
Transparently Mixing Undo Logs and Software
Reversibility for State Recovery in Optimistic PDES

Davide Cingolani, Alessandro Pellegrini, Francesco Quaglia
DIAG – Sapienza, University of Rome

Via Ariosto 25, 00185 Rome, Italy
cingodvd@gmail.com, {pellegrini, quaglia}@dis.uniroma1.it

ABSTRACT

The rollback operation is a fundamental building block to
support the correct execution of a speculative Time Warp-
based Parallel Discrete Event Simulation. In the literature,
several solutions to reduce the execution cost of this oper-
ation have been proposed, either based on the creation of
a checkpoint of previous simulation state images, or on the
execution of negative copies of simulation events which are
able to undo the updates on the state. In this paper, we
explore the practical design and implementation of a state
recoverability technique which allows to restore a previous
simulation state either relying on checkpointing or on the re-
verse execution of the state updates occurred while process-
ing events in forward mode. Differently from other propos-
als, we address the issue of executing backward updates in
a fully-transparent and event granularity-independent way,
by relying on static software instrumentation (targeting the
x86 architecture and Linux systems) to generate at runtime
reverse update code blocks (not to be confused with reverse
events, proper of the reverse computing approach). These
are able to undo the effects of a forward execution while
minimizing the cost of the undo operation. We also present
experimental results related to our implementation, which is
released as free software and fully integrated into the open
source ROOT-Sim (ROme OpTimistic Simulator) package.
The experimental data support the viability and effective-
ness of our proposal.

Categories and Subject Descriptors

I.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete Event, Parallel ; D.3.4 [Programming Languages]:
Processors—Code Generation

General Terms

Algorithms, Performance

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS’15, June 10–12, 2015, London, United Kingdom.

Copyright c© 2015 ACM ISBN 978-1-4503-3583-6/15/06...$15.00.

DOI: http://dx.doi.org/10.1145/2769458.2769482.

Keywords

PDES; Speculative Processing; Code Instrumentation; Re-
versibility

1. INTRODUCTION
In Parallel Discrete Event Simulation (PDES) [11], Time

Warp [12] has been proven to be an effective synchroniza-
tion protocol, which has been shown to be relatively inde-
pendent (in terms of its run-time dynamics) of both the
the simulation model’s lookahead and the communication la-
tency for exchanging data across threads/processes involved
in the simulation platform. All these peculiarities allow it
to guarantee high performance even in systems that are not
tightly coupled and/or possibly entail up to millions of pro-
cessors [3]. According to classical PDES, in Time Warp the
simulation model is partitioned into distinct simulation ob-
jects, which are mapped to Logical Processes (LPs). The
latter are in charge of handling the execution of impulsive
events, which ultimately produce state updates (hence tran-
sitions) in the actual simulation model state.

Time Warp is a speculative protocol, hence it allows simu-
lation events to be processed at any LP optimistically. This
means that they are processed independently of their safety
(or causal consistency). If an event is a-posteriori detected
to be violating causality, its effects on the simulation state
are undone, via the rollback operation. Correctly and effi-
ciently rolling back the simulation state is therefore a funda-
mental building block for an effective optimistic simulation
platform.

In the literature, this operation has been thoroughly stud-
ied. Different approaches have been proposed, which pro-
vide benefits in differentiated scenarios. All these solutions
can be mainly grouped into two separate families, namely
checkpoint-based [12] and reverse computing-based [6], de-
pending on the algorithmic technique which is used to bring
one simulation state to a previous (consistent) snapshot.

The checkpoint-based rollback operation grounds on the
possibility, for a simulation engine, to know the location (in
main memory) of each simulation object’s state. By ex-
ploiting this information, the engine can therefore create a
copy of the simulation state after the execution of one (or a
group of) operations which have produced state updates. In
this context, different possibilities have been presented, all
aiming at reducing the cost (both in terms of memory and
CPU usage) paid to create a state snapshot, which will be
(possibly) used for a later state restore. Among the various
research lines, we find two main different approaches, which
have been often combined together. On the one hand, we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54527051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

find solutions to reduce the frequency according to which a
simulation object’s state is inspected to create a copy—the
so-called sparse or periodic state saving [15, 4, 16, 26, 9,
28, 24]—with a focus on detecting which is the best-suited
checkpointing interval to minimize unfruitful work (e.g., tak-
ing checkpoints which are never used for a rollback opera-
tion). On the other hand, we find solutions which try to
reduce the amount of data copied into a state snapshot, en-
suring anyhow that no meaningful piece of information is
lost at any time—the so-called incremental state saving [35,
19]. A mixture of these approaches has been proposed as
well in [21], trying to modify at runtime the execution mode
of the state saving operation, depending on the current ex-
ecution dynamics, in order to capture different execution
phases of the simulation models.

At different scales, all these solutions suffer from the high
cost associated with making a (logically) complete copy of
the simulation state, which is either proportional to the size
of the state (in case of full state saving) or to the number of
update operations related to the execution of one or more
events (in case of incremental state saving).

The reverse computing-based rollback operation, on the
other hand, tries to cancel the non-negligible memory foot-
print produced by the state saving technique. This solution
grounds on the availability (either on a manual [6] or auto-
matic [14] basis) of reverse copies of simulation events, such
that if the execution of a forward event e on a simulation
state S produces a state transition e(S) → S′, then the
execution of the reverse event r associated with e on S′ pro-
duces the inverse transition r(S′) → S. Overall, while the
reverse computing approach is able to strongly reduce the
impact of memory usage from which state saving may suffer,
the execution cost of the rollback operation is directly pro-
portional to the execution time of simulation events. This
cost could become predominant in case of events with a high
granularity, and in case the rollback length is non-minimal.

By mixing the different philosophies standing behind the
above state recoverability techniques, we present a new ap-
proach which is based on the combination of undo-logs with
software reversibility. Particularly, in our proposal, the data
that are typically recorded by undo-log systems are used to
generate so called update undo code blocks. The latter can
be used to squash the memory side effects (namely updates)
generated by a non casually-consistent portion of the com-
putation.

To achieve our goal, we rely on ad-hoc software instrumen-
tation, which allows us to capture the effects on memory of
an event’s forward execution. This information is then used
to build at runtime the update undo code blocks, which are
basically compact undo logs of actual operations. They are
compact because they are specifically encoded directly as
a set of subsequent machine instructions which are able to
cancel the overall effects of the execution of forward events.
This is different from the reverse computing technique, as
our approach is independent of the actual event granularity.
In fact, the execution cost of an update undo code block is
only proportional to the amount of memory areas touched
in write mode during the forward execution.

Further, our approach is different from classical undo logs
used in, e.g., the context of fault tolerance. In fact, undo
log architectures are not based on dynamic generation of
reversibility code. Also, contrarily to incremental state sav-
ing, our solution is specifically designed to avoid the (high)

cost paid by incremental state saving when executing a roll-
back operation. In fact, while the latter generally requires
to inspect some (arbitrarily complex) metadata to determine
where each portion of the incremental log should be placed
in memory, our update undo code blocks can be simply exe-
cuted with no additional overhead associated with metadata
management, as they are specifically generated so as to keep
all the relevant information already packed together.

Another important aspect in our proposal is that it can
be combined with classical checkpointing methods (both in-
cremental and non-incremental). Particularly, by taking
infrequent checkpoints, we can generate checkpoint inter-
vals where some passed-through snapshots are not cover-
able by update undo code blocks, while others are. Hence
state restoration can be executed by either reloading a pre-
vious checkpoint and executing a classical coasting forward
phase, or by applying the update undo code from the current
state snapshot (or from a conveniently selected checkpointed
snapshot). While the former case occurs for restoration to
a snapshot uncovered by the update undo facility, the latter
occurs for snapshots covered by the update undo scheme.
In other words, a single checkpoint interval can be opti-
mized by the combination of the two techniques, in terms of
the tradeoff between overhead for recoverability tasks and
actual recovery costs. Other proposals do not have such
a fine-grained mixture of different recoverability supports.
In fact, most mixed-based solutions either switch between
different recoverability modes along different phases of the
simulation model execution (i.e., not in a single checkpoint
interval) [21], or are exclusively based on incremental vs non-
incremental checkpointing, thus not relying on the update
undo code block technique.

Finally, borrowing from the results in [7], we present an
analytic model that allows to determine how to partition
each single checkpoint interval in terms of recoverability sup-
port, thus optimizing the decision on the length of the inter-
val, as well as the decision on what are the snapshots which
will be reconstructed (in case of a rollback operation) by re-
lying on the coasting forward operation or on update undo
code blocks.

We again remark that our proposal is fully application
transparent, and has been released as free software and in-
tegrated into the open source ROOT-Sim package [18, 20].

The remainder of this paper is structured as follows. In
Section 2 we discuss related work. Section 3 presents the
design choices below our proposal, and its implementation.
Experimental data to assess the viability and effectiveness
of our proposal are finally reported in Section 4.

2. RELATED WORK
As already pointed out, due to the fundamental role of

the rollback operation in the context of optimistic synchro-
nization for PDES, the literature on this topic is extremely
wide. In the state saving-based context, several solutions
have been introduced for logging the whole state of a sim-
ulation object (at each event execution or after an interval
of executed events) [9, 22, 25, 26], or incrementally logging
modified state portions [27, 31, 35], or supporting a mix of
the two approaches [10, 29]. These solutions either ask the
application-model developer to implement callbacks which
are explicitly invoked when the simulation environment de-
termines that a state log is necessary, or require the modeler
to issue a call to some specific API used to identify the sim-

ulation state location in memory, or request to statically
identify (e.g. at compile-time) which portions of the ad-
dress space need to be considered part of the state. The
works in [8, 30] address the management of dynamic mem-
ory maps to store simulation objects’ states, and in [32] the
management of dynamic memory is additionally tackled in
a completely transparent way, by proposing a memory man-
ager specifically targeted at optimistic PDES environments,
which allows to transparently manage a dynamically scat-
tered memory map of simulation objects’ states. Our pro-
posal is complementary to all the aforementioned ones, as
we integrate traditional state saving with the runtime gen-
eration of update undo code blocks.

In the context of reverse computing-based state restore, a
recent work [14] presents a software-instrumentation based
approach (at the level of LLVM IR) to automatically gen-
erate the code associated with negative events. This work
is similar in spirit to ours, as one of our final goals is to re-
lieve the user from the burden of implementing the negative
version of the events as well. Nevertheless, in the approach
in [14], binary instrumentation is used to generate at compile
time exact negated versions of code blocks, while we gener-
ate at runtime the instructions which undo the effects of the
execution of one event in memory. Therefore, our solution’s
cost (in terms of recovery latency) is not proportional to the
granularity of the events, rather to the amount of memory
locations which are updated during the execution in forward
mode. On the other hand, the final tradeoff by our solution
is different from the one in [14] also because our instrumen-
tation scheme operates at run-time, thus inducing some cost
for the dynamic generation of update undo code blocks.

The work in [19], similarly to what we do, relies on static
binary instrumentation to track memory updates during the
forward execution of the events. Nevertheless, the goal in [19]
is to use this information to generate periodic incremental
checkpoints. Contrarily, we use tracked memory updates
to build update undo code blocks. This is similar, as well,
to the proposal in [35], but rather than packing the undo
log in linked data structures, we pack on the fly assembly
instructions which are later executed consecutively, so as to
reduce to the highest extent the execution time of the restore
operation.

Our approach shares underlying principles with the works
in [7, 21]. In [21], an autonomic system to determine at
runtime the best suited checkpointing mode (incremental
vs full) is presented. Efficiency is ensured by relying on a
dual-version executable technique, which allows to switch
between the two execution modes changing only a couple
of function pointers. We keep the same ability to change
the support for state recoverability (using the same soft-
ware dual-version technique), but we do this within each
single checkpoint interval (by covering a subset of the states
passed through in the interval by update undo code blocks).
Hence we are able to optimize dynamics at smaller granular-
ity levels (single events within a checkpoint interval). With
respect to [7], we propose a similar model. However, in that
work no support for application transparency of recoverabil-
ity tasks is presented, while our proposal is fully application
transparent.

Our proposal is also related to a number of works in the
field of program execution tracing (see, e.g., [1, 2, 23, 36])
for debugging, vulnerability assessment and repeatability.
These approaches provide detailed analysis of changes in

the state of the program, and of the execution flow. How-
ever, this is achieved via performance-intrusive techniques
relying on dynamic instrumentation and/or kernel-level ser-
vices, unsuited for contexts where performance cannot be
sacrificed (e.g., parallel simulation). Debugging supports
showing basic operating modes comparable to ours (namely,
the employment of trap mechanisms based on code inser-
tion and/or replacement to detect memory write accesses)
are those addressing data watch points (see, e.g., [34]). How-
ever they have performance targets different from ours since
optimizations mostly cope with search techniques for verify-
ing whether a memory reference falls inside a region that is
currently subject to a watch point. In other words, aspects
related to the identification of areas that have been modified
and to log/restore operations are not considered.

3. THE STATE RECOVERABILITY ARCHI-

TECTURE
Our architecture to manage state recoverability relies on

static software instrumentation to transparently modify the
application-level code, in order to let the simulation engine
track at runtime what are the effects of the forward execu-
tion of events on the simulation model’s state. This infor-
mation is used to build a packed version of negative instruc-
tions which only undo the effects of the forward execution,
allowing for a reverse execution of events (in terms of state
updates) which is independent of the actual forward event
granularity. This technique is complemented with an an-
alytic model which determines, during the forward phase,
whether the next event updates will be guaranteed to be
recoverable either through classical coasting forward, or via
the execution of update undo code blocks. The model deci-
sions are aimed at minimizing an overhead function that ex-
presses the tradeoff between the cost of recoverability tasks
and actual recovery operations. The whole approach will be
based on the coexistence of dual executable modes (inspired
to [21]). This allows to quickly switch from an instrumented
version of the simulation model’s code (which allows to track
memory updates and to generate update undo code blocks)
to the “plain” one (where no actual tracking is performed).
In this section, we will describe the various design choices
which have driven the implementation of our proposal.

3.1 Instrumentation Technique
To statically instrument the application-level code, we rely

on Hijacker [17], an open-source static instrumentation tool
specifically targeted at HPC applications. Hijacker has been
developed on the first instance to support incremental state
saving in optimistic PDES systems [19], but has later been
extended to support differentiated tasks. For the proposal in
this paper, we have augmented the set of operations which
this tool can perform. The basic support provided by Hi-
jacker is to let the user specify (by using simple xml-based
rules) what are the operations to perform on the original
application code. Hijacker is conceived to be part of the
compiling tool-chain, placing itself as a pre-linking stage.
This allows our state recoverability architecture to be easily
integrated into different simulation engines.

Hijacker works on relocatable object files. Specifically, it
operates on the Executable and Linkable Format (ELF). The
rules interpreted by Hijacker allow to perform instrumenta-
tion at different scopes, namely executable-wide or at the

.text

.data

.rodata

.bss

Original Relocatable

Object File

.text_1

.data

.rodata

.bss

.text_2

.data

.rodata

.bss

.text_2

.data

.rodata

.bss

.text_1

Final Relocatable

Object File

Firs
t R

ul
es

 S
et

S
econd R

ules S
et

Figure 1: Code multiversioning

level of single functions/instructions. Additionally, the rules
allow to instruct Hijacker to create multiple copies of the
same executable, but differently instrumented. This tech-
nique, known as multi-coding, creates different versions of
the code which nevertheless share the same data sections
within the virtual address space. Hijacker transparently al-
lows to change the name of all the (instrumented) functions
when it comes to generate multiple versions of the software,
by simply appending a user-defined suffix to them. This al-
lows the simulation engine to exactly identify which copy of
the application-level function is instrumented in a specific
way. Overall, after the generation of multiple versions of
the code, the final memory organization of the executable
complies with the scheme shown in Figure 1.

To reach our target, we have specified the rules reported
in Figure 2 and implemented the specific modules that apply
them to the original executable. This configuration file in-
structs Hijacker to generate a modified application-level re-
locatable object which has two different versions (as pointed
out, sharing the same data). Specifically, by using the rules
in the first <Executable> tag (which generates the first ver-
sion, associated with the memtrack suffix), Hijacker scans the
whole simulation model’s code to find instructions belonging
to the I_MEMWR family, namely assembly instructions which
have a memory address as the destination operand. Among
the various ones, the most significant instructions for the x86
architecture (which represents our target) are mov, movs, and
cmov instructions. These different instructions are handled
internally in a different way by Hijacker, nevertheless be-
fore each of them (in the whole original program’s image)
a call to a specific internal trampoline is placed, along with
some instructions which generate an invocation context for
it, therefore allowing to identify the characteristics of the
original instruction which caused the invocation. This is
done via the <AddCall> tag, with the arguments attribute
set to target.

The goal of this instrumentation rule is to let Hijacker
generate a cache of disassembly information, which can be
used at runtime. This step is important to address the ef-
ficiency of the runtime execution of our tracking scheme,
as it allows us to avoid costly disassembly of instructions
at runtime. More specifically, Hijacker extracts from the
memory-write instruction the information related to the size
of the memory write, and the destination address. According
to the addressing mode of the x86 architecture, each mem-
ory address is identified by the expression base address +
(index ∗ scale)+ displacement. While the parameters scale

and displacement are already encoded in the instruction bi-
nary representation, base address and index refer to the
content of registers, which can be evaluated only at run-
time. Therefore, Hijacker packs this information retrieved
at compile time in a structure named insn_entry which will
be directly placed on the stack at runtime, along the execu-
tion flow of the running thread. This operation is done by
injecting a set of ad-hoc mov instructions in the original exe-
cutable, right before the memory-writing instruction which
caused the activation of this procedure, as depicted in Fig-
ure 3. To create space for this packed data, Hijacker places
as well a sub instruction before the mov instructions, and a
related add instruction after the original memory-write in-
struction, which operate on the stack-pointer. This is to re-
trieve, during the execution of the instrumented executable,
the parameters required to reconstruct the target address
(and the size) of the memory update. The insn_entry struc-
ture is composed of the following fields:

struct insn_entry {
char flags;
char base;

char idx;
char scale;

int size;
long long offset;

}

where flags tells which are the relevant fields of insn_entry
to recompute the target address, or to identify the class of
data-movement instructions, as we will explain later in de-
tails; base keeps the (3 or 4 bits) base register binary repre-
sentation; idx keeps the (3 or 4 bits) index register binary
representation; scale is used to store the scale factor of
the addressing mode; size holds the size (in bytes) of the
memory area being affected by the memory-write instruc-
tion (when available at disassemble time); offset keeps the
displacement of the addressing mode1.

Additionally to this information, Hijacker places (again,
using a couple of ad-hoc mov instructions) the address of
the function specified in the function attribute of the <Ad-
dCall> tag, reverse_generator in our case. This function
is defined as reverse_generator(void *address, size_t

size), and represents our entry point in the state recov-
erability manager to build the actual negative instruction
which will undo the effect of the memory-write instruction
on the simulation state. Since this function could not be
present in the original executable2, Hijacker simply creates
a relocation entry in the final relocatable object file, leaving
to the final linker the task of identifying the correct address.

As mentioned, the actual value for address in the most
general case can be retrieved only at runtime, as it may
depend on the content of the base and/or index registers.
Therefore, Hijacker, after having placed the mov instructions
which put on stack the insn_info record associated with
the information concerning the current memory-write in-
struction, inserts a call instruction to an internally-defined
trampoline which is used to compute the final address. This

1We provide 64-bits space in the insn_entry structure due
to the fact that the x86 64 assembly language allows one
single instruction, namely movabs, to directly use a 64-bits
addressing mode. In all the other cases, only 32 bits of the
offset field are actually used.
2This is exactly our case, in fact the module is part of the
state recoverability manager, not of the simulation model,
which is transparently injected in the original model’s code
via the <Inject> tag specified in the xml-based rules.

<hijacker:Rules xmlns:hijacker="http://www.dis.uniroma1.it/~hpdcs/">

<hijacker:Inject file="mixed-state-saving.c" />

<hijacker:Executable suffix="memtrack"> <!-- First code version -->

<hijacker:Instruction type="I_MEMWR">
<hijacker:AddCall where="before" function="reverse_generator" arguments="target" />

</hijacker:Instruction>

</hijacker:Executable>

<hijacker:Executable suffix="notrack"> <!-- Second code version -->

</hijacker:Executable>
</hijacker:Rules>

Figure 2: Hijacker rules to instrument application-level code

size

flags

offset

offset

base idx scale
SP

0x0000 0000

0xFFFF FFFF

MOV

MOV

MOV

MOV

insn_entry

SP

sub add

function pointer MOV

MOVfunction pointer

Figure 3: Trampoline call stack frame

trampoline exploits the flags field of the insn_info struc-
ture to determine which, among the four parameters base
address, index, scale, and displacement, determine the mem-
ory write address. After having determined this, the tram-
poline computes the final address and places it either on the
stack or in the rdi, rsi registers, depending on the calling
convention of the system (namely, 32-bits vs 64-bits x86). At
this point, it retrieves from stack the 4 or 8 bytes compos-
ing the address of the function (reverse_generator in our
case), places it in a general purpose register and performs
an indirect call.

To ensure the correctness of the overall original executable,
the trampoline is used as well to save the CPU context of
the application before executing the final function, and then
restores it before giving control back to the original soft-
ware. Nevertheless, due to the fact that a sub/add couple
of instructions is placed around the original memory-write
instruction, Hijacker must as well save the status register
of the CPU, namely the flags register, in order to leave
the flow of execution untouched, so as to let the software
continue its execution as if no additional operation was per-
formed. To this end, we place a couple of pushfw/popfw
instructions before and after all the operations on the stack,
just to save and restore the status register.

The other two aforementioned types of memory-write in-
structions have been dealt with in two different ways. On
the one hand, the cmov instruction is managed directly by
the Hijacker’s trampoline. Specifically, in case the instru-
mentation is triggered by a cmov instruction, we use 4 bits
in the flags field of insn_info to record what is the actual
check to be emulated in order to determine if the memory

update will be executed or not. Specifically, the trampo-
line checks whether the bits are different from zero, and in
the positive case the corresponding status bits are checked
to determine whether the condition is met or not. Never-
theless, by the above discussion, the values of status bits
might have been already altered during the execution of the
previous injected operations (namely, before the trampoline
takes control). To this end, the trampoline’s code looks
on the application stack for the old value, as stored by the
previously-executed pushfw instruction. In case the values
of these bits, according to the code stored in the flags field,
tell that the memory-update instruction will be executed,
then the control is passed to the reverse_generator func-
tion, exactly as in the previous scenario. In the negative
case, the control is simply returned back to the application.
This check is performed right after the trampoline has taken
control, in order to avoid the cost of computing the target
address in case this information is not useful, thus trying to
reduce the cost of this operation.

Concerning the movs instruction, we use one bit of the
flags field to let the trampoline know whether its invocation
is related to such an instruction. In this specific case, the
size flag tells only the size of one single iteration of the
movs instruction. Therefore, to compute the total size, the
trampoline’s code checks the value of the rcx register, and
multiplies it by size. The starting address of the write is
then computed by first checking the direction flag of the
flags register. In case this flag is cleared, the destination
starting address is already present in the rdi register. If the
flag is set, then the movs instruction will make a backwards
copy, and therefore the (logical) initial address of the move
is computed as rdi - rcx * size.

In all cases, the trampoline is able to compute the tuple
〈address, size〉, which is passed to the function specified in
the xml configuration file (reverse_generator in our case).
In this way, Hijacker is able (by using the internal trampoline
module) to hide the complexity of the underlying hardware
architecture and pass the relevant information to the module
which will perform the generation of the update undo code
blocks. We emphasize that the trampoline has been devel-
oped directly in x86 assembly, in a very efficient way, so as
to reduce as much as possible the overhead to compute the
target address. Additionally, using cached disassembly in-
formation allows the trampoline to access all the relevant in-
formation very quickly, avoiding the need for costly runtime
disassembly, which is more proper of dynamic instrumenta-
tion approaches. Moreover, this instrumentation technique
allows us to keep, in the same executable, two different ver-

sions of the original code, one instrumented to track memory
accesses, and one which simply executes the original code.
Since by using Hijacker we are able to differentiate these ver-
sions by the name of all the functions (namely, one version
has all function names with the memtrack suffix, the other
with the notrack suffix), we are able to give control to the
two versions of the code very easily. This facility will be
exploited later, when this architecture will be coupled with
the analytic model to decide which support for the rollback
operations should be activated on a very fine grain (e.g. per
event) basis.

3.2 Runtime Generation of Update Undo Code
Blocks

The instrumentation architecture described so far allows,
at runtime, to activate the reverse_generator(void *ad-

dress, size_t size) API just before any memory-update
operation is performed. At this point, the state recover-
ability manager is notified of the application code’s will to
update the simulation model state, and therefore negative
instructions (to restore the state in case of a rollback oper-
ation) can be built on-the-fly.

Specifically, in case the invocation of reverse_generator
is related to the execution (in the forward event) of a mov or
a cmov instruction, the negative instruction is simply built
by accessing memory at address and by reading size bytes.
This value, since the invocation of reverse_generator hap-
pens right before the execution of the original memory-write
instruction, allows the module to retrieve the “old” value
of the simulation model’s state. This value is then placed
within a data movement instruction as the source (imme-
diate) operand. Of course, the destination of this negative
instruction is address, as the ultimate goal of this operation
is to restore the state by placing back at the same addresses
the originally-kept value.

If the activation of reverse_generation is due to a movs

instruction, this can be easily determined by size, as it
could be higher than the largest representable immediate3.
In this case, the negative instruction could be only another
movs instruction. Therefore, reverse_generator allocates a
memory buffer and creates a copy of the memory pointed by
address. Then, a set of instructions which place back the
same memory content is generated. Of course, this operation
is more costly than the generation of a single negative mov

instruction, but is nonetheless necessary to allow for the
correct restoration of the simulation state.

We emphasize that the generation of negative instructions
by reverse_generator is not a costly operation, except for
the movs case where a memory buffer must be explicitly
copied. In fact, since the set of instructions to be generated
is very limited (namely, some variants of mov instructions),
the opcodes are known beforehand. This allows us to use
pre-compiled tables of instructions, where only the relevant
parameters should be packed within, namely the old mem-
ory value and the destination memory address. With this
approach, we are paying an instrumentation overhead which
is similar to that of incremental state saving solutions (see,
e.g., [19]), but we are completely avoiding any generation of

3We note that, by using this approach, a movs instruction
involving few bytes of memory is negated using a standard
mov instruction, which is nevertheless correct, and possibly
more efficient.

revwin

size

address

pointer

Heap

revwin

Figure 4: Revwin descriptor

metadata, thus reducing the overhead for the installation of
a previous snapshot during the execution of a rollback.

The runtime generation module of update undo code blocks
offers an additional API, namely initialize_event(int LP)

which is used to let the simulation engine inform that a new
simulation event (during the forward execution phase) is
about to be delivered to some LP4. Whenever the initial-
ize_event API is called, the reverse code generator module
allocates on the heap a private region space to dynamically
store generated instructions. These instructions are packed
into the reverse window structure, which is depicted in Fig-
ure 4. In this way, both multi-process and multi-thread sim-
ulation engines can rely on the reverse generator module, as
each LP (and therefore any possible thread executing the
LP’s code) has its own (private) reverse window, thus easily
supporting re-entrant execution. When the reverse window
is created, the reverse generator module places at the end of
this space a ret instruction. This allows to let the execution
of the undo event return control to the caller function after
the end of the reverse window has been reached. Addition-
ally, the pointer field of the revwin structure is set to the
address of this ret instruction.

Each time the reverse_generator module is called, a new
negative instruction is generated, which is inserted right be-
fore the address of pointer, whose value is then updated
accordingly. In this way, negative instructions are placed
within a reverse window (which is associated with one spe-
cific simulation event) in the reverse order with respect to
the forward execution, which is a fundamental prerequisite
for building correct update undo code blocks. In fact, this
allows to undo all the effects of a forward event by simply
issuing a call to the first instruction in the reverse window
(i.e., the one pointed by pointer).

In case one event requires the generation of a large number
of negative instructions, the reverse window’s space could
get exhausted. In this case, the reverse generator module
doubles the size of the reverse window. This operation could
be costly, as it requires shifting the content of the current
reverse window (namely, all the negative instructions) to
the end of the newly allocated memory area, and updating
pointer accordingly. To reduce the frequency of this opera-

4In our architecture, each LP is associated with a unique nu-
merical ID in the range [0, N−1]. Any simulation engine us-
ing a different identification strategy can, nevertheless, rely
on some mapping function to integer values.

A B C B A D A

A

Figure 5: Instruction predominance

tion, the initial size of a reverse window can be specified at
compile time according to conservative (size overestimation)
approaches.

To reduce the amount of negative instructions which are
stored into a reverse window, we have explicitly addressed
the case where, during the execution of an event in for-
ward mode, the same memory location is touched multiple
times in write mode. Due to the impulsive nature of discrete
events, these multiple updates should be all undone during a
rollback operation. Therefore, generating multiple negative
instruction for a same memory target into the update undo
code blocks would be both a waste of space in the reverse
window and an additional non-necessary cost when execut-
ing the actual update undo instructions. This scenario is
depicted in Figure 5.

We therefore employ an ad-hoc data structure to keep
track of referenced addresses, namely a fast hashmap. When-
ever reverse_generator is activated, this hashmap is queried
to determine whether (within the same event’s execution)
the destination address was already involved in a negative
instruction generation. Basically, this hashmap exploits a
two-level bitmap to coalesce multiple addresses within a sin-
gle word, so as to optimize space requirement for address
mapping. A toggle bit is used to indicate if an address is al-
ready referenced by some memory-write instruction or not.
The structure is a linear array of elements treated as a bi-
dimensional matrix. Each element of the array is a quad-
word of 64 bits used as basic storage unit for a single range
of family’s addresses5. To access the map, the following two
values are needed: (i) an index providing the address fam-
ily range, and (ii) the offset which identifies the address’
bit within the storage unit (i.e. the quadword). These are
computed by properly masking the address value. A fam-
ily range is therefore composed by all the addresses whose
value starts with the same prefix. The length of this prefix
depends on the number of flags the storage unit can contain,
namely a quadword in our case. This can store up to 64 flags.
Given the address, the offset is computed by extracting the
least n − 1 significant bits, while index is computed as the
result of a bitwise-AND with the remainder of most signif-
icant bits. Figure 6 shows an example of address’ binding
for a 32-bit architecture.

To correctly keep a per-event reverse window, whenever
the simulation engine invokes the initialize_event API,

5This allows us to handle both 64-bits x86 architectures and
32-bits ones, at the cost of wasting some space if running on
older CPUs.

07152331

1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0

︸ ︷︷ ︸

index

︸ ︷︷ ︸

offset

addrmap

0x36B42E3
{

0 0 0 0 . . .0 0 1 0 00x36B4303
{

0x36B4323
{

0x36B4343
{

0x36B4363
{

address

Figure 6: The index and offset bitmasks of revwin’s
hashmap

the hashmap’s content is flushed, so as to allow the new
reverse window to store all the negative instructions, even
though previously-executed events touched the same mem-
ory addresses.

3.3 Model-based Optimization of the Recov-
erability Support

As for models aimed at optimizing the parameters driving
the execution of recoverability (and actual recovery) tasks
in optimistic PDES, the one presented in [7] can be used as
a basis for optimizing the configuration of the specific re-
coverability support we are presenting. Particularly, in this
work the authors consider a scenario where full and incre-
mental logs (in the form of before images) are mixed in a
same checkpoint interval. A full log is taken each χ event
executions, and then the LP executes a number µ of events
without saving before-images of updated memory locations,
then for the remaining ν = χ − 1 − µ events in the same
checkpoint interval, before-images of the state variables are
logged. In this way a state can be recovered by reloading an
older checkpoint and the coasting forward, or by reloading
a later checkpoint and applying the incremental changes in
backward mode. A final equation is achieved that describes
the trade-off between recoverability tasks and actual recov-
ery, namely:

(δs + νδbi)

χ
+ Fr

[

χ − ν

χ

(

δr +
χ − ν − 1

2
δe

)

+
ν

χ

(

δr +
ν

2
δb

)]

where:

δs is the average time to take a full log of the LP state;

δbi is the average time for saving the before-images of the
state variables during the execution of an event;

δr is the average time to reload a full checkpoint from the
log;

δe is the base execution time of the event (not including
the cost for saving before images in case of memory
updates);

δb is the latency for one backward recovery operation that
reloads the before images for a specific event execution
to be undone;

Fr is the frequency of rollback of the LP (classically eval-
uated as the number of rollbacks over the total number
of event executions).

The minimization of this equation vs the tunable param-
eters χ and ν (as depicted in [7]) leads to the optimal com-
bination of coasting forward based recovery, and backward
recovery. This same equation can be applied to our architec-
ture when considering that δbi will correspond to the time
for running the injected code that traps memory accesses
and builds (packs) the update undo code blocks, and δb is
the average time for running the undo update code block
associated with a specific event.

Let us again stress that reusing the above model for op-
timization purposes of the configuration of the recoverabil-
ity support based on update undo code blocks does not re-
duce the level of innovation by our proposal, given that the
original solution in [7] had no support for application level
transparency, rather all the checkpoint operations (incre-
mental and non-incremental) were demanded to the appli-
cation level code. Full application transparency is instead
guaranteed in our approach.

3.4 Final Integration
Once the execution of a simulation event is completed, the

reverse code generation module ensures that all the relevant
negative instructions have already been assembled in the
current reverse window. We have therefore augmented the
set of API functions offered by the reverse code generation
module including void *get_last_window(), which allows
to retrieve a pointer to the just packed revwin data struc-
ture. This pointer can be therefore stored by the simulation
engine directly in the event queue (specifically, in the just
processed event node), so as to allow for a fast retrieve in
case the event should be undone due to a rollback operation.

Once the simulation engine detects that an out-of-order
event e associated with timestamp Te has been received,
the rollback operation is actually executed according to the
following algorithmic steps:

1. The event e is incorporated into the event queue of
the destination LP. The next event enext in the queue
if found;

2. If this event has a pointer to a reverse window, then by
the actual operating mode of the recoverability support
that combines coasting forward and update undo code
blocks (namely, the one whose analytic model for its
optimization has been discussed in Section 3.3) we can
execute a reverse reconstruction. If the pointer is not
set, then a traditional state restore (possibly involving
a coasting forward operation) is executed;

3. If a reverse window is present, then the log queue is
scanned in order to find a checkpoint Cnext associated
with timestamp TCnext

such that Tenext
≤ TCnext

, if
any;

4. If this checkpoint does not exist, then it means that
we are rolling back to a recent simulation time, so we
can simply start executing update undo code blocks. If
Cnext is found, then the simulation engine restores this
state, and sets erev to the last event executed before
Cnext was taken;

5. All update undo code blocks between erev and e are
executed in reverse order.

The execution of an update undo code block is left to the
state recoverability architecture, via the undo_event(void

*) API function. This function takes a pointer to a reverse
window, determines the value of the associated pointer

fields and issues an indirect call to that address. The pres-
ence of a ret instruction at the end of the reverse window
ensures that, after having undone the event, control is given
back to the rollback algorithm of the simulation engine. A
similar procedure as the one depicted above is executed in
case of a rollback caused by an anti-message.

To recover memory, the logic associated with the tradi-
tional fossil collection operation should be augmented. Specif-
ically, during the fossil collection, when the input queue of
some LP is pruned from older events, the simulation engine
is offered the release_window(void *) API function, which
allows to release all the memory used for the update undo
instructions of one event. In this way, we are able to recollect
memory, which can be used again during forward execution
to maintain reverse instructions related to the execution of
additional simulation events.

4. EXPERIMENTAL RESULTS

4.1 Test-bed Environment
We have integrated the presented state recoverability man-

ager within the ROOT-Sim simulation platform [18, 20].
This is a C-based open source simulation package targeted at
POSIX systems, which implements a general-purpose sim-
ulation environment based on the Time Warp synchroniza-
tion paradigm. It offers a very simple programming model
relying on the classical notion of simulation-event handlers
(both for processing events and for accessing a committed
and globally-consistent state image upon GVT calculations),
to be implemented according to the ANSI-C standard, and
transparently supports all the services required to parallelize
the execution. More in detail, we have integrated our inno-
vative state recoverability support in the symmetric multi-
threaded version of ROOT-Sim

6 that has been presented in
[33].

This platform has been run on top of a 32-core HP Pro-
Liant server equipped with 64GB of RAM and running De-
bian 6 on top of the 2.6.32-5-amd64 Linux kernel.

Our integration has been carried out following two steps.
On the one hand, we have altered the final executable gen-
eration chain proper of ROOT-Sim, adding one step which
involves the actual invocation of Hijacker to instrument the
application-level code. On the other hand, we have added
some logic to the simulation kernel in order to execute the
rollback operation adopting our update-undo-based recover-
ability support.

As for the first step, ROOT-Sim relies on the rootsim-

cc custom compiler to generate the final simulation model’s
executable, carrying out several steps in order to correctly
link to the set of static libraries proper of the simulation
engine. In particular, during the compilation of a simulation
model, rootsim-cc performs the following steps:

1. All the sources from the model are compiled using the
standard gcc compiler, and one single relocatable ob-
ject file is produced.

6The source of the multi-threaded version of ROOT-Sim,
along with the presented state recoverability support, can
be found at http://github.com/HPDCS/ROOT-Sim.

2. This relocatable object file is then incrementally linked
via ld to the DyMeLoR static library. In this process,
all the calls to the malloc standard library are redi-
rected to the proper DyMeLoR allocator (see [21] for
a thorough description of DyMeLoR and this compila-
tion step).

3. Then, the produced incrementally-linked relocatable
object is again incrementally linked to an additional
static library (called libwrapper) which allows for the
redirection of all stateless library functions proper of
the C standard library to a set of wrappers which allow
for a correct integration with the DyMeLoR library.

4. Finally, this new relocatable object is linked to the
final librootsim library.

We have altered this compilation process by inserting an
additional step right after Step 1 in the previous list. In
particular, during this additional step we explicitly call Hi-
jacker, passing the configuration-rule set shown in Figure 2.
This allows us, as discussed, to generate a model relocatable
object file which is already integrated with the innovative
state recoverability support.

As a note, we emphasize that calling Hijacker before link-
ing the model with DyMeLoR does not pose any issue re-
garding memory management, as the reverse generation mod-
ule relies on mmap to allocate memory to keep reverse in-
structions, which is not redirected by DyMeLoR itself, and
therefore allows to keep these buffers away from the LPs’
simulation state.

4.2 Test-Bed Application Model
We have run experiments to assess the overall perfor-

mance and behavior of the presented state recoverability
architecture by relying on the Personal Communication Sys-
tem (PCS) benchmark, which models a mobile network ad-
hering to GSM technology. Each LP models the state’s evo-
lution of an individual hexagonal cell, and the whole set of
cells provides wireless coverage on a square region of vari-
able size. Each cell handles a parameterizable number N of
wireless channels, which are modeled in a high fidelity fash-
ion via explicit simulation of power regulation and interfer-
ence/fading phenomena, according to the results in [13].

The event types which can occur at any LP are: Start
Call, which simulates a new call installation on a target
cell; End Call which simulates a call termination; Hand-
off Leave which simulates the leave of an on-going call from
the current residence cell; Handoff Receive which simulates
the installation of a call handed off from an adjacent cell;
Recompute Fading, which simulates the effects of weather
variations onto the fading (and consequently interference)
phenomena for ongoing calls.

Upon the start of a call, a call-setup record is instan-
tiated via dynamically-allocated data structures, which is
linked to a list of already active records within that same
cell. Each record is released when the corresponding call
ends or is handed off towards an adjacent cell. In the lat-
ter case, a similar call-setup procedure is executed at the
destination cell. Upon call setup, power regulation is per-
formed, which involves scanning the aforementioned list of
records for computing the minimum transmission power al-
lowing the current call setup to achieve the threshold-level
Signal-to-Interference Ratio (SIR) value. Data structures
keeping track of fading coefficients are also updated while
scanning the list, and on a periodic basis, according to a

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

25% 50% 75%

E
xe

cu
tio

n
 T

im
e
 (

se
co

n
d
s)

Load

ISS SS+CF SS+EU Model

Figure 7: PCS execution time with 64 LPs

 5

 10

 15

 20

 25

 30

 35

 40

 45

25% 50% 75%

E
xe

cu
tio

n
 T

im
e
 (

se
co

n
d
s)

Load

ISS SS+CF SS+EU Model

Figure 8: PCS execution time with 256 LPs

meteorological model defining climatic conditions (and re-
lated variations).

This application is highly parameterizable. Beyond the
already mentioned number N of wireless channels per cell,
the set of configurable parameters entails: (i) τA, which ex-
presses the inter-arrival time of subsequent calls to any tar-
get cell; (ii) τduration, which expresses the expected call du-
ration; (iii) τchange, which expresses the residual residence
time of a mobile device into the current cell. These pa-
rameters affect the utilization factor of available channels,
expressed as τduration/(τA ∗ N). This impacts the granu-
larity of the events since the more channels are busy, the
more power-management records are allocated and conse-
quently scanned/updated during the processing of different
events. On the other hand, higher values of the channel uti-
lization factor lead to higher memory requirements for the
state image of individual LPs. Both the above dependencies
(namely, CPU demand and memory) are anyhow bounded
depending on the total number N of per-cell managed chan-
nels.

4.3 Experimental Data
To study the effects of our state recoverability architec-

ture when considering differentiated execution and memory
access patterns for the application layer, we have run ex-
periments varying the actual size of the model, setting the
number of simulated cells (and thus, of LPs) in the interval

Table 1: Sequential execution time (seconds)
Load 64 LP 256 LP 576 LP 1024 LP
25% 68.249 188.821 412.830 847.429
50% 80.256 310.822 716.359 1266.089
75% 117.117 433.494 1058.123 1772.595

[64, 1024]. Each cell handles 1000 wireless channels, and we
have varied the call inter-arrival frequency so as to obtain
an average utilization factor in between 25% and 75%. We
have run the simulation models until each cell has managed
10000 completed calls, assessing the overall execution time
(and therefore the performance) of different configurations
of the simulation engine. Specifically, we compare the tradi-
tional rollback technique based on state saving and coasting
forward (referred to as SS+CF), the rollback technique rely-
ing on incremental state saving as presented in [21] (referred
to as ISS), the rollback technique based on the execution of
our update undo code blocks (referred to as SS+EU) and
the interleave of SS+CF and SS+EU based on the analytic
model presented in [7]. For completeness, we also report
the execution times for the case of a serial execution of the
same identical configurations on top of a calendar queue-
based sequential scheduler [5], to confirm that this study
refers to competitive parallel performance. All the results
are averaged over 5 different runs, configured with the same
initial pseudo-random seeds used by the random number
generators. All experiments have been carried out using 32
concurrent worker threads in the simulation engine, and in
all configurations the checkpointing interval χ has been set
to 10, so as to allow for an even comparison between the
differentiated approaches (i.e., there is no actual benefit by
the checkpointing interval for any of the presented configu-
rations). In fact, since the various techniques that we are
comparing in this study can rely on different approaches to
fine tune χ (let them be iterative, analytic, hill-climbing-
based, . . .), we have decided to set this parameter to a fixed
value, so as not to create any bias favoring any approach.
Given this selection, the model based approach presented
in [7], which we have exploited in Section 3.3, has been used
to derive the optimal value ν, starting from this fixed value
of χ.

In Figures 7–10, we present the overall execution time of
our simulations in the aforementioned configurations. We
can see that the parallel runs offer a speedup with respect
to the sequential execution (as reported in Table 1) rang-
ing from 5 (in case of 64 LPs) to 14 (in case of 1024 LPs).
Therefore, this experimentation allows us to assess the be-
havior of our proposed architecture in scenarios with a high
degree of parallelism and a somewhat limited efficiency of
the parallel run, and scenarios where the efficiency is much
higher.

By the results, we can see that when the number of LPs
is limited (Figures 7 and 8), independently of the load of
the system the best performance is provided by ISS. This is
related to the fact that, although the operations required by
ISS to mark a portion of the simulation state as modified re-
quire scanning complex metadata, all the tables are already
allocated in memory. On the contrary, in the case of SS+EU
each event requires allocating a new reverse window. When
the load is limited (namely, 25%), by the configuration of
our benchmark application, the amount of write operations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

25% 50% 75%

E
xe

cu
tio

n
 T

im
e
 (

se
co

n
d
s)

Load

ISS SS+CF SS+EU Model

Figure 9: PCS execution time with 576 LPs

per each event is reduced. Therefore, the cost of allocat-
ing the reverse window and the cost of generating negative
instructions at runtime are not amortized by the events’ du-
ration. Furthermore, concerning the rollback operation, the
amount of data touched in write mode by the model with
a low load is reduced. Thus, this configuration can be re-
garded as mostly an assessment of the overhead produced by
our state recoverability architecture. Overall, the slowdown
of SS+EU with respect to ISS is on the order of 30%, while
with respect to SS+CF is on the order of 15%. Conversely,
when the load of the system is higher, namely 75%, the
amount of data touched in write mode is higher. Therefore,
the ratio between the number of created reverse windows
and the amount of generated negative instructions is lower.
This reduces the relative overhead by our state recoverabil-
ity architecture, due to a better exploitation of data locality
in the undo log (namely, the update undo code block) by
the rollback operation. In this configuration, the maximum
slowdown by SS+EU with respect to ISS is on the order of
15%. In all the configurations, the model-based scheme al-
lows to reduce the overhead by SS+EU, with a performance
increase on the order of 5%.

When the number of LPs involved in the simulation is
larger (namely, as reported in Figures 9 and 10), the sit-
uation changes. When the workload is reduced, SS+EU
provides a performance increase on the order of 5% with
respect to ISS, and on the order of 25% with respect to
SS+CF. This is mainly related to the fact that this scenario
offers a lower degree of parallelism, and thus the number of
rollback operations is reduced. Therefore, this configuration
allows us to assess that the overhead to generate a log by
ISS and SS+CF is higher than the overhead by SS+EU to
generate the update undo code blocks. When the workload
increases, namely it reaches 75%, this phenomenon is ex-
acerbated. In fact, similarly to the configurations with 64
and 256 LPs, the number of negative instructions per undo
event is higher, which compensates for the cost of allocating
memory and setting up the associated data structures. In
this context, the performance gain of SS+EU with respect
to ISS is on the order of 10%, while it is on the order of 20%
with respect to SS+CF. Analogously to the configurations
with 64 and 256 LPs, the model-based approach allows for
an even higher performance increase, up to 32%.

 0

 20

 40

 60

 80

 100

 120

 140

 160

25% 50% 75%

E
xe

cu
tio

n
 T

im
e
 (

se
co

n
d
s)

Load

ISS SS+CF SS+EU Model

Figure 10: PCS execution time with 1024 LPs

Overall, the data show our state recoverability solution to
be the most effective one in larger configurations of the test-
bed application, exhibiting heavier workloads, which are,
after all, the key scenarios where (optimistic) parallel simu-
lation is considered to be of wide usage.

5. CONCLUSIONS
In this paper we have presented the design and implemen-

tation of a practical state recoverability manager for opti-
mistic PDES that mixes undo logs and software reversibility
techniques. Our proposal is completely transparent to the
application-level developer, by relying on static binary in-
strumentation to detect what are the assembly instructions
which perform memory updates during the execution of an
event in the speculative forward phase. By exploiting this
information, we have proposed an approach to generate at
runtime update-undo code blocks, which are able, when ex-
ecuted, to revert the effects of the execution of an event on
the LP’s state. We have shown this solution, as well, to lie
as a practical support for the transparent implementation
of decision models, which can be used to determine at run-
time what is the most effective (forward) execution mode,
in terms of its recoverability support.

Our experimental assessment highlights that relying on
update undo code blocks to put in place rollback operations
can provide benefits on execution timeliness, when compared
to other traditional supports.

6. REFERENCES

[1] GDB: The GNU Project Debugger.
http://www.gnu.org/software/gdb/ (last accessed: May
11th, 2015).

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
transparent dynamic optimization system. ACM
SIGPLAN Notices, 35(5):1–12, 2000.

[3] P. D. Barnes, Jr., C. D. Carothers, D. R. Jefferson,
and J. M. LaPre. Warp speed: executing Time Warp
on 1,966,080 cores. In Proceedings of the 2013 ACM
SIGSIM Conference on Principles of Advanced
Discrete Simulation (SIGSIM-PADS), pages 327–336.
ACM Press. Montréal, Canada – May 19–22, 2013.

[4] S. Bellenot. State skipping performance with the Time
Warp operating system. In Proceedings of the 6th

Workshop on Parallel and Distributed Simulation
(PADS), pages 53–64. Society for Computer
Simulation International. Newport Beach, California –
January 20–22, 1992.

[5] R. Brown. Calendar queues: a fast O(1) priority queue
implementation for the simulation event set problem.
Communications of the ACM, 31(10):1220–1227, 1988.

[6] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto.
Efficient optimistic parallel simulations using reverse
computation. ACM Transactions on Modeling and
Computer Simulation, 9(3):224–253, 1999.

[7] V. Cortellessa and F. Quaglia. A
checkpointing–recovery scheme for Time Warp parallel
simulation. Parallel Computing, 27(9):1226–1252,
2000.

[8] S. R. Das, R. M. Fujimoto, K. Panesar, D. Allison, and
M. Hybinette. GTW: a Time Warp system for shared
memory multiprocessors. In Proceedings of the Winter
Simulation Conference (WSC), pages 1332–1339.
Society for Computer Simulation International.
Orlando, FL, USA – December 11–14, 1994.

[9] J. Fleischmann and P. A. Wilsey. Comparative
analysis of periodic state saving techniques in Time
Warp simulators. In Proceedings of the 9th Workshop
on Parallel and Distributed Simulation (PADS), pages
50–58. IEEE Computer Society. Lake Placid, NY,
USA – June 13–16, 1995.

[10] S. Franks, F. Gomes, B. Unger, and J. Cleary. State
saving for interactive optimistic simulation. In
Proceedings of the 11th Workshop on Parallel and
Distributed Simulation (PADS), pages 72–79. IEEE
Computer Society. Lockenhaus, Austria – June 10–13,
1997.

[11] R. M. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30–53, 1990.

[12] D. R. Jefferson. Virtual Time. ACM Transactions on
Programming Languages and System, 7(3):404–425,
1985.

[13] S. Kandukuri and S. Boyd. Optimal power control in
interference-limited fading wireless channels with
outage-probability specifications. IEEE Transactions
on Wireless Communications, 1(1):46–55, 2002.

[14] J. M. LaPre, E. J. Gonsiorowski, and C. D. Carothers.
Lorain: A step closer to the PDES ‘holy grail’. In
Proceedings of the 2nd ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation
(SIGSIM-PADS), pages 3–14. ACM Press. Denver,
CO, USA – May 18–21, 2014.

[15] Y.-B. Lin and E. D. Lazowska. Reducing the state
saving overhead for Time Warp parallel simulation.
Tech. Rep. 90-02-03, Department of Computer Science
and Engineering, University of Washington, Seattle,
Feb. 1990.

[16] A. C. Palaniswamy and P. A. Wilsey. An analytical
comparison of periodic checkpointing and incremental
state saving. In Proceedings of the 7th Workshop on
Parallel and Distributed Simulation (PADS), pages
127–134. ACM Press. San Diego, CA, USA – May
16–19, 1993.

[17] A. Pellegrini. Hijacker: Efficient static software
instrumentation with applications in high performance
computing. In Proceedings of the 2013 International

Conference on High Performance Computing &
Simulation (HPCS), pages 650–655. IEEE Computer
Society. Helsinki, Finland – July 1–5, 2013.

[18] A. Pellegrini and F. Quaglia. The ROme OpTimistic
Simulator: A tutorial. In Proceedings of the 1st
Workshop on Parallel and Distributed Agent-Based
Simulations (PADABS). LNCS, Springer-Verlag Berlin
Heidelberg. Aachen, Germany – August 26–30, 2013.

[19] A. Pellegrini, R. Vitali, and F. Quaglia. Di-DyMeLoR:
Logging only dirty chunks for efficient management of
dynamic memory based optimistic simulation objects.
In Proceedings of the 23rd Workshop on Principles of
Advanced and Distributed Simulation (PADS), pages
45–53. IEEE Computer Society. Lake Placid, NY,
USA – June 22–25, 2009.

[20] A. Pellegrini, R. Vitali, and F. Quaglia. The ROme
OpTimistic Simulator: Core internals and
programming model. In Proceedings of the 4th
International ICST Conference on Simulation Tools
and Techniques (SIMUTools), pages 96–98. ICST.
Barcelona, Spain – March 22–24, 2011.

[21] A. Pellegrini, R. Vitali, and F. Quaglia. Autonomic
state management for optimistic simulation platforms.
IEEE Transactions on Parallel and Distributed
Systems (preprint available), May 2014. doi:
10.1109/TPDS.2014.2323967.

[22] B. R. Preiss, W. M. Loucks, and D. MacIntyre. Effects
of the checkpoint interval on time and space in Time
Warp. ACM Transactions on Modeling and Computer
Simulation, 4(3):223–253, 1994.

[23] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and
Y. Wu. LIFT: A low-overhead practical information
flow tracking system for detecting security attacks. In
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture
(MICRO), pages 135–148. IEEE Computer Society.
Orlando, FL, USA – December 9–13, 2006.

[24] F. Quaglia. A cost model for selecting checkpoint
positions in Time Warp parallel simulation. IEEE
Transactions on Parallel and Distributed Systems,
12(4):346–362, 2001.

[25] F. Quaglia and A. Santoro. Non-blocking
checkpointing for optimistic parallel simulation:
Description and an implementation. IEEE
Transactions on Parallel and Distributed Systems,
14(6):593–610, 2003.

[26] R. Rönngren and R. Ayani. Adaptive checkpointing in
Time Warp. In Proceedings of the 8th Workshop on
Parallel and Distributed Simulation (PADS), pages
110–117. Society for Computer Simulation. Edinburgh,
Scotland – July 6–8, 1994.

[27] R. Rönngren, M. Liljenstam, R. Ayani, and
J. Montagnat. Transparent incremental state saving in
Time Warp parallel discrete event simulation. In

Proceedings of the 10th Workshop on Parallel and
Distributed Simulation (PADS), pages 70–77. IEEE
Computer Society. Philadelphia, PA, USA – May
22–24, 1996.

[28] S. Skold and R. Rönngren. Event sensitive state
saving in Time Warp parallel discrete event
simulation. In Proceedings of the Winter Simulation
Conference (WSC), pages 653–660. Society for

Computer Simulation. Coronado, CA, USA –
December 8–11, 1996.

[29] H. Soliman and A. Elmaghraby. An analytical model
for hybrid checkpointing in Time Warp distributed
simulation. IEEE Transactions on Parallel and
Distributed Systems, 9(10):947–951, 1998.

[30] J. S. Steinman. SPEEDES—a multiple-
synchronization environment for parallel discrete-event
simulation. International Journal in Computer
Simulation, 2:251–286, 1992.

[31] J. S. Steinman. Incremental state saving in SPEEDES
using C plus plus. In Proceedings of the Winter
Simulation Conference (WSC), pages 687–696. Society
for Computer Simulation. Los Angeles, CA, USA –
December 12–15, 1993.

[32] R. Toccaceli and F. Quaglia. DyMeLoR: Dynamic
Memory Logger and Restorer library for optimistic
simulation objects with generic memory layout. In
Proceedings of the 22nd Workshop on Principles of
Advanced and Distributed Simulation (PADS), pages
163–172. IEEE Computer Society. Rome, Italy – June
3–6, 2008.

[33] R. Vitali, A. Pellegrini, and F. Quaglia. Towards
symmetric multi-threaded optimistic simulation
kernels. In Proceedings of the 26th Workshop on
Principles of Advanced and Distributed Simulation
(PADS), pages 211–220. IEEE Computer Society.
Zhangjiajie, China – July 15–19, 2012.

[34] R. Wahbe, S. Lucco, and S. L. Graham. Practical data
breakpoints: Design and implementation. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 1–12. ACM Press. Albuquerque, NM,
USA – June 21–25, 1993 .

[35] D. West and K. Panesar. Automatic incremental state
saving. In Proceedings of the 10th Workshop on
Parallel and Distributed Simulation (PADS), pages
78–85. IEEE Computer Society. Philadelphia, PA,
USA – May 22–24, 1996.

[36] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph,
and W.-F. Wong. How to do a million watchpoints:
Efficient debugging using dynamic instrumentation. In
L. Hendren, editor, Compiler Construction, LNCS,
Springer-Verlag Berlin Heidelberg. Budapest, Hungary
– March 29 - April 6, 2008.

