107 research outputs found

    PySke: Algorithmic Skeletons for Python

    Get PDF
    International audiencePySke is a library of parallel algorithmic skeletons in Python designed for list and tree data structures. Such algorithmic skeletons are high-order functions implemented in parallel. An application developed with PySke is a composition of skeletons. To ease the write of parallel programs, PySke does not follow the Single Program Multiple Data (SPMD) paradigm but offers a global view of parallel programs to users. This approach aims at writing scalable programs easily. In addition to the library, we present experiments performed on a high-performance computing cluster (distributed memory) on a set of example applications developed with PySke

    Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

    Get PDF
    The rollback operation is a fundamental building block to support the correct execution of a speculative Time Warp-based Parallel Discrete Event Simulation. In the literature, several solutions to reduce the execution cost of this operation have been proposed, either based on the creation of a checkpoint of previous simulation state images, or on the execution of negative copies of simulation events which are able to undo the updates on the state. In this paper, we explore the practical design and implementation of a state recoverability technique which allows to restore a previous simulation state either relying on checkpointing or on the reverse execution of the state updates occurred while processing events in forward mode. Differently from other proposals, we address the issue of executing backward updates in a fully-transparent and event granularity-independent way, by relying on static software instrumentation (targeting the x86 architecture and Linux systems) to generate at runtime reverse update code blocks (not to be confused with reverse events, proper of the reverse computing approach). These are able to undo the effects of a forward execution while minimizing the cost of the undo operation. We also present experimental results related to our implementation, which is released as free software and fully integrated into the open source ROOT-Sim (ROme OpTimistic Simulator) package. The experimental data support the viability and effectiveness of our proposal

    A Service-Oriented Approach to Crowdsensing for Accessible Smart Mobility Scenarios

    Get PDF
    This work presents an architecture to help designing and deploying smart mobility applications. The proposed solution builds on the experience already matured by the authors in different fields: crowdsourcing and sensing done by users to gather data related to urban barriers and facilities, computation of personalized paths for users with special needs, and integration of open data provided by bus companies to identify the actual accessibility features and estimate the real arrival time of vehicles at stops. In terms of functionality, the first "monolithic" prototype fulfilled the goal of composing the aforementioned pieces of information to support citizens with reduced mobility (users with disabilities and/or elderly people) in their urban movements. In this paper, we describe a service-oriented architecture that exploits the microservices orchestration paradigm to enable the creation of new services and to make the management of the various data sources easier and more effective. The proposed platform exposes standardized interfaces to access data, implements common services to manage metadata associated with them, such as trustworthiness and provenance, and provides an orchestration language to create complex services, naturally mapping their internal workflow to code. The manuscript demonstrates the effectiveness of the approach by means of some case studies

    Three dimensional information estimation and tracking for moving objects detection using two cameras framework

    Get PDF
    Calibration, matching and tracking are major concerns to obtain 3D information consisting of depth, direction and velocity. In finding depth, camera parameters and matched points are two necessary inputs. Depth, direction and matched points can be achieved accurately if cameras are well calibrated using manual traditional calibration. However, most of the manual traditional calibration methods are inconvenient to use because markers or real size of an object in the real world must be provided or known. Self-calibration can solve the traditional calibration limitation, but not on depth and matched points. Other approaches attempted to match corresponding object using 2D visual information without calibration, but they suffer low matching accuracy under huge perspective distortion. This research focuses on achieving 3D information using self-calibrated tracking system. In this system, matching and tracking are done under self-calibrated condition. There are three contributions introduced in this research to achieve the objectives. Firstly, orientation correction is introduced to obtain better relationship matrices for matching purpose during tracking. Secondly, after having relationship matrices another post-processing method, which is status based matching, is introduced for improving object matching result. This proposed matching algorithm is able to achieve almost 90% of matching rate. Depth is estimated after the status based matching. Thirdly, tracking is done based on x-y coordinates and the estimated depth under self-calibrated condition. Results show that the proposed self-calibrated tracking system successfully differentiates the location of objects even under occlusion in the field of view, and is able to determine the direction and the velocity of multiple moving objects

    The survey on Near Field Communication

    Get PDF
    PubMed ID: 26057043Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others. NFC technology enables the integration of services from a wide range of applications into one single smartphone. NFC technology has emerged recently, and consequently not much academic data are available yet, although the number of academic research studies carried out in the past two years has already surpassed the total number of the prior works combined. This paper presents the concept of NFC technology in a holistic approach from different perspectives, including hardware improvement and optimization, communication essentials and standards, applications, secure elements, privacy and security, usability analysis, and ecosystem and business issues. Further research opportunities in terms of the academic and business points of view are also explored and discussed at the end of each section. This comprehensive survey will be a valuable guide for researchers and academicians, as well as for business in the NFC technology and ecosystem.Publisher's Versio

    A Service-Oriented Approach to Crowdsensing for Accessible Smart Mobility Scenarios

    Get PDF
    This work presents an architecture to help designing and deploying smart mobility applications. The proposed solution builds on the experience already matured by the authors in different fields: crowdsourcing and sensing done by users to gather data related to urban barriers and facilities, computation of personalized paths for users with special needs, and integration of open data provided by bus companies to identify the actual accessibility features and estimate the real arrival time of vehicles at stops. In terms of functionality, the first “monolithic” prototype fulfilled the goal of composing the aforementioned pieces of information to support citizens with reduced mobility (users with disabilities and/or elderly people) in their urban movements. In this paper, we describe a service-oriented architecture that exploits the microservices orchestration paradigm to enable the creation of new services and to make the management of the various data sources easier and more effective. The proposed platform exposes standardized interfaces to access data, implements common services to manage metadata associated with them, such as trustworthiness and provenance, and provides an orchestration language to create complex services, naturally mapping their internal workflow to code. The manuscript demonstrates the effectiveness of the approach by means of some case studies

    Turku Centre for Computer Science – Annual Report 2013

    Get PDF
    Due to a major reform of organization and responsibilities of TUCS, its role, activities, and even structures have been under reconsideration in 2013. The traditional pillar of collaboration at TUCS, doctoral training, was reorganized due to changes at both universities according to the renewed national system for doctoral education. Computer Science and Engineering and Information Systems Science are now accompanied by Mathematics and Statistics in newly established doctoral programs at both University of Turku and &Aring;bo Akademi University. Moreover, both universities granted sufficient resources to their respective programmes for doctoral training in these fields, so that joint activities at TUCS can continue. The outcome of this reorganization has the potential of proving out to be a success in terms of scientific profile as well as the quality and quantity of scientific and educational results.&nbsp; International activities that have been characteristic to TUCS since its inception continue strong. TUCS&rsquo; participation in European collaboration through EIT ICT Labs Master&rsquo;s and Doctoral School is now more active than ever. The new double degree programs at MSc and PhD level between University of Turku and Fudan University in Shaghai, P.R.China were succesfully set up and are&nbsp; now running for their first year. The joint students will add to the already international athmosphere of the ICT House.&nbsp; The four new thematic reseach programmes set up acccording to the decision by the TUCS Board have now established themselves, and a number of events and other activities saw the light in 2013. The TUCS Distinguished Lecture Series managed to gather a large audience with its several prominent speakers. The development of these and other research centre activities continue, and&nbsp; new practices and structures will be initiated to support the tradition of close academic collaboration.&nbsp; The TUCS&rsquo; slogan Where Academic Tradition Meets the Exciting Future has proven true throughout these changes. Despite of the dark clouds on the national and European economic sky, science and higher education in the field have managed to retain all the key ingredients for success. Indeed, the future of ICT and Mathematics in Turku seems exciting.</p

    Helmholtz Portfolio Theme Large-Scale Data Management and Analysis (LSDMA)

    Get PDF
    The Helmholtz Association funded the "Large-Scale Data Management and Analysis" portfolio theme from 2012-2016. Four Helmholtz centres, six universities and another research institution in Germany joined to enable data-intensive science by optimising data life cycles in selected scientific communities. In our Data Life cycle Labs, data experts performed joint R&D together with scientific communities. The Data Services Integration Team focused on generic solutions applied by several communities

    A Review on the Application of Blockchain to the Next Generation of Cybersecure Industry 4.0 Smart Factories

    Get PDF
    [Absctract]: Industry 4.0 is a concept devised for improving the way modern factories operate through the use of some of the latest technologies, like the ones used for creating the Industrial Internet of Things (IIoT), robotics, or Big Data applications. One of such technologies is blockchain, which is able to add trust, security, and decentralization to different industrial fields. This article focuses on analyzing the benefits and challenges that arise when using blockchain and smart contracts to develop Industry 4.0 applications. In addition, this paper presents a thorough review of the most relevant blockchain-based applications for Industry 4.0 technologies. Thus, its aim is to provide a detailed guide for the future Industry 4.0 developers that allows for determining how the blockchain can enhance the next generation of cybersecure industrial applications

    Runtime Adaptive Hybrid Query Engine based on FPGAs

    Get PDF
    This paper presents the fully integrated hardware-accelerated query engine for large-scale datasets in the context of Semantic Web databases. As queries are typically unknown at design time, a static approach is not feasible and not flexible to cover a wide range of queries at system runtime. Therefore, we introduce a runtime reconfigurable accelerator based on a Field Programmable Gate Array (FPGA), which transparently incorporates with the freely available Semantic Web database LUPOSDATE. At system runtime, the proposed approach dynamically generates an optimized hardware accelerator in terms of an FPGA configuration for each individual query and transparently retrieves the query result to be displayed to the user. During hardware-accelerated execution the host supplies triple data to the FPGA and retrieves the results from the FPGA via PCIe interface. The benefits and limitations are evaluated on large-scale synthetic datasets with up to 260 million triples as well as the widely known Billion Triples Challenge
    • …
    corecore