Poisson brackets provide the mathematical structure required to identify the
reversible contribution to dynamic phenomena in nonequilibrium thermodynamics.
This mathematical structure is deeply linked to Lie groups and their Lie
algebras. From the characterization of all the Lie groups associated with a
given Lie algebra as quotients of a universal covering group, we obtain a
natural classification of rheological models based on the concept of discrete
reference states and, in particular, we find a clear-cut and deep distinction
between viscoplasticity and viscoelasticity. The abstract ideas are illustrated
by a naive toy model of crystal viscoplasticity, but similar kinetic models are
also used for modeling the viscoplastic behavior of glasses. We discuss some
implications for coarse graining and statistical mechanics.Comment: 11 pages, 1 figure, accepted for publication in J. Non-Newtonian
Fluid Mech. Keywords: Elastic-viscoplastic materials, Nonequilibrium
thermodynamics, GENERIC, Lie groups, Reference state