5,638 research outputs found

    Stress-driven integration strategies and m-AGC tangent operator for Perzyna viscoplasticity and viscoplastic relaxation: application to geomechanical interfaces

    Get PDF
    This is the peer reviewed version of the following article: [Aliguer, I., Carol, I., and Sture, S. (2017) Stress-driven integration strategies and m-AGC tangent operator for Perzyna viscoplasticity and viscoplastic relaxation: application to geomechanical interfaces. Int. J. Numer. Anal. Meth. Geomech., 41: 918–939. doi: 10.1002/nag.2654.], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nag.2654/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The paper proposes a stress-driven integration strategy for Perzyna-type viscoplastic constitutive models, which leads also to a convenient algorithm for viscoplastic relaxation schemes. A generalized trapezoidal rule for the strain increment, combined with a linearized form of the yield function and flow rules, leads to a plasticity-like compliance operator that can be explicitly inverted to give an algorithmic tangent stiffness tensor also denoted as the m-AGC tangent operator. This operator is combined with the stress-prescribed integration scheme, to obtain a natural error indicator that can be used as a convergence criterion of the intra-step iterations (in physical viscoplasticity), or to a variable time-step size in viscoplastic relaxation schemes based on a single linear calculation per time step. The proposed schemes have been implemented for an existing zero-thickness interface constitutive model. Some numerical application examples are presented to illustrate the advantages of the new schemes proposed.Peer ReviewedPostprint (author's final draft

    Some numerical verification examples for plane stress elasto-viscoplasticity

    Get PDF
    This paper presents analytical, semi-analytical and numerical reference examples which can be employed for code verification of elasto-viscoplastic models under plane stress conditions. Mainly because of the overstress function the algorithms traditionally employed in elasto-plastic implementations must be rewritten to correctly impose the plane stress state along with the viscoplastic flow. The viscoplastic formulation presented here considers the strain-rate hardening effects by means of a hardening law that are assumed to have terms depending on the strain rate, which removed can represent a Voce type hardening. The proposed verification tests were employed for the numerical verification of an in-house implementation of the so-called stress-projected procedure inside the finite element method context. Although the focus of this paper is on the stressprojected algorithms the examples presented here can be employed for the verification of other algorithms intended to impose the plane stress state in viscoplasticit

    The Viscoplastic Effect in the Heat–Treated, Thin–Walled AL–6060 Alloy Profiles Subjected to Compressive Axial Impact.

    Get PDF
    This paper will highlight the influence of the strain rate effect occurring during pulse loading on dynamic stability of aluminium profiles. Current work is the development of the analysis carried in [1]. The C–channel cross–section beams/columns are made of 6060 T4, T5, T6 and T66 aluminium alloy. The rectangular–shape compressing pulse is analysed. The static material characteristics had been obtained from the experimental tensile tests and afterwards modified for dynamic response according to Perzyna viscoplastic model. The results of the numerical computations are presented whereas the critical load and DLF (Dynamic Load Factor) basing on the selected dynamic buckling criterion is determined

    Lie groups in nonequilibrium thermodynamics: Geometric structure behind viscoplasticity

    Full text link
    Poisson brackets provide the mathematical structure required to identify the reversible contribution to dynamic phenomena in nonequilibrium thermodynamics. This mathematical structure is deeply linked to Lie groups and their Lie algebras. From the characterization of all the Lie groups associated with a given Lie algebra as quotients of a universal covering group, we obtain a natural classification of rheological models based on the concept of discrete reference states and, in particular, we find a clear-cut and deep distinction between viscoplasticity and viscoelasticity. The abstract ideas are illustrated by a naive toy model of crystal viscoplasticity, but similar kinetic models are also used for modeling the viscoplastic behavior of glasses. We discuss some implications for coarse graining and statistical mechanics.Comment: 11 pages, 1 figure, accepted for publication in J. Non-Newtonian Fluid Mech. Keywords: Elastic-viscoplastic materials, Nonequilibrium thermodynamics, GENERIC, Lie groups, Reference state

    On stress resultant plasticity and viscoplasticity for metal plates

    Get PDF
    In this work we derive elastoplastic and elastoviscoplastic finite element formulations for stress resultant bending analysis of thin metal plates. The principle of maximum plastic dissipation is used to obtain the ingredients of the small strain stress resultant plate elastoplasticy with state variables describing general isotropic and linear kinematic hardening. The ingredients of the plate stress resultant elastoviscoplasticy are further obtained by using the penalty-like form of the principle of maximum plastic dissipation. Such an approach enables single framework for numerical implementation of both considered inelastic stress resultant plate material models. The implementation is based on the spectral decomposition algorithm. For spatial discretization we use simple and robust quadrilateral finite element. A set of numerical examples is presented to illustrate the approach and to discuss the accuracy of the stress resultant inelastic plate formulations. (c) 2007 Elsevier B.V. All rights reserved

    Time-independent Anisotropic Plastic Behavior by Mechanical Subelement Models

    Get PDF
    The paper describes a procedure for modelling the anisotropic elastic-plastic behavior of metals in plane stress state by the mechanical sub-layer model. In this model the stress-strain curves along the longitudinal and transverse directions are represented by short smooth segments which are considered as piecewise linear for simplicity. The model is incorporated in a finite element analysis program which is based on the assumed stress hybrid element and the iscoplasticity-theory
    corecore