1’ in the measurement matrix can be implemented by randomly choosing m  values 

from 1 to n . The sampled locations are randomly distributed to each line of the measurement 

matrix with the random column and row index. This design ensures that the there is no blank 

data in the measurement results. Each column has one ‘1’ at most which eliminate duplicate 

sampling. This design can be used to design the measurement matrix in Equation ( 4.10 ) as 

well, because it ensures that the sampling results are a subset of the original signal without any 

scaling. The on-line measurement matrix generation process in Figure 3.4 can be used for 

implementation. 
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Figure 4.5 The proposed ASSS algorithm 

OEW NDT systems get sm m   observation in spectral and spatial domain with Φ . All 

sampling locations are aligned, i.e., all frames have the same spatial sampling location and all 

sampled pixels have the same frequency location. This aligned scheme brings some critical 

advantages. Firstly, each sampled pixel obtains most frequency sampling points, and each 

sampled frequency point obtains most pixel values, thus ensuring high-quality reconstruction 

for the sampled location and all spatial-frequency data as a result. Secondly, different frames 

or pixels can share the same measurement matrix, which is easy for hardware and software 

implementation. Lastly, sharing the same measurement matrix reduces the storage space when 

saving measurement matrix for reconstruction. 

The whole frequency response of sampled pixels can be jointly reconstructed using methods 

like OMP. After the spectral reconstruction, the reconstructed full frequency response for 

sampled pixels fills the unsampled frames on the spatial domain, which works as a virtual 

measurement process. All frames have sampled data, and these data are in the same location 
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for each frame due to the aligned property. As for the spatial reconstruction, the d neighbour 

frames are segmented into the same block which can be jointly reconstructed. This block-by-

block joint reconstruction manner dramatically reduces the reconstruction burden. All 

interested frames can be reconstructed in a shifting manner and concatenating the results. 

4.4 Experimental Setup for Evaluating Feature-supervised CS Data Acquisition 

FsCS needs to randomly sample in spatial and sample interested frequency range. For random 

spatial sampling, OEW NDT systems can use an X-Y scanner to locate the probe at arbitrary 

pixels as shown in Figure 4.1. There is also other specially designed hardware for CS that makes 

use of spatial masks rather than mechanical scan [45, 120]. For spectral sampling, the 

progression in direct digital frequency synthesiser (DDFS) provides fast and reliable arbitrary 

frequencies output. Modern VNAs use frequency synthesiser gradually. Likewise, there are 

designs like frequency masks or even spatial-frequency masks [48, 174]. The computationally 

intensive reconstruction process for large spatial area can go to the more powerful 

computational centre like cloud computing, which fits with the IoT structures [4].  

 

Figure 4.6 System setup for the proposed algorithms 

This chapter validates the proposed algorithms in an open-ended waveguide imaging system in 

our lab experiment as shown in Figure 4.1 and Figure 4.6. A mechanical scanner which carries 

an open-ended rectangular waveguide probe is used to measure an arbitrary point on specimens. 

The measure location depends on the measurement matrix. A vector network analyser (Agilent 

PNA E8363B) is connected to the waveguide probe to emit and measure the microwave. Matlab 

is used to control the network analyser and mechanical scanner through the GPIB interface, 
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which can cope with both random spatial sampling and random spectral sampling. The 

reconstruction process is done on a personal computer with Intel i5 4690K CPU and 8GB 

memory. During the reconstruction process, orthogonal matching pursuit (OMP) is used for 

feature constraint indicator reconstruction and joint reconstruction. Same specimens as in the 

last chapter are used as SUT. The SUTs are six carbon fibre reinforced polymers (CFRPs) with 

different impact damage in the centre part. Each specimen is scanned with raster scan and 

frequency sweep (spatial-spectral sweep) scheme for 20 times with slightly different scan area 

thus getting enough training data to get the sparsity K. The probe scans 99×99 pixels in each 

scanning. The frequency band is 18GHz to 26.5GHz with 1601 frequency points.  

4.5 Evaluation Results 

4.5.1 The joint sparsity of the dataset 

This section validates the joint sparsity of the dataset obtained in the last section in spatial and 

frequency domain. The joint sparsity in the frequency domain is evaluated first. The spectral 

data are smooth wave shape curves, which is sparse when decomposing on DCT basis. Figure 

4.7 presents the spectral data and DCT coefficients of pixel no. 1 in 6J specimen. The dominant 

DCT coefficients are in the beginning part. The zoom-in part shows the first coefficient is 

around ten times larger than all other coefficients, which presents high sparse. For more general 

cases, the sorted average DCT coefficients for all dataset are given in Figure 4.8. The data from 

all specimen shows a sharp decrease at the beginning. The largest DCT coefficients are around 

1000 times larger than the 50th largest coefficient for all these curves, which means all the 

spectrum data are sparse in DCT basis. To get a vision of joint frequency sparsity, the spectral 

data and DCT coefficients for two pixels in the 6J specimen are given in Figure 4.9. It is obvious 

that the two different spectral data shows the same index for dominant coefficients and with 

different values, which is joint sparse. For more general cases, the probability of the first 30 

DCT coefficients index is in the most significant 30 coefficients for the dataset is presented in 

Figure 4.10. The probability is obtained by finding the most significant 30 coefficients for all 

dataset and keep down their index, followed by counting the number of each index. The figure 

shows that the most significant 30 coefficients mainly located at the beginning of DCT 

coefficients, i.e. the dominant coefficients are located almost in the same coefficients index. 

Furthermore, the probability of sharing the same sparse coefficients index for the largest Nm 
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coefficients are given in Table 4.1 to present joint sparsity level. This probability is obtained 

by counting the number of same coefficients index out of the Nm largest coefficients for arbitrary 

pair of pixels. Figure 4.10 is the case when Nm=30, other cases for Nm=20, 50,100 are shown 

in the table. The most significant 20 DCT coefficients have 99.36% probability in sharing the 

same sparse index, the probability is around 86% even extending to the largest 100 coefficients 

which prove the joint sparsity. 

 

 

Figure 4.7 The DCT coefficients of the spectral data pixels. (a) The spectral data; (b) the 

DCT coefficients 

Zoom in

(a)

(b)

Coefficients index
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Figure 4.8 The average DCT coefficients of spectral data for the different specimen. 

 

Figure 4.9 The (a) spectral data of two pixels and (b) the corresponding DCT coefficients. 

The dominant coefficients of pixel no. 1 and no. 300 have same position but different value.  

(a)

(b)
Zoom in

Coefficients index
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Table 4.1 The probability of sharing the same sparse coefficients index for the largest Nm 

coefficients.   

The largest Nm coefficients 
The probability of sharing the same sparse coefficient index out of 

Nm largest coefficients 

20 0.9936 

30 0.9775 

50 0.8995 

100 0.8589 

 

Figure 4.10 The (b) probability of coefficients index is in the most significant 30 coefficients 

for (a) the dataset.  

The joint sparsity in the spatial domain is evaluated after the joint sparsity in the frequency 

domain. Figure 3.15 in Chapter 3 already shows the spatial frame is sparse on DCT basis. Based 

on the analysis, the joint spatial sparsity is discussed. As shown in Figure 4.5, the proposed 

(a)

(b)

Coefficients index
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ASSS algorithm reconstructs the spatial data block-by-block with d neighbour frames. To prove 

this design, the DCT coefficients for image no. 50 and no. 160 in 6J specimen is shown in 

Figure 4.11 firstly. The two images are significantly different from each other, and their DCT 

coefficients are also different as shown in Figure 4.11(b). For these two images, no joint sparsity 

property is observed. The d is 160-50=110 in this case, which demos that too large d cannot 

meet the joint sparsity condition. Another case where d=20 is shown in Figure 4.12. The two 

images are visually like each other, and their DCT coefficients in Figure 4.12(b) shows joint 

sparsity property. Their dominant coefficients share the same index with a different value. 

 

Figure 4.11 The  DCT coefficients (b) of two different spatial images (a) with d=110. They 

have totally different sparse coefficients. 

 

Zoom in

(a)

(b)

Coefficients index
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Figure 4.12 The (b) DCT coefficients of (a) two different spatial images with d=20. They have 

same sparse coefficients location but different values. 

  

Figure 4.13 The probability of sharing the same DCT coefficients index vs d under different 

Nm 

The above evaluation proves that the value of d will influence the joint sparse condition. d 

quantifies the number of neighbour frames. When d is too large, there is no joint sparsity. On 

Zoom in
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the contrary, too small d will decrease the time gain of the proposed methods. To help with 

setting the d values, the probability of sharing the same DCT coefficients index again d is given 

in Figure 4.13. This probability is obtained by counting the number of same coefficients index 

out of the Nm largest coefficients for an arbitrary pair of images, and randomly chooses the 

reference image (d = 0) with uniform distribution. The figure shows that the neighbour frames 

with d<10 has high joint sparsity with probability more than 0.9. The probability decreases 

rapidly hereafter before stable. Because the corresponding two images become more visually 

different with d increasing, but they share a small part of dominant values that lead to stable. 

The figure shows that a stricter threshold has higher joint sparsity as the probability is higher 

vertically for less Nm.  

4.5.2 The feature constraint for impact damage detection on CFRPs 

The accuracy of feature constraint will directly influence the right spatial-spectral data to 

sample. This section performs the proposed feature constraint extraction scheme on the same 

specimen and same spatial area as raster scan. Figure 4.14 calculates the feature extraction 

indicator for the different specimen, the indicator is the standard deviation in this impact 

damage detection case on CFRPs. They are smooth curves which are sparse on DCT basis. To 

validate this, the sorted DCT coefficients are given in Figure 4.15. A sharp decrease is observed 

at the beginning, which proves sparse on DCT basis.  

 

Figure 4.14 The standard deviation of dataset for different specimen from 2J to 10J. 
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Figure 4.15 The sorted DCT coefficients for   in Figure 4.14. 

 

Figure 4.16 A demo for reconstructing the feature extraction indicator for a 6J specimen with 

DCT as the sparse basis and mf=320. 

Based on the sparse analysis, Figure 4.16 gives one demo for reconstructing the feature 

extraction indicator. The measurement matrix fΦ  is generated using the algorithm in Figure 

3.4. 1s =Φ 1  in this case. mf is set to 320, which is 20% of the whole frequency band. For 

implementation, fΦ  is imposed to the frequency sweep data to select the frequency frame for 

calculating the corresponding i , which is more practical because the random sampling in 
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frequency domain do not save sampling time significantly and brings more complicated 

implementation process. The reconstructed standard deviation using OMP perfectly fits with 

the original standard deviation, which validates the ability to find target frequency qualitatively. 

 

Figure 4.17 Probability of detection vs spectral sampling percentage. 

For quantitative validation, the probability of detection fp  is used. It is defined as the 

probability that the position difference of detected target frequencies and the true target 

frequencies is below a pre-defined threshold, which can be calculated by thresholding the 

Hamming distance between original i and detected î  with Monte Carlo methods as  

( )
1

ˆ1 xor
fn

f i i f

i

p E n
=

 
= − 

 
 i , i  

( 4.12 ) 

where  E   is the mathematic expectation, ( )xor   is exclusive-or operation. What is different 

from the qualitative validation settings is that 1sΦ  is set using the algorithm in Figure 3.4 for 

different spatial sampling percentage. Only small number of spatial locations are sampled with 

frequency sweep. Then fΦ  is imposed on the frequency sweep data. Such settings only 

calculate a small part of σ  with ( )if  , the rest of σ  is reconstructed with this part of values 

instead of from ( )if  . As mentioned in section 4.3.2, ( )if   is laborious when the data 

volume is high or ( )f   is a very complex process. The average probability of detection under 

such case for a various number of spatial pixels 1sm  is shown in Figure 4.17. 1  is set as 
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( )0.95max σ  which mean only the most significant 5% of indicator values are chosen. It is 

evident that the increase in pixel number does not contribute to the detection probability 

significantly. Even just 3 sampling pixels (0.03% of the total pixel) get the right target 

frequency with more than 80% probability when using just 20% of frequency sampling 

percentage. 40 pixels (0.41% of the total pixel) can find the right target frequency. The 

probability of detection is increasing slowly when the spectral sampling percentage is large 

enough, which is influenced by the sparsity on DCT basis. 

4.5.3 Aligned spatial-spectral sensing 

The reconstruction quality of ASSS is the source data where defect pattern is extracted. OMP 

is used to jointly reconstruct the sampled spectral and spatial data. Spatial-spectral sweep results 

are used as a baseline. To fully explore the performance of ASSS, all the frequency band is set 

as interested frequency, i.e. there is no feature extraction constraint applied. In such a case, all 

spatial-spectral data can be reconstructed for further analysis. Note that the proposed ASSS 

scheme is additive with the feature constraint. The feature constraint only refines the frequency 

band where ASSS is applied. Figure 4.18 presents some results for different spatial and spectral 

sampling percentage with DCT as the sparse basis. With the increase in spatial and frequency 

sampling percentage, the reconstructed results become more like the baseline. 30% in spatial 

and spectral domain already has little visual difference to the baseline in this case study.  

Two metrics are used to compare the baseline results and the ASSS results frame-by-frame, i.e., 

the 2D correlation and normalised root mean square error (NRMSE). 2D correlation evaluates 

the similarity between the overall shapes of different datasets, while NRMSE evaluates the 

similarity using the absolute difference. Using both leads to a more accurate evaluation. The 

average 2D correlation for all frames in different specimen samples are shown in Figure 4.19. 

Either increasing the spatial sampling percentage or spectral sampling percentage improves the 

reconstruction quality. In this ORWG imaging system, only 30% of spatial and frequency 

sampling percentage for ASSS obtains 98.2% similarity as the baseline. Even 3% in both 

domains gets 69.4% similarity. The intersecting line between 90% similarity plane and 2D 

correlation surface demonstrates the combination case where the similarity is greater than 90%. 

For example, 10% spectral and 20% spatial (2% of whole data) sampling percentage. 
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Figure 4.18 A comparison between the reconstructed image using the proposed algorithms 

and the spatial-spectral sweep. 

 

 

Figure 4.19 Average 2D correlation under different spatial and spectral sampling 

percentage. 
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The average NRMSE is shown in Figure 4.20, which demonstrates a sharp decrease when the 

spectral sampling percentage increase. Increase in spatial sampling percentage does not have 

such a significant influence as increasing spectral percentage. The 2D correlation results and 

the NRMSE prove that only sampling as low as 2% of what spatial-spectral does get more than 

90% similarity, which saves 98% sampling data/storage space. 

 

Figure 4.20 Average NRMSE under different spatial and spectral sampling percentage. 

4.5.4 The influence on feature quality for the proposed ASSS with feature constraint 

The proposed scheme preserves feature with reduced data amount. This section presents the 

influence on feature quality with the proposed feature-supervised CS data acquisition. The 

defect region segmented on the spatial-spectral sweep is used as a baseline to evaluate the 

extracted feature with FsCS. The defect region is the interested feature in this study. The defect 

region is extracted from the frequency frames which correspond to large standard deviations, 

and the proposed scheme senses it by setting the threshold in the feature extraction constraint 

as ( )1 0.7 max = σ . Thus the frequency band to apply ASSS only occupies   = 30% of the 

total frequency band in this case study. The sampling burden and the data for feature extraction 

is greatly decreased. To extract the binary defect region, we employ the HTED algorithm from 

chapter 3 because of its superior de-nosing ability. The HTED algorithm is applied in both raster 

scan images and the reconstructed images with the proposed method. The raster scan results is 

used as baseline. Figure 4.21 presents some extracted defect pattern for various spatial-spectral 
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sampling percentages. More sampling percentage leads to more similar defect pattern as the 

baseline. Even 3% of spatial sampling obtains similar defect pattern as baseline together with 

30% of spectral sampling, because the reconstructed image under this sampling configuration 

achieves more than 90% of correlation with the baseline. 

 

Figure 4.21 The extracted defect pattern with various spatial-spectral sampling percentage. 

 

Figure 4.22 Similarity ratio of defect pattern size between the proposed scheme and spatial-

spectral sweep results. 

Quantitative evaluation is carried out by the average similarity ratio of defect size between the 

proposed method and the baseline by spatial-spectral sweep. Different spatial-spectral sampling 

percentage, specimens and frequency frames in each specimen are counted in the average. The 

similarity ratio ( p ) is defined as 

rec ref refp S S S = −  
( 4.13 ) 

where recS  and refS  denote reconstructed defect and the baseline. The results are shown in 

Figure 4.22. The similarity ratio is very low under 3% of spatial and spectral sampling rate 
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because the sampling amount is not in the order of ( )logm n=  , which cannot guarantee 

successful reconstruction. The similarity ratio increases with the increase of spatial and spectral 

sampling percentage. To highlight this influence, the average similarity of diagonal similarity 

ratio (The elements covered by the yellow dash line) is calculated and labelled in the figure. It 

clearly illustrates that more spatial-spectral sampling percentage leads to higher similarity ratio. 

Figure 4.22 also shows that defect patterns extracted from around only 20%ρ×20%=1.2% of 

spatial-spectral sweep data already have more than 90% of similarity ratio as the reference 

image, which demonstrates FsCS preserves feature integrity even under the millesimal level of 

sampling percentage. 

4.5.5 The gain of the proposed method in reducing data amount and improving time-

efficiency  

This chapter develops ASSS methods with feature constraint that aims to reduce data amount 

for feature extraction. Only the sector of data that will finally be used for feature extraction is 

sampled. The gain in reducing data amount is decided by the 1  in equation ( 4.5 ). For example, 

( )1 0.95max = σ  leads to 5% of full data, which have a gain of reducing 95% of data for feature 

extraction. 

On the time-efficiency side, this chapter jointly reconstructs neighbour frames based on their 

joint sparsity, which speeds up the reconstruction greatly. To prove this, joint reconstruction 

and sequential reconstruction with OMP for same datasets are performed. Ten neighbour frames 

are chosen from the 6J specimen are the dataset X . When using OMP for joint reconstruction, 

the sparse support   is identified using only one spatial frame, then the support is used to 

construct the whole dataset with ( )=
-1

T T

Λ Λ Λ
X A A A Y  according to the OMP algorithm in Figure 

2.6. The running time for the two methods in Matlab R2018a with Core I7-7500u CPU and 

8GB memory is shown in Figure 4.23 below. The time is recorded with ‘tic’ and ‘toc’ command 

in Matlab. The running time increases rapidly with the number of spatial percentages, but the 

joint reconstruction increases much slower. The time gain that defines as the ratio for the two 

times is shown in Figure 4.24, which shows a linear trend with the increasing of spatial sampling 

percentage. These two figures illustrate the time-efficiency of using joint reconstruction. 
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Figure 4.23 Running time compare between joint reconstruction and sequential 

reconstruction with OMP for ten spatial frames. 

 

Figure 4.24 Time gain of joint reconstruction when compared to sequential reconstruction 

with OMP. 

4.6 Chapter Summary 

Based on the proposed online CS-based model in the last chapter, this chapter proposes feature-

supervised compressed sensing (FsCS) which involves feature extraction process to supervise 

sensing process in open-ended waveguide NDT systems. FsCS researves the interested feature 

while reducing the data amount, and FsCS improves reconstruction speed by using joint sparsity 

in and reconstructing with joint reconstruction. The frequencies which reveal the feature only 

occupy a small part of the frequency band, this method finds this sparse frequency range with 
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feature constraint to supervise the sampling process. Subsequently, based on joint sparsity of 

neighbour frame, an aligned spatial-spectrum sampling scheme is proposed to only sample 

interested frequency range for required features by using a customised 0/1 Bernoulli 

measurement matrix. The interested spectral-spatial data are reconstructed jointly which has 

much faster speed than frame-by-frame methods. The case study in impact damage detection 

on CFRP materials with open-ended rectangular waveguide shows that the data amount is 

reduced greatly without compromising feature quality. The gain in time-efficiency increases 

almost linearly with the number of sampling points comparing to sequential reconstruction.  

As for limitations, one core condition for this method is the interested feature only embedded 

in a small part of the whole data. In fact, this is the case for many applications. Traditional 

applications collect data first before extracting the useful information, the collected data is 

usually highly redundant for a specific feature. However, this method needs the sparsity 

information as prior information of the feature data screening indicator in the feature constraint 

step, which means the user needs to get the indicator using traditional way first if they know 

nothing about the signal character. A second condition is that the multi-dimension data should 

have joint sparsity property for the aligned spatial-spectral sampling. This is also based on 

analysis of the training data to get the joint sparsity information. 
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Chapter 5. Damage Detection using CS Data 

The previous two chapters mainly contribute to the data acquisition side. Feature extraction is 

another crucial issue in open-ended waveguide NDT systems. The previous chapters propose 

HTED algorithm for impact damage detection on CFRP, and it shows well performance than 

other image segmentation algorithms. However, it is performed on the reconstructed full data 

after the relatively time-consuming sparse reconstruction. Although reconstructing the full data 

is good for visualisation and other processing, more critical issue is that how the feature itself 

which directly related to decision-making can benefit from CS measurement scheme. 

Compared to the feature extraction in the previous two chapters, this chapter proposes 

qualitative and quantitative defect detection algorithms from CS data directly rather than from 

the reconstructed data. The work in this chapter is presented in the 23rd International Workshop 

on Electromagnetic Nondestructive Evaluation, Michigan, USA, 2018 and forms one paper for 

it. 

5.1 Qualitative Detection using CS Data 

5.1.1 Problem statement & related works 

Qualitative detection gives a one-bit decision on the SUT, either health or illness. The proposed 

HTED algorithm in chapter 3 takes the fully reconstructed spatial image as input and achieves 

more accurate defect pattern extraction than other image segmentation methods. However, it is 

too laborious for qualitative defect detection with HTED. As mentioned in previous chapters, 

the histogram for the amplitude of reflection coefficients that contains the damaged area shows 

long tails in impact damage detection on CFRP materials. This feature can be used for making 

a binary decision. One property for this histogram feature is that it is invariant to downsampling, 

which means the binary qualitative detection does not require full data. There are traditional 

downsampling methods [175] like random line scanning [117], uniform downsampling and 2D 

random line scan. The data obtained in this thesis is also downsampling data using the 

customised 0/1 Bernoulli matrix, this section investigates the possibility of directly defect 

defection on the CS data without reconstruction. 
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5.1.2 The proposed CS-based qualitative defect detection 

The overall methodology to solve the highlighted problem in the last subsection is given in 

Figure 5.1. The proposed CS-based qualitative defect detection is shown in green, other cross 

validation methods are also given. Firstly, the specimens are sampled with the following 

methods. Different data will obtain after the sampling, these data are then sent to a proposed 

histogram thresholding process for the qualitative decision. Finally, compare their decision 

results. More detail about the proposed scheme is given hereunder. 

 

Figure 5.1 Methodology diagram for the proposed CS-based qualitative defect detection. The 

proposed method is shown in green, other methods like line scan are also given for cross 

validation. 

Recall the CS measurement model for signal x,  

=y Φx +ξ  ( 5.1 ) 

An element of the measured data can be denoted as: 

,
1

n

i i j j i
j

y x 
=

=  +  
( 5.2 ) 

From the probability theory point of view, i.e., regarding the signal elements x and y as random 

variables. According to Equation ( 5.2 ), the distribution of y is usually different from x. 

However, they can have the same distribution under some special design of Φ . For example, if 

each row of Φ  only have one constant value ‘a’ and have ‘0’ for the rest of it, Equation ( 5.2 ) 

becomes:  

i j iy ax = +     
( 5.3 ) 

CS dataCS measurement

Uniform 

downsampling

1D random line scan

 

2D random line scan

Histogram 

thresholding

Downsampling

data

Downsampling

data

Downsampling

data

Decision

Raster scanReference data

Decision
Is the two decision 

same? 



Chapter 5   Damage Detection using CS Data 

 

83 

 

In such cause, x and y will have the same distribution if the variance of the Gaussian noise term 

( )  var E ax . Fortunately, the measurement matrices in Chapter 3 and Chapter 4 meet the 

condition. So, qualitative defect detection directly on CS data is possible. The diagram is shown 

in Figure 5.2. The input parameters are under the same constraint as the HTED algorithm in 

Chapter 3. 

The proposed method performs qualitative defect detection in CS measurement, i.e. random 

downsampling of the whole spatial area using the customised 0/1 Bernoulli measurement 

matrix in Chapter 3 and Chapter 4. Other downsampling methods such as thresholding of 

random line scanning, uniform downsampling and 2D random line scan are used to compare 

with the proposed method. Figure 5.3 shown the demo sampling pattern for all these methods, 

where the red area is sampling locations. 

 

Figure 5.2 Diagram for qualitative defect detection  
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Figure 5.3 Sampling pattern for (a) uniform downsampling, (b) 2D random line scan, (c) CS-

based, (d) 1D random line scan for 25% of sampling percentage. 

5.1.3 Experimental setup for the proposed CS-based methods 

To evaluate the CS based qualitative defect detection method, this section uses the same 

specimen as that in Figure 3.13 and the experimental setup in Figure 3.11. CS-based methods, 

1D and 2D random line scanning, uniform downsampling are implemented for performance 

evaluation as shown in Figure 5.1. 

To simplify the process, VNA only sample at one narrow frequency band which reveals the 

damage areas, i.e. around 19GHz according to the results in Chapter 3. The number of 

frequency point is 801. Then a 100mm×100mm spatial area on the five specimens which 

involves the impact point in the centre is sampled with raster scan. One 30mm×30mm 

rectangular window is applied to the raster scan data to form a study area. The window shift in 

X and Y direction with 1mm of step size. The spatial data in each window is chosen as a 

reference image for qualitative defect detection. Then the equivalent sampling data of CS-based 

methods, 1D and 2D random line scanning, uniform downsampling are obtained by taking the 

logical ‘And’ using the sampling pattern in Figure 5.3 and the reference image. These study 

areas include cases with/without the impact defect.  



Chapter 5   Damage Detection using CS Data 

 

85 

 

5.1.4 Evaluation results for the proposed CS-based methods 

The cross validation methods are compared in term of precision ( pre ), recall ( rec ), probability 

of detection ( PoD ) and accuracy ( Acc ) which is defined as follows: 

pre TrA ToAN N =  ( 5.4 ) 

rec TrA ReAN N =  ( 5.5 ) 

PoD ToA ReAN N =  ( 5.6 ) 

Acc Tr TN N =  ( 5.7 ) 

where TrAN , ToAN , ReAN , TrN , TN  represent true-alarm number, total alarm number, total alarm 

number from reference data, truly detected number and total test number, respectively. The 

precision indicates how accurate the alarms are. The recall indicates how completed the true 

alarm results are. The probability of detection indicates how complete the alarm results are. 

And the accuracy indicates how accurate a decision is. These indicators together will give a 

more comprehensive performance evaluation. Higher values of all indicators corresponding to 

better performance.  

 

Figure 5.4 Accuracy of qualitative detection from downsampling algorithms 
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Figure 5.5 Probability of detection of qualitative detection from downsampling algorithms  

The average performance results are shown in Figure 5.4 to Figure 5.7. All these figures 

demonstrate the better performance of the proposed qualitative defect detection from CS 

measurement. Line scanning has the worst performance in all indicators, because it suffers from 

picket-fence effect most, the sampling data have large errors to represent the original data. On 

the contrary, random sampling patterns in CS measurement reserves local information most, 

which lead to the best performance. 

 

Figure 5.6 Precision of qualitative detection from downsampling algorithms  
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Figure 5.7 Recall of qualitative detection from downsampling algorithms  

5.2 Quantitative Detection using a New CS Reconstruction Algorithm 

5.2.1 Problem statement & related works 

The previous section discussed qualitative defect detection from CS data. For quantitative 

defection, a HTED algorithm which extracts binary defect pattern from the reconstructed image 

is presented in Chapter 3. The defect pattern can be extracted only after the CS reconstruction 

process. The reconstruction process is usually time-consuming and computationally-intensive. 

These drawbacks prevent its application in time-sensitive and power-limited applications, 

which calls for more swift feature extraction techniques. Furthermore, from the decision-

making point of view, the quantitative defect pattern feature is what needed for decision-making 

rather than the original spatial image. So the procedure that reconstructing the whole spatial 

image and extract damage area from it using HTED in the last two chapters is not time-efficient. 

For the problem of swift defect detection, one technical route is finding faster reconstruction 

algorithms which will reduce the feature extraction delay. As introduced in section 2.4, the 

greedy algorithms have relatively high accuracy and low complexity. As a well-known greedy 

algorithm, OMP finds another support that has the largest absolute correlation with the residual 

in each iteration. By subtracting the components of selected support from the measurement 

results, OMP pursuits the entire support with iteration. The easy implementation of OMP makes 
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it widely used to solve sparse reconstruction problems [176, 177]. However, it is vulnerable to 

error propagation effect [178, 179]. Because there is no rigid mathematical proof of recovery 

guarantees for greedy algorithms, the selected support may not be the right support that should 

be selected in fact.  

To address the error propagation effect and improves reconstruction speed, more greedy 

algorithms have been proposed such as Stage-wise Orthogonal Matching Pursuit (StOMP) 

[179], iterative hard thresholding (IHT) [78], generalized OMP (gOMP) [180], and 

Compressive Sampling Matching Pursuit (CoSaMP) [181]. These algorithms select multiple 

supports in each iteration to improve efficiency. For example, during each iteration, gOMP 

chooses the supports that in the most significant L absolute correlation with residual. StOMP 

selects all the supports that the correlation is above the pre-defined threshold. Besides identify 

multiple supports, some algorithms can screen out the selected historical supports which fail to 

give larger correlation than the new candidate support. For example, CoSaMP performs a two-

stage sparse signal estimation approach which can add or remove new support candidates 

adaptively. Another category which deals with the error propagation effect is the Bayesian 

matching pursuit [182-184], these methods regard the sparse signal as random variables. The 

sparse signal can be estimated by maximum-a-posteriori of their distributions. Bayesian 

matching pursuit has better recovery accuracy but higher complexity. 

These algorithms only improve reconstruction speed and accuracy, how to adapt to the problem 

of defect pattern extraction is another key issue. Other algorithms cannot deal with the CS data 

directly because it is transformed and compressed version of the original data. However, the 

measurement results in former chapters are sampled with 0/1 Bernoulli matrices which leads to 

one special case, i.e. the measurement results are a downsampling version of the original signal. 

It is also the foundation for the qualitative defect detection methods in section 5.1. Based on 

the algorithm in Figure 5.2, the CS data can be converted into binary values (as shown in Figure 

5.8) which gives possible application opportunity for some methods like water filling algorithm 

[185] and the widely-used image smoothing [160, 186]. Water filling algorithm is originally 

from the communication applications. The basic idea is filling the gaps that are connected just 

like water always fill the low altitude area. This method is feasible because the measurement 

matrix defines the dam for water filling. Figure 5.8 shows the sampling location with light blue 

points. Only gaps between sampling locations can be filled. The idea of image smoothing is the 
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local areas in the binary version of the CS data where have more ‘1’ will have larger average 

values, thresholding the smoothing results can get the overall binary pattern. However, the 

water filling algorithm is not robust to noise which leads to a false alarm. The binary defect 

pattern from the image smoothing method is too sensitive to the smoothing scale and the 

threshold value that obtaining a binary pattern, which degrades the reliability. 

 

Figure 5.8 The binary version of CS data (The yellow points) and the sampling location (the 

light blue points) 

5.2.2 The proposed spOMP for quantitative impact damage detection 

Given the drawbacks of sparse reconstruction methods and non-reconstruction method like 

water filling in feature extraction. This section proposes quantitative defect detection methods, 

i.e. to extract the binary defect pattern from the CS data. Compared to the sparse reconstruction 

algorithms+HTED algorithm method in Chapter 3, the method in this section is much more 

time-efficient because the damage pattern is reconstructed directly from the CS data rather than 

post-extraction from the reconstructed data. A sparse OMP (spOMP) is proposed which is far 

more time-efficient than the OMP algorithm. It is also more time-efficient than the CoSaMP 

because spOMP do not need to remove the wrong support in each iteration. The overall diagram 

for these binary defect pattern detection methods is shown in Figure 5.9. 
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Figure 5.9 Methodology diagram for (a) sparse reconstruction + HTED-based method, (b) 

water filling algorithm, (c) the proposed spOMP based method, (d) Image smoothing method. 

As shown in Figure 5.9, instead of recovery the original data, the proposed method converts the 

CS data into binary values using a similar method as section 5.1. The data which classified as 

defect is converted into ‘1’. Then By  are taking as the input for the proposed reconstruction 

algorithm. Note that this is fundamentally different from the so-called 1-bit compressed sensing 

or binary CS problem [187-189]. The goal for 1-bit CS is recovering the original float value x 

with By  while the proposed spOMP algorithm only reconstructs the binary defect.  

Figure 5.10 shows the proposed spOMP algorithm. It is a modified version of stOMP and OMP 

in order to take advantage of the signal characteristic in this system. Firstly, the input 

measurement results are binary values for spOMP rather than arbitrary values for de-noising 

purposes. As shown in Figure 5.8, there is some small cluster of ‘defect locations’ which are 

false-alarm, because the defect of a low impact energy is usually gathering together around the 

impact point instead of scattering widely. These wrong defect locations are noise for the true 

defect location. They are caused by measurement noise or quantisation error when converting 

to binary. The reason why spOMP has de-noising ability is that the greedy algorithm 

progressively selects the atom of A to represent y, and to represent x as a result. The most 

related atom will be selected earlier than the less related atom. Noise is in high frequency and 

small amount compared to the overall image. When using frequency-related matrix (such as 

DCT and DWT) as the sparse basis, the measurement matrix A contains the frequency 

information. So, the low-frequency atom will be selected to represent x before the high-

frequency atom is selected. The noise will not be recovered by properly defined the stop criteria. 
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Figure 5.10 The proposed spOMP algorithm 

Secondly, although conventional greedy algorithms can be used to fulfil the de-noising purpose, 

their performance is varying with the different signal characteristic. Recovery performance can 

be improved by taking the signal characteristic into consideration. Figure 5.11 depicts the sorted 

normalised C after four iterations using the conventional stOMP algorithm using the binary 

measurement matrix as input. The curves show sparse property because there is rapid dropping 

at the beginning of each curve. Traditional algorithm fails to make use of this property. For 

example, OMP only selects the atom corresponding to the largest C, which is slow. gOMP 

choose that with the largest L, stOMP chooses that when C above one threshold. Both improve 

efficiency. However, the L and threshold do not adapt to the sparse level of C after each iteration, 

which easily leads to the wrong atom. Other algorithms which removing the wrong atom in 

each iteration compromise the efficiency. So, the proposed spOMP algorithm proposed a 
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method of making use of the sparse of C to adaptively identify the sparse support in each 

iteration.  

  

Figure 5.11 Sorted normalised 


C  after several iterations using stOMP 

The proposed spOMP first selects the atoms which above 1 max( )


C . Then sort the selected 

supports in ascending order with normalisation. In the following For loop, the differences of 

neighbour elements are calculated. If the difference is above one threshold 2 , jump out the 

loop so that the tail of selected atoms is cut, i.e., only the sparse atoms are selected. The 

operation in For loop and the ascend order make sure that the difference operation is calculated 

from the tail side rather than the head side, because the tail is smoother. The For loop is 

imposing on the 


C  rather than the whole 


C  to keep a low overhead for sort and calculate 

difference operation. The parameter 1  and 2  will influence the selected support. 1  decides 

the computation overhead in the For loop. When 1  = 1, the support selection method for 

spOMP is same as OMP, the For loop do nothing. When 1  = 0, the For loop need to deal with 

the whole 


C . Smaller 1  usually leads to higher computation overhead, but too large 1  will 

decrease the efficiency for the overall algorithm. Given the sparse of 


C , 1  = 0.05~0.1 is 

recommended configuration. It is the same as the frequent use of 0.9~0.95 for enough 

confidence. The end of sparse components location is where there is a significant jump in the 
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sorted 


C , 2  quantifies how significant the jump is. 2 0.05 =  is recommend a 

configuration for enough confidence. 

In addition to the modified input and the support identification methods, the stop criteria are 

also modified according to the system needs. Traditional greedy algorithms use a pre-defined 

stop threshold   to constrain the residual level by 
T r r , or limit the iteration number to the 

signal sparsity K if it is a priori information. The latter cannot be applied to this system because 

K is unknown. How to define   based on the system needs is the key issue. The purpose of this 

spOMP-based method for quantitative defect detection is to get the binary defect pattern 

without incurring artefacts. The proposed stOMP measures the similarity between y and the 

sampled y in the reconstructed binary pattern by step 18 in Figure 5.10. This similarity is within 

the scope of 0 to 1, so there is one constraint 0< <1 for the algorithm input. 95% of similarity 

is recommended to prevent incurring significant artefacts. Finally, the defect pattern is obtained 

easily by thresholding the reconstructed ˆΨx  with a threshold value of 0.5 due to the binary y. 

5.2.3 Experimental setup for the proposed spOMP-based quantitative detection 

Qualitative and quantitative comparison between the existing method and the proposed methods 

is carried out for validation. In order to compare with the previous results, the same frequency 

frame as previous sections is chosen to extract the damage pattern. The raster scan data is used 

to extract a reference defect pattern with the proposed HTED algorithm in section 3.2.3. To 

speed up the validation process, equivalent CS sampling data is obtained by randomly sampling 

the raster scan frame with different 0/1 Bernoulli measurement matrix. Gaussian noise is added 

to the CS measurement results. 

5.2.4 Evaluation results for the proposed spOMP-based quantitative detection 

Following the evaluation process in the last subsection, Figure 5.12 presents the sampling 

location, quantified ‘1’ in the measurement results and the extracted pattern under three 

different sampling percentage. The yellow stars that apart from the sampling pattern are noise 

due to the measurement noise and quantification noise. These noise defect points are 

automatically removed in the final defect pattern, which validates the denoising ability of the 

proposed methods. Even just 5% of sampling points already shows a general defect pattern, 

which demonstrates the downsampling ability. 
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(a)                                 (b)                              (c) 

Figure 5.12 Sampling and recovery results under (a) 5%, (b) 15%, (c) 25% of sampling 

percentage. The blue points are sampling locations, and the yellow stars are the sampling 

point which is quantified as ‘1’. The red pattern is the extracted defect pattern. 

 

Figure 5.13 Qualitative comparison of extracted defect pattern for the 6J specimen with 

different methods 

The proposed method is compared with the water filling algorithm, image smoothing algorithm, 

and OMP+ HTED algorithm as shown in Figure 5.9. It is also compared with stOMP algorithm 

which uses binary measurements as input, and sets the same stop criteria to validate the support 

selection performance of the proposed spOMP algorithm. The defect pattern extraction results 

for these methods under 6J specimen are shown in Figure 5.13. The baseline defect pattern is 

extracted on raster scan data with HTED algorithm. The water filling results are worst among 

these methods. The Gaussian smoothing results obtain smooth defect patterns even under low 
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sampling percentage. However, the Gaussian smoothing method can only obtain a smooth 

image, which losses the detail information. stOMP algorithm incurs some artefacts. Both the 

OMP+HTED algorithm and the proposed spOMP algorithm presents clean defect pattern and 

more detail methods than others. 

 

Figure 5.14 Qualitative comparison of extracted defect pattern for a non-defect area with 

different methods 

Another set of comparison in Figure 5.14 is performed on non-defect areas to compare the de-

noising ability for various methods. The water filling methods and stOMP algorithm increase 

the artefacts with more sampling percentage. Because the water filling method only fills the 

gap within a certain distance from the quantified defect points (the yellow stars in Figure 5.12). 

Fewer pixels will be filled under a low sampling rate. The stOMP algorithm easily leads to 

wrong supports with large L, which brings in error propagation. The Gaussian smoothing shows 

constant artefacts, because when there are few pixels been quantified as ‘1’, the smoothing 

results around the defect point shows very flat Gaussian distribution. Threshold these results 

easily leads to a large area of wrong defect pattern. 
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For quantitative validation, repeated sampling under the same sampling percentage with 

different sampling locations is carried out to get average performance. The extracted defect 

pattern for different methods is compared with the baseline. The normalised hamming distance 

is used as a parameter because they are binary values and there is no spatial shift or rotation for 

the sampling area. It is defined as the ratio of the number of different values divided by the total 

signal length. The average comparison results for different defect specimens are shown in 

Figure 5.15. All methods converge into low hamming distance except the Gaussian smoothing, 

because the Gaussian smoothing method loss the sharp details. The proposed spOMP algorithm 

shows lower hamming distance than the stOMP algorithm and has similar performance with 

the OMP+HTED algorithm. 

  

Figure 5.15 Average normalised hamming distance between the defect from various methods 

and the reference one. 

The average hamming distance on non-defect area is shown in Figure 5.16. These results are in 

line with the results in Figure 5.14. The hamming distance for the water filling and Gaussian 

smoothing are rising with the sampling percentage. OMP+HTED algorithm shows decrease in 

the hamming distance, but the Gaussian smoothing keeps a constant error. The proposed stOMP 

algorithm has the lowest hamming distance, because the specially designed stop criteria and 

denoising ability with binary input. 
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Figure 5.16 Average normalised hamming distance between the defect detection results of the 

non-defect area from various methods and the reference one. 

  

Figure 5.17 Computation time for different algorithms 

In terms of time efficiency, the running time on the same PC and same configuration in Matlab 

are adopted. The computer has Intel Core i7-7500u CPU and 8GB of memory. The running 

time is logged with the ‘tic’ and ‘toc’ command in Matlab for different algorithm section. The 

average computation time for these algorithms is given in Figure 5.17. The Gaussian smoothing 

and water filling algorithm have the least computation time. Among the sparse reconstruction 
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algorithms, the proposed spOMP algorithm has the least time. It is reduced by one order of 

magnitude compared to the stOMP algorithm. OMP takes the most time because it only finds 

one atom in each iteration. 

5.3 Chapter Summary 

This chapter presents how CS could help improve feature extraction robustness and efficiency 

even without reconstruction of CS data. Qualitative and quantitative defect detection from CS 

measurements is investigated. The qualitative defect detection algorithm uses histogram 

thresholding to give binary defect information. Since the CS data obtained are a random 

downsampling version of the complete data with 0/1 Bernoulli matrix, which means the 

histogram is invariant to the downsampling. The validation results demonstrate the proposed 

qualitative defect detection methods have better precision, recall, the probability of detection 

and accuracy than other downsampling methods. A new greedy algorithm of sparse orthogonal 

matching pursuit (spOMP) for quantitative defect detection which integrates defect pattern 

extraction with sparse reconstruction is proposed. The spOMP takes binarisation results of the 

CS measurement data using the histogram thresholding method in qualitative defect detection. 

The supports are selected based on the sparsity of residual projection results. The stop criteria 

are specialised by the system needs of defect pattern extraction. The proposed spOMP algorithm 

has similar feature extraction accuracy as the OMP+HTED algorithm in Chapter 3, and spOMP 

has significantly higher denoising ability and lower-time consumption.  

However, the proposed qualitative detection method is for the proposed CS measurement 

process. The CS measurement is based on customised 0/1 Bernoulli measurement matrix, which 

makes the sampled data a subversion of the whole data. If other measurement matrices are used, 

this direct histogram thresholding method may not useful. More investigation on methods that 

suitable for other general measurement matrices is a potential improvement. The proposed 

spOMP algorithm needs the binarized measurement results as input, and the output results are 

the binary results. This is useful for applications where only binary results are needed, like the 

defect region and text extraction. 
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Chapter 6. Conclusions and Future Works 

This final chapter summarise the research. The conclusions are drawn on the potentials of 

compressed sensing as solutions of more time-efficient sensing and robust feature extraction for 

open-ended waveguide NDT&E. The outlooks on the future works are outlined in terms of 

improving the CS model in this thesis, real-time data acquisition and high-order feature extraction. 

6.1 Conclusions 

Traditional open-ended waveguide non-destructive testing and evaluation systems suffer from 

several critical challenges. Firstly, they have time-consuming data acquisition by raster scan, 

which prevents on-line detection. Secondly, the traditional OEW NDT&E systems acquire data 

without considering the needs in the feature extraction process, which leads to a large amount 

of data and processing overhead for feature extraction. Thirdly, efficient defect region 

segmentation in the obtained image is also challenging due to the complex the image 

background like texture. Compressed sensing demonstrates impressive compression ability in 

various applications using sparse models. It is a potential solution to address these challenges 

in OEW NDT&E systems with proper sparse representation. This thesis develops CS models 

for OEW NDT&E that jointly considers sensing & processing regarding fast data acquisition, 

data compression, and robust feature extraction. For this purpose, the following works are 

carried out, and the related conclusions are drawn. 

A literature review is carried out for the state-of-the-art CS techniques in solving NDT problems. 

Firstly, a review of CS theory regarding its sparse representation, measurement matrix design 

and sparse reconstruction is carried out. The review indicates random Bernoulli and Gaussian 

matrix can work as the universal measurement matrix, because they are uncorrelated with most 

sparse bases. As for sparse reconstruction, the greedy algorithms such as OMP have good trade-

off among the required measurement number, accuracy and time-efficiency. These two 

observations support designing Bernoulli measurement matrix and reconstructing with greedy 

algorithms in this thesis. Secondly, a review on NDT systems that use CS in their sensing, 

feature extraction, and classification stage is carried out in section 2.5. The review indicates 

that there is no CS design in open-ended waveguide systems for NDT&E, and CS in NDT 
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applications are still in its infancy. For the challenge of reducing scanning time and data amount, 

CS witnesses few applications in similar NDT systems like laser scanning, and the other 

hardware designs like rotating masks in THz imaging are expensive and bulky. More 

importantly, the sensing stage in these literature still disregard the needs of the latter feature 

extraction. For example, how to optimise the measurement number according to the interested 

features without knowing the sparsity K? From the feature extraction sides, there are few works 

in literature using the difference of image from health sample and defect sample for damage 

localisation; they can be used to segment the damage region in open-ended waveguide systems. 

However, they are not robust to complex image background such as texture.  

The research work started by building the case study system. This part is presented in Chapter 

3. An open-ended rectangular waveguide probe is used for low-energy impact damage detection 

on CFRP materials. The waveguide probe is connected to VNA to get excitation signal and 

measures the reflection coefficients. The probe is carried by a scanner to scan arbitrary location. 

The CFRP materials for study have 12 layers of 5H satin balanced carbon fibre woven fabrics, 

it is manufactured by TenCate Advance Composites, Netherlands. Five specimens are made 

with an impact energy of 2J, 4J, 6J, 8J, 10J. They have the same size of 100×130 mm2 and with 

3.78∓0.05 mm of average thickness. The impact energy is generated by a free-falling hammer 

with different height. Raster scan is performed on each specimen as a baseline, and raster scan 

data is used for the latter sparse analysis.  

Major work of this thesis is detailed with three individual chapters as follows: 

A CS-based on-line detection model for open-ended waveguide NDT systems which gives a 

solution to the challenge of time-consuming data acquisition and the demand for on-line 

detection is developed. The related contents are given in Chapter 3. The model integrates 

sampling and evaluation for the first time in CFRP structure integrity evaluation using open-

ended waveguide imaging. Compared to traditional raster scan designs which require complete 

spatial scanning for defect evaluation, this model achieves defect extraction in the data 

acquisition process without any hardware modification, thus forming an on-line process. A case 

study in impact damage detection for CFRP structure using open-ended rectangular waveguide 

probe is carried out for validation. The spatial images for CFRP specimens are sparse in DCT 

basis in the case study. A customised 0/1 Bernoulli measurement matrix is designed for 

downsampling under CS scenario based on this sparse condition. This downsampling data and 
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DCT basis, as well as the designed measurement matrix, is used to reconstruct the missing 

pixels with orthogonal matching pursuit algorithm. To address the issue of hard to determine 

the sampling pixel numbers that required for reconstruction, an accumulated sampling process 

is developed. The measurement number is decided by the quality of the reconstructed image. 

When the reconstructed image is stable enough, the defect pattern is extracted with the proposed 

histogram threshold edge detection (HTED) algorithm. The case study shows that HTED 

algorithm is robust to texture and lift-off distance variation comparing to other image 

segmentation methods, and the data acquisition time and data amount is reduced to m n  of 

raster scan while maintaining equivalent image quality and defect region as that of the 

traditional raster scan. There are additional advantages for the proposed on-line CS model. 

Firstly, this is a software algorithm, which means no hardware update is needed for open-ended 

waveguide NDT system while improving scanning efficiency. Secondly, compressed sensing 

recovers the whole image with only a fraction of sparse samples, which makes this framework 

also applicable for situations where the sampled data is partially lost using a sparse 

representation, e.g., data recovery from fault nodes in large-scale sensor networks. This part of 

the work is published on IEEE Transactions on Industrial Electronics. 

A feature-supervised data acquisition model which gives a solution to the challenge of reserving 

the feature quality while reducing data/computation overhead efficiently for feature extraction 

is developed. The related contents are given in Chapter 4. FsCS reduces the data amount for 

feature extraction and improves spatial image reconstruction speed with joint reconstruction. 

The frequencies which reveal the feature only occupy a small part of the frequency band, this 

method finds this sparse frequency range firstly to supervise the latter sampling process. 

Subsequently, based on joint sparsity of neighbour frame, an aligned spatial-spectrum sampling 

scheme is proposed to only sample interested frequency range for required features by using a 

customised 0/1 Bernoulli measurement matrix. The interested spectral-spatial data are 

reconstructed jointly which has much faster speed than frame-by-frame methods. The case 

study in impact damage detection on CFRP materials with open-ended rectangular waveguide 

shows that the data amount is reduced greatly without compromising feature quality. The gain 

in time-efficiency increases almost linearly with the number of sampling points comparing to 

sequential reconstruction. This part of work is submitted to IEEE Transactions on 

Instrumentation and Measurement. 
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Qualitative and quantitative damage detection models that give a solution to the challenge of 

robust and time-efficient feature extraction are developed. Related contents are given in Chapter 

5. The qualitative method which detects damage in CS data directly without reconstructing the 

whole spatial data is developed. It uses histogram thresholding to give binary defect information. 

Since the CS data obtained are a random downsampling version of the complete data with 0/1 

Bernoulli matrix, which means the histogram is invariant to the downsampling. The validation 

results demonstrate the proposed qualitative defect detection methods have better precision, 

recall, the probability of detection and accuracy than other downsampling methods. To directly 

extract the damage region from CS data rather than from the reconstructed whole spatial data 

as HTED, the proposed quantitative impact damage detection method first uses the proposed 

qualitative detection method to binarize the measured data, which achieves denoising ability. 

Secondly, a CS sparse reconstruction algorithm called sparse orthogonal matching pursuit 

(spOMP) is proposed to extract the defect region, because the conventional CS reconstruction 

algorithms cannot properly use the sparse character of residual projection on the measurement 

matrix. The spOMP takes binarisation results of the CS measurement data as input, and it 

defines a support identification scheme and stop criteria according to the goal of impact region 

segmentation. It improves time-efficient by integrating the reconstruction process with the 

defect region extraction process and selects multiple supports than OMP. Meanwhile, the high 

denoising ability of spOMP is guaranteed by only selecting atoms that significantly contributes 

to the measured data, and properly defines the iteration stop criteria with a threshold on the 

hamming distance between the measurement results and the explained results. The proposed 

spOMP algorithm has similar feature extraction performance as the OMP+HTED algorithm in 

Chapter 3 but with significantly higher denoising ability and lower-time consumption. This part 

of work is presented in the 23rd International Workshop on Electromagnetic Nondestructive 

Evaluation, Michigan, USA, 2018 and forms one paper for it. 

6.2 Future Works 

Smart sensing technologies that efficiently support the decision-making in NDT&E is 

increasingly important. Task-oriented compressed sensing is the future direction for 

compressed sensing research for the next 10 to 15 year [2], it is a promising solution to 

efficiently support decision-making by integrating sensing and processing. This thesis only 

paves a way to compressed sensing that integrates the demand of open-ended waveguide NDT 
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system with sensing. It is impossible to be perfect solutions for current work, which requires 

more efforts to refine it and dig its potential. For the investigation system in this thesis, some 

future works that deal with the limitation that mentioned in chapter summaries of the proposed 

methods are: 

(1) For the on-line CS model in Chapter 3, it is worth noting that the image recovery process 

in the accumulated sampling & recovery block may take a relatively long time, although it 

is already much faster than raster scan. Developing new sampling model which reduces the 

reconstruction overhead like the method in chapter 4 is one potential future work. The idea 

is to reduce the data that need to be reconstructed, and the reduction can be supervised by 

the final quantitative feature that specific application looks for.  

(2) Also for the work in Chapter 3, the proposed stability detection method relies on the 

reconstructed image for each iteration, and it works as the stop rule for the accumulated 

sampling process. Investigating one way that can directly use the CS sampled data as input 

rather than the constructed image is a potential improvement for this method, because 

repeat the reconstruction is a relatively time-consuming process.  

(3) The work in Chapter 4 uses the frequency location of the feature as one supervise condition, 

this location information is obtained by the result of feature data screening function ( )f . 

The proposed method builds up a compressed sensing model to substitute ( )f . To push 

this idea further, combing the feature extraction process ( )g  with ( )f , and use the final 

quantitative feature as a supervision condition for the sensing process are more helpful to 

the task-oriented sensing vision. In the case study system in this thesis, the final quantitative 

feature is the location and binary shape of the damage region. Investigating proper 

modelling and sparse representation to it, and use it as one condition to supervise the 

sensing will minimise the data redundancy and maximise the storage and time efficiency. 

(4) The proposed qualitative detection method in Chapter 5 is for the proposed CS 

measurement process in this thesis. The CS measurement is based on customised 0/1 

Bernoulli measurement matrix, which makes the sampled data a subversion of the whole 

data. If other measurement matrices are used, this direct histogram thresholding method 

may not useful. More investigation on methods that suitable for other general measurement 

matrix is a potential improvement.  
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For the more broaden filed of CS application in the NDT field, here are some heights for future 

works. 

(1) Develop real-time CS data acquisition for waveguide NDT systems. This thesis improves 

scanning speed than traditional raster scan with CS downsampling. However, the bulky and 

power-consuming mechanical scanner systems are difficult to be applied to the practical 

monitoring applications including real-time acquisition. Developing scan-free waveguide 

systems is beneficial for real-time and low-cost monitoring applications. One potential 

solution is to design a focus lens structure using metasurface to project local defect 

information into the far-field. Some initial simulation already done by the author of this 

thesis, and the work is presented in the conference 2018 Far East NDT New Technology & 

Application Forum (FENDT), Xiamen, China. In summary, a meta-surface that consists of 

ELC resonator [190] is proposed. This kind of metallic structures can be used for NDT 

applications, which have the same principle for the radio frequency identification (RFID) -

based NDT systems [191-194]. These systems use an electromagnetic coupling between 

the tag antenna (the metallic structure) and the SUT for defect detection. A sensor captures 

spectrum data with a single snapshot using a wideband excitation signal in nearly real-time 

in the far-field. CS measurement matrix is obtained by calibration with a standard defect 

sample. Defect information is extracted directly from the captured data with sparse 

reconstruction.  

(2) Investigate feature-supervise sensing for high-order features. This thesis chooses the impact 

damage region as damage feature; this feature can be only extracted in some frames in the 

whole spatial-spectral data. So the proposed FsCS model only samples the part of data that 

will finally be used for damage region segmentation, thus achieving feature-supervised 

sensing. However, high-order features are more robust to noise and interfaces for decision-

making. For example, PCA can be used on multiple frames of waveguide NDT images to 

extract more robust features. There is also some literature that use deep learning to learn 

feature automatically as shown in the review chapter. How to optimise the sensing scheme 

to obtain these high-order features in a time/storage/processing efficient manner is a 

remaining issue. 
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(3) Combining CS with artificial intelligence has the potential to reduce expert work in 

extracting features and classifying feature. CS and AI already show some intersection. For 

example, there is some literature that use machine learning to automatically learn features 

from CS data, and classify features to different defect type. The machine learning helps 

sparse representation in dictionary learning, and defect classification can be implemented 

with the idea of sparse representation. Furthermore, some combinatorial algorithms in the 

machine learning side are used for sparse reconstruction. More investigations in NDT 

applications that combine sparse models and AI contributes to the future predictive 

maintenance business model. 

(4) Lack of hardware implementation for CS measurement. As is shown in the review section, 

there only a little hardware implementation for CS measurement in NDT applications, 

especially for time and frequency domain signal. Without the hardware support for data 

acquisition, the advantage of data compression in sensing cannot be achieved. This thesis 

develops CS down-sampling models with customised 0/1 Bernoulli measurement matrix to 

substitute raster scan, the measurement can be implemented with a scanner. Borrow ideas 

from medical application side is a potential solution, because CS and many medical sensing 

are computational sensing in nature. For example, MRI devices measure the Fourier 

transform coefficients directly, and the MRI image is sparse on the DCT domain. 

(5) Lack of hardware support for sparse reconstruction. It is worth noting that the image 

recovery process may take a relatively long time. For example, recovery whole reflection 

coefficients using 18% of sampling percentage takes around 2 minutes on a Windows 

computer with Intel® Core™ i5-4690K CPU with OMP algorithm. This time is far less 

than raster scanning. This issue can be solved with the development of cloud computing 

and supercomputer, which is an essential part of the new industrial mode in the Internet of 

Things vision. More fundamentally, developing hardware processing unit and parallel 

reconstruction framework that specialised for sparse reconstruction is of great benefit. Just 

like the hardware unit for machine learning like Neural Processing Unit (NPU) that built in 

smartphone CPU like Kirin 980 from Huawei, and Google’s Tensor Processing Unit (TPU). 
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