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ABSTRACT

Calibration, matching and tracking are major concerns to obtain 3D 

information consisting of depth, direction and velocity. In finding depth, camera 

parameters and matched points are two necessary inputs. Depth, direction and 

matched points can be achieved accurately if  cameras are well calibrated using 

manual traditional calibration. However, most of the manual traditional calibration 

methods are inconvenient to use because markers or real size of an object in the real 

world must be provided or known. Self-calibration can solve the traditional 

calibration limitation, but not on depth and matched points. Other approaches 

attempted to match corresponding object using 2D visual information without 

calibration, but they suffer low matching accuracy under huge perspective distortion. 

This research focuses on achieving 3D information using self-calibrated tracking 

system. In this system, matching and tracking are done under self-calibrated 

condition. There are three contributions introduced in this research to achieve the 

objectives. Firstly, orientation correction is introduced to obtain better relationship 

matrices for matching purpose during tracking. Secondly, after having relationship 

matrices another post-processing method, which is status based matching, is 

introduced for improving object matching result. This proposed matching algorithm 

is able to achieve almost 90% of matching rate. Depth is estimated after the status 

based matching. Thirdly, tracking is done based on x-y coordinates and the estimated 

depth under self-calibrated condition. Results show that the proposed self-calibrated 

tracking system successfully differentiates the location of objects even under 

occlusion in the field of view, and is able to determine the direction and the velocity 

of multiple moving objects.
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ABSTRAK

Penentukuran, pemadanan dan pengesanan adalah faktor utama untuk 

mendapatkan maklumat 3D yang terdiri daripada kedalaman, arah dan halaju. Untuk 

mendapatkan kedalaman, parameter kamera dan pemadanan objek adalah dua input 

yang diperlukan. Kedalaman, arahan dan objek berpadan boleh dicapai dengan tepat 

jika kamera ditentukur dengan baik menggunakan penentukuran tradisional manual. 

Walau bagaimanapun, kebanyakan kaedah penentukuran tradisional manual adalah 

sukar untuk digunakan kerana penanda atau saiz sebenar sesuatu objek dalam dunia 

sebenar mesti disediakan atau dikenali. Penentukuran diri boleh menyelesaikan had 

penentukuran tradisional, tetapi tidak sesuai untuk memadankan objek. Cara-cara 

yang lain telah cuba untuk memadankan objek menggunakan maklumat visual 2D 

tanpa penentukuran, tetapi cara-cara itu mengalami ketepatan padanan yang rendah 

di bawah herotan perspektif yang besar. Kajian ini memberi tumpuan kepada 

pencapaian maklumat 3D di bawah penentukuran diri. Dalam sistem ini, pemadanan 

objek dan pengesanan dijalankan di bawah keadaan penentukuran diri. Tiga 

sumbangan diperkenalkan dalam kajian ini untuk mencapai objektif. Pertama, 

pembetulan orientasi diperkenalkan untuk mendapatkan matriks hubungan yang 

lebih baik untuk pemadanan objek semasa pengesanan. Kedua, selepas matriks 

hubungan satu lagi kaedah pasca-pemprosesan, pemadanan objek menggunakan 

status, diperkenalkan untuk meningkatkan pencapaian ketepatan. Algoritma yang 

dicadangkan mampu mencapai kadar sepadan hampir 90%. Kedalaman dianggarkan 

selepas pemadanan objek menggunakan status. Ketiga, pengesanan dilakukan 

berdasarkan koordinat xy dan kedalaman dianggarkan di bawah keadaan 

penentukuran diri. Keputusan menunjukkan bahawa sistem pengesanan yang 

dicadangkan beijaya membezakan lokasi objek walaupun dalam keadaan halangan 

dalam bidang pandangan, dan mampu untuk menentukan arah dan halaju objek 

bergerak.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Surveillance systems have been widely used especially in the security fields 

such as access control in restricted areas, person-specific identification, anomaly 

detection, and for alarm systems [1]. This system can detect, monitor, and also 

analyse moving object behaviour in the field of view even under occlusive 

conditions. In addition, the object’s velocity and direction can also be estimated 

easily for applications such as crime prevention and traffic incident detection. 

Today’s surveillance system can be found everywhere in the cities, either in indoors 

or outdoors such as shopping centres, banks, outdoor car park areas, airports, or even 

in the streets. Since early 1980s, surveillance systems have been installed widely in 

public spaces for crime prevention in developed countries such as UK, USA and 

Australia. In Malaysia, the first surveillance camera was installed in 1966 [2], In 

1993, a directive was issued by the government to install surveillance cameras in all 

the car parks of public buildings [2]. In following years, the Ministry of Housing 

and Local Government initiated a Safe City Programme to install CCTV cameras for 

crime prevention in Kuala Lumpur (KL) under Strategy 2 of Target Hardening [2], 

According to Malaysian Communications and Multimedia Commission (MCMC) 

report, snatch-theft cases dropped by 50% in Kuala Lumpur after the installation [2]. 

In 2012, Automatic Enforcement System (AES) was introduced to detect speeding 

vehicles and record traffic offenders [3].
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1.2 Problem Statement

Generally, surveillance systems are used in recognizing objects, tracking 

objects from different views, and identifying 3D information of objects. 

Surveillance systems may come with a single camera or more. The multiple camera 

systems normally involve several cameras positioned at different angles looking at 

certain overlapping areas. Some systems can only provide 2D space information (x- 

y  coordinates) and thus not capable to provide 3D information of an object. The 

system is further upgraded during research growth in these years. For many 

surveillance applications, 3D information, i.e. depth, direction, and velocity are 

important parameters [4] (such as location detection or crowd behaviour detection). 

As a consequence, much recent research has been focused on tracking using the 3D 

location of the targeted objects [5-8]. By using 3D information, more accurate 

results can be obtained and at the same time occlusion problems can be solved. In 

order to extract 3D information, calibration, matching and tracking are the major 

concern in the surveillance system and much research have been conducted to 

improve the traditional system.

The key to the acquiring 3D information is calibration. 3D information can 

only be estimated accurately if all cameras are calibrated (i.e. Intrinsic and extrinsic 

parameters of the camera are extracted) from which the 3D space or world 

coordinates can be computed. Some methods use single camera calibration, while 

others use multi camera calibration. Calibration techniques can be grouped into 

either traditional calibration or self-calibration. In traditional calibration, both 

intrinsic and extrinsic parameters are extracted. The relationship between world 

coordinates and pixel coordinates is established from the parameters. The 

corresponding object can then be matched easily even under large perspective 

distortion since in the traditional calibration, all cameras are connected with a single 

world coordinate system. Likewise, spatial matching using alignment can be done 

easily under the traditional calibration. However, most of the traditional calibration 

techniques are very inconvenient to use because manual labelling and the size of the 

object in the real world are needed as inputs. To overcome this limitation, a self­
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calibration technique has been developed. This process depends only on images 

captured by the camera using image 2D space x-y coordinates. However, the 

currently available self-calibration is only able to estimate the intrinsic parameters 

such as the focal length and the performance can still be improved. Since the 

extrinsic parameters cannot be extracted, 3D information cannot be found and the 

spatio-temporal feature between cameras cannot be matched.

There are several methods commonly used in matching corresponding 

objects in 2D space based on visual information without using any calibration or 

self-calibration [9-12], However, these state-of-the-art techniques lack matching 

accuracy under large perspective distortion. Some researchers introduced a method 

to match the object in 2D space with large perspective distortion, but this requires 

longitude and latitude values as input, which can only be determined experimentally 

and inconveniently [13, 14]. Some other methods have been introduced using spatial 

information for matching. However, these methods require traditional calibration or 

manually selected matched points as input [15, 16]. Overall, corresponding 

identified objects from different views and intrinsic parameters are necessary inputs 

to estimate the depth of the object. In estimating the depth of the objects based on 

multiple images only from different views with large perspective distortion without 

using complex calibration, feature matching between cameras is essentially 

important

A more accurate tracking can be performed higher with the presence of 3D 

information [5-8]. Previous work shows that 3D tracker can yield 50% less error 

compared to 2D tracker [6]. However, most current surveillance systems are not able 

to estimate the 3D information of the moving object without traditional calibration. 

Thus, a 3D surveillance tracking method that estimates the depth, direction and 

velocity of the moving object based on self-calibration approach is equally 

important. Additionally, such a system requires a good matching method under 

large perspective distortion to determine the depth, direction and velocity.
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Therefore, a system that is able to estimate distances of moving objects from 

the camera using self-calibration and feature matching should be addressed. This 

system should be able to find the corresponding objects from multiple scenes 

without any traditional calibration. Also, this system should be able to estimate 

directions and velocities of the moving objects based on videos.

1.3 Research Objectives

Based on the problem statement, the aims of this research are given as 

follows:

i. To estimate 3D information which is the depth of moving object 

based on 2D matching and self-calibration.

ii. To track and to estimate directions and velocities of multiple moving 

objects based on the estimated 3D information.

1.4 Research Scopes and Assumptions

Many researchers focus on different aspects of surveillance. In this thesis, 

the focus is in calibration, matching and tracking. Therefore, several scopes and 

assumptions have been established for this research.

1.4.1 Scopes

• The focus is on the tracking of multiple moving objects (human and 

vehicles)

• Two static cameras are used.
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• At least 50% overlapping region of images in multiple cameras are 

considered.

• The 3D information considered are depth, direction and velocity.

1.4.2 Assumptions

• All the cameras are assumed to be located vertically above the moving 

objects.

• Baseline of cameras is assumed to be known.

• The system should be based only on the video frame without knowing 

any real world information such as the real size of the objects.

1.5 Research Contributions

To extract 3D information, focal length and corresponding points are needed.

Based on these two key points, the contributions of this research are as follows:

i. The tracking system is established based on the x-y coordinates and 

estimated depth using linear prediction that can solve the occlusion 

problem. In this, the locations of multiple moving objects can be 

distinguished even if there is occlusion. Directions of the moving 

objects are estimated by comparing the ratio of left and right depth 

value while the velocity is estimated based on 2D x-y coordinates and 

estimated depths.

ii. A depth estimation system is developed based on a new 

corresponding points matching algorithm and an object matching 

process during tracking. The new algorithm is established by 

combining rectification, speeded-up robust feature (SURF),
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orientation correction, epipolar geometry, and also status based 

matching so that the matched objects can be found even under large 

perspective distortion. Depth is estimated from the matched objects 

with self-calibration,

iii. An orientation correction method is proposed to increase the number 

of correct matched points between two images during interest point 

matching. This algorithm is established based on the relative 

rotational angle between two images.

1.6 Research Methodology

To find the depth in the uncalibrated or self-calibrated condition, this 

research assumes that all cameras are on the same baseline, i.e. the distance between 

two cameras at the same level of position. Before the depth can be estimated, the 

relationship between each camera must also be established for the purpose of finding 

a corresponding object. To find the corresponding objects, the system must be able 

to overcome the affine transformation problem. The following is the flow of 

proposed system of this research:

• Images from different views must be rectified to become undistorted images. 

If the affine transform no longer exists in the image, the matching between 

images can be obtained.

• SURF is used to find the corresponding points between images. Since better 

matched points can produce a better fundamental matrix, orientation 

correction is introduced in this thesis to increase the number of correctly 

matched points. The orientation correction is computed based on the 

hypothesis that all features are rotated at the same angle.

• With a set of correctly matched points which is evenly distributed on the 

entire image, fundamental matrix can be generated for computing depth.
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Since the depth can only be estimated if  all cameras are on the same baseline, 

both images must be aligned so that they are on the same view plane.

After the fundamental matrix is established and the images are aligned, the 

3D information depth can be estimated with the presence of focal length from 

self-calibration using vanishing points.

The object is tracked using 2D + depth linear prediction along with the 

estimated 3D information, and in this way the direction and velocity can be 

estimated.

1.7 Structure of Thesis

This thesis is organized as follows: Chapter One presents the introduction. 

Chapter Two discusses all the literature reviews related to the surveillance system. 

State-of-the-art techniques for all stages in the surveillance are discussed in this 

chapter. Chapter Three highlights the details of all the stages of the proposed 

technique. The experimental results based on the matching and tracking on the 

standard datasets are presented in Chapter Four. Last but not least, Chapter Five 

concludes the thesis along with suggestions for future work.
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