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CHAPTER I

INTRODUCTION

The concern with non-military related landmine casualties still exists today, even

though there is only one government, Syria, that has been recorded as actively using

antipersonnel mines in 2012 [2]. In 2011, there were over 4000 reported casualties,

over 11 deaths every day. This number is a third of what it was ten years ago, but

has remained rather steady for the last three years because of increased conflict in

countries such as Libya, Pakistan, and the Sudan [2]. There has been a large amount

of research trying to identify, locate, and eliminate landmines in an effective and safe

manner.

There are many difficulties with the task of eliminating the landmine threat. Mines

are generally buried and concealed underground, so sensors must be used to detect

their characteristics without being able to see them. A few devices that have been

developed to help retrieve this information are ground-penetrating radars (GPR)

and electromagnetic induction (EMI) sensors. Research has shown that GPR is an

effective detector of subsurface targets, and that EMI sensors are able to both help in

finding the location of the objects, and also in the discrimination between landmines

and other subterranean targets [3,4]. Parameter detection of unseen objects through

a sensing medium is an important research topic, and is not limited to only the

landmine-detection problem.

Many algorithms throughout the years have been developed in an attempt to

detect these unknown parameters through the use of dictionary matching. Dictionary

matching is a technique where a large database is created in order to match measured

data against known-response data to determine the parameters of the measured data.
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The simplest way to analogize this is with a word dictionary. A word dictionary is

filled with the definitions of many words. The measured data in an environment

would be any written or spoken material. If someone did not know what a word

meant, they would go through a dictionary and match the word that they saw out

in the world to the one in the dictionary and receive the definition. There are three

main steps to this process: build a dictionary, create a book containing all the possible

known words that could show up; collect the data, find an unknown word; and find a

match for the data in the dictionary, look up the word and read the definition. In the

landmine detection problem the measured data would be a sensor response and the

dictionary would be made up of enumerating an approximated model of the expected

response of the system given some particular target parameters. The matching part

can be done with a number of different techniques such as backprojection (BP),

orthogonal matching pursuit (OMP), compressive sensing (CS), and many others.

The general detection flow used in dictionary matching algorithms can be seen in

Figure 1. These algorithms involve creating a physical model for what the user would

anticipate to receive if the parameters of the unseen target were known. For the

model to be as general and as accurate as possible, it can require an extremely large

amount of computer storage and can be computationally inefficient to apply. These

computational constraints make most of these algorithms in their most basic forms

impractical for real-time applications.

The objective of this work is to exploit special properties in the physical mod-

els to reduce the computational complexity of the landmine parameter-estimation

problem. Reducing the computational complexity enables these problems to become

more practical while preserving, or in some cases increasing, the effectiveness of the

detection.
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Figure 1: Detection flow for a GPR system with model-based inversion.

1.1 Data-acquisition Systems

There are two primary data-acquisition systems that will be studied in this research.

The two systems are a ground-penetrating radar (GPR) system, and an electromag-

netic induction (EMI) system. A method of acquiring data with the GPR called

synthetic-aperture radar (SAR) will also be discussed.

1.1.1 Ground-penetrating radar

GPR systems have been shown to be an effective tool for imaging subterranean targets

such as landmines [5–7]. GPR has been in use since the early 1970’s and was designed

originally to be used in landmine detection [8]. The traditional GPR system sends

out an electromagnetic pulse from the transmitter. The pulse reflects from a target,

and the reflection is detected by the receiver. The time delay between transmitting

the signal and receiving the reflection is recorded to determine the target location [7].

The GPR can detect most targets since it can sense differences between the dielectric,

magnetic, or conductive properties between the target and the soils. In the case where

the transmitter and receiver are scanned together, the point-target model is

r(t, ls; lt) =
σ

S(d(ls, lt))
δ(t− 2

d(ls, lt)

v
), (1)
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when a pulse, δ(t), is sent from the transmitter at location ls, and reflected off a

target at location lt, with a reflection coefficient, σ. The function d is the euclidean

distance of the electromagnetic signal path from the source to the target, S is the

spreading function, and v is the velocity of the EM wave through a medium.

Another way of collecting data with a GPR is to use a stepped-frequency GPR

(SFGPR). Instead of sending out a short pulse, the SFGPR successively sends out

many short sinusoids at different frequencies over a specific bandwidth and calculates

the phase difference at the receiver to measure distance and then locate the target. An

advantage to using a SFGPR over the time impulse method is that it allows for a much

wider bandwidth to be covered because of the narrow instantaneous bandwidth [5].

The narrow instantaneous bandwidth also provides resistance to noise and interference

[9]. A disadvantage to using SFGPR is that it can take a long time to acquire data

and the gain cannot be increased with increasing range. The target response of a

SFGPR,

R(ω, ls; lt) =
σ

S(d(ls, lt))
ejω2

d(ls,lt)
v , (2)

has a phase shift instead of a time delay.

However, collecting data like a traditional radar is not very effective for the GPR

case. Traditional radar is generally looking for targets at an along-track resolution on

the order of meters or even kilometers. When trying to locate very shallow targets,

the desired resolution is on the order of centimeters. For a traditional radar to

achieve these fine along-track resolutions, the system requires either an extremely

short wavelength, or a very large physical radar. A solution to this problem is to use

a synthetic-aperture technique. Synthetic-aperture radar (SAR) has been shown to

be effective in GPR applications [3, 6, 10–13].

SAR is a data-acquisition technique that moves the antenna to different locations

along a path and coherently adds the received samples together to create a higher

resolution image in the along-track dimension [14–16]. The trade-off in this system is
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increased along-track resolution for increased computational complexity. The system

does not make independent decisions at each scan position, it uses the collection of

all scans to make the best image. An example of a typical 2D scan grid for a 3D GPR

imaging problem can be seen in Figure 2.

Figure 2: 2D scan grid for GPR data acquisition.

SFGPR can be hindered by the long data-acquisition times, especially for array

systems that have several transmitting antennas because the transmit antennas are

not used simultaneously. For instance, consider a vehicle mounted GPR that needs

to acquire 400 frequencies while the vehicle advances 2 cm to obtain a 2 cm aperture

spacing for the synthetic aperture. If it is assumed that the GPR has five transmit

antennas and requires 100µs to acquire each frequency, the vehicle could then travel

at a maximum speed of approximately

max speed =
aperture spacing

frequency time× num TX antennas× num frequencies

=
0.02

0.0001× 5× 400
(3)

= 0.1m/s,

which is impractically slow for many applications. Another example comes from the

Geneva International Centre for Humanitarian Demining (GICHD) that has published

a list of specifications for state of the art GPR landmine detectors [17]. The hand-

held detectors in the GICHD analysis have an optimum sweep speed between 0.2
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and 1 m/s which is the speed at which the device can be moved spatially to achieve

optimal detection accuracy. While a sweep speed of 1 m/s is probably adequate for a

hand-held GPR, a sweep speed of 0.2 m/s would be uncomfortably slow to use.

Data-acquisition speed is more critical for vehicle mounted GPR systems as they

are used to search larger areas and faster vehicle speed is desirable. In the GICHD

equipment catalog, the vehicles with mounted GPRs can travel at speeds between 0.2

and 2 m/s which are much slower than desired. The data-acquisition time is not as

problematic for TPGPR, but it is still an issue because multiple shots are still needed.

1.1.2 Electromagnetic induction sensor

EMI sensors have been shown to be effective in localizing and discriminating sub-

terranean targets [18–23]. The focus in this thesis is on frequency-domain wideband

EMI systems which are scanned over a target. The frequency-domain response of

the target depends on the orientation, geometry, and material of the target. The

frequency-domain response can be used as a “fingerprint” for that type of target [18].

A simple dipole model is adequate for many targets of interest and can be written in

the frequency domain as

r(ω, ls; lt,ot) = CgH(ls − lt)RH(ot)M (ω)R(ot)f(ls − lt). (4)

ω is the frequency, C is a constant defined by characteristics of the transmit and

receive coils, g(ls − lt) and f(ls − lt) are 3×1 vectors containing the spatial com-

ponents of the magnetic field on each receiver coil and transmitter coil respectively.

A reciprocity argument is used so the fields are those when both the receiver and

transmitter coils are used as sources. R(ot) is a pure rotation matrix rotating by a
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three-dimensional (3D) angle ot = (αt, βt, γt) and

M(ω) = D0Λ0 −
Nζ∑
k=1

Dk

(
jω/ζk

1 + jω/ζk

)
Λk (5)

=

Nζ∑
k=0

Dkp(ω, ζk)Λk,

is the magnetic polarizability of a specific target in terms of its relaxation frequencies,

ζk, and the 3×3 real, symmetric, 3×3 tensor, Λk [1, 24–26].

The EMI system is not a radar, so the coherent sum strategy of SAR does not

directly apply here. Nonetheless, collecting the data in a similar way along a path

and storing it, provides an increased number of looks at the target. This type of

acquisition allows for more information to be collected, and can help give more ac-

curate parameter estimation. It is also a key component to a multiple-measurement

technique used to accurately estimate the DSRF of the target [27].

The specific data-acquisition system that is used in all the experiments in this

work is set up with a single transmit coil, and three receive coils. The sensor position,

ls = (xs, yc, 0), is scanned in the along-track dimension but looks to image targets in

all three spatial coordinates, lt = (xt, yt, zt). The coil location yc is the y offset for

each receiver coil. A visualization of the sampling pattern can be seen in Figure 3(a).

Having the three receive coils lined up in the cross-track y dimension helps with

extracting the target location. The data is collected at 21 wideband frequencies for

each downrange location. A raw set of along-track measurements at each receive coil

and at one frequency can be seen in Figure 3(b). The raw measurements have a

significant DC offset that must be eliminated before the detection stage. Typically

the DC offset is eliminated with a zero-mean downrange filter.
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(a) (b)

Figure 3: (a) Sampling pattern (b) and raw measurements.

1.2 Inversion Algorithms

There are many different types of inversion algorithms that are used to extract pa-

rameters from measured data. The inversion algorithms discussed in this thesis rely

on a model that is enumerated into a dictionary. The rest of this section will be split

into five subsections. The first, subsection 1.2.1, will show how to create a dictio-

nary from a nonlinear model, the next four subsection will discuss the basics of four

different inversion algorithms that can use dictionary matching: BP, OMP, CS, and

semidefinite programming (SDP).

1.2.1 Dictionary creation

The creation of the dictionary is a simple, yet important step to all of these inversion

techniques. The idea is to create a matrix that will contain all of the expected

responses of the system for all possible variable settings of the model. The variables

are in two sets: unknown, or target parameter variables: location, orientation, and

type are a few; and known, or measurement variables: sensor positions, frequencies,

and time for example. The dictionary matrix column space consists of enumerating

the target parameters and the row space consists of enumerating the measurement

variables. For instance, in (4), ω and ls are measurement variables, because they
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are the known support of the response and would populate the rows of the matrix.

Each possible target parameter would add an additional column to the matrix. For

example, if there are ten frequencies, Nω = 10; five scan positions, Nls = 5; four

possible target locations, Nlt = 4; and six possible orientations, Not = 6;

Ψ =



r(ω1, ls
1; lt

1,ot
1)

r(ω1, ls
2; lt

1,ot
1)

...

r(ω10, ls
5; lt

1,ot
1)

r(ω1, ls
1; lt

1,ot
2)

r(ω1, ls
2; lt

1,ot
2)

...

r(ω10, ls
5; lt

1,ot
2)

· · ·

· · ·
. . .

· · ·

r(ω1, ls
1; lt

4,ot
6)

r(ω1, ls
2; lt

4,ot
6)

...

r(ω10, ls
5; lt

4,ot
6)


(6)

becomes a matrix of size NωNls×NltNot = 50×24.

The structure of the dictionary is the main focus of this research. In current

methods, simply enumerating all the parameters through discretization is inefficient

for problems like GPR and EMI where there are many variables. Not even considering

the computational time of the different inversion algorithms that employ the matrix-

vector multiplication, simply storing the dictionary can scale by O(N6) for 3D GPR,

and O(N9) for 3D EMI. A simple computational example of what the scaling means

for computer memory, for the smaller GPR problem, is appropriate to understand

the scope at what is required for these problems. The storage requirements, with

discretizations of each variable set at 100, would be N = NωNls = 106 and P =

Nlt = 106 for a total size of NP = 1012 elements. Each element is going to be a

complex double of size 8 Bytes, creating a storage requirement of 8 TBytes. Since the

application for these types of problems are commonly held on small, mobile devices,

8 TBytes to store a part of the data used for the algorithm is unacceptable. Ways to

address this issue are dealt with in the following chapters.

1.2.2 Backprojection

The basis for BP is matched filtering. The idea is to use the expected signal response

at the receiver, after transmission and reflection, and correlate it with the received
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signal response. If the correlation value is high, then the expected target parameter

is present, if the correlation is low, then the expected parameter is absent [28]. This

idea is present in time-domain BP. If the target response model is used from (1) with

a target at location k, then the 3D image would be

ξ(lt) =
∑
ls

r(t− 2

v
d(ls, lt), ls;k). (7)

This can be done similarly in the frequency domain. The equation in (2) is used

with a target at location k, and is correlated with the expected response at each

possible target location to get the image,

ξ(lt) =
∑
ls

∑
ω

∣∣∣r(ω, ls;k)e−jω2
d(ls,lt)

v

∣∣∣ . (8)

The correlation advantage can be seen within the properties of the complex expo-

nential function. For instance, take two time delays, τ1 and τ2, and look at one

scan, ∣∣ejωτ1e−jωτ2∣∣ =
∣∣e−jω(τ2−τ1)

∣∣ . (9)

The value in (9) is going to quickly approach zero if τ1 and τ2 are different, and will

approach one as they get close together. Frequency-domain BP works well because

there is a decline at the rate of the drop off of the magnitude of a sinc function

in the coherence of surrounding pixels. However, the finer the discretization in the

image domain, the higher the coherence becomes in the surrounding pixels. As the

discretization gets finer, the theoretical targets get closer together, which gives closer

time delays, and higher correlation values.

BP can also be done using a dictionary, Ψ, by simply performing a vector-matrix

multiplication. The response, r(ω, ls;k), needs to be vectorized into r, which is

NωNls×1. The imaging equation becomes

Ξ = ΨHr. (10)
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Ξ is capitalized even though it is technically a vector in (10). This is because Ξ should

be viewed, after reshaping, as a 3D image. BP has some computational disadvantages.

Either all of the scan data needs to be stored, which in a 3D image would scale on the

order of N6, or every pixel response needs to be calculated during run-time, which

can be computationally inefficient.

1.2.3 Orthogonal matching pursuit

OMP is an inversion technique similar to matched filtering and BP, except it is an

iterative greedy algorithm that attempts to select the best possible single response at

each iteration [29]. OMP has been shown to work with data collected with EMI and

GPR systems [4, 30]. This is a sparsity driven approach, which can obtain sparser

solutions than BP, but requires more processing time. OMP is an iterative approach

using BP, least-squares inversion, and a stopping condition. The stopping condition

can be a residual bound, total number of iterations, or something else appropriate for

the specific problem.

Input: A dictionary, Ψ, where ψt represents the tth column of Ψ; a
measurement vector, r; and a stopping condition.

Output: An estimated image, Ξ; and vector of indices, λ; an update,
least-squares matrix, Γ; an approximation, a, of r; and an update
residual, η.

Initialize η = r;
Initialize Γ to be an empty matrix;
Initialize λ to be an empty matrix;
while stopping condition is not met do

t = arg max
t
|〈ψt,η〉|;

λ = λ ∪ t;
Γ = Γ ∪ψt;
p = arg min

p
‖η − Γp‖2;

a = Γp;
η = r − a;

end
Ξ(λ) = p

Algorithm 1: OMP algorithm.
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1.2.4 Compressive sensing

Since CS was introduced a few years ago, there has been a large desire for researchers

to find ways to use this tool [31–35]. The idea of compressive sensing is to be able

to dramatically reduce the samples required to be taken of a sparse signal. A sparse

signal, in discrete time, is one where the signal vector has very few nonzero elements.

The most important aspect is to be able to represent the signal in a sparse way. For

example, a signal x might not be sparse in one domain, but it might be in another.

The signal x could be a single-frequency sinusoid in the time domain. The signal x

would not be sparse in time, but if the Discrete Fourier Transform (DFT) matrix, F ,

is used to represent x,

x = Fs, (11)

then it is easy to see that s is sparse with only one nonzero element corresponding to

the frequency of the sinusoid.

Sparse representation combines well with the dictionary approach that has been

used in the previous sections. Whereas r is certainly not sparse, transforming it using

the dictionary Ψ, would be sparse assuming the number of target parameters is very

low. The response in terms of a sparsifying transform, Ψ, and a sparse vector, s, is

r = Ψs. (12)

It is possible that r could contain multiple, additive targets.

Now that the idea of sparsity has been introduced and married with the notation

from the previous sections, the CS ideas can be explained. The idea is to project

the measurements onto a lower-dimensional space, while still allowing the problem

to be inverted. This is done using a projection matrix, Φ, of size Ncm×Nm, with

the sparsifying transform, Ψ, of size Nm×Np. Nm is the number of measurements,

Ncm � Nm is the number of compressed measurements, and Np is the number of
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parameters in the dictionary. The new representation of the compressed response is

b = Φr = ΦΨs = Θs. (13)

The projection matrix, Φ, must be designed so that s can be recovered even from

the reduced number of measurements. This can be done as long as Θ satisfies

1− εRIP ≤
‖Θs‖2

‖s‖2

≤ 1 + εRIP , (14)

the restricted isometry property (RIP), where εRIP > 0 [34]. Creating a matrix Φ

that directly satisfies the RIP requires an unsatisfactory complexity. The complexity

issue can be avoided by using random matrices for Φ. For example, if an independent

and identically distributed (IID) Gaussian random matrix is used for Φ, then RIP

is satisfied with extremely high probability as long as the number of compressed

measurements obeys

Ncm & µ2(Φ,Ψ) log(Nm)K. (15)

K is the number of nonzero elements in s and µ is the mutual coherence [36].

The inversion process to recover the signal, or image, s, is the next step. The

signal must be sparse, so it is ideal to exploit this fact and only look for sparse

signals. This would naturally lead to solving the optimization problem,

ŝ = min
s
‖s‖0 s.t. Θs = b, (16)

for the noiseless case. The `0 norm counts the number of nonzero entries in a vector.

Minimizing the `0 norm is both non-convex, and has combinatorial complexity. The

RIP allows for a convex relaxation of the optimization problem in (16) using the `1

norm,

ŝ = min
s
‖s‖1 s.t. Θs = b. (17)

The optimization problem in (17) can be solved with linear programming.
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The noiseless case is fairly uninteresting, since in almost every practical application

there would be some form of noise, or expected error, present. The measurement

equation changes to account for the additive noise vector, η,

b = Φm = Φ(r + η). (18)

The optimization from (17) must also be changed to allow for the noise,

ŝ = min
s
‖s‖1 s.t. ‖Θs− b‖2 < ε2. (19)

The optimization in (19) is called basis pursuit de-noising (BPDN) [37]. BPDN places

an allowable bound on the residual between the estimated signal response, and the

received signal response. There is another important form of de-noising used in these

types of problems called the Dantzig Selector [38]. The optimization problem from

(19) becomes

ŝ = min
s
‖s‖1 s.t. ‖ΘH(Θs− b)‖2 < εd. (20)

when using the Dantzig Selector. The Dantzig Selector constrains the size of the

residual correlated with the CS matrix, Θ, instead of just constraining the residual.

This has been shown to be an effective de-noising tool in GPR applications [13].

Some advantages with CS are that it reduces the storage requirements and pro-

duces a sparse solution. CS can also be used to reduce data-acquisition times, a

constraint in the SFGPR system. However, sometimes the amount of compression

is still not enough for practical problems and the complexity remains too high. A

few disadvantages with CS are that it can have longer computation times than BP

or OMP, and designing Φ is not always straight forward in a practical system.

For a TPGPR, CS can also provide simplifications to the hardware design, while

still decreasing the data-acquisition times and achieving acceptable detection accu-

racy. CS could also be used to decrease the synthetic-aperture spacing and/or increase

the size of the antenna array for both the hand-held and vehicle mounted GPR sys-

tems. In all of CS applications, the objective is to improve the system performance
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while still forming accurate subsurface images.

1.2.5 Semidefinite programing

Semidefinite programming (SDP) is a technique used to extract matrices with certain

properties, such as positive semidefiniteness (PSD) [39]. SDP has been used as a tool

for matrix completion, as well as low-rank matrix recovery problems. The type of

SDP that is interesting to our application, is that of trace minimization, which is a

convex relaxation on the rank-minimization problem for square matrices [40]. The

basic optimization problem of interest,

min tr(X)

s. t. X � 0 (21)

‖m−A(X) ‖2< ε2,

minimizes the trace of a matrix X which minimizes the sum of the eigenvalues if X

is square, subject to X � 0, which is the PSD constraint, and a data fidelity term to

account for noise or modeling error. A(X) represents some function of the data X,

for dictionary matching, it would simply be a function that reshapes the matrix into

a vector, and multiplies it by the dictionary. For example,

A(X) = Ψreshape(X) (22)

= Ψx.

There is a tensor structure in the EMI model that will be examined in Chapter 3 that

lends itself to using this type of inversion to efficiently extract parameters that were

difficult or inefficient to extract using brute force dictionary enumeration.

1.3 Noise Parameter Selection

Another consideration is the selection of the ε parameters for algorithms like OMP,

CS, and SDP. For ε2, if the noise power, σ2, is known, ε2 =
√
Nσ. For εd, if the noise
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power is known, then εd =
√

2 log(N)σ. However, for practical systems, estimating

the noise level accurately can be difficult; if so, there are a few techniques that can

be used in the selection of the parameters. The first is using an L-curve, which, in

theory, is simple, but can be extremely computationally intense. It is an iterative

method to create a curve of sparsity vs. ε. For a range of values of ε, either (19) or

(20) is solved repeatedly and the sparsity noted. The resulting plot of sparsity vs.

ε will have a distinct “knee” and the ε value at the knee of the curve is selected to

obtain the best solution. An example of an L-curve can be seen in Figure 4. A second,

and much more computationally efficient method, is cross validation (CV) [41]. The

cross validation method was shown to be effective in compressive sensing applications

to GPR by Gürbüz et. al. and will be used as the method for selecting the error

parameters for some of the inversion algorithms used in this thesis [13]. The process

involves splitting the measurements into two separate groups. The measurement

vector, m, which is of length Nm, should be split into an estimation set of length

NE < Nm and cross-validation set of length NV = Nm − NE. An example of a CV

algorithm used specifically with a Dantzig selector problem for CS and GPR is taken

from Gürbüz et. al. and seen in Algorithm 2 [12]. The algorithm for CV using the

quadratic constraint in (19) can be found in the original Boufounos et. al. work. The

value of α is set to 0.99 to make sure that the data is under fit.

0 5 · 10−2 0.1 0.15 0.2
0

20

40

εd

‖s
‖ 1

Figure 4: L-curve for εd selection.
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Input: Evaluation dictionary, ΘE; evaluation measurement vector, bE;
validation dictionary, ΘV ; validation measurement vector, bV .

Output: The allowable error parameter, εd.
Initialize α = 0.99;

Initialize b̂ = 0;

Initialize εd = α
∥∥ΘH

EbE
∥∥
∞;

while
∥∥∥ΘH

V (bV −ΘV b̂)
∥∥∥
∞
< εd do

b̂ = min
b
‖b‖1 s.t.

∥∥ΘH
E (ΘEb− bE)

∥∥
∞ < εd;

εd =
∥∥∥ΘH

V (bV −ΘV b̂)
∥∥∥
∞

;

end
Algorithm 2: CV algorithm for Dantzig selector.

1.4 Accuracy Testing

There are a few different tests for accuracy that are used in this research. For the GPR

problem, it is typical to have multiple targets, but the support error is more important

than the amplitude because the support is what determines the location of the target.

So a metric needs to be used to handle evaluating the support. For the EMI problem,

because of the ability to dissect a target into its electromagnetic dipoles and image

each one of them independently, it is rare to come across multiple identical targets.

Most of our laboratory experiments involve only a single target. There are also many

laboratory experiments performed on the same target with many different location

and orientation parameters, so an error histogram is used to evaluate the limitations

of the data-acquisition system and the inversion algorithms to help improve them in

the future.

1.4.1 Earth mover’s distance

A suitable metric is needed to evaluate accuracy of the estimated solution vector in

the GPR problem. Typically, something like probability of detection or mean-squared

error (MSE) is used in evaluating the result. For this specific application, since the

concern is more with the estimated location than with the amplitude, a measure called
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the earth mover’s distance (EMD) can be used [42]. The EMD takes into account

the error between the support, as well as the error in amplitudes. Just like MSE, a

lower EMD constitutes a “better” solution. For example, if a mine was detected, but

its location was off by 1 cm, the EMD would be lower than if the same mine location

was off by 30 cm. However, if the MSE were used, the error would be identical for

both cases assuming they had equal amplitudes. A simple 1D example of EMD vs.

MSE can be seen in Figure 5. The EMD is calculated using a fast method from Pele

et. al. [43].
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Figure 5: Signal examples with equal MSE but (a) high EMD (b) low EMD.

A quick example of EMD analysis for a small GPR problem using established

algorithms will help illustrate how this process will work. A simple single target

environment is set up to be simulated. The BP solution is shown in Figure 6(a).

The CS, OMP, and compressed orthogonal matching pursuit (COMP) solutions are

identical and shown in Figure 6(b). The BP image is much less sparse than the other

algorithms, and thus has a much higher base EMD than the other sparse algorithms,

which can be seen in Figure 6(c). It can also be used to evaluate a CS based algo-

rithm, like in Figure 6(d), which would help to identify the number of compressed
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measurements needed to have high probability of accurate recovery.
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Figure 6: Solution examples of (a) BP and (b) CS, COMP, and OMP of a single tar-

get. EMD analysis of (c) all four algorithms with respect to SNR and (d) compressed

algorithms with respect to number of compressed measurements Ncm.

1.4.2 Error histograms

The error histogram concept is fairly simple for determining probability of error in the

EMI problem. In a single target scenario, where orientation and location are being

extracted, a simple distance error and angle error can be calculated. The solution
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is considered to be a single error in either distance or orientation if the calculated

error is more than a specified threshold. The number of errors for a particular target

parameter are counted, and the percentage of total errors is recorded and plotted

in a multidimensional histogram. An example of a location error histogram can be

seen in Figure 7. This was created by imaging many parameter combinations of a

metal loop in a lab with maximal correlation, taking the maximal pixel from the BP

solution as the target location. The model and data-acquisition system used were

the ones described in subsection 1.1.2. This type of image is useful because it shows

the limitations of the sensor. The heavy errors at the deep offset locations show that

typically the sensor is going to do a better job of imaging objects shallow, and close to

the center of the sensor array. This will be used in the analysis of the EMI inversion

method and will ultimately help in determining some functional changes that need

to be made to the hardware system.
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Figure 7: Location error histogram from an EMI laboratory experiment.
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1.5 Outline

The remainder of the document is organized into three chapters. Chapter 2 discusses

the shift-invariance property that increases the efficiency of the imaging algorithms

for the GPR problem. Chapter 3 introduces a “tensor amplitude” which can reduce

the complexity of the EMI problem while increasing accuracy. The final chapter is a

short conclusion wrapping up the work and showing possible avenues for improvement

in the future.
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CHAPTER II

INCREASING EFFICIENCY FOR THE GPR PROBLEM

The previous methods for performing GPR imaging have been discussed in Chap-

ter 1. Although the recent work in CS has been shown to effectively reduce the data-

acquisition time, it has not been practically applied because of its large computational

complexity. The computational complexity comes primarily from the requirements

of storing and applying Ψ. In this thesis, a method is developed which dramatically

reduces the scalability of all dictionary matching problems, from O(N6) to O(N4) for

storage and application time, by exploiting a translational invariance property that

can be guaranteed if small considerations are taken during the data-acquisition steps.

The remainder of the chapter will be split into six sections. Section 2.1 will introduce

the shift invariance property with respect to the point-target model for GPR. Sec-

tion 2.2 discusses how the shift invariance can be exploited in inversion algorithms

to get the desired computational reductions. Section 2.3 shows some 2D and 3D

simulations comparing exploiting versus not exploiting the translational invariance.

Section 2.4 outlines a few laboratory experiments that were inverted using the new

techniques. Finally, Section 2.5 and Section 2.6 will show a simulation for how a CS

GPR could be designed and give brief conclusions, respectively.

2.1 Model Setup and Implementation

The GPR problem can be described as a parameter-detection problem that relies

on model-based inversion. The data flow and processing blocks for this detection

system were shown in Figure 1. There are two sources of sampling: acquisition sam-

pling and model discretization. Acquisition sampling is where a sensor measures the
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environment at many locations. Model discretization is where a dictionary, Ψ, is con-

structed using a sampling of a continuous model created from the knowledge of the

data-acquisition system and the parameters that need to be extracted. The measure-

ments collected with the data-acquisition system and the dictionary Ψ are combined

during the inversion step to obtain a 3D image that estimates the environment.

2.1.1 Response model

The data-acquisition technique for a GPR includes the creation of a synthetic aperture

by moving a sensor to the positions, ls = (xs, ys, zs). For a 3D image, the scan

positions, ls, would be indexed over a grid in the 2D plane as was shown in Figure 2,

zs is generally held constant. In the case where the transmitter and receiver are

scanned together, the scalar point-target model is

R(ω, ls; lt) =
ρ

S
ejωτ(ls,lt,c,v), (23)

where a series of stepped-frequency signals, at frequency ω, are sent from a transmitter

located at ls, and then reflected off a target at location lt = (xt, yt, zt). The target has

a reflection coefficient, ρ, and S is the electromagnetic spreading function which may

or may not be known. The time delay function τ uses an approximation of Snell’s

law to calculate the wave path through air with velocity c and at the boundary of

a medium with velocity v [44]. An example of the wave path from a bistatic GPR

traveling into the ground and reflecting off a target can be seen in Figure 8, where

τ = τ1 + τ2 + τ3 + τ4.
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.

Figure 8: EM path through multiple mediums.

Examples of a simulated time-domain and frequency domain measurement can

be seen in Figure 9. There will also be a reflection from the air-ground interface,

and eliminating this ground response is an active research topic in its own right.

In particular, there is some work associated with ground removal for GPR geared

towards a CS application introduced by Tuncer et. al., but ground removal will not be

considered in this thesis [45]. That is, the simulations shown here use a single medium

with no velocity changes. The subsurface laboratory experiments in subsection 2.4.2

have a fairly uniform ground response, so it is possible to subtract out the ground

bounce from the measurements since the height of the sensor is known in the controlled

lab experiment.
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Figure 9: Simulated measurements for 2D in (a) time domain (b) frequency domain

showing the magnitude multiplied by the phase.

The model dictionary, Ψ, that can be used with any number of different imaging

techniques can be created by enumerating (23) for all possible parameter discretiza-

tions. The first step is to determine which parameters are associated with the mea-

surements and which will be extracted in finding the targets. The highest priority

variable in a landmine detection system is target location, lt. The spreading factor

and the strength of the target can be combined into a single amplitude, s(lt), and

would not require enumeration. For the remainder of this section, only the SFGPR

case will be studied so the frequency ω and sensor locations ls are the measurement

parameters. The discussion could easily be switched to TPGPR. The SFGPR model

for a single target can be rewritten as,

R(ω, ls; lt) = s(lt)e
jωτ(d(ls,lt),c,v)

= s(lt)ψ(ω, ls; lt), (24)

where d(ls, lt) is a 3D distance function. The measurements are made at a finite set

of frequencies ω and a finite number of sensor locations ls = (xs, ys)

One column vector of the dictionary matrix Ψ is the vector ψ(lt) whose entries
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are all the measurements created by evaluating the model R(ω, ls; lt) for a fixed lt

while enumerating all possible triples of the 3 measurement space parameters, ω, xs

and ys. The final dictionary is created by concatenating the target location response

vectors as the column space,

Ψ =

[
ψ(lt

1) ψ(lt
2) · · · ψ(lt

Nlt )

]
. (25)

where the Nlt values of lt are obtained by enumerating all possible triples of the target

location parameters, xt, yt, and zt. If the number of values for each parameter is N ,

then Ψ is an N3 × N3 matrix. For example, with N = 100 the dictionary matrix is

106 × 106 with one trillion (1012) entries.

Using the dictionary matrix in (25), the response vector can be expressed as,

r =
∑
lt

s(lt)ψ(lt) = Ψs, (26)

where s is a sparse vector which is only nonzero at the target locations. The indexing

of the vector r must follow the enumeration of the triple (ω, xs, ys) used for the

measurement vectors ψ(lt). The indexing of s must follow that of the triple (xt, yt, zt)

used for the target locations.

The inversion process is done to recover s from the measurements,

m = r + η, (27)

where η is an additive-noise vector. However, the size of Ψ and the computational

complexity of the inversion algorithms make 3D imaging problematic for real-world

applications. To address this issue, some structural changes are presented that can

be made to simplify the way that the dictionary Ψ is created, stored, and applied in

the different inversions.

2.1.2 Shift-invariance property

A simplification of Ψ is possible because the GPR acquisition system can have the ex-

tremely powerful property of spatial-shift invariance [46–48]. A graphical example of
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what the time-domain measurements look like for a target that has been horizontally

shifted at the same depth can be seen in Figure 10.
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Figure 10: Simulated time-domain measurements of shifted targets.

The key idea is that the model response (23) at the horizontal aperture of sensors

will shift in tandem with horizontal shifts in the target positions at a fixed depth.

This is true because the distance function d(ls, lt) shown in Figure 8 does not change

with equal horizontal shifts of the sensor and target. However, the computation takes

place with discrete grids for the positions ls and lt, so the grids must also support the

shift invariance. While it is not necessary in the general case for the sensor locations

ls to be uniformly spaced, in this thesis it will be assumed that ls is uniformly spaced.

If ls is not physically uniformly spaced, it can be interpolated onto a uniformly spaced

grid. To show how the shift-invariance property simplifies the computation for the

collection of SAR measurements, a 2D example will be used.

First, rewrite the response vector from (26) as a sum of products,

r(ω, xs) =
∑
zt

∑
xt

s(xt, zt)e
−jωτ(xs,xt,zt). (28)

Next, discretize the x dimension as follows: m∆x for m = 1, 2, . . . Nxs for xs and

(h+ α)∆x for h = 1, 2, . . . Nxt for xt where α is a constant value 0 ≤ α < ∆x. The x
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discretization creates a new representation for the response vector,

r(ω,m∆x) =
∑
zt

Nxt∑
h=1

s((h+ α)∆x, zt)e
−jωτ(m∆x,h∆x,α,zt). (29)

If the time delay τ is examined for a monostatic system measuring in a single medium,

we obtain

τ(m∆x, h∆x, α, zt) = (1/c)
√

(m∆x− (h+ α)∆x)2 + z2
t (30)

= (1/c)
√

((m− h)− α)2(∆x)2 + z2
t .

Thus the time delay depends on the index difference (m − h), and it can be shown

that the inner sum in (29) is a discrete convolution. The time delay function τ keeps

horizontal-shift invariance even when the system is not monostatic and when the

medium velocity is allowed to change with z, but not with x or y. The horizontal-

shift invariance can be visualized with Figure 8. If the target, T1, and R1 are shifted

by a equal value, d1 and d2 will shift by the same amount, so τ will be the same as

before the shift. Therefore, with a fixed ∆x the exponential in (29) is a function of

the index difference (m− h).

e−jωτ(m∆x,h∆x,α,zt) = e−jωτ((m−h)∆x,α,zt) (31)

Now the inner sum of (29) can be rewritten as a convolution because of index-shift

invariance:

r(ω,m∆x) =
∑
zt

Nxt∑
h=1

s((h+ α)∆x, zt)e
−jωτ((m−h)∆x,α,zt)


︸ ︷︷ ︸

convolution w.r.t. m

=
∑
zt

s((m+ α)∆x, zt)∗
m
e−jωτ((m)∆x,α,zt) (32)

=
∑
zt

s((m+ α)∆x, zt)∗
m
ψ(ω,m∆x, α, zt).
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The convolution representation shown in (32) uses the same dictionary as was created

in (24), but the discretization for xt has been replaced by the constant α. Changing

the discretization from xt to α is significant because it drops the storage requirements

from Nxt to 1. However if there is a desire to upsample the image locations, e.g., to

get upsampling by a factor of two, α1 = 0 and α2 = 0.5∆x could be used and the

process would need to be repeated for each αi. With these steps outlined for the

forward operator, the adjoint is fairly trivial. Transitioning back to matrix notation,

shift invariance leads to a Toeplitz or block-Toeplitz structure in Ψ. For simplicity

consider an example with α1, α2, and Nα = 2, which could be expanded trivially. The

columns correspond to the sensor positions, xs, the rows correspond to the simulated

target locations, xt, and the entries in the DH matrix correspond to the distance

between xs and xt. The distance between xs and xt is going to be |m− h− αi|. A

reasonable assumption that is made here is that Nxt = Nxs . When they are not equal,

the Toeplitz structure would just not be square. The difference matrix is

DH =



α1 ∆x− α1 · · · (Nxs − 1)∆x− α1)

α2 ∆x− α2 · · · (Nxs − 1)∆x− α2)

∆x+ α1 α1 · · · (Nxs − 2)∆x− α1)

∆x+ α2 α2 · · · (Nxs − 2)∆x− α2)

...
...

. . .
...

(Nxt − 1)∆x+ α1 (Nxt − 2)∆x+ α1 · · · α1

(Nxt − 1)∆x+ α2 (Nxt − 2)∆x+ α2 · · · α2



. (33)

This matrix it is not Toeplitz, but with a slight reorganization of the rows, it can
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become block Toeplitz with Nα blocks,

DH =



α1 ∆x− α1 · · · (Nxs − 1)∆x− α1)

∆x+ α1 α1 · · · (Nxs − 2)∆x− α1)

...
...

. . .
...

(Nxt − 1)∆x+ α1 (Nxt − 2)∆x+ α1 · · · α1

α2 ∆x− α2 · · · (Nxs − 1)∆x− α2)

∆x+ α2 α2 · · · (Nxs − 2)∆x− α2)

...
...

. . .
...

(Nxt − 1)∆x+ α2 (Nxt − 2)∆x+ α2 · · · α2



. (34)

This difference matrix, D, is built directly into the representation matrix,

Ψ(ω1,D, zt) = ejωτ(D,tz1 ), (35)

giving Ψ a block structure with NαNωNzt blocks of size Nxs×Nxt . It is well known

that a block-Toeplitz matrix can be stored with a single vector for each block.1

1For the examples given in this thesis it will be assumed that the sensor spacing and the simulated
target spacing are identical, Nα = 1, α1 = 0.
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(a)

(b)

Figure 11: Dictionary implementation (a) explicit enumeration with matrix multi-

plication, (b) exploiting shift invariance by using correlation.

Toeplitz matrices have been shown to be an effective way to reduce computational

complexity in random sampling matrices for CS [36, 49]. A graphical example of the

structural changes that would need to be made to the storage and application of the Ψ

matrix used for 2D imaging in the time domain can be seen in Figure 11. Figure 11(a)

shows the traditional dictionary, where every simulated target position lt is enumer-

ated into the columns of Ψ and the dictionary is applied using standard matrix-vector

multiplication. Figure 11(b) shows a reduced size Ψ, where Nα = 1, that does not

enumerate in the horizontal dimensions and is applied using a convolution operator
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along the horizontal position, instead of a simple matrix-vector multiply. The partic-

ular Ψ structure shown in Figure 11(b) has the added bonus that the computational

operations required are O(N log(N)), by using the fft, instead of O(N2) for each

dimension where the shift invariance can be exploited. A traditional (explicit) Ψ used

to image 3 dimensions can be stored and applied in O(N6), assuming all measure-

ments and parameters are equally discretized. On the other hand, when Ψ has the

Toeplitz structure in both horizontal lt dimensions equivalent to ls, taking advantage

of the fft would reduce the storage to O(N4) and the computation to O(N4). A

flow chart for the special properties of the GPR and the resultant dimensionality

reductions can be seen in Figure 12. The addition of using a CS inversion would

allow for a further reduction in the frequency domain by using Ncω � Nω compressed

frequencies. A graphical example of the element reduction in using both compressive

sensing and exploiting the translational invariance can be seen in Figure 13. The

take away from Figure 13 is that each representation can accurately invert a set of

measurements, while the method exploiting translational invariance with the fft is

far more efficient.

Figure 12: Storage requirements for the GPR system.
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Figure 13: Data volume for different Ψ representations.

2.2 Implementation Specifics for Structure Change

Now that the structure within the dictionary has been identified, the inversion algo-

rithms no longer use a simple matrix-vector multiplication to apply Ψ. The matrix-

vector multiplication has to be replaced with a specifically designed function to per-

form the equivalent of the forward, gΘ, and adjoint, gHΘ, operators of a reduced matrix

Ψα to the sparse vector s [47]. It is important to note that Ψα is built by enumerating

(24), where lt is only enumerated for zt and not xt or yt.
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The first step is to make sure that the discretization of ls and lt provide the trans-

lational invariance discussed in subsection 2.1.2. Next, identify how the convolution

operation from Figure 11(b) is going to be performed to take advantage of the trans-

lational invariance. The fft can be used to perform circular convolution efficiently,

and with the use of a zero-padding operator, Z, linear convolution. The fft can only

be performed in the horizontal dimensions if the time and frequency samples are the

same for each ls. Since there is translational invariance in both dimensions of ls, the

zero padding must take place in both dimensions. The simplest thing to do is to add

Nxs/2 discretizations to the beginning and the end of the xs dimension, and do the

same for y. The zero pad will allow for shifts to take place within the desired range

of ls without wrap-around effects from the circular convolution. A slightly more effi-

cient way would be to zero-pad with a number based on the maximal beamwidth of

the antenna in space. Then, the fft needs to be taken in both x and y of ls. The

same operations must be performed to the corresponding x and y of lt in the sparse

vector s. These are then combined through a series of index multiplications shown

specifically in Algorithm 3. The summation over zt should be interpreted as a for loop

over depth that adds the results of fast FFT (horizontal) convolution done for each

depth. The final step is to then compress the measurements with Φ if a compression

algorithm is being used, like CS. In the case where no compression is required, Φ can

be removed or equivalently set to the identity matrix.

Now that a function to perform the forward operation has been created, a similar

function for the adjoint operation can be described. The adjoint matrix ΨH is the

conjugate transpose, so it possesses Toeplitz sub-blocks, and fast FFT convolution

can be done. In addition, the adjoint can be created by working the forward algorithm

backwards. The specifics for how to perform the adjoint operator gHΘ can be found in

Algorithm 4.

The description of the algorithms above can be modified to get a more time
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Input: Compression matrix, Φ; response dictionary, Ψα; sparse vector, s
Output: compressed measurement vector b
Reshape Ψα and s to have a dimension for every variable (for 3D imaging Ψα

is 4D and s is 3D);
for all ω do
m̃ = 0;
for all zt do
s̃(kx, ky, zt) = fftx(ffty{Z(s(xt, yt, zt))}) ;

ψ̃g(ω, kx, ky, zt) = fftx(ffty{Z(ψα(ω, kx, ky, zt))});
m̃(ω, kx, ky) = m̃(ω, kx, ky) + ψ̃g(ω, kx, ky, zt)s̃(kx, ky, zt);

end
m(ω, xs, ys) = Z−1{ifftky(ifftkx{m̃(ω, kx, ky)})}

end
Reshape m(ω, kx, ky, ) into a vector m;
b = Φm;
Algorithm 3: Forward function algorithm b = gΘ(Φ,Ψα, s) for SFGPR.

Input: Compression matrix, Φ; response dictionary, Ψα; compressed
measurement vector b.

Output: Sparse vector, s.
Reshape Ψα to have a dimension for every variable (for 3D imaging Ψ is 4D);
m = ΦHb;
for all zt do
s̃ = 0;
for all ω do
m̃(ω, kx, ky) = fftx(ffty{Z(m(ω, xs, ys))});
ψ̃α(ω, kx, ky, zt) = fftx(ffty{Z({ψα(ω, xt, yt, zt)})});
s̃(kx, ky, zt) = s̃(kx, ky, zt) + ψ̃

H

α (ω, kx, ky, zt)m̃(ω, kx, ky);

end
s(xt, yt, zt) = Z−1{ifftky(ifftkx{s̃(kx, ky, zt)})};

end

Algorithm 4: Adjoint function algorithm s = gHΘ(Φ,Ψα, b) for SFGPR.

efficient implementation. Many of the steps can be performed off-line, for instance

calculating Ψ̃α and taking the transform of b. Also, the for loops are easy to vectorize

for faster computation when using MATLAB. For example, running BP using gHΘ on

a 3D simulation, that is run and analyzed in subsection 2.3.2, takes 5.28 seconds if

the multiplies and adds are done in a loop, and 0.13 by using vectorized operations

to perform the same task.
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The algorithms described in Algorithm 3 and Algorithm 4 describe gΘ and gHΘ if

a general Φ were to be used in a compression algorithm. However, to use a general

Φ requires a complete sampling during data-acquisition and eliminates the usefulness

of compressive algorithms in terms of data acquisition. Making sure that Φ is a

random sampling matrix where the random frequencies, or random time samples, at

each ls are equal, would allow for Φ to be applied to Ψα before the zero pad and

fft take place. Applying Φ before the zero pad and fft allows for the compressed

sampling to be performed during data acquisition. In other words, if ΦΨ has the

same shift-invariant property as Ψ, then Φ can be applied before the zero pad and

fft operations.

For the rest of this chapter, the BPDN will be used for CS applications, and (19)

becomes

ŝ = min
s
‖s‖1 s.t. ‖gΘ(s)− b̃‖2 < ε2. (36)

The reason BPDN is going to be used as opposed to the Dantzig selector that was used

in the previous work, is simply because SPGL1 supports BPDN and is much more

computationally efficient than some of the other algorithms like `1-MAGIC and CVX

[50–52]. There is a slight change in (36), b̃ is used as the compressed measurement

vector instead of b, so it is important to remember that the measurements must be

zero-padded and passed through the fft to match the output of gΘ.

2.2.1 Designing Φ for compression in GPR

The first step of the process is designing a sampling scheme to either reduce the

sampling time with compressed sensing, or to increase the performance of the system

without increasing the data-acquisition time. In compressed sampling, the compres-

sion matrix, Φ, needs to satisfy the restricted isometry property (RIP) discussed in

subsection 1.2.4. Again, the mutual coherence is

µ(Φ,Ψ) = max
φk∈Rows(Φ)

ψt∈Cols(Ψ)

|〈φk,ψt〉| (37)
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[33]. The rows of Φ are normalized to ‖φk‖2
2 = N and the columns of Ψ are

normalized to one. The desired value for µ(Φ,Ψ) is as close to 1 as possible.

There are three different types of Φ that are routinely examined: Gaussian, Type

I; Bernoulli ±1, Type II; and a random subset of the identity matrix, Type III. These

Φ structures and their naming convention are discussed and analyzed in Gürbüz

et. al. [12]. For the sampling bound and mutual coherence calculations, the Ψ matrix

will be have sampling parameters Nf = Nt = 401, Nls = 20, and Nlt = 20×20 = 400.

2.2.1.1 Time-pulse Φ

Type I , where Φ is a matrix whose entries come from a normal distribution N (0, 1),

is widely used in the literature for CS. Also, since the time-pulse measurement is by

definition sparse in the time dimension, using a Φ that is spread out is beneficial

because it is very different from Ψ. Table 1 shows the coherence µ(Φ,Ψ) values for

Type I, II, and III matrices. The value for Type I is 4.5 which means that recovery

is possible if only approximately 3% of the total measurements are retained.

Type II matrices have entries taken from a Bernoulli ±1 process. Type II ma-

trices have properties similar to that of Type I matrices, in that it is spread out

in the dimension where Ψ is sparse. This similarity leads to an even lower value of

2.5 for µ(Φ,Ψ), which corresponds to only requiring approximately 1% of the total

measurements to recover a single target.

For Type III, Ψ is a random selection matrix, which does just what the name

suggests, it takes a random subset of all the measurements. However, Type III

matrices are not structured to work well with the time-pulse system because both

matrices Φ and Ψ are sparse in the measurement domain. For example, when a

vector of length 50 with a sparsity of one is being sampled, the only way to guarantee

that a random selection matrix will obtain any information about the signal, is to

take all 50 samples. Type III matrices have a much higher value of 20 for µ(Φ,Ψ),
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which corresponds to a requirement that over half the samples must be taken.

Table 1: Mutual coherence values for different Φ with TPGPR.

Type Description µ(Φ,Ψ) ≈M

I N (0, 1) 4.5 240

II Bernoulli 2.5 80

III Random Sampling 20 5200

The analysis of the different Φ matrices is only important if they can be effec-

tively applied during the data-acquisition process, through some type of hardware

design, pulse specification, or creative sampling structure. As described in the work

by Gürbüz et. al., Type I and Type II can be applied using hardware mixers and

low-pass filters to allow for the inner product to be taken with a random signal.

However, creating Gaussian random pulses at radar rates, generally GHz, is difficult.

Creating the random signal vectors for Type II is far more reasonable using state

machines [12]. Type III matrices are extremely easy to implement by subsampling

in either the sensor position domain, as seen in Figure 14 where the vertical black

lines correspond to ls positions that are not sampled, or the time domain. Random

subsampling could be ideal for a system where the movement was not constant, but

the sampling time was. As long as the ls positions are recorded accurately at each

sample, the random spatial sampling would be effective.
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Figure 14: Subsampled time-domain measurement.

Random vectors can also be applied in another way, without requiring hardware

to perform random inner products. Romberg introduced a method called Random

Convolution, built on the idea that random Toeplitz and circulant matrices possess

the same properties that allow for conventional random matrices to fit within the

RIP [36, 49]. The added advantage of using these structured matrices, is that they

can be efficiently applied with the Fast Fourier Transform (fft), because they are the

matrix representations of convolution. Equation (1) can be rewritten as a convolution,

r(t, ls; lt) =
ρ

S
p(t) ∗ δ(t− τ(ls, lt, c, v)). (38)

A generic signal can be sent from the receiver, p(t). If p(t) can be constructed to be a

known, pseudo-random signal with either aN (0, 1) distribution or a Bernoulli ±1, the

projection of random vectors can be done through the convolution of the transmitted

pulse and the target response with no additional mixing hardware required. The

mutual coherence is going to be similar to that of a Type I or Type II Φ matrix.

Depending on the length of p(t), the resulting measurement response will be, in effect,

spread out in time. This will allow for a random sampling step to be performed after

convolution to complete the compressive measurements. To recreate the effect of
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convolution with p(t) and subsequent random sampling for Ψ, all that needs to be

done is to apply a Toeplitz matrix, P , to the left of Ψ followed by the application of a

Type III Φ matrix. The matrix P is built with a generating vector, p, corresponding

to the discretization of p(t).

Using the random convolution method can dramatically reduce the complexity

of the hardware in the GPR. In fact, GPRs already exist that use pseudorandom

M -sequence pulses as the transmitted signals [53]. Also, it has been shown that

pseudorandom sampling in the time domain is an effective strategy for typical GPR

systems because it can eliminate the need for using a signal delay line [54, 55]. A

framework for the design of a CS TPGPR will be explored in detail in Section 2.5. The

random sampling could be done in a much shorter sweep time than the conventional

sequential sampling while achieving similar accuracy. The use of random convolution

and a random sampling GPR make compressive sensing seem as though it was created

directly with a radar application in mind. The random convolution method could be

paired easily with random spatial sampling for additional data-acquisition reductions.

2.2.1.2 Stepped-frequency Φ

The same analysis can be done for the SFGPR case as in the previous subsection

for the TPGPR case. However, it is clear from analysis of Table 2 that all sampling

structures for Φ will work well. The major advantage here is that Type III matrices,

which are by far the easiest to implement in a practical system, actually work the

best. These matrices are completely incoherent with the Ψ matrix created for SFGPR

and this is not surprising, because Ψ is very similar to a Fourier matrix, which is very

dissimilar to an identity matrix. Because of this fact, there is simply no reason in

this scenario to use anything other than Type III matrices. The dramatic reduction

in sampling size seen by using a Type III matrix also has the advantage that it can

easily and dramatically reduce the data-acquisition time for SFGPR, which can be a
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constraint large enough to discourage its use in practical systems.

Table 2: Mutual coherence values for different Φ with SFGPR.

Type Description µ(Φ,Ψ) ≈M

I N (0, 1) 3.2 135

II Bernoulli 3 120

III Random Sampling 1 15

2.3 Simulation Using Functional Dictionary

The forward gΘ and adjoint operators gHΘ can be used in different ways to perform in-

version of the GPR measurements. In some cases the operators are applied only once,

or a few times, in other algorithms thousands of times. This section is split into three

important subsections. Subsection 2.3.1 directly compares the computation times of

the three algorithms with and without exploiting translational invariance. Only 2D

examples can be run in this case because the 12 GByte computer used to run the sim-

ulations was unable to run the 3D inversions using explicit matrices. Subsection 2.3.2

shows the different algorithms successfully being inverted in 3D while comparing their

capabilities in dealing with compressed measurements. The 3D compressed algorithm

simulation helps show the advantages of using an algorithm that looks for sparsity

over those, like BP, that do not. The last simulation in subsection 2.3.3 is set up to

compare solving a full 3D inversion exploiting translational invariance, and creating

a 3D image out of 2D slices using the explicit matrix method. The 2D slice inversion

is unable to take advantage of the full synthetic aperture, and will introduce imaging

artifacts that are not present in the full 3D inversion.

2.3.1 2D comparison to previous methods

The easiest way to compare the new functional methods with older explicit ones is

through small 2D simulations. 2D simulations are used because 3D simulations with
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explicit enumeration are impossible; they quickly scale beyond the storage capabil-

ities of the computer used for the experiments. For example, a 3D problem, solved

using the explicit matrix method, with equal N discretizations, and a computer with

4 GBytes of dedicated data memory could have a maximum N of approximately 28.

Increasing the data memory size to 12 GBytes only brings this value up to 33, and

this assumes the entire data memory is used only for Ψ. However, using the func-

tional method enables a maximum N of 150 in the 4 GBytes computer and 196 in the

12 GBytes computer.

Figure 15 compares the measured times for a 2D GPR problem run using BP and

OMP, using different size spatial dimensions, N = 5
√
NlsNlt , and fixed Nω = 401

frequencies, to show how the algorithms scale as the dimensionality of the image

space increases. Functional BP (fBP) is around 15 times faster than BP for N = 70.

Functional OMP (fOMP) is also around 15 times faster than OMP and is actually

about four times faster than BP for N = 70. These values are again just for the 2D

inversion where there is only one dimension containing the redundancy, in 3D there

are two. To see what the gains would be for the 3D problem, the approximate savings

ratios for time and storage are calculated for the 2D and 3D solvers in Figure 16. To

check how close the approximation is to reality, the ratios for experimental processing

for N = 70 came out to be about 15 times, Figure 16 shows about 35 times for the

2D processing at N = 70, which is not going to account for any overhead or lower

order processing times. It would be safe to say that there is an order of magnitude

reduction. This means for a 3D problem with size N = 70 that is solved with one of

the discussed algorithms, there would be a reduction of approximately three orders of

magnitude to the time and storage by using the functional algorithms. The functional

and explicit models are also compared using a CS algorithm in Figure 17, and again

the functional method is much more time efficient by about a factor of five at 0.2×106

measurements and a factor of 15 at 106 measurements.
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Figure 15: Comparing timing of BP with an explicit matrix to the functional imple-

mentation (fBP) and OMP using an explicit matrix to the functional implementation

(fOMP).
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gHΘ instead of explicit matrix multiplication for different values of N.
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2.3.2 3D compressed simulations

The slow data-acquisition time of SFGPR have led to heightened interest in algorithms

that use compressed measurements. The following simulated example will only use

compressed algorithms. Compressed algorithms are those at which a sampling scheme

is applied to the measurements, and the dictionary before use in the algorithm. For

this application, the same random selection of stepped frequencies is taken at each

individual scan position, ls, along the synthetic aperture.

The simulation run was on a problem size that would be reasonable in a real ap-

plication. The image grid has a resolution of 2 cm and has 60 equal discretizations for

xt, yt, and zt giving a total number of image pixels equal to Nlt = 603 = 216, 000. As

mentioned previously, the scan positions ls = (xt, yt, 0), where α = 0 and ∆x = 2 cm,

allow for the translational invariance to be present. The possible frequencies, ω, used

in the data collection were 379 frequencies in the range 2π(500 MHz) to 2π(8.06 GHz).

The compression takes place in the selection of a random set of the same ten fre-

quencies at each ls. The total explicit dictionary size for this problem would be
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NlsNω×Nlt = 602(10)×603 which turns out to be approximately 60 GBytes. The

computer being used only has 12 GBytes of memory, so directly solving this prob-

lem with an explicit dictionary matrix is impossible without calculating the re-

sponses during run time in a loop. However, using the translational invariance ex-

ploit removes the need to store xt and yt and the size of the dictionary becomes

O(NlsNω×Nzt) = 602(10)×60 which is approximately 17 MBytes, a reduction by a

factor of almost 103! The simulation environment consisted of three point targets

with an SNR of 15dB. Figure 18 shows the results of the imaging with three different

compressed algorithms. Two thresholds were used in the compressed BP (CBP) case

in Figure 18(a) and (b), and it can be seen that changing the user defined threshold-

ing can dramatically affect the output images. The compressed OMP (COMP) and

CS algorithms in Figure 18(c) and (d), respectively, achieve exact reconstruction.

The measured timing statistics for this simulation can be seen in Table 3. A

large portion of the time it takes to run the algorithms is associated with the time

it takes to run the forward and adjoint operators. The ratio of the amount of time

per function call is shown in the third column of Table 3. The time it takes to run

COMP is almost exclusively dependent on the speed of gΘ and gHΘ, whereas a more

complicated algorithm, CS, has a little more time devoted to overhead. For algorithms

like CS, where the dictionary is going to be applied hundreds of times, any efficiency

increase to the dictionary is going to scale linearly.

Table 3: Timing statistics for 3D simulation.

Algorithm Time (sec) Number of gΘ or gHΘ calls ratio Time/calls

CBP 0.13 1 0.13

COMP 1.35 12 0.11

CS 108.42 423 0.25
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Figure 18: Images created from a simulated environment with (a) CBP with 5%
threshold, (b) CBP with 10% threshold, (c) COMP, and (d) CS.

2.3.3 Comparing full 3D to sliced 2D

The computational inefficiency of previous methods has prevented the direct imple-

mentation of 3D inversion, so a sub-optimal approach was taken by solving small 2D

slices and concatenating them together to form a 2.5D image [13]. If we compare

the two approaches, it is easy is to show why solving the large 3D problem is impor-

tant. It is important to note that the functional method can be done in 2D as well,

and would be more time efficient than using the explicit method, as was shown in

subsection 2.3.1.

This experiment consists of randomly placing two targets in a 3D volume and

using CS to invert the measurements and create an image. The frequency range used

is 0 MHz to 5.02 GHz with Nω = 158 equally spaced frequencies. The scan positions
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correspond to a co-located transmitter and receiver. The transmitter locations are

uniformly spaced in a 2D square from ys = −96 cm to 90 cm at 6 cm intervals, giving

Nys = 32, and similarly from xs = −96 cm to 90 cm at 6 cm intervals, giving Nxs = 32.

The horizontal target locations are in the range yt =−90 cm to 84 cm at 6 cm intervals,

giving Nyt = 30; likewise for xt. The fact that the scan positions and the target

locations have the same horizontal discretization leads to the translational-invariance

simplification. The depth locations need not be constrained, but for this experiment,

z ranges from 270 cm to 420 cm deep at 6 cm intervals, giving Nzt = 26. The number

of compressed measurements, Ncm, is selected between 0.1% and 2.4% of the total

measurements Nm = NωNls = 158×322 ≈ 105. The number of discretizations in

the target location parameter space is Np = Nlt = 302×26 ≈ 104. Without using

CS or the functional representation, the explicit matrix would be of size Nm×Np ≈

109. However, employing compressive sensing and the functional representation, Nm

becomes Ncm, Np = 26, and the total storage requirements for a matrix using 2.4%

of the total measurements becomes Ncm×Np = 2400×26 ≈ 105, a reduction of four

orders of magnitude.

Figure 19 shows the detection accuracy advantages that are available when solving

the full 3D imaging problem as opposed to imaging the volume with many 2D slices.

When using 2D slices and not solving the full 3D problem, the synthetic aperture in

the xt dimension is not being directly exploited. The sparsity in the 2D slice image

from Figure 19(b) shows the resolution issues in xt. The full 3D inversion that is made

possible by using the functional representations gΘ and gHΘ, is shown in Figure 19(c).

The full 3D inversion provides a much higher resolution image in xt than using 2D

slices. The higher resolution is a byproduct of the fact that the full 3D inversion

takes advantage of the full 2D array aperture. The accuracy metric used to analyze

the solutions is the Earth Mover’s Distance (EMD) [42]. The EMD is used, because

unlike mean-squared error, EMD takes the support into account when calculating the

47



error. Targets with small error in location have a lower EMD than they would with

MSE. An SNR analysis showing the EMD reduction produced by solving the full 3D

inversion instead of the 2D slices is found in Figure 19(d).
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Figure 19: (a) Full 3D CS solution using fft method with exact reconstruction, (b)

solution using 2D slices, (c) EMD comparison of 2D slice and full 3D solutions.

2.4 Applied Performance

This section takes the experiment described in Counts et. al., and compares the meth-

ods described in Gürbüz et. al., with those of Krueger et. al. [3, 13,46,47].

The frequencies, ω, used in the data collection were 2π(60 MHz) to 2π(8.06 GHz)

at Nω = 401 equally spaced intervals. The first experiment is a target above ground,
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and the second experiment will be a collection of targets buried in sand. In order to

make a comparison, an explicit dictionary CS method that images the 3D area with

a collection of 2D slices and the proposed CS method that images the full 3D area

will be used.

The solver that is used to perform the `1 minimization is again SPGL1 because

of its computational efficiency and because it allows for functional representations

of the forward and transpose matrix operators with BPDN [50]. The user chosen

parameters that must be set in SPGL1 for the BPDN is the tolerance ε2 from (36).

The tolerance ε2 for the full 3D solver was chosen using a customized CV algorithm

which not only looks for divergence in error in the test and evaluation sets, but also

looks for dramatic jumps in the number of nonzero targets. Increasing ε2 will increase

sparsity, but if it is too large, some targets will be missed. Decreasing ε2 will increase

the probability of including all present targets, but will also increase the probability

of false alarms.

2.4.1 Air-target experiment

The air-target setup can be seen in Figure 20(a) [13]. There is a 1-in metal sphere

placed on a Styrofoam platform off the ground and the radar is scanned above it.

The 3D time-domain measurements of this experiment are seen in Figure 20(b) and

the target can easily be seen even in the measurements. The discretizations used for

this problem are as follows: xs and ys were both taken from −50 cm to 48 cm at 2 cm

increments, xt and yt taken from −48 cm to 46 cm at 2 cm increments, and zt taken

from 40 cm to 60 cm with 1 cm increments. This would correspond to an explicit

dictionary size of [379× 502 × 482 × 21] which is on the order of 1010. Using CS and

getting a reduction in frequencies to about 50, the dictionary is still on the order of

109. This means that to use an explicit dictionary, this problem must be solved in 2D

slices, which does not harness the synthetic aperture in the extra scan dimension and
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will lower resolution in that spatial dimension. If the functional method is used, there

is an elimination of both horizontal spatial image locations in the dictionary for an

uncompressed size of [379× 502 × 21] which is on the order of 107 and a compressed

size with 50 frequencies of about 106. Using CS and the functional method garner a

reduction of three orders of magnitude from the explicit dictionary CS case.

The solution using the explicit dictionary to create 2D slices and build them into

a 3D image is seen in Figure 20(c). The resolution in this image is acceptable in y

because this is the dimension where the 2D CS is calculated, but the x has lower

resolution because the slice method does not exploit the synthetic aperture in that

dimension at all. Finally, the full 3D solution using the functional representation of

the dictionary can be seen in Figure 20(d). The 3D method is much sparser than

the 2D slice solution again because it can take advantage of the synthetic aperture in

both scan dimensions, not just one of them.

50



−50 0
50

−50
0

50

1.25
2.49
3.74
4.99

yt (cm)xt (cm)

t
(n
s)

0

0.2

0.4

0.6

0.8

1

(a) (b)

-40-20
0 2040

-40
-20
020

40

40

50

60

yt (cm)xt (cm)

z t
(c
m
)

0

0.2

0.4

0.6

0.8

1

-40-20
0 2040

-40
-20
020

40

40

50

60

yt (cm)xt (cm)

z t
(c
m
)

0

0.2

0.4

0.6

0.8

1

(c) (d)

Figure 20: Air experiment for 1-in metal sphere (a) setup, (b) time-domain mea-

surements, (c) solution using 2D slices, and (d) full 3D CS solution using the fft.

2.4.2 Subsurface-target experiment

The final experiment is one that was performed and documented previously using

standard BP in Counts et. al. [3]. The acquisition array setup for subsurface imaging

can be seen in Figure 21(a) and the ground-truth location of the targets can be seen

in Figure 21(b). A 2D slice CS algorithm was employed for inversion to avoid the

computational inefficiencies in Gürbüz et. al. [13], but we saw in the previous section

the issues that can arise from that type of inversion. However, the 2D slice method

could also be improved by exploiting the translational invariance if it was desired to

still be used. It would be faster and more storage efficient than using the explicit
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method to calculate each slice because each slice would garner a computational time

improvement to what was shown in subsection 2.3.1. The purpose behind inverting

this data again is to show that a real-world experiment that was previously too com-

putationally intense to invert with full 3D CS, can be completed with the exploitation

of shift invariance. The discretizations used for this problem are as follows: xs and

ys were both taken from −60 cm to 60 cm at 2 cm increments, xt and yt taken from

−58 cm to 56 cm at 2 cm increments and zt taken from 1 cm to 20 cm with 0.5 cm

increments. Figure 21(c) and (d) show the top view of the created images using

uncompressed BP with 379 frequencies and CS with 100 frequencies. Both of these

were computed with the functional implementation of the forward and adjoint oper-

ators. It is very difficult to distinguish where some of the weaker targets are in the

BP image, but it becomes much clearer in the CS image. For example, the mines at

(xt, yt) = (−45, 5) and (xt, yt) = (0, 50), and the cylinder at (xt, yt) = (45, 50). The

imaging improvement of CS over BP combined with the fact that CS can be done

with much fewer measurements, is a substantial reason as to why CS would want to

be used over BP. In the work by Gürbüz et. al., full 3D inversion for this experiment

was impossible with CS, but now with the modification to the storage and application

of Ψ it can be done.
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Figure 21: Underground experiment for multiple objects (a) sensor setup, (b) target

locations, the values in parentheses correspond to the depths of the individual targets,

(c) solution using BP, and (d) full 3D CS solution using functional gΘ method.

A problem with imaging these types of targets is that some of them are much

larger than others and a point target model is not an ideal way to model them to

promote sparsity in the images. By examining Figure 21(d), each pixel corresponds

to a point target, and each point target is counted to determine the sparsity of the

image. If a more accurate target model were available for the larger mines, the

CS solution would perform much better while requiring fewer measurements. Fewer

measurements would be required because the sparsity would dramatically decrease
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by counting the number of mines as opposed to point targets. This is because the

number of measurements required to provide a high probability of accurate recovery

is dependent on the sparsity of the image, which can be seen in (15).

2.5 CS TPGPR Hardware Framework

The framework for designing a CS TPGPR system is fairly straight forward combining

many common TPGPR techniques and established CS properties for the inversion

algorithm. The main components that will be taken advantage of include: using

randomly generated M-sequence pulses, pseudorandom sampling, and CS properties

of Toeplitz structures and random convolution for both the application of the pulse,

p(t), and for the shift invariance of the spatial domain [36,47,49,53].

2.5.1 Theoretical setup

As shown in Table 1, random sampling directly with a delta pulse GPR is very bad

for the coherence, and thus the compressive sensing, but Type II matrices work very

well in this regard. The first step is to understand how the construction of p(t) can

effect the GPR’s detection abilities. An example of an M-sequence ±1 signal can be

seen in Figure 22. It is important to note that increasing the length of p(t) can spread

the response out in the time domain, giving a higher probability that there will be

information selected if randomly spaced time samples are taken. The spreading of

the response with different Np length p(t) can be seen in Figure 23.
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Figure 23: Showing simulated measurements with different p(t) lengths. (a) Np = 1,

(b) Np = 1 zoomed in, (c) Np = 10, (d) Np = 10 zoomed in, (e) Np = 100, and (f)

Np = 400.
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Increasing the probability of information in each sample is what can decrease the

coherence of the dictionary. Again, lowering the coherence decreases the required

number of random samples needed for CS to be valid. Using random sampling has

already been shown to be a more efficient form of sampling for TPGPR than sequential

because there is no need for a delay line. TPGPR systems typically use equivalent-

time sampling and not real-time sampling so that they only take one sample per

pulse, and thus must send out many pulses to construct one response signal [56]. For

example, to create a response signal of length Nt, Nt pulses have to be sent. Random

sampling allows for these Nt pulses to be sent in quicker succession, but they still all

have to be sent. But, combining the M-sequence radar and only collecting Nct � Nt

compressed time samples, creates a compression matrix Φ that fits the RIP. A plot

of the coherence values µ for different Np length p(t) pulses can be seen in Figure 24.

Figure 24 confirms that the longer the pulse, the fewer measurements will need to

be collected for accurate recovery, and thus lowering Nct and further decreasing data

acquisition time. The same Ψ is used for the calculation of the coherence as was used

to compute the values in Table 1.
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Figure 24: Calculations to show the (a) coherence and (b) lower bound minimum

samples for CS accuracy using different length p(t) pulses.

Once the response has been randomly sampled, looking at the resulting subsam-

pled response can also show why longer pulses can be better for detection accuracy.

Figure 25 shows four separate subsampled responses when different length pulses are

used. Figure 25(a) and Figure 25(b) show the subsampled response when a shorter,

length 1 and length 10 respectively, p(t), is used. There are many rows, time samples,

that have little to no useful data which mean the samples are worthless. Figure 25(c)

and Figure 25(d) show the subsampled response when a longer, length 100 and length

400 respectively, p(t), is used. The subsampled responses acquired from using a longer

p(t) have a much lower probability of including “empty” samples.
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Figure 25: Showing randomly sampled measurements with different p(t) lengths. (a)

Np = 1, (b) Np = 10, (c) Np = 100, and (d) Np = 400.

2.5.2 2D simulations

A few simulations were run in order to check the validity of the theory in simple 2D

problems, since the expansion to 3D is trivial and 2D is easier to work with and much

more efficient for collecting large amounts of data. The simulation was to image a

small, three target environment in 15dB SNR. The inversion algorithms are performed
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in almost the exact same way as the SFGPR examples in the previous sections. The

shift invariance is exploited by making sure that the same random time samples are

taken at each scan position ls. All that as changed is that the response is in the time

domain, instead of the frequency domain, but the properties to apply gΘ and gHΘ still

apply.

The compression algorithms are examined, CS and COMP. For the example so-

lution images, p(t) is length Np = 100 and there are Nct = 25 random, compressed

measurements taken in the time domain. The solution images are seen in Figure 26

for both COMP and CS, and perfect reconstruction is accomplished in both. To

check the importance of the length of p(t) with respect to the number of compressed

measurements, a large number of simulations were run to gather statistics. The EMD

is once again used to determine accuracy. Figure 27 shows plots based on the number

of compressed measurements. It is fairly obvious from Figure 27 that the EMD drops

significantly as the number of compressed measurements increases. Also, something

worth noticing, once Nct = 60, both algorithms, CS and COMP, perform relatively

equivalently. Since COMP is much more time efficient, there are certain situations

when COMP would be preferred over CS for this reason.

The same data can be looked at slightly differently in Figure 28, where the Np is

held constant for each plot, and the number of compressed measurements is analyzed.

Again, increasing the length of p(t) reduces the number of samples required to get

accurate recovery.
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Figure 26: Solution images with two compression based algorithms (a) COMP and

(b) CS.
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Figure 27: Comparing the required length of p(t) based on the number of random

samples desired.
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Figure 28: Comparing the required number of random time samples taken with the

given p(t) length.
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2.6 Conclusions

An efficient restructuring of the storage and application of the dictionary used in GPR

inversion algorithms has been discussed. The dramatic reduction in computation

times and storage constraints allows for previously unsolvable problems to be solved.

The computational reduction also increases the ability for these algorithms to be used

on small, mobile devices which are very common in landmine detection.
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CHAPTER III

INCREASING EFFICIENCY FOR THE EMI PROBLEM

The model used in the EMI system is more complicated than the point-target model

used in the GPR. With the ability of the model to extract more parameters than

just the location of a point reflector, the dimensionality of the EMI model scales up

quickly, so methods for dealing with the dimensionality need to be developed for the

imaging to be practical. With the scalability in mind, a change is proposed to the

fundamentals of the dictionary setup. As discussed in previous sections of this thesis,

each combination of parameters is stored in a single column of the dictionary ψt.

The amplitude of the response only represents the strength of the target and helps

determine its presence. There has been some preliminary work where additional

information can be stored in the amplitude of certain elements of a strategically

designed dictionary to help obtain parameter information without requiring further

parameter enumeration. Ekanadham et al. have shown a way to use a Taylor series

or a cosine representation of a signal to interpolate small shifts in the signal without

having to discretize the signal too finely [57]. Continuous parameter estimation is

effective because not only does it reduce the storage requirements to represent a

signal, but it can also reduce the modeling error. The modeling error reduction

comes when the measured signal is not exactly equal to one of the discretizations in

the parameter space, which is extremely common.

A new representation of the EMI data is proposed using a tensor representation,

which can be thought of as a “tensor amplitude” [48, 58, 59]. The remainder of this

chapter will be split into six sections. Section 3.1 shows how the “tensor amplitude”

is introduced in the EMI response. Section 3.2 discusses the issues that can arise

64



with the data-acquisition setup. Section 3.3 explains how the “tensor amplitude”

can be extracted using a semidefinite program. Section 3.4 and Section 3.5 show the

results of some small simulations and controlled laboratory experiments respectively.

Finally, a new sensing geometry is introduced in Section 3.6 and brief conclusions are

given in Section 3.7.

3.1 Model Design

The model design is ultimately the most important part of the process because it re-

lates the measurement process to the target parameters. The model needs to be able

to be applied efficiently, while still maintaining a high level of accuracy. The basis for

the model design in the EMI case can be found in [1, 4, 26, 60]. The data-acquisition

system used is an essential part of model design. Once it is known how the mea-

surements are going to be collected, it might still be necessary to approximate what

the responses will be when certain parameters are set. In this research the measure-

ments are acquired using one transmitter coil, and three receiver coils as discussed in

Chapter 1, and seen in Figure 3. This section will be split into two subsections; sub-

section 3.1.1 will explain how the model can be converted from the frequency domain

and into the discrete spectrum of relaxation frequencies (DSRF), and subsection 3.1.2

will explain how the dictionary using the DSRF can be dramatically simplified in a

computational sense with the use of a “tensor amplitude.”

3.1.1 Conversion to discrete spectrum of relaxation frequencies

The first step is to revisit the frequency domain response collected with the data-

acquisition system described in Chapter 1. The sensor position, ls, only varies in xs,

and the three receive coils are aligned in the y dimension to help with extracting the

3D location of the target, lt. The response is recorded in the frequency, ω, domain.

This acquisition leads to a system with measurements that depend on ls and ω. The

parameters to be extracted from the response are target location, lt = (xt, yt, zt);
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target orientation, ot = (αt, βt, γt); and target type. For small targets, a simple

dipole model can be used to represent the response of the system at coil c,

rc(ω, ls; lt,ot) = CgHc (ls − lt)RH(ot)M(ω)R(ot)f(ls − lt). (39)

where

M(ω) = D0Λ0 −
Nζ∑
k=1

Dk

(
jω/ζk

1 + jω/ζk

)
Λk (40)

=

Nζ∑
k=0

Dkp(ω, ζk)Λk.

All of this work is using the measurement sensor described in Figure 3, so c will

be 1, 2, or 3. The target type is embedded in the magnetic polarizability of the

target, and it contains a unique response for every different possible object. This

means creating a comprehensive dictionary is impossible, because there are an infinite

number of possible targets. The dictionary would have to be created for only the

highest probability targets. If a dictionary were to be created, as has been done

previously in this thesis, with the frequency response, the dictionary would be,

Ψκ
c (ω, ls; lt,ot) = gHc (ls − lt)RH(ot)M(ω)R(ot)f(ls − lt), (41)

where κ would be the specific target type. The model complexity scales up at a

dramatic rate determined by the number of measurements and parameters. It would

be on the order of N9 if each measurement and parameter is equally discretized where

the target type is assumed to be one of the parameters.

A specific target can be decomposed into a sum of electromagnetic dipoles, and a

graphical example of this decomposition can be seen in Figure 29. This is an impor-

tant property because it allows for complex targets to be generalized into something

common among all interesting targets. This is particularly interesting when using

dictionary matching to extract target parameters. By generalizing all of the targets,

a single dictionary for an electromagnetic dipole can be used, instead of needing to
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enumerate every possible frequency response of each individual target type. A huge

advancement in the representation of these types of targets is the transformation from

the frequency domain into the discrete spectrum of relaxation frequencies (DSRF).

Physically, the relaxation frequency is just the inverse of the relaxation time which is

the time that it takes for an object induced with an electromagnetic field to return

to steady state.

Figure 29: Landmine decomposed into electromagnetic dipoles.

The model, (39) and (40), can be reorganized into a sum of dipole form. The

target classification can be done separately once the ζk are estimated [21]. After

doing this reorganization,

rc(ω, ls; lt,ot) =

Nζ∑
k=0

CDkp(ω, ζk)g
H
c (ls − lt)RH(ot)ΛkR(ot)f(ls − lt)

=

Nζ∑
k=0

CDkp(ω, ζk)ac(ls; lt,ot,Λk) (42)

=

Nζ∑
k=0

υkc (ls; lt,ot,Λk)pk(ω, ζk),

the ω component is separated from the location and orientation components, and

p(ω, ζ0) = 1. Λk is a 3×3 real, diagonal, positive-semidefinite matrix. The values of

υkc become the coefficients of the dipole expansion and it is important to notice that υkc

67



is not a function of ζ or ω. Since υkc is not a function of frequency, this representation

can be used to image each relaxation frequency in the sum, independently, and the

dictionary does not need to be enumerated for each relaxation or combination of

relaxation frequencies.

The estimation of the DSRF is not part of this particular research, but an ex-

planation of how it is calculated is important because it is essential, and nontrivial.

The Nζ , (υkc (ls; lt,ot,Λk), ζk) pairs are computed using a method proposed by Wei

et. al. [21, 27]. The application that Wei et. al. addressed is determining the support

of the relaxation frequencies because it can help to classify a target. The classification

would most likely be combined and used with this research to locate, find the orien-

tation of, and classify a target. However, for this thesis, the concern is with locating

and finding the orientation of the target, not classifying. First, (42) can be rewrit-

ten as a matrix vector multiplication, for simplicity the non essential arguments to

the functions are going to be suppressed from the notation, this includes everything

except for, ω and ζ,

rc(ω) =

Nζ∑
k=0

υkc pk(ω, ζk)

rc(ω1)

rc(ω2)

...

rc(ωNω)


=



1 p(ω1, ζ1) p(ω1, ζ2) · · · p(ω1, ζNζ)

1 p(ω2, ζ1) p(ω2, ζ2) · · · p(ω2, ζNζ)

...
...

...
. . .

...

1 p(ωNω , ζ1) p(ωNω , ζ2) · · · p(ωNω , ζNζ)





υ0
c

υ1
c

...

υ
Nζ
c


(43)

rc = Pυc.

Since the model order of ζ is not generally known, the ζ space can be discretized to

cover the range of possible ζ values, and an over complete dictionary can be used to

find the support of ζk and the coefficients υkc . For a value M � Nζ , a new linear
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problem is set up,

rc(ω1)

rc(ω2)

...

rc(ωNω)


=



1 p(ω1, ζ1) p(ω1, ζ2) · · · p(ω1, ζM)

1 p(ω2, ζ1) p(ω2, ζ2) · · · p(ω2, ζM)

...
...

...
. . .

...

1 p(ωNω , ζ1) p(ωNω , ζ2) · · · p(ωNω , ζM)





υ̃0
c

υ̃1
c

...

υ̃Mc


(44)

rc = P̃ υ̃c.

In the new setup shown in (44), rc and P̃ are known, and υ̃c needs to be solved

for. The support of the Nζ non-zero values of υ̃c correspond to the column space

of P̃ that is equivalent to P and it gives the support of ζ. The amplitudes of the

non-zero support of υ̃c give the values for υ. The inversion process that attempts to

extract these parameters is done by imposing a non-negative constraint on υ̃c. The

optimization for the inverse becomes,

arg min
υ̃c

∥∥∥∥∥∥∥
 <{rc}
={rc}

−
 <{P̃ }
={P̃ }

 υ̃c
∥∥∥∥∥∥∥

s. t. υ̃c ≥ 0.

The final step in the inversion process is to interpolate. As with any dictionary

matching technique where a continuous space is discretized, there is going to be some

off-grid error caused by the fact that the actual ζ is most likely not identically on

one of the grid points. The off-grid error generally presents itself by splitting the

amplitude of the actual relaxation frequency between its two nearest neighbors. The

grid for ζ is done on a log scale, which leads to an interpolation for the actual values

as,

υ̃intpc = υ̃ac + υ̃bc (45)

log(ζintp) = log(ζa) +
υ̃bc

υ̃ac + υ̃bc
log

(
ζb
ζa

)
. (46)
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Now that the measurements can be transformed into the DSRF, the coefficients

υkc (ls; lt,ot,Λk) for each ζk, can be imaged to obtain the location and orientation pa-

rameters of the target. The response model to image the coefficients of each relaxation

frequency is now,

υkc (ls; lt,ot,Λk) = Dac(ls; lt,ot,Λk). (47)

The DSRF coefficients are no longer a function of ω or target type, and if each υkc is

imaged independently, then the storage order is reduced to N7. The representation

used in (47) has been inverted using an explicit dictionary [60]. The sample reduction

by going from frequency domain to DSRF of a three relaxation target can be seen in

Figure 30.
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(a)

(b)

Figure 30: Measurements of a three relaxation target in (a) frequency domain and

(b) DSRF.
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3.1.2 Tensor amplitude

The proposed changes to modeling and inverting υkc (ls; lt,ot,Λk) are done with respect

to the rotation matrices and Λk. The rotation matrices and Λk can be rewritten as

a tensor

T (ot,Λk) = RH(ot)ΛkR(ot) =


t1 t4 t6

t4 t2 t5

t6 t5 t3

 . (48)

The substitution in (48) makes

ac(ls; lt,ot,Λk) = gHc (ls − lt)T (ot,Λk)f(ls − lt). (49)

The significance of this substitution is that if T (ot,Λk) can be solved for directly,

there is no need to enumerate the orientation parameters, saving three dimensions

of discretization. T (ot,Λk) is also real and positive semidefinite (PSD) which is

important when designing the inversion. Linear algebra can be done to reorganize

(49) into a vector-matrix multiplication. Since f = [fx, fy, fz]
H and g = [gx, gy, gz]

H

are 3D vectors, and since T (ot,Λk) is symmetric, ac can be rewritten as

ac(ls; lt,ot,Λk) = [gxfx, gyfy, gzfz, gxfy + gyfx, gyfz + gzfy, gxfz + gzfx]



t1

t2

t3

t4

t5

t6


= ψH

c (ls; lt)t.
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The next step is to vectorize the measurement variable, ls. This is done simply by

stacking the ψH
c for every ls,

Ψc(lt) =



ψH
c (ls

1; lt)

ψH
c (ls

2; lt)

...

ψH
c (ls

Nls ; lt)


. (50)

The steps taken to create (50) must be done for all three different receive coils,

Ψ(lt) =


Ψ1(lt)

Ψ2(lt)

Ψ3(lt)

 , (51)

for each target location parameter. Therefor, Ψ(lt) is size 3Nls×6, and Nlt of them

must be stored for a total storage burden of 18NlsNlt . This is much smaller than

3NlsNltNotNΛ, which is the storage requirements if the tensor representation is not

used and full enumeration of the orientation parameter is needed.

Similar steps need to be taken with the measurements to create a measurement

vector that matches the rows of Ψ(lt). This is simple to do by vectorizing all of the

measurements for the three coils. If t is now a length 6Nlt vector, the corresponding

response model equation becomes

υk = Ψtk, (52)

for the kth relaxation frequency, where

Ψ =

[
Ψ(1) Ψ(2) · · · Ψ(Nlt)

]
. (53)

A key takeaway from (52) is that Ψ does not depend on the specific relaxation fre-

quency indexed by k, which allows for each measured relaxation frequency to be

measured using the same dictionary. The dictionary does not need to be enumerated
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for multiple relaxation frequencies. However, each relaxation frequency must be im-

aged independently and the information combined somehow to help select the target

parameters.

3.2 Data-acquisition Deficiencies

There are a few issues with this particular dictionary that make it rather difficult to

invert. The creation of the dictionary highlights some of the deficiencies with the data

acquisition and suggests some improvements that need to be made to more accurately

image the targets. Also, the target response for a target at different positions changes

smoothly, so the response from similar targets within a close proximity will be highly

correlated, which can cause issues in the detection process. However, when using the

DSRF representation of a target, the times when there are two closely located targets

is limited, because it is rare for the targets to share relaxation frequencies, and be

similarly oriented.

3.2.1 Measurement offsets

The EMI measurement system measures an offset that must be removed before pro-

cessing the data. The offset is due to fixed hardware offset issues, drift, and from the

response of the soil. The offset can be mostly removed by convolving the data with

a zero-mean filter with respect to ls. The filter can be constructed using an SVD

process. First, the response at a receive coil must be enumerated for all possible lt,

Ψc =

[
Ψc(1) Ψc(2) · · · Ψc(Nlt).

]
. (54)

Then the singular value decomposition (SVD) of Ψc is taken,

UDV H = SV D(Ψc). (55)

The first column of U , u1, corresponding to the largest singular value of Ψc, is used

as the filter coefficients. Before u1 can be used as a finite impulse response (FIR)
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filter, its mean must be removed, so that when it is used as a downrange filter during

data collection, the DC offset is eliminated. An example of the u1 that is used with

this application can be seen in Figure 31.

0 20 40 60 80 100 120
−0.2

−0.1

0

0.1

0.2

Downrange index

Figure 31: Downrange filter u1 used to eliminate the DC offset in collected EMI

measurements.

The linear equation from (52) can be rewritten with the filter applied as a convo-

lution,

u1∗υk = Ψu1t
k, (56)

for the kth relaxation frequency, where

Ψu1 =

[
u1∗Ψ(1) u1∗Ψ(2) · · · u1∗Ψ(Nlt)

]
. (57)

In other words, the downrange filter, u1, is being applied to each enumerated column

of the dictionary as the final step in dictionary creation.

3.2.2 Problems with co-linear receivers

The acquisition system does a very poor job of sensing targets that have tensor

components perpendicular to the magnetic field. This can easily be explained by an

example. The simplest EMI target is a loop of wire which has a tensor that can be
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written as the outer product of the unit vector normal to the plane of loop: Λ = n̂n̂H .

When this unit vector is perpendicular to the magnetic field for the transmitter and/or

receiver, the sensor will be essentially “blind” to the loop. In the case of the current

acquisition system, this corresponds to targets with electromagnetic dipoles directed

along the y-axis. An example of the measured response from a target rotated so

that its dipole equivalent is y and z directed can be seen in Figure 32. The plots

are the stacked downrange responses for each of the three receive coils. The stacked

responses can be seen clearly in Figure 32 (b) where the response from the first receive

coil comprises the indices from 1 to 201, the second coil comprises the indices from

202 to 402, and the third coil comprises the indices from 403 to 603.

0 200 400 600
−2

−1

0

1

2
·10−6

↓ c1 ↓ c2 ↓ c3

Stacked Downrange Index

υ

0 200 400 600
−4

−2
0

2

4

6

8
·10−4

↓ c1

↓ c2

↓ c3

Stacked Downrange Index

(a) (b)

Figure 32: Stacked receive coil measurements for (a) an αt = 90◦ and βt = 90◦

oriented target, y directed, and (b) an αt = 0◦ and βt = 0◦ oriented target, z directed.

The response in (a) is two orders of magnitude smaller and is essentially receiver noise.

The y directed target in Figure 32(a) is essentially small measurement noise with-

out any real structure, and Figure 32(b) has very well defined structure and the target

can be seen in all three coils. A solution to this problem would be to augment the
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system with another receiver that would have a coil directed perpendicular to the

current coils so that the y direction is not almost invisible. A second possible solu-

tion would be to take a second pass over the target, changing the orientation of the

receiver coils after each pass to achieve a similar result to adding additional coils but

without having to make hardware modifications.

3.2.3 Problems with coherence

The coherence of the dictionary with respect to closely spaced targets is a serious

problem. When high spatial resolution is required, a high SNR is required to distin-

guish one location from the other. The high correlation factor can be seen directly

from the dictionary elements. The concern is distinguishing between two simulated

responses of the same target at the same orientation, and different locations. A small

toy problem was created to evaluate this issue and a dictionary was created using

(56) with a fixed tensor value

T ([0, 22.5◦, 0], diag(0.5, 0, 1)) = RH([0, 22.5◦, 0]) diag(0.5, 0, 1)R([0, 22.5◦, 0])

=


0.38 0.92

0 0

0.92 −0.38


 1 0

0 0.5




0.38 0.92

0 0

0.92 −0.38


H

=


0.57 0 0.18

0 0 0

0.18 0 0.93

 ,
and with simulated target locations between lt = (0,−6, 4.5) and lt = (0, 6, 11.5)

using a 2 cm discretization in yt and 1 cm discretization in zt. A coherence matrix

was created to check the euclidean distance between all of the dictionary columns.

The minimum distance to each simulated location is shown in Table 4 where the

values in the matrix are calculated by∥∥Ψ(lt
1)−Ψ(lt

2)
∥∥

2
. (58)
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Table 5 shows the same data, but in percentage instead of absolute form,∥∥Ψ(lt
1)−Ψ(lt

2)
∥∥

2∥∥Ψ(lt
1)
∥∥

2

. (59)

No matter how the dictionary is viewed, there are simulated target locations that

look very similar to others, and if even a small amount of noise is added, differenti-

ating between certain dictionary elements is almost impossible. This can be further

visualized in Figure 33. Each plot shows a simulated target response at a fixed yt

position and changing zt. Locating the targets is generally accomplished by analyzing

the relative strength of the measured signal at each of the three coils. This is obvious

when the target location shifts in y, as the ratio of the amplitudes change dramati-

cally. However, when changing in depth, zt, if there is enough noise present, then a

scaled version of the same response at a different depth could be easily misidentified.

This also becomes a problem when using inversion techniques like OMP or CS that

require a user-specified error parameter. If this parameter is not set exactly right,

the estimated locations can change quite dramatically.

Table 4: Absolute minimum distance between one dictionary location and the rest

of the dictionary locations at a specific orientation. (10−3)

zt\yt −6 cm −4 cm −2 cm 0 cm 2 cm 4 cm 6 cm

4.5 cm 1.01 0.50 0.15 0.15 0.15 0.50 1.01

5.5 cm 0.69 0.38 0.15 0.15 0.15 0.38 0.69

6.5 cm 0.47 0.28 0.13 0.13 0.13 0.28 0.47

7.5 cm 0.32 0.20 0.11 0.11 0.11 0.20 0.32

8.5 cm 0.22 0.15 0.09 0.09 0.09 0.15 0.22

9.5 cm 0.15 0.11 0.07 0.07 0.07 0.11 0.15

10.5 cm 0.11 0.08 0.05 0.05 0.05 0.08 0.11

11.5 cm 0.08 0.06 0.04 0.04 0.04 0.06 0.08
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Table 5: Percentage of minimum distance between one dictionary location and the

rest of the dictionary locations at a specific orientation.

zt\yt −6 cm −4 cm −2 cm 0 cm 2 cm 4 cm 6 cm

4.5 cm 30.92% 14.54% 3.98% 3.89% 4.00% 14.57% 30.91%

5.5 cm 30.41% 16.14% 5.80% 5.68% 5.82% 16.18% 30.41%

6.5 cm 29.53% 16.96% 7.42% 7.28% 7.43% 16.99% 29.52%

7.5 cm 27.87% 17.24% 8.72% 8.57% 8.73% 17.27% 27.91%

8.5 cm 26.08% 17.16% 9.71% 9.56% 9.72% 17.19% 26.11%

9.5 cm 24.35% 16.85% 10.44% 10.30% 10.45% 16.88% 24.38%

10.5 cm 22.71% 16.41% 10.94% 10.82% 10.95% 16.43% 22.74%

11.5 cm 21.19% 15.89% 11.27% 11.17% 11.28% 15.91% 21.21%

3.3 Inversion Algorithm

The inversion algorithm is the next important step after model creation. There are

two different ways that this type of problem can be inverted. The first is using a

large, block-structured tensor problem to simultaneously extract the location and

the tensor in a single optimization problem. An example of creating a large, block-

structured convex optimization problem using semidefinite programming (SDP) can

be found in [48]. The second inversion method is to split the problem into two parts,

a location-estimation stage, followed by a tensor-estimation stage. The separability

of this problem allows for a more time and storage efficient algorithm to be used to

extract a rough estimate for the target location, and then the second stage refines the

location estimate, and extracts the tensor.

3.3.1 Large-block SDP

The ideal optimization problem is one where all the parameters can be extracted

in a single step. The large-block SDP takes this approach. This will allow for the
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Figure 33: Target responses for (a) yt = −6 cm (b) yt = 0 cm (c) yt = 6 cm.
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convex optimization problem to use the inherent sparsity in the number of targets to

its advantage in finding the location. The vector t now becomes a length 6Nlt sparse

vector, and

T =



T 1(ot,Λk) 0 0 0

0 T 2(ot,Λk) 0 0

0 0
. . .

...

0 0 · · · TNlt
(ot,Λk)


. (60)

All of the previous properties still apply, T is symmetric, T�0, and can be constructed

directly from the solution vector t. The PSD property, T�0, follows directly from

the fact that for each sub matrix T lt(ot,Λk)�0. It is obvious in the block-diagonal

structure of T , that the eigenvalues of T are the enumeration of all the eigenvalues

from the individual T lt . It follows directly that if there exists a T lt that has a negative

eigenvalue, then T must also have the same negative eigenvalue. Also, if T contains

at least one negative eigenvalue, then there must exist at least one T lt that has the

corresponding negative eigenvalue. This proves that T�0 if and only if all T lt�0. To

start the imaging process, the response model should be slightly updated to account

for unknown noise. The response model in (56) will be slightly changed by including

an additive noise vector, η, to form the system measurements

mk = Ψtk + η, (61)

where mk is now the measurement vector received at the kth relaxation frequency,

and tk contains the tensor elements that need to be solved for. The subscript corre-

sponding to the zero-mean filter is suppressed for now on to keep the notation cleaner.

The optimization problem for the block-structured tensor is

min tr(T̂
k
)

s. t. T̂
k � 0 (62)

‖mk −Ψt̂
k ‖2< ε.
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Using the trace of T̂
k

is a relaxation of the rank minimization problem, which is de-

sirable because we want a solution to T̂
k

that is going to be very low rank, generally

between one and six [40]. There is some legitimate concern that this problem could

become extremely large, since T̂
k

is of size 3NxNyNz×3NxNyNz. The storage re-

quirements for T̂
k

can be slightly alleviated since it is only a five diagonal, symmetric

matrix, and the trace is only concerned with the main diagonal. The known structure

of T̂
k

allows many storage-efficient techniques to be used to keep complexity down.

The low-rank matrix approximation is enforcing a sparsity constraint on the number

of targets. The sparsity constraint on the targets is enforced because the number

of eigenvalues directly corresponds to the number of electromagnetic dipoles present

in the specific relaxation frequency. It can be seen from Figure 29 that each target

can be dissected directly into a linear combination of electromagnetic dipoles, and by

imaging the dipoles, more complex targets can be extracted.

3.3.2 Two-stage inversion

The two main parameters that need to be extracted are the tensor and the location.

To save computation, the location can be found first, and then the tensor would be

extracted at that location to produce the final solution [59]. As was done in [60], each

individual relaxation frequency of the measurement will be imaged independently.

The first stage of the inversion will be to estimate the location, lkt , of the relaxation

frequency. This is done by solving many small, least-squares problems for each possi-

ble target location. The least-squares solution vector, t̂
k
(lt), for each target location

becomes

t̂
k
(lt) = (Ψ(lt)

HΨ(lt))
−1Ψ(lt)

Hmk. (63)

Now that there is an approximation for t̂
k

for all lt, the particular lt that minimizes

the residual with mk must be found,

l̂
k

t = argmin
lt

‖Ψ(lt)t̂
k
(lt)−mk‖2. (64)
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The iterative least-squares process shown in (63) and (64) can be sped up by comput-

ing the least-squares matrices offline, and concatenating them into one large matrix,

similar to Ψ.

The least-squares solution will provide an estimate for the tensor as well, but

the estimate will be poor since least-squares cannot constrain the tensor sufficiently.

To get a better estimate, the tensor must be constrained to be positive-semidefinite

(PSD). In addition, the sensor may be “blind” to some tensor components making the

inversion ill conditioned. Constraining the eigenvalues of T can be used to reduce the

influence of the “blind” tensor components. On the other hand, it would be preferable

to have a new acquisition system design that would not have these deficiencies. Using

a small SDP will constrain the tensor to being PSD, and minimizing the trace, a

relaxation on rank minimization, will constrain the eigenvalues [40]. The optimization

problem becomes,

min tr(T̂
k

l̂t(ot,Λk))

s. t. T̂
k

l̂t(ot,Λk) � 0 (65)

‖mk −Ψ(l̂t
k
)t̂k ‖2< ε,

where t̂k is equal to the six independent values of T̂
k

l̂t(ot,Λk), and l̂
k

t is from (64).

The selection of ε can be a difficult task. Since the optimization problem in (65) is

relatively small, only six unknowns from the 3×3 symmetric T̂
k

l̂t(ot,Λk), and can be

computed quickly, ε is chosen using an L-curve analysis that was discussed in Chap-

ter 1. An example for an L-curve used for this problem can be seen in Figure 34. The

trace of the solution is used as the measure to make sure the chosen ε is not over fitting

the noise. Once an approximation is made for the tensor, the orientation of the target,

and its symmetry can be extracted from T̂
k

l̂t(ot,Λk) by doing an eigendecomposition.

The eigenvectors correspond to the direction of each axis of magnetic polarizability,

and each eigenvalue corresponds to the strength of that axis. For example, a dipole
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Figure 34: L-curve for ε selection.

will have a single eigenvalue, a sphere will have three equal eigenvalues, and a cylinder

will have two equal eigenvalues and one non-equal eigenvalue.

The entire process from (63) to (65) is repeated for each individual relaxation

frequency.

3.4 Simulations

Two simple experiments were run to test the method. The simulation treats a very

small 2D problem, but can be expanded easily. Only one relaxation frequency is

present, which will allow for the suppression of the k notation, and only two spatial

dimensions are considered, lt = (yt, zt), Nyt=7 at 2cm spacing, and Nzt=8 with 1cm

spacing. Also, only two angles ot = (αt, βt) are used for orientation. The inversion

algorithm used for these simulations is the large-block SDP. A consideration for setting

up these problems is how to choose the ε value in (62). The SNR for each experiment

is set at 35dB. For these experiments, a starting point for ε is selected to be the

following simple estimate of the noise. It is reasonable to assume that most of the

downrange measurements will contain no target, so the standard deviation is taken

in this estimated target-less area to get the estimated noise amplitude. Then an L-

curve, like the one in Figure 34, is made by varying ε below and above the starting ε.

The value of ε is then selected at the knee of the curve.

The first experiment consists of a single target located at lt = (0, 6.5) cm, with
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a 2-dimensional EM symmetry λ = (0.5, 0, 1), where Λ = diag(λ), oriented at

ot = (0◦, 22.5◦). The orientation for the target is based on the principle axis of

the electromagnetic field for this experiment, which is the z axis. This target is

represented by the tensor

T =


0.57 0.00 0.17

0.00 0.00 0.00

0.17 0.00 0.92



=


0.92 0.38

0 0

−0.38 0.92


 0.5 0

0 1




0.92 0.38

0 0

−0.38 0.92


H

when written as an eigenvalue expansion. After solving (62) the estimated block-

tensor corresponded to the correct location, and the estimated tensor is

T̂ =



0 0 · · · 0 · · · 0

0 0 · · · 0 · · · 0

0 0
. . .

...
. . .

...

0 0 · · · T̂ lt(ot,Λ) · · · 0

0 0
. . .

...
. . .

...

0 0 · · · 0 · · · 0


.

There is only a single nonzero block in T̂ , the location of the block corresponds to

the correct location lt = (0, 6.5) cm. The location estimation image can be seen

in Figure 35, which is created by taking the trace of each block T̂ lt(ot,Λ) in the
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estimated block-tensor T̂ . The estimated T̂ lt(ot,Λ) has value of

T̂ lt(ot,Λ) =


0.57 0.01 0.20

0.01 0.00 0.00

0.20 0.00 0.89



=


0.90 0.42

0.03 0.00

−0.42 0.90


 0.48 0

0 1




0.90 0.42

0.03 0.00

−0.42 0.90


H

.

The eigenvalues of Λ are normalized such that the largest eigenvalue is one. The plot

of the actual electromagnetic field symmetry and the estimated electromagnetic field

symmetry can be seen in Figure 36. The estimation of the tensor is quite accurate

because λ(1) has less than a 5% error, and λ(2) is exact. The orientation of the

target is determined by evaluating the direction of the eigenvectors of T̂ lt(ot,Λ).

The direction of the eigenvectors can be calculated using simple trigonometry. The

first step is to calculate the yaw, α, which can be done by evaluating the x and y

values of the eigenvectors. For the first eigenvector, ê1, the x and y coordinates are

(0.90, 0.03) and the yaw is calculated to be

α̂e1 =
180

π
arctan(

y

x
) (66)

=
180

π
arctan(

0.03

0.90
) = 1.91◦. (67)

For the second eigenvector, ê2, the x and y coordinates are (0.42, 0.00) and the yaw

is calculated to be

α̂e2 =
180

π
arctan(

0.00

0.42
) = 0◦. (68)

The next step is to calculate the pitch, β, which can be done by evaluating the z

values and the projection onto the xy plane of the eigenvectors. The xy projection

value is simply

xy =
√
x2 + y2. (69)
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For the first eigenvector, ê1, the (z, xy) coordinates are (−0.42, 0.90) and the pitch is

calculated to be

β̂e1 =
180

π
arctan(

√
x2 + y2

z
) (70)

=
180

π
arctan(

0.90

−0.42
) = −64.98◦. (71)

For the second eigenvector, ê2, the x and y coordinates are (0.90, 0.42) and the pitch

is calculated to be

β̂e2 =
180

π
arctan(

0.42

0.90
) = 25.02◦. (72)

Since ê2 is the principle vector, the estimated orientation of the target pitch is 25.05◦.

This is reinforced by evaluating the secondary eigenvector ê1, which is pitched−64.98◦

off the z axis, equivalent to 125.02◦, or pitched 25.02◦ off the xz-plane. The total

angle error can be calculated based on the principle axis. The angle error between

two vectors is

ot
err =

180

π
arccos(

ê1
He2

‖ê1‖ ‖e2‖
). (73)

For this particular simulation the estimate matches within 2.5◦, which is an acceptable

margin.
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)

Figure 35: Location estimate for a single relaxation with 2D symmetry and true

location of lt = (0, 6.5) cm.
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Figure 36: Orientation and symmetry of the electromagnetic fields of the estimated

and actual target.

The second experiment consists of two targets located at lt
1 = (0, 6.5) cm and

lt
2 = (−6, 7.5) cm, with EM symmetries λ1 = (0, 0, 1) and λ2 = (1, 0, 0), both are
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oriented at ot = (45◦, 22.5◦), and represented with tensors

T 1 =


0.07 −0.07 0.25

−0.07 0.07 −0.25

0.25 −0.25 0.85



=


0.27

−0.27

0.92


[

1

]
0.27

−0.27

0.92


H

,

and

T 2 =


0.42 −0.42 −0.25

−0.42 0.42 0.25

−0.25 0.25 0.14



=


−0.65

0.65

0.38


[

1

]
−0.65

0.65

0.38


H

,

The estimated tensor corresponded to the correct locations again, the location esti-

mation image can be seen in Figure 37, and the estimated tensors are

T̂ 1 =


0.41 −0.42 −0.25

−0.42 0.42 0.25

−0.25 0.25 0.15



=


0.28

−0.26

0.92


[

0.98

]
0.28

−0.26

0.92


H

,
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and

T̂ 2 =


0.08 −0.07 0.26

−0.07 0.07 −0.24

0.26 −0.24 0.85



=


−0.64

0.65

0.39


[

1

]
−0.64

0.65

0.39


H

.

Again, the estimates of the tensors are quite accurate: λ1 has less than a 2% error,

and λ1 is exact. The orientation estimate was even more accurate than the first

simulation with both targets being oriented within 1◦ of the actual orientation.
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Figure 37: Location image for two targets at a single relaxation frequency.

3.5 Laboratory Experimental Results

A few different laboratory experiments have been run to show the validity of the

method proposed in this chapter. The inversion technique that will be used is the two-

stage inversion. The two-stage inversion is used because of its efficient computation,

and the fact that it is known that only a single target is being imaged at a time. The

experiments were performed in a lab, where a target is held above a sensor like the
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one in Figure 38(b) at 21 different locations and 15 different orientations [1,61]. The

orientation combinations are only varied in the αt and βt angles, and the location

combinations are only in yt and zt, xt = 0 cm. The targets are then scanned at

Nls = 201 different downrange locations and data is collected at Nω = 21 wideband

frequencies. The frequency response measurements are not used directly, but are

transformed into the DSRF in the same steps that were done to create the dictionary

in Section 3.1, and each relaxation frequency is imaged separately.

(a) (b)

Figure 38: Experiment setup. (a) Automated translational and rotational axes and

(b) EMI sensor used with one transmitter coil and three receiver coils.

The dictionary is built to find targets between lt = (−10,−30, 4.5) cm and lt =

(10, 30, 29.5) cm with a step size of (0.5, 2, 1) cm, making Nlt = 16926. This makes the

full dictionary size, 3Nls×6Nlt ≈ 603×(1×105), which is approximately 250 Mbytes.

If the tensor representation is not used, and a 5◦ sampling is required in the dis-

cretization of the orientation, the size would be 3Nls×NotNltNΛ ≈ 603×(1×109), or

approximately 900 Gbytes.

There are four different targets used. The first is a target created for its simplicity

and is just a metal loop, which creates a single-dipole response. The second is three

metal loops organized orthogonal to each other to create a response that contains

three dipoles all perpendicular to each other in 3D space. The third, target A, is
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an actual landmine with two relatively strong dipoles oriented in the same direction.

The final target, target B, is a landmine that has a very complicated response with six

relaxation frequencies most having several components in the tensor. The response

for target B is only known empirically.

3.5.1 Single-loop target

The single-loop target is used as a benchmark because its response is strong, clear, and

simple. If the algorithm is not able to image the single-loop target, then the chances

of getting accurate inversions with more complex targets are low. To do a baseline

test, all 315 different parameter combinations are imaged. A few examples of location

extraction for the single-loop target can be seen in Figure 39. With ot = (45◦, 45◦)

and the target at a relatively shallow depth of 7.5 cm, the locating of the relaxation

frequency is perfect. When ot = (90◦, 90◦), as is shown in Figure 39(d),(e), and (f),

the locating of the relaxation frequency is much less accurate, and when yt = 0 cm,

the estimated target location is not close. The difficulty of finding targets in the

y-direction is due to the co-linear receivers as discussed in subsection 3.2.2. The off-

center targets are not perfect, but they are not nearly as bad as the centered target,

meaning that even if only a little, some y directed information can be extracted in

certain situations.
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Figure 39: Location plots for single metal loop target with (a), (b), (c) αt = 45◦ and

βt = 45◦ and (d), (e), (f) αt = 90◦ and βt = 90◦.

Some examples of extracted target orientation information for the single-loop tar-

get can be seen in Figure 40. The estimation is not perfect, but it is acceptably

close for detection purposes. The estimated values are also not restrained to a dis-

cretization grid, outside of rounding decimal values. The fact that the discretization

is avoided in the orientation space eliminates the “off-grid” modeling error, again

outside of rounding the decimal values. The orientation information for the single

relaxation frequency is also shown in a slightly different visualization in Figure 41,

which draws out the 3D symmetry and orientation of the relaxation frequency at

different parameter combinations. The orientation and symmetry plots are done by

creating an ellipsoid with axes in the direction of the estimated tensors eigenvectors
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and axes lengths set by the corresponding eigenvalues. The single-loop target will

have a dipole symmetry, so a 3D line is what is expected in the plots in Figure 41.

The first row of images, show the 2D projections of the 3D symmetry for a case

where the estimated symmetry is extremely accurate. The second row, however, has

the target at y = 0 cm with ot = (90◦, 90◦), and no estimate could even be made for

the tensor. However, the third row shows that when the target is moved off-center

to y = 10 cm and kept at ot = (90◦, 90◦), the symmetry is actually fairly accurately

recovered.
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Figure 40: Angle plots for single metal loop target with yt = 0 cm and zt = 8.5 cm.
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Figure 41: Orientation of the electromagnetic field of the single metal loop for (a),

(b), (c) yt = 0 cm, zt = 7.5 cm, αt = 45◦, and βt = 45◦; (d), (e), (f) yt = 0 cm,

zt = 7.5 cm, αt = 90◦, and βt = 90◦; (g), (h), (i) yt = 10 cm, zt = 7.5 cm, αt = 90◦,

and βt = 90◦.

Now that a few experiments have been individually examined, more data is needed
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to analyze the detection on a slightly more general scale. The error histogram de-

scribed in subsection 1.4.2 will be used to analyze performance. For these images, 1

corresponds to 100% errors, 0 corresponds to no errors. In the case of the location,

if the euclidean distance between the estimated location and the actual location is

more than 5 cm, it is counted as an error. The number of errors is tabulated for all

orientation combinations at each location and then converted to an error percentage.

Next, the 2D error histogram is shown in Figure 42(a). The same error calculation

is done with each orientation for all locations, using a threshold of 22.5◦. The error

histogram for the orientations is shown in Figure 42(b).
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Figure 42: Error histograms for the single-loop target for (a) location and (b) angle.

The number of distance errors for these locations is extremely low using the 5 cm

threshold. The angles however, start to become more difficult to image as they

approach αt = 90◦ and βt = 90◦ as has been anticipated throughout this chapter.

Again, the detection difficulty comes from the way that the sensors are set up, and

the way that measurements are taken. Dipoles that are directed only in the y direction

produce extremely weak measurements that are nearly impossible for the sensor to

distinguish over the noise. An example of a y-directed measurement was shown back

in Figure 32(a), whereas a measurement with the target dipole directed perpendicular
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to the sensor can be seen in Figure 32(b).

3.5.2 Triple-loop target

The triple-loop target is used to show how a single target, with multiple relaxations,

would be imaged. The support of the DSRF for the triple-loop target can be seen

in Figure 43. The three relaxation frequencies will be imaged separately in the same

manner that the single relaxation frequency was imaged in the previous subsection.

The triple-loop target is three single-loop targets placed together each in a direction

of one of the main axes. For the notation, the subscript t will still correspond to the

target as a whole, if the subscript is a number, for instance, α1, the number corre-

sponds to the relaxation frequency, k = 1. The locations should all be collocated for

the targets in the experiment. In terms of the relaxation frequencies, k = 1 corre-

sponds to the z-directed relaxation and the principle axis, the one that determines the

overall orientation of the target. In other words, ot = o1. The relaxation k = 2 has a

relative orientation with respect to ot such that o2 = (αt + 90◦, 90◦). The relaxation

k = 3 has a relative orientation with respect to ot such that o2 = (αt, βt + 90◦).
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0

0.2

0.4

0.6
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υ

Figure 43: DSRF for triple-loop target, k = 1, 2, 3 from left to right.

A few individual experiments are run to show location estimation in Figure 44.

The triple-loop target has three relaxation frequencies, so the different markings on
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the plots correspond to the estimated location of each individual relaxation frequency.

It is expected that all the relaxation frequencies would be located in the same place

because they are parts of the same target. The first row of Figure 44 shows very

accurate location information for all three relaxations, because none of the three

are in (90◦, 90◦). However, in the second row, k=1 happens to be at (90◦, 90◦) and

the location estimation is about as accurate as it was in the single-loop case. The

advantage to having multiple relaxations in one target is that even if one component

is difficult to image, the other components may not be, as can be seen by the imaging

accuracy of k=2 and k=3 in the second row of Figure 44. While it is not being done

here, there may be a way to intelligently cluster the location information of all the

components to get a more accurate estimation of target location.
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Figure 44: Location plots for triple-loop target with (a), (b), (c) αt = 45◦ and

βt = 45◦ and (d), (e), (f) αt = 90◦ and βt = 90◦.

A few individual experiments are run to show angle estimation in Figure 45. The

three separate relaxation frequencies are oriented orthogonal to each other in 3D. The

angle plots can be slightly misleading if read incorrectly. For example, in Figure 45(a)

the estimation for k=1 does not look visually close to the actual target orientation.

However, with a β1 error of only about 10◦, having an error in α1 will not contribute a

large error in the 3D angle because it is still relatively close to (0◦, 0◦). The estimation

for o2 should be (90◦, 90◦), but again that orientation is difficult to estimate correctly

so an error there is expected. The estimation for o3 should be (0◦, 90◦) and it is

accurately estimated. In Figure 45(b) the target is oriented at a favorable (45◦, 45◦),

which means that none of the relaxations will be at (90◦, 90◦), and the estimations

99



for all relaxations are acceptably close to the actual. Finally, in Figure 45(c) the

estimation of a target at (90◦, 90◦) is examined. The results should be very similar to

the case in Figure 45(a), except the relaxations have all simply swapped orientations.

Now that k=1 has an orientation of (90◦, 90◦), it has similar error as to k=3 in

Figure 45(a). The other two relaxations have been accurately estimated as expected.
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Figure 45: Angle plots for triple-loop target with yt = 0 cm and zt = 8 cm.

The orientation information for the triple-loop target is shown in Figure 46 through

plotting the symmetry and orientation just like was done in Figure 41. Again, the

three relaxations are dipoles, and have one dimensional symmetries. Figure 46 shows

a single experiment. The first row of Figure 46 corresponds to k=1, and the re-

laxation orientation is shown to match very closely to the target orientation. The

second row of Figure 46 corresponds to k=2. The pitch, β2, does not change by the

rotations made in this experiment, and this is shown by having no z component in

k=2. The yaw, α2, which should have a value of α2 = 90 + αt, is shown to be close

to perpendicular to the actually target symmetry in Figure 46(e), which is what is

expected. Finally, the third row of Figure 46 corresponds to k=3. Remember that

o3 = (αt, βt+ 90), so the xy-plane should be the same for the estimate and the actual

100



target, but the estimated should be perpendicular to the actual for the zy-plane and

the zx-plane, and that is what is observed.
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Figure 46: Orientation of the electromagnetic field of the triple-loop for yt = 0 cm,

zt = 7.5 cm, αt = 45◦, and βt = 45◦; (a), (b), (c) k = 1, (d), (e), (f) k = 2, and (g),

(h), (i) k = 3.

The location and angle error histograms for the triple-loop target can be seen in
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Figure 47. The locations have acceptably low probabilities of error, about equivalent

to the ones calculated for the single-loop target. The angles on the histogram axes

correspond to the orientation of the target as a whole, not each individual relaxation

frequency. Changing the pitch of the target does not change the pitch of the dipole

corresponding to the k=2 as was previously discussed, and this can be seen by the

rather uniform error down the pitch axis of Figure 47(d). Also the target orientation

αt = 0 corresponds to the heaviest amount of errors for k=2 and that is because again

when αt = 0, α2 = 90.
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Figure 47: Error histograms for the triple-loop target for (a) location at k = 1, (b)

angle at k = 1, (c) location at k = 2, (d) angle at k = 2,(e) location at k = 3, and

(f) angle at k = 3.
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3.5.3 Target A

Target A is an actual landmine that has a relatively strong response and two re-

laxations, both in the principle direction of the target. Having multiple relaxations

again can give more opportunity to correctly estimate the target parameters. The

DSRF for target A can be seen in Figure 48. Again, this target only has dipoles in

its response, making the symmetries simple, and the ranks of the tensors 1.

2 3 4 5 6 7
0

0.2

0.4
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υ

Figure 48: DSRF for target A, k = 1, 2 from left to right.

A few individual experiments were run to evaluate the estimation accuracy just like

what was done with the metal-loop targets. The individual location estimation plots

can be seen in Figure 49. When the target is relatively shallow and the orientation

is not (90◦, 90◦), as is the case in the first row of Figure 49, the location estimation

is accurate. Once the target is turned to be at (90◦, 90◦), the location estimation is

not reasonable, as is seen in the second row of Figure 49. The angle estimation plots,

Figure 50, show more of the same trends that were present in metal-loop experiments.

The angle estimations are fairly accurate in the examples shown when ot 6= (90◦, 90◦).

When ot = (90◦, 90◦), as is the case in Figure 50(c), the estimate is again inaccurate.

The symmetries and orientations are again visualized in the plots in Figure 51. Both

relaxation frequencies plotted show the dipole symmetry, and an accurate orientation
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with respect to the target orientation, although the relaxation k = 2 is a more accurate

than k = 1 for this particular experiment.

−20 0 20

10

20z t
(c
m
)

−20 0 20

10

20

−20 0 20

10

20

(a) (b) (c)

−20 0 20

10

20

yt (cm)

z t
(c
m
)

−20 0 20

10

20

yt (cm)

−20 0 20

10

20

yt (cm)

(d) (e) (f)

k=1 est; k=2 est; Actual location

Figure 49: Location plots for a two-relaxation landmine target with (a), (b), (c)

αt = 45◦ and βt = 45◦ and (d), (e), (f) αt = 90◦ and βt = 90◦.

105



−100 0 100
0

20

40

60

80

αt (deg)
β
t
(d
eg
)

−100 0 100
0

20

40

60

80

αt (deg)

−100 0 100
0

20

40

60

80

αt (deg)

(a) (b) (c)

k=1 est; k=2 est; Target orient

Figure 50: Angle plots for the two-relaxation landmine target with yt = 0 cm and

zt = 8.5 cm.
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Figure 51: Orientation of the electromagnetic field of the two-relaxation landmine

target for yt = 0 cm, zt = 8.5 cm, αt = 45◦, and βt = 45◦; (a), (b), (c) k = 1, and (d),

(e), (f) k = 2.

The error histograms for the two relaxations of target A can be seen in Figure 52.

The probability of detection is lower for target A than it is for either of the metal-

loop targets. This increased probability of error is most likely caused by the fact that

the strength of target A is about an order of magnitude lower than the strength of

the single-loop target. Target A is also hard for the sensor to see when the angle

approaches α = 90◦ and β = 90◦, like in the single-loop scenario.
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Figure 52: Error histograms for target A for (a) location at k = 1, (b) angle at k = 1,

(c) location at k = 2, and (d) angle at k = 2.

3.5.4 Target B

Target B is another landmine, which has a fairly complex response with six relax-

ation frequencies. The DSRF and the magnetic polarizability of this target are only

known experimentally. The DSRF of target B can be seen in Figure 53. The pro-

posed method has been tested with targets having known parameters in the previous

subsections, but the analysis of target B will be done somewhat blind, as it would be

in practice. The target itself has been measured at the same parameter combinations

as the other targets have, so the location is known, within the bounds of the mine
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casing. A few of the experiments are individually examined in terms of locating the

relaxation frequencies in Figure 54. Since target B has six relaxation frequencies,

there are six different measurements that can help locate the target. The first row of

Figure 54 shows a few experiments with the target at zt = 8.5 cm. The clustering of

the relaxation frequencies around the target is promising for accurate detection. The

second row of Figure 54 shows a few experiments with the target at zt = 11.5 cm.

The location estimates for the different relaxation frequencies start to spread out,

with a few relaxations, for example k = 5 in Figure 54(f), becoming extremely in-

accurate. The third row of Figure 54 has targets located at zt = 14.5 cm, and has

similar estimation accuracy to the second row. Knowing the location of the target

for the experiments allows for the same location error histograms to be constructed

for this target, and they can be seen in Figure 56. Other than the k = 1 relaxation,

the probability of detecting the correct location is about as good as it is for target

A. The relaxation at k = 4 seems to have the lowest probability of error, followed by

k = 5 as long as the target is directly below the sensor.
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Figure 53: DSRF for target B, k = 1, 2, 3, 4, 5, 6 from left to right.
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Figure 54: Location plots for a six-relaxation landmine target with αt = 0◦ and

βt = 0◦(a), (b), (c) zt = 8.5 cm, (d), (e), (f) zt = 11.5 cm, and (g), (h), (i) zt = 14.5 cm.

The tensor components of the relaxations for this target are not known theo-

retically, but they have been measured, see Figure 10 in [1], which is copied in this

thesis as Figure 55 for easy access. From these measurements, each tensor is expected
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(when the target is at the αt = 0◦ and βt = 0◦ orientation) to consist of the super-

position of 2 or 3 dipoles, with the x and y dipoles having roughly equal amplitudes

(cylindrical symmetry) and the z-directed dipole being different. Since the tensors

are complicated, and the sensors have trouble measuring the y component, an exam-

ple evaluation will be done of the extracted tensors from a target B located 9.5 cm

directly below the middle receive coil. Table 6 shows the six extracted tensors, and

Figure 57 shows the symmetry of the k = 5 relaxation. The tensors are normalized

so that the largest eigenvalue has a strength of 1. The extracted tensors only par-

tially match the previous measurements. This discrepancy is not surprising since the

sensor is insensitive to y-directed dipoles and the inversion was restricted to only a

single measurement pass over the target. Consider relaxation 5 that consists of a x

and z directed dipole. The symmetry, from the estimation, is a 2D ellipse with the

major axis in the z direction and the minor axis in the x direction, which is shown

in the first row of Figure 57. When the k = 5 relaxation is rotated in α, it would be

expected that the ellipse would rotate around the z-axis. However, when the target

is rotated by 45◦ in α, the resulting extracted tensor
.39 .00 −.02

.00 .00 .00

−.02 .00 1.0


is almost identical to the pre-rotated tensor in Table 6. The extremely similar sym-

metries of the k = 5 relaxation rotated by 45◦ and 90◦ in α can be seen in the second

and third rows of Figure 57. This would lead to the assumption that since the target

symmetry is invariant to rotations in the α angle, that the symmetry in the xy plane

is actually circular, and thus the symmetry of the k = 5 relaxation is cylindrical in

3D. The cylindrical symmetry more closely matches the empirical symmetry shown

in Figure 55 at k = 5. The conclusion about the symmetry in k = 5 being cylindrical

instead of elliptical would mean that the components in y are being suppressed by the
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measurements system, which has been shown to be an issue in all of the previous lab-

oratory experiments. So to get the most accurate measurement, the data-acquisition

system should be enhanced to account for the suppressed y direction, or multiple

passes over the target should be taken with the sensor itself oriented in different ways

to build the most accurate measurement.

Figure 55: Empirical estimates of the magnetic polarizability of target B where

k = 0, 1, 2, 3, 4, 5, 6, 7 from left to right, taken from [1].
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Figure 56: Location error histograms for target B at (a) k = 1, (b) k = 2, (c) k = 3,

(d) k = 4, (e) k = 5, and (f) k = 6.
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Table 6: Experimental target B tensors.

Relaxation # Tensor Nonzero Eigenvectors Eigenvalues

1


.01 .03 .08

.03 .10 .30

.08 .30 .89



.09

.31

.94




0 0 0

0 0 0

0 0 1



2


.99 −.09 .00

−.09 .01 .00

.00 .00 .00



−.99

.09

0




0 0 0

0 0 0

0 0 1



3


1.0 .02 .01

.02 .00 .02

.01 .02 .28




0 1

0 0

1 0




0 0 0

0 .28 0

0 0 1



4


1.0 −.01 .00

−.01 .00 .00

.00 .00 .79




0 −1

0 0

1 0




0 0 0

0 .79 0

0 0 1



5


.49 .00 .00

.00 .00 .00

.00 .00 1.0




1 0

0 0

0 1




0 0 0

0 .49 0

0 0 1



6


.12 .01 −.01

.01 .37 −.48

−.01 −.48 .63




1 0

0 −.61

0 .79




0 0 0

0 .12 0

0 0 1
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Figure 57: Orientation of the electromagnetic field of the six-relaxation landmine

target for yt = 0 cm, zt = 9.5 cm, k = 5, (a), (b), (c) ot = (0◦, 0◦), (d), (e), (f)

ot = (45◦, 0◦), and (g), (h), (i) ot = (90◦, 0◦).
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3.6 New Data-acquisition Techniques

The previous sections have discussed in detail the problems that arise with the current

data-acquisition system. In an attempt to show that making changes to the system

can improve, even if just slightly, the detection capability of these algorithms, three

new data-acquisition systems are studied via simulation. The new systems incorporate

adding new receivers, new transmitters, and/or taking multiple passes over a target

with different sensor orientations.

The first new acquisition system, seen in Figure 58, consists of adding one new y-

directed receive coil to the previous sensor geometry. Since no change has been made

to the transmitter, even this new sensor will remain blind to targets directly beneath

the middle of the transmitting coil and at ot = (90◦, 90◦), but the additional receiver

should help better detect targets that are close to this orientation and location. The

response from the fourth receiver is stacked onto the response of the previously used

receive coils to create the new response vector. A few examples of the new response

vector can be seen in Figure 59. The fourth coil can be seen adding significant signal

strength to targets with orientations in the y-direction. The increase in signal strength

should garner a slight reduction in the error for the distance and the angle estimates.

−0.2 −0.1 0 0.1 0.2

−0.1

0

0.1

TX Coil c1 c2 c3 c4

Figure 58: New sensor using a fourth receive coil that is added to the previous three.
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Figure 59: New measurements using the four receive coil sensor with ot = (90◦, 90◦),

(a) lt = (0, 8.5) cm; and (b) lt = (10, 8.5) cm.

The next system examined uses the same sensor setup as in Figure 58 but adds

a new transmit-receive pair by transmitting and receiving on c4. The addition of the

new field transmitted in the y-direction should make the sensor much more robust

to y-directed dipoles. The robustness in the y-direction can be seen by examining

Figure 60. The new response stacked onto the measurements at index 805, cTX4 , is

done by taking the receive field on c4 after transmitting on c4. The new cTX4 response

can be seen adding a significant amount of signal power to the measurements of a

y-directed dipole. However, adding multiple transmitters can make things difficult in

a practical system.
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Figure 60: New measurements using the four receive coil sensor where the fourth

receiver is also used as a transmitter with ot = (90◦, 90◦), (a) lt = (0, 8.5) cm; and

(b) lt = (10, 8.5) cm.

The final data-acquisition system examined is one that is created by taking two

passes over the target while changing the orientation of the sensors. The sensor used

in this simulation is the same sensor that was discussed in the previous sections of

this thesis, and seen in Figure 61. However, the sensor is now oriented in α = −45◦ in

the first pass, Figure 61(a), and rotated to α = 45◦ in the second pass, Figure 61(b).

Using two orthogonal passes guarantees that the sensor will not be completely “blind”

during both passes. Two example response vectors are shown in Figure 62. The

measurements made from the two passes are concatenated together. When the target

is directly below the center receive sensor, y = 0 cm, the two passes look like reflections
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of each other, although not exact reflections, because of the orthogonality of the

passes, Figure 62(a). The two-pass system will likely not be quite as robust as the

two-transmitter system, because there is no transmitted field in the y-direction, but

the two-pass system uses less additional hardware and would be slightly more practical

for use in a real environment.

−0.2

0

0.2

−0.200.2

−0.2

0

0.2

−0.200.2

(a) (b)

TX Coil c1 c2 c3

Figure 61: New measurement setup using only the three receive coils, but using two

passes of the sensor with the sensor oriented at (a) α = −45◦ for pass one and (b)

α = 45◦ for pass two.
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Figure 62: New measurements using the two-pass measurement setup with ot =

(90◦, 90◦), (a) lt = (0, 8.5) cm; and (b) lt = (10, 8.5) cm.

A small simulation was run, creating a new response dictionary using each of the

new data-acquisition systems, adding noise to some of the entries of the dictionary

to create the measurements, and trying to accurately estimate the parameters. The

distance-error plots with respect to an increasing noise power can be seen in Figure 63

and the angle error plots can be seen in Figure 64. The rows of Figure 63 correspond

to changing yt from top, yt = −2 cm, middle, yt = 0 cm, and bottom, yt = 2 cm; and

the columns correspond to changing the orientation from left, ot = (90◦, 90◦), middle,

ot = (90◦, 80◦), and right, ot = (90◦, 70◦). These orientations were chosen since

they are problematic when using the original sensor. The acquisition adjustments

should aid in the detection of other orientations as well. The errors for the target

120



at yt = 0 cm and ot = (90◦, 90◦), seen in Figure 63(d) and Figure 64(d), using the

standard setup and the four-coil setup are never accurate for any noise power. The

lack of accuracy in each of these setups is expected because the transmitter cannot

induce a magnetic field on the target. However, adding the transmitter in the y-

direction for the two-transmitter setup, or taking two orthogonal passes over the

target, allow for the previously “invisible” target to be seen. In the general sense,

adding c4 without transmitting on it, allows for very little reduction in the location

error, roughly 2 cm, or the angle error, 0◦ to 30◦. The location estimation for targets

with the specified parameters is much more accurate when the two-transmitter setup

or the two-pass setup is used. The angle estimation for the two-transmitter setup in

these simulations is much better than the rest for higher noise powers. However, when

compared to the standard setup and the four-coil setup, the two-pass setup is much

more accurate for lower noise powers, is not blind to y-directed targets, and is more

consistent across the changing target parameters. The consistency of the two-pass

setup can be seen in the similarity of the error plots for the two-pass setup with each

different target location and orientation.
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Figure 63: Location error comparison for the four different geometries examined for

(a) ot = (90◦, 90◦) and lt = (−2, 8.5) cm; (b) ot = (90◦, 80◦) and lt = (−2, 8.5) cm;

(c) ot = (90◦, 70◦) and lt = (−2, 8.5) cm; (d) ot = (90◦, 90◦) and lt = (0, 8.5) cm;

(e) ot = (90◦, 80◦) and lt = (0, 8.5) cm; (f) ot = (90◦, 70◦) and lt = (0, 8.5) cm; (g)

ot = (90◦, 90◦) and lt = (2, 8.5) cm; (h) ot = (90◦, 80◦) and lt = (2, 8.5) cm; (i)

ot = (90◦, 70◦) and lt = (2, 8.5) cm.
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Figure 64: Angle error comparison for the four different geometries examined for

(a) ot = (90◦, 90◦) and lt = (−2, 8.5) cm; (b) ot = (90◦, 80◦) and lt = (−2, 8.5) cm;

(c) ot = (90◦, 70◦) and lt = (−2, 8.5) cm; (d) ot = (90◦, 90◦) and lt = (0, 8.5) cm;

(e) ot = (90◦, 80◦) and lt = (0, 8.5) cm; (f) ot = (90◦, 70◦) and lt = (0, 8.5) cm; (g)

ot = (90◦, 90◦) and lt = (2, 8.5) cm; (h) ot = (90◦, 80◦) and lt = (2, 8.5) cm; (i)

ot = (90◦, 70◦) and lt = (2, 8.5) cm.
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3.7 Conclusion

A new model representation and inversion strategy have been introduced for the

landmine parameter-estimation problem using EMI sensors. The ability to directly

extract the tensors reduces the scalability of the dictionary storage by O(N3). Using

the tensor extraction with the dipole model reduces the storage from an impractical

O(N9) to a much more practical O(N4). Also, new data-acquisition systems are

analyzed to help make suggestions on how the hardware system could be changed to

account for some deficiencies.
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CHAPTER IV

CONCLUSIONS

In this thesis, two separate structures are acknowledged and exploited to help improve

the algorithmic efficiency of two different EM models for the purpose of landmine

imaging. Each structure reduces the computational complexity of their particular

algorithms to such a degree that the problems went from completely impractical in

real-world applications to practical. Each method reduced the storage order of the

associated algorithms by atleast O(N2), which for the particular applications could

practically be four orders of magnitude. An outline of the reduction techniques and

their consequences on each different system are written out in detail in Figure 65.

Although they have not been exploited in this particular research, compressive algo-

rithms and shift invariance could very well be exploited in the sum of dipoles model to

garner additional computational reductions if the inversions are examined and altered

appropriately.

The main contribution of this research was identifying and exploiting the shift-

invariance property in the GPR point-target model, and the “tensor amplitude” for-

mulation of the EMI sum of dipoles model. These structural changes are not specific

to the landmine problem, but would be present in any problem where there is some

sort of invariance present in the underlying model, or if the object can be represented

by a multidimensional field, in the case of the “tensor amplitude.”

Chapter 1 discussed the motivation and the background for the GPR and EMI

problems. The point-target model and the dipole model are introduced along with the

associated imaging algorithms typically used. The inherent drawbacks to using the

algorithms, BP, OMP, and CS, are in the scalability of the dictionary that is created
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by enumerating a nonlinear model into a linear matrix. Each one of the algorithms

is explained in short detail, and a brief description of the metrics used for analyzing

accuracy are discussed.

Chapter 2 goes on to introduce the shift-invariance property in the point-target

model associated with the GPR problem. A detailed explanation of how to exploit

the shift-invariance property in BP, OMP, and CS to garner a dramatic reduction in

required storage and computation time is discussed. Tests were run using synthetic

data on multiple dimensions to determine the validity of the improvements and finally

a test was run on previously imaged laboratory data to compare the new method to

previous methods. In addition to the improved model structure, a framework was laid

out to show that with current technology, a relatively effective compressive sensing

GPR could be developed and used fairly easily.

Chapter 3 introduces the “tensor amplitude” which is used in the sum of dipoles

model in the EMI problem. Exploiting this property not only reduces storage con-

straints but it also eliminates the “off-grid” model error associated with linearizing a

nonlinear model through enumeration in the orientation space. Many different real

targets are analyzed and imaged from controlled laboratory experiments. Three new

data-acquisition systems are introduced to show that changing the hardware setup

can increase the accuracy of the inversions.

Further work has been identified in both the advancement of the GPR and EMI

systems. For the GPR system, uniform sampling is not going to be a guarantee in

real systems, as some consist of a hand-held wand that is scanned over the ground

in a non-uniform manner. There should be a method created that can easily allow

nonuniform sampling but still be able to have the shift-invariant property. For the

EMI system, inherent issues with the data-acquisition system were confirmed and

suggestions have been made on how to address the issues for someone in hardware

development. These suggestions include adding additional coils so the sensors are not
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blind to certain target parameters, or adding a systematic way to achieve multiple

looks at the target in an efficient manner. There are still computational constraints

associated with solving the large SDP problem, which could be addressed in the

future. The algorithms should be tested on field data and an algorithm should be

created that can be more robust to multiple targets while exploiting the inherent shift

invariance of this model. Finally, the algorithms data-acquisition process should be

examined to see if a CS algorithm could be used to enhance the data-acquisition or

inversion processes.
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[26] M. Özdemir, E. L. Miller, and S. Norton, “Localization and characterization of
buried objects from multi-frequency, array inductive data,” Proc. SPIE, Apr.
1999.

[27] M. Wei, W. R. Scott, Jr., and J. H. McClellan, “Estimation of the discrete
spectrum of relaxation frequencies using multiple measurements,” International
Geoscience and Remote Sensing Symposium, pp. 586–589, 2012.

[28] M. Richards, Fundamentals of Radar Signal Processing. New York, NY:
McGraw-Hill, 2005.

[29] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Transactions on Information Theory,
vol. 53, no. 12, pp. 4655–4666, 2007.

[30] A. C. Gurbuz, “Sparsity enhanced fast subsurface imaging with GPR,” in Inter-
national Conference on Ground Penetrating Radar (GPR), Jun. 2010, pp. 1–5.

[31] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information The-
ory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[32] R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Processing
Magazine, vol. 24, no. July, pp. 118–121, 2007.

[33] E. J. Candès and J. Romberg, “Sparsity and incoherence in compressive sam-
pling,” Inverse problems, no. 3, pp. 1–20, 2007.

[34] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,” IEEE
Transactions on Information Theory, pp. 1–41, 2006.

[35] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Processing Magazine, vol. 25, no. Mar., pp. 21–30, 2008.

[36] J. Romberg, “Compressive sensing by random convolution,” SIAM Journal on
Imaging Science, Dec. 2009.

[37] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Journal on Scientific Computing, vol. 43, no. 1, pp. 129–159,
2001.

[38] E. J. Candès and T. Tao, “The Dantzig selector: Statistical estimation when p
is much larger than n,” The Annals of Statistics, vol. 40698, pp. 1–37, 2007.

[39] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[40] C. Beck and R. D’Andrea, “Computational study and comparisons of lft re-
ducibility methods,” in American Control Conference, 1998. Proceedings of the
1998, vol. 2, jun 1998, pp. 1013 –1017 vol.2.

131



[41] P. Boufounos, M. F. Duarte, and R. G. Baraniuk, “Sparse signal reconstruction
from noisy compressive measurements using cross validation,” in Workshop on
Statistical Signal Processing, 2007, pp. 299–303.

[42] Y. Rubner, C. Tomasi, and L. J. Guibas, “A Metric for Distributions with Ap-
plications to Image Databases,” International Conference on Computer Vision,
1998.

[43] O. Pele and M. Werman, “Fast and robust earth mover’s distances,” in ICCV,
2009.

[44] E. M. Johansson and J. E. Mast, “Three-dimensional ground-penetrating radar
imaging using synthetic aperture time-domain focusing,” Proc. SPIE, vol. 2275,
pp. 205–214, Sep. 1994.

[45] M. Tuncer and A. Gurbuz, “Ground reflection removal in compressive sens-
ing ground penetrating radars,” Geoscience and Remote Sensing Letters, IEEE,
vol. 9, no. 1, pp. 23–27, 2012.

[46] K. R. Krueger, J. H. McClellan, and W. R. Scott, Jr., “Dictionary reduction
technique for 3-D stepped-frequency GPR imaging using compressive sensing
and the FFT,” Proc. SPIE, Apr. 2012.

[47] ——, “3-D imaging for ground penetrating radar using compressive sensing with
block-toeplitz structures,” in Sensor Array and Multichannel Signal Processing
Workshop (SAM), 2012 IEEE 7th, June 2012, pp. 229 –232.

[48] ——, “Sampling techniques for improved algorithmic efficiency in electromag-
netic sensing,” in International Conference on Sampling Theory and Applica-
tions, July 2013.

[49] W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, “Toeplitz-
structured compressed sensing matrices,” in Workshop on Statistical Signal Pro-
cessing, Aug. 2007, pp. 294–298.

[50] E. van den Berg and M. P. Friedlander, “SPGL1: A solver for large-scale sparse
reconstruction,” June 2007, http://www.cs.ubc.ca/labs/scl/spgl1.

[51] E. Candès and J. Romberg, “`1-magic,” Oct. 2005.

[52] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex program-
ming,” 2008, http://cvxr.com/cvx/.

[53] J. Sachs, “M-sequence ultra-wideband-radar: state of development and applica-
tions,” in Radar Conference, 2003. Proceedings of the International, 2003, pp.
224–229.

[54] M. Kahrs, “50 years of RF and microwave sampling,” Microwave Theory and
Techniques, IEEE Transactions on, vol. 51, no. 6, pp. 1787–1805, 2003.

132



[55] G. J. Frye and N. S. Nahman, “Random sampling oscillography,” Instrumenta-
tion and Measurement, IEEE Transactions on, vol. 13, no. 1, pp. 8–13, 1964.

[56] Agilent Technologies, What is the difference between an equivalent time sampling
oscilloscope and a real-time oscilloscope?, ser. Application Note 1608, 2008.

[57] C. Ekanadham, D. Tranchina, and E. P. Simoncelli, “Recovery of sparse
translation-invariant signals with continuous basis pursuit,” IEEE Transactions
on Signal Processing, pp. 4735–4744, Oct. 2011.

[58] K. R. Krueger, J. H. McClellan, and W. R. Scott, “Tensor amplitude extrac-
tion in sensor array processing,” in Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, 2013, pp. 3895–3899.

[59] K. R. Krueger, W. R. Scott, Jr., and J. H. McClellan, “Location and continuous
orientation estimation of buried targets using tensor extraction,” Proc. SPIE,
Jun. 2013.

[60] ——, “Location and orientation estimation of buried targets using electromag-
netic induction sensors,” Proc. SPIE, Apr. 2012.

[61] W. R. Scott, Jr. and G. D. Larson, “Modeling the measured EM induction
response of targets as a sum of dipole terms each with a discrete relaxation
frequency,” July 2010, pp. 4188–4191.

133


