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Abstract

In this work we derive elastoplastic and elastoviscoplastic �nite element formulations for stress re-
sultant bending analysis of thin metal plates. The principle of maximum plastic dissipation is used to
obtain the ingredients of the small strain stress resultant plate elastoplasticy with state variables de-
scribing general isotropic and linear kinematic hardening. The ingredients of the plate stress resultant
elastoviscoplasticy are further obtained by using the penalty-like form of the principle of maximum plastic
dissipation. Such an approach enables single framework for numerical implementation of both considered
inelastic stress resultant plate material models. The implementation is based on the spectral decompo-
sition algorithm. For spatial discretization we use simple and robust quadrilateral �nite element. A set
of numerical examples is presented to illustrate the approach and to discuss the accuracy of the stress
resultant inelastic plate formulations.

Key words: plates, �nite elements, stress resultant plasticity, stress resultant viscoplasticity

1 Introduction

There are two ways to derive a computational formulation for elastoplastic bending of thin metal plates.
More common approach de�nes the elastoplastic constitutive equations for plates in terms of stresses; see e.g.
Brank et al. [3] for the shell case. The numerical integration of stresses through the plate thickness is then
performed to evaluate the stress resultants, i.e. the moments and the transverse shear forces per unit length,
in order to solve the 2d plate boundary value problem. Another way, which is less common, introduces the
elastoplastic constitutive equations directly in the 2d stress resultant form; see e.g. Simo and Kennedy [22],
Skallerud et al. [23], Cris�eld and Peng [5] for the shell case.
The latter approach is on one hand computationally much faster than the former one, but on the other

hand it fails to describe the spreading of the plasti�cation through the plate thickness, see e.g. Auricchio and
Taylor [1]. This drawback can be removed (to a certain extent) by a pseudo-time dependent value of the
yield parameter associated with the plate bending response. This was �rst suggested by Cris�eld, see e.g.
[4] and references therein, and was later used e.g. by Shi and Voyiadjis [20] for plates and Zeng et al. [25]
and Voyiadjis and Woelke [24] for shells. Another way to approximately describe the 3d e¤ect of spreading
of plasticity throughout the plate is to use the generalized plasticity model for plates, which is based on
two functions (both de�ned in terms of stress resultants), the yield function and the limit function, see e.g.
Auricchio and Taylor [1]. However, if one wants to evaluate only the limit load of the metal plate, the above
mentioned modi�cations are unnecessary, since both the stress resultant formulation and the stress based
formulation with the through-the-thickness numerical integration provide the same result.
In this work we derive small strain elastoplastic plate �nite element formulation in terms of stress resul-

tants. Nonlinear isotropic and linear kinematic hardening are considered. We further extend the plasticity
formulation into the visoplasticy formulation of Perzyna type, e.g. Kojíc and Bathe [14], Kleiber and Kowal-
czyk [13]. Both elastoplastic and elastoviscoplastic stress resultant plate formulations are derived by exploiting
the hypotheses of instantaneous elastic response and the principle of maximum plastic dissipation (plasticity)
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or the penalty-like form of the principle of maximum plastic dissipation (viscoplasticity); see e.g. Ibrahimbe-
govic et al. [11] for 3d setting of those topics. We show that with such an approach a uni�ed computational
framework for elastoplastic and elastoviscoplastic stress resultant plate analysis can be obtained.
The paper is organized as follows: In section 2 we systematically derive basic equations of elastoplastic

and elastoviscoplastic plate models. In section 3 we present spatial �nite element discretization and numerical
procedure for integration of elastoplastic and elastoviscoplastic evolution equations. The �nite element that
is used is the simplest of the family of the plate elements presented in Bohinc et al. [2] and Ibrahimbegovic
[9], which share the property that the interpolation of transverse displacement is one order higher than the
interpolation of rotations. Numerical examples are presented in section 4 and concluding remarks are drawn
in section 5.

2 Inelastic plate models

We model a plate as a 2d body occupying a domain 
 in the x1x2 plane. The weak form of the equilibrium
equations is for the inelastic geometrically linear Reissner-Mindlin plate model given as

G
�
m�� ; q�; bw;b�� = Z




b��� �b��m��d
+

Z



b� � bw;b�� q�d
; (1)

�
Z



bwpd
�Gext;b �m�; q�; bw;b�� = 0; �; �;  2 f1; 2g ;

where w is transverse displacement (i.e. displacement in the direction of x3 coordinate), � is rotation of a
plate normal (i.e. unit vector in the direction of x3 coordinate) around x axis, ��� are bending strains, �
are shear strains

��� =
1

2

�
@��
@x�

+
@��
@x�

�
; �� = e���� )

�
�1
�2

�
=

�
0 �1
1 0

��
�1
�2

�
; (2)

� =
@w

@x�
� ��; (3)

m�� are bending moments, q� are transverse forces, p is transverse plate loading (i.e. loading in the direction
of x3 coordinate), Gext;b is virtual work of external moments m� and external forces q� acting on the plate
boundary, and (b�) is virtual quantity that corresponds to (�). We consider displacement w, rotations � ,
stress resultants m�� ; q� and load as functions of position x = [x1; x2]

T 2 
 and pseudo-time t 2 [0; T ], i.e.
w = w (x; t), � = � (x; t), m�� = m�� (x; t), q� = q� (x; t), p = p (x; t), m� = m� (x; t), q� = q� (x; t).
Equation (1) can be written in matrix form as

G
�
m;q; bw; b�� = Z




b�Tmd
+ Z



bTqd
� Z



bwpd
�Gext;b = 0; (4)

where the following mappings have been de�ned

� 7! � = [�1; �2]
T
;

��� 7! � = [�11; �22; 2�12]
T
=

�
�@�2
@x1

;
@�1
@x2

;
@�1
@x1

� @�2
@x2

�T
;

� 7!  = [1; 2]
T
=

�
@w

@x1
+ �2;

@w

@x2
� �1

�T
; (5)

m�� 7! m = [m11;m22;m12]
T
; q� 7! q = [q1; q2]

T
:

For further use we also de�ne the following strain and stress resultant vectors

" =
�
�T ;T

�T
= [�11; �22; 2�12; 1; 2]

T
; (6)

� =
�
mT ;qT

�T
= [m11;m22;m12; q1; q2]

T
:

Having de�ned the weak form of equilibrium equations and the kinematic relations, we proceed with stress
resultant inelastic constitutive relations for small strain plate bending problems.
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2.1 Plate elastoplasticity

We consider the following internal variables to describe the irreversible nature of the plastic process during the
plate bending: the plastic strain "p, the scalar parameter �, which controls the isotropic hardening mechanism,
and the strain-like parameters {ij , i; j 2 f1; 2; 3g, which control the kinematic hardening mechanism. The
state variables are functions of position x and pseudo-time t, i.e. "p = "p (x; t), � = � (x; t) and {ij = {ij (x; t).
A usual additive split of reversible (elastic) and irreversible (plastic) strains is assumed

" = "e + "p; (7)

where, according to (6), "e =
�
�e;T ;e;T

�T
and "p =

�
�p;T ;p;T

�T
. The strain energy function is assumed

to be of the following (quadratic) form

 ("e; �; �{) =
1

2
"e;TC"e + �(�) +

1

2

�
2

3
Hkin

�
�{TD�{; (8)

where the mapping {ij 7! �{ = [{11;{22; 2{12; 2{13; 2{23]T has been de�ned, and the following matrices have
been introduced (we assume the isotropic elastic response of a plate)

C =

�
Cb 0
0 Cs

�
; Cb = kb

24 1 � 0
� 1 0
0 0 1��

2

35 ; Cs = ks
�
1 0
0 1

�
: (9)

Matrix D in (8) is such that �{TD�{ = {ij{ij , ij 6= 33, i.e.

D =

�
I2 0
0 1

2I3

�
; I2 =

�
1 0
0 1

�
; I3 =

24 1 0 0
0 1 0
0 0 1

35 : (10)

In (8) we assumed a general (nonlinear) form of isotropic hardening and a linear form of kinematic hardening
with hardening modulus Hkin. The constants in (9) are kb = Eh3

12(1��2) , k
s = cEh

2(1+�) , where E is elastic
modulus, � is Poisson�s ratio, h is plate thickness, and c is shear correction factor, usually set to 5=6.
We denote the stress-like internal variables, which correspond to the strain-like internal variables � and

{ij , as q and �ij ; respectively. These dual variables are used to de�ne yield function. In this work we use a
stress resultant approximation of the von Mises yield function, which can be for the Reissner-Mindlin plate
model written in a non-dimensional form as

� (�; q;�) = (� +�)
T
A (� +�)�

�
1� q

�y

�2
= 0; (11)

where � is de�ned in (6), � (the negative of the back stress resultants) is de�ned by mapping �ij 7! � =

[�11; �22; �12; �13; �23]
T , �y is uniaxial yield stress, matrix A is for isotropic plastic response equal to

A =

"
1
m2
0
P 0

0 1
q20
I2

#
; P =

1

2

24 2 �1 0
�1 2 0
0 0 6

35 ; (12)

and m0 and q0 are yield parameters associated with bending and transverse shear, respectively. They are
usually set to the fully plastic uniaxial plate bending moment m0 =

�yh
2

4 and to the fully plastic transverse

shear force q0 =
�yhp
3
. The yield function (11) is special case of generalized (since it includes hardening)

Ilyushin-Shapiro stress resultant yield function for shells; see e.g. [5], [22] and references therein for discussion
on stress resultant yield functions for shells. A similar form, but without description of kinematic hardening
mechanism and with the choice of linear isotropic hardening, was used in [10], [20].
Remark 1: The yield function (11) does not allow to simulate the spreading of plasticity through the

plate thickness. One possibility to take through-the-thickness distribution of plasticity into account, while
still using a stress resultant form of the yield function, is to multiply the value of m0 by a parameter �, such
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that �m0 follows an experimental uniaxial moment-plastic curvature relation. Some authors, see e.g. [20],
[25], used the proposal of Cris�eld [4] who suggested the following form of �

� (t) = 1� 1
3
exp

�
�8
3
��p (t)

�
; (13)

where

��p (t) =
Ehp
3�y

Z t

0

h
( _�p11)

2
+ ( _�p22)

2
+ _�p11 _�

p
22 + ( _�

p
12)

2
=4
i 1
2

d� (14)

plays the role of equivalent plastic curvature. In (14) ( _�) = @(�)
@t . Note that for ��

p = 0 one has � = 2=3; and
for ��p !1 one gets �! 1. �
Remark 2: The general quadratic form of the yield condition (11) is also suitable to express stress resul-

tant approximation of the anisotropic criterion of Hill. In such a case one needs to de�ne the corresponding
form of matrix A, see e.g. [25] for details. �
Having de�ned plastic strains, strain energy function and yield function, we proceed with derivation of

the remaining ingredients of the stress resultant elastoplasticity for plates. For the isothermal case we can
write the following rate of material dissipation

D = �T _"� d

dt
 ("e; �; �{) = �T _"�

�
@ 

@"e

�T
( _"� _"p)� @ 

@�
_� �

�
@ 

@�{

�T �
�{ > 0; (15)

which is assumed to be non-negative. Note that equation (15) can be derived from the second law of
thermodynamics, see e.g. [12], [22]. By assuming that the elastic process is non-dissipative (i.e. the state
variables do not change during that process and D = 0) one has

� =
@ 

@"e
= C"e: (16)

By further consideration of (15) one can de�ne the dual variables, i.e. the hardening variable q and the
variables that control kinematic hardening �, as

q = �@ 
@�

= �d� (�)
d�

= ��0 (�) ; � =� @ 

@�{
= �2

3
HkinD�{ = �

2

3
Hkin{; (17)

where { = [{11;{22;{12;{13;{23]T . By using (16) and (17) in (15) we obtain the reduced material dissipation
(i.e. the dissipation of the plastic process) as

Dp = �T _"p + q _� +�T _{ > 0: (18)

The principle of maximum plastic dissipation states that among all the dual variables (�; q;�) that satisfy
the yield criteria, one should choose those that maximize plastic dissipation. The problem can be written in
the following form: Find minimum of Lp (�; q;�; _), where

Lp (�; q;�; _) = �Dp (�; q;�) + _� (�; q;�) ; (19)

and _ > 0 plays the role of Lagrange multiplier. From the above minimization problem and (11) we obtain
explicit forms of evolution equations for the internal variables

@Lp
@�

= � _"p + _
@�

@�
= 0 =) _"p = _2A (� +�)| {z }

�

;

@Lp
@q

= � _� + _
@�

@q
= 0 =) _� = _

2

�y

�
1� q

�y

�
| {z }

�

(11)
= _

2

�y

q
(� +�)

T
A (� +�)| {z }

�

; (20)

@Lp
@�

= � _{ + _
@�

@�
= 0 =) _{ = _2A (� +�)| {z }

�

:
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Note that _{ = _"p.
Remark 3: Equation (20)2 is generalization of the equivalent plastic work variableW p = �T _"p. Namely,

by inserting _{ = _"p and (20)1 into (18), and using (11), one gets Dp = _2
�
1� q

�y

�
, which implies, see (20)2,

that _� = 1
�y
Dp. �

The loading/unloading conditions follow from the demands that _ is non-negative, � is non-positive, and
the plastic dissipation Dp equals zero for elastic process when � < 0

_ > 0; � 6 0; _� = 0: (21)

In addition to (21) we have the condition _� = 0 if _ > 0 (the consistency condition). It guarantees the
admissibility of the subsequent state in the case of change of state variables. The consistency condition

_ > 0; _� = 0 =

�
@�

@�

�T
_� +

@�

@q
_q +

�
@�

@�

�T
_�; (22)

pseudo-time derivatives of (16) and (17), _� = C ( _"� _"p), _q = ��00 (�) _�, _� = � 2
3Hkin _{, and equations (20)

lead to the following expression for _

_ =
1�

�TC�+�00 (�)�2 + 2
3Hkin�T�

��TC_": (23)

If (23) and (20) are used in _� = C ( _"� _"p), one can write _� = Cep _", where

Cep =

(
C if _ = 0

C� C��TC
�TC�+�00(�)�2+ 2

3Hkin�T �
if _ > 0 (24)

is elastoplastic tangent modulus of the elastoplastic plate model.
By computation of the internal variables (i.e. by integration of (20)) and by using (16) one recovers the

stress resultants � (x; t) =
�
mT ;qT

�T
appearing in the weak form of the equilibrium equations (4).

2.2 Plate elastoviscoplasticity

A stress resultant viscoplastic constitutive equations for plates of Perzyna type are obtained by a modi�cation
of the elastoplasticity model presented in the previous section. The basic di¤erence between the viscoplasticity
and plasticity is that in the former model the stress states f�; q;�g, such that � (�; q;�) > 0, are permissible,
while in the latter are not. The state variables remain the same, except for the viscoplastic strain "vp, which
replaces "p. The constrained minimization problem (19) for plasticity is here replaced by the penalty form
of the principle of maximum plastic dissipation (see e.g. [21] section 2.7 and [11] for details), which can be
stated as: Find minimum of Lvp (�; q;�), where

Lvp (�; q;�) = �Dvp (�; q;�) + 1

�
g (� (�; q;�)) ; (25)

� 2 (0;1) is penalty parameter (also called viscosity coe¢ cient or �uidity parameter), Dvp is viscoplastic
dissipation of the same form as (18) and g is penalized functional. A usual choice for g is

g (�) =

�
1
2�

2 if � � 0
0 if � < 0

: (26)

With this choice for g the minimization of (25) leads to

@Lvp
@�

= � _"vp + 1

�
h�i @�

@�
= 0;

@Lvp
@q

= � _� + 1

�
h�i @�

@q
= 0;

@Lvp
@�

= � _{ + 1

�
h�i @�

@�
= 0; (27)

where h�i = g0 (�) = dg
d� . Equations (27) provide the corresponding evolution equations of the state variables

for the viscoplastic plate model.
If one de�nes the viscoplastic multiplier _ as _ = 1

� h�i then the evolution equations for viscoplastic model
can be written as those for elastoplastic model, see (20). Their integration, which leads to stress resultants
� (x; t) =

�
mT ;qT

�T
, can be performed in very similar manner as for plasticity, as shown below.
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3 Finite element formulation

3.1 Space discretization

In the �nite element solution of the plate bending problem a domain under consideration 
 is discretized by
a mesh of �nite elements so that 
h =

Snel
e=1 


e, where nel is number of elements in the mesh. In this work
we use one of the quadrilateral plate elements originally introduced in [9]. Its geometry is de�ned by the
bilinear mapping � 7! xh (� 2 [�1; 1]� [�1; 1]; xh 2 
e) with

xh (�) j
e=
4X
a=1

Na (�)xa; xa = [x1a; x2a]
T
; � =

�
�1; �2

�T
; (28)

where xa are coordinates of the �nite element node a and

Na
�
�1; �2

�
=
1

4

�
1 + �1a�

1
� �
1 + �2a�

2
�
;

a 1 2 3 4

�1a �1 1 1 �1
�2a �1 �1 1 1

: (29)

The subscript h is used to denote the discretely approximated quantities. Interpolation of the rotations is
based on bilinear polynomials (29)�

�h1
�h2

�
= �h (�; t) j
e=

4X
a=1

Na (�)�a (t) ; �a = [�1a; �2a]
T
; (30)

while interpolation of the transverse displacement is performed in more elaborated way as

wh (�; t) j
e=
4X
a=1

Na (�)wa (t) +
8X

E=5

NE (�)
lJK
8
nTJK (�J (t)� �K (t)) : (31)

The second term in (31) is such that the shear distribution along each element edge is constant. In (31)

lJK =
�
(x1K � x1J)2 + (x2K � x2J)2

�1=2
, nJK = [cos�JK ; sin�JK ]

T (see Figure 1) and

NE (�) =
1
2

�
1� �1

�2 �
1 + �2J�

2
�
; E = 5; 7

NE (�) =
1
2

�
1� �2

�2 �
1 + �1J�

1
�
; E = 6; 8

,
E 5 6 7 8
J 1 2 3 4
K 2 3 4 1

: (32)

Interpolation of bending strains follows from (5)2 and (30)

�h (�; t) j
e=
4X
a=1

Ba (�)�a (t) ; Ba =

24 0 �Na;x1
Na;x2 0
Na;x1 �Na;x2

35 ; (33)

where notation Na;xi =
@Na

@�j
@�j

@xi
has been used. We further choose a bilinear distribution over the element

for the shear strains �
h1
h2

�
= h (�; t) j
e=

4X
I=1

NI (�)I (t) ; I = [1I ; 2I ]
T
; (34)

where the nodal shear strains I are obtained from (3), (30) and (31) as

I =
1

tTIJnIK

"
1
lIK
nIJwK +

1
lIJ
nIKwJ �

�
1
lIK
nIJ +

1
lIJ
nIK

�
wI+

1
2nIJn

T
IK�K � 1

2nIKn
T
IJ�J +

1
2

�
nIJn

T
IK � nIKnTIJ

�
�I

#
;

I 1 2 3 4
J 4 1 2 3
K 2 3 4 1

: (35)

The notation for strains and transverse displacement can be further simpli�ed as

�h (�; t) j 
e =
4X
a=1

eBa (�)ua (t) ; h (�; t) j
e=
4X
a=1

Ga (�)ua (t) ;

wh (�; t) j 
e =
4X
a=1

Ma (�)ua (t) ; ua =

�
wa
�a

�
; (36)
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where eBa follows from (33), Ga from (34) and (35) andMa from (31). The virtual quantities b�h (�), bh (�)
and bwh (�) are interpolated in the same manner as corresponding quantities in (36). One can also introduce
more compact notation: "h =

�
�h;T ;h;T

�T
=
eeBTa ua, b"h = eeBTa bua, eeBTa = heBTa ;GT

a

i
.

When the above interpolations are introduced in the weak form of equilibrium equations (4) one gets for
an element (e) the following discretized equation (we assume that only load p = p (�; t) is active)

G(e)
�
wh (�; t) ;�h (�; t) ; bwa; b�a� = 4X

a=1

bu(e);Ta

� bwa; b�a� r(e)a �
wh (�; t) ;�h (�; t)

�
; (37)

where bua = h bwa; b�Ta iT ,
r
(e)
a =

R

(e)

eeBTa (�)� �"h (�; t) ; "p (�; t) ; � (�; t) ;{ (�; t)� d
(e)�R

(e)

MT
a (�)p (�; t) d


(e)
; (38)

p =
�
ph; 0; 0

�T
, "h (�; t) = "h

�
�h (�; t) , h (�; t)

�
, etc. Numerical integration of (38) (2�2 Gauss integration

points are used for the present element) leads to

r(e)a =
4X

G=1

WG

 eeBTa (�G)� �"h (�G; t) ; "p (�G; t) ; � (�G; t) ;{ (�G; t)��
MT

a (�G)p (�G; t)

!
detJ (�G) ; (39)

where �G are � coordinates evaluated at the Gauss point,WG is Gauss point weight, and J is Jacobian matrix
of the mapping � 7! xh. It can be seen that the values of state variables need to be obtained only at the
integration points for a particular value of pseudo-time. The component of the element consistent tangent
sti¤ness matrix are

K
(e)
ab =

@r
(e)
a

@ub
=

4X
G=1

WG
eeBTa (�G) @� (�G; t)

@"h| {z }
_� _"�1(�G;t)=C

ep(�G;t)

@"h (�G; t)

@ub| {z }eeBb(�G)

detJ (�G) : (40)

The element consistent sti¤ness matrix and the element residual vector follow from (39) and (40) as

K(e) =
h
K
(e)
ab

i
; r(e) =

h
r(e);Ta

iT
; a; b = 1; 2; 3; 4 : (41)

The assembly procedure follows the usual approach explained in the �nite element textbooks, e.g. [8]. The
resulting nonlinear equations for nodal displacements/rotations of the chosen �nite element mesh are solved
by incremental/iterative Newton-Raphson solution procedure.

3.2 Computational issues for plasticity

As a result of space discretization, addressed in the previous section, the evolution equations (20) become
ordinary di¤erential equations in time that need to be integrated numerically at each integration point.
Backward Euler integration scheme is used for that end. The solution is searched for at discrete pseudo-
time points 0 < t1 < : : : tn < tn+1 : : : < T . At a typical pseudo-time increment �t = tn+1 � tn and typical
integration point located at xh (�G) 2 
e the problem can be stated as: By knowing the values of the internal
variables at the beginning of the pseudo-time increment, i.e. "pn; �n, {n, �nd values of the internal variables
at the end of the pseudo-time increment, i.e. "pn+1; �n+1, {n+1, which should satisfy the yield criterion. In
the spirit of the operator split method [8] one assumes that the best iterative guess for strains at the end of
the pseudo-time increment, "(i)n+1, is given data. Here (i) is iteration counter of the (global) Newton-Raphson
solution procedure.
Prior to the integration of evolution equations the following test is performed: assume that the pseudo-

time step from tn to tn+1 remains elastic and evaluate the trial (test) values of strain-like and stress-like
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internal variables

�trialn+1 = C

0B@"(i)n+1 � "p;trialn+1| {z }
"pn

1CA ; qtrialn+1 = ��0

0B@�trialn+1| {z }
�n

1CA ; �trialn+1 = �
2

3
Hkin{trialn+1| {z }

{n

: (42)

If the yield function evaluated with those trial variables �trn+1 = �
�
�trialn+1 ; q

trial
n+1 ;�

trial
n+1

�
� 0, then, see (21),

n+1 = _�t = 0. The �nal values at the end of the pseudo-time increment (marked with the bar) equal the
trial values, i.e. "pn+1 = "

p;trial
n+1 , �n+1 = �trialn+1 and {n+1 = {trialn+1 . The pseudo-time step is indeed elastic.

In the case that the yield function for those trial variables is violated, then n+1 > 0 and �n+1 = 0.
Backward Euler integration of evolution equations is performed, i.e.

"pn+1 = "
p
n + n+1�n+1; �n+1 = �n + n+1�n+1; {n+1 = {n + n+1�n+1: (43)

Equations (43) and �n+1 = 0 can be written as the following set of nonlinear equations (with respect to
"pn+1 = {n+1, �n+1 and n+1)

"pn+1 � "pn � n+12A
�
C
�
"
(i)
n+1 � "

p
n+1

�
� 2
3
Hkin"

p
n+1

�
= 0;

�n+1 � �n � n+1
2

�y

 
1 +

�0
�
�n+1

�
�y

!
= 0; (44)

�
C
�
"
(i)
n+1 � "

p
n+1

�
� 2
3
Hkin"

p
n+1

�T
A

�
C
�
"
(i)
n+1 � "

p
n+1

�
� 2
3
Hkin"

p
n+1

�
�
 
1 +

�0
�
�n+1

�
�y

!2
= 0;

which can be solved iteratively by Newton procedure to get the �nal values "pn+1, �n+1 and n+1.
For more e¤ective solution of (43) one can write relations (16) and (17) as, see (20)

�n+1 = C
�
"
(i)
n+1 � "

p;trial
n+1

�
= �trialn+1 � n+1C2A (�n+1 +�n+1)| {z }

�n+1

,

qn+1 = ��0(�n+1); �n+1 = �n + n+1
2

�y

q
(�n+1 +�n+1)

T
A (�n+1 +�n+1)| {z }

�n+1

, (45)

�n+1 = �2
3
Hkin{n+1 = �trialn+1 � n+1

2

3
Hkin2A (�n+1 +�n+1)| {z }

�n+1

,

which leads to

(�n+1 +�n+1) =

�
I5 + n+1

�
2CA+

4

3
HkinA

���1
| {z }

Wn+1(n+1)

�
�trialn+1 +�

trial
n+1

�
; qn+1 = qn+1

�
n+1

�
: (46)

A closed form expression for the inverse of the matrix in (46) can be obtained by using spectral decomposition
of C and A; the procedure is very similar to the one at the plane stress situation, see [10], [21], [22], [13], and
will not be repeated here. Explicit inversion of Wn+1 enables expressing (�n+1 +�n+1) in terms of single
unknown n+1. Since n+1�n+1 = 0, see (21), one gets a single nonlinear equation in terms of n+1

�n+1((�n+1 +�n+1)
�
n+1

�
; qn+1

�
n+1

�
) = �n+1

�
n+1

�
= 0: (47)

The solution of (47) is obtained by Newton iterative procedure

��0(k)n+1�
(k)
n+1 = �

(k)
n+1; 

(k+1)
n+1 = 

(k)
n+1 +�

(k)
n+1; (48)
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where (k) is iteration counter and �0n+1 =
d�n+1
dn+1

. The �nal (converged) solution of (47) is marked by the
bar, i.e. n+1. The �nal values at the end of the pseudo-time increment are also marked with the bar; for
example "pn+1 = {n+1 and �n+1 can be computed from (46) and (43) by using n+1.

Remark 4: Numerical experiments show that for the present case the function �
(k)
n+1 may be very

steep; i.e. very large di¤erences in function value can be obtained for small di¤erences in function argument.
However, no di¢ culties in computation of the numerical examples presented below were observed if the
convergence criterion was based on the value of �(k)n+1; we used �

(k)
n+1 < 10

�12 for convergence criterion. �
Remark 5: When yield function with � (t), see (13), was used in the numerical computations, the

equivalent plastic curvature (14) of the pseudo-time increment [tn; tn+1] was evaluated with ��pn and �n. The
��pn+1 for the next time step was calculated with numerical integration of equation (14)

��pn+1 = ��
p
n +

Ehp
3�y

�
(��p11;n+1)

2 + (��p22;n+1)
2 +��p11;n+1��

p
22;n+1+(��

p
12;n+1)

2=4
� 1
2 ; (49)

where ��p11;n+1;��
p
22;n+1;��

p
12;n+1 are the �rst three components of �"

p
n+1 = n+1�n+1.�

To complete the elastoplastic implementation issues the consistent tangent matrix d�n+1=d"
(i)
n+1 has to be

derived for n+1 > 0. It is obtained by di¤erentiation of "
(i)
n+1 = C

�1�n+1+"
p
n+1, eqs. (43), and consistency

condition d�n+1 = 0. After some manipulation one can have

d�n+1 =

"
C�1 + 2n+1Hn+1A+

3

2fn+1Hkin + 6cn+1
Hn+1�n+1�

T
n+1Hn+1

#�1
d"
(i)
n+1; (50)

where

H�1
n+1 = I5 +

4

3
n+1HkinA; fn+1 = �

T
n+1Hn+1�n+1; cn+1 =

2

�
1 +

�0(�n+1)
�y

�2
�00
�
�n+1

�
�2y � 2n+1�00

�
�n+1

� : (51)

The inverse of H�1
n+1 can be easily obtained in closed form. The matrix in (50) can be obtained in closed

form as well by using Sherman-Morrison formula, see e.g. [18].

3.3 Computational issues for viscoplasticity

The above discussed viscoplastic plate model allows one to de�ne a uni�ed framework for both stress resultant
elastoplasticity and stress resultant viscoplasticity for plates. Namely, the integration procedure for the plate
viscoplasticity is essentially the same as for the plate plasticity, except that for �trn+1 > 0 one looks for
n+1 =

�t
�



�n+1

�
> 0. Its �nal value is obtained by iterative solution of nonlinear equation

� �

�t
n+1 + �n+1

�
n+1

�
= 0! n+1: (52)

The consistent tangent matrix is obtained in the same manner as for plasticity except that one has to replace
in its derivation the consistency condition d�n+1 = 0 by d�n+1 � �

�tdn+1 = 0. The form of the consistent
tangent matrix is the same as (50) except that cn+1 is replaced by cn+1 +

�
�t .

4 Numerical examples

The �nite element code for inelastic plate analysis was generated by using symbolic code manipulation
program AceGen developed by Korelc [16] and implemented into the �nite element analysis program AceFEM,
see Korelc [15]. We note that the plate element used in this work is locking-free as shown in [9] (see results
for PQ2 element).
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4.1 Limit load analysis of a rectangular plate

A rectangular plate of elastic-perfectly plastic material under uniformly distributed load is analyzed for
two sets of boundary conditions: simple supported (of hard type) and clamped (of hard type). The plate
characteristics are: thickness h = 0:5 cm, length l = 150 cm, width b = 100 cm. Material parameters are:
Young�s modulus E = 21000 kN=cm2, Poisson�s ration � = 0:3 and yield stress �y = 40 kN=cm2. Numerical
analysis was performed with a coarse mesh of 8 � 8 and with a �ne mesh of 60 � 40 elements, see Figure
6. We compare our results with those obtained by ABAQUS�[7] quadrilateral shell element (S4R element)
with through-the-thickness stress integration (with 5 integration points) and von Mises yield criterion. Load-
displacement curves are presented in Figures 2 and 3. There is a di¤erence in results of both analyses since the
stress resultant formulation does not account for gradual through-the-thickness plasti�cation. However, equal
limit load is obtained in both cases. It is interesting to see that the mesh density plays more important role
in the accuracy of the limit load computation than the chosen way of de�nition of elastoplastic constitutive
model. Namely, the di¤erence between the coarse and �ne mesh in predicting the limit load is around 20
% for the clamped plate, see Figure 3. By replacing m0 with �m0, we can estimate gradual spreading of
plastic zones through the thickness. In Figures 4 and 5 we present load-displacement curves obtained by
using � parameter and coarse mesh. We used a constant value of � across one time increment and therefore
the yield criterion is no longer smooth in pseudo-time. To reduce the in�uence of this e¤ect we used small
time increments. In case of simply supported plate (Figure 4) the �rst yield is well predicted, yet the
curve in subsequent states is below the ABAQUS�curve. Results for clamped plate are much better since
one can hardly distinguish between ABAQUS and stress resultant formulation when using time increment
�t = 0:0025.

4.2 Limit load analysis of a circular plate

We analyze a uniformly loaded circular plate of the same elastic-perfectly plastic material as in previous
example. Again we consider simply supported and clamped plates. The radius of the plate is r = 50 cm and
the thickness is h = 0:5 cm. The meshes are shown in Figure 6. In Figures 7 and 8 we plot load-displacement
curves. Again we see that the coarse mesh overestimates limit load in the case of clamped plate. Overall
correspondence of two formulations is reasonable. In Tables 1 and 5 we compare our results for limit load
with analytical solutions found in textbooks on plasticity [17], [19] and Eurocode [6]. Our result for simply
supported plate is in complete agreement with solution based on von Mises yield criterion, see Table 1. In
the case of clamped plate our result is slightly greater than the von Mises yield based solution, see Table 5.

4.3 Elastoplastic analysis of a skew plate

We consider a skew plate of elastic-plastic material with hardening under uniformly distributed load. The
plate thickness is h = 0:5 cm, the longer side is a = 150 cm, the shorter one is b = 135 cm and the in-between
angle is � = 45�. All material properties are the same as in the above examples, except for isotropic hardening
modulus, which is now Hiso = 0:1E = 2100kN=cm2. The plate is supported along the shorter edges with
�ve equally spaced point supports restraining displacements and allowing both rotations. Mesh is shown in
Figure 9. Load versus centre displacement diagrams are presented in Figure 10. Both curves have similar
shapes, yet the curve obtained with the coarse mesh is again above the curve obtained with the �ne mesh.
We see that the yielding of the plate signi�cantly reduces its sti¤ness, yet the limit load is never reached
because of the isotropic hardening. When using stress resultant plasticity model one can easily track the
spreading of plastic zones. In Figure 11 we see that the yielding starts in the corners of the shorter diagonal,
then it reaches the centre of the plate and spreads in the direction of longer diagonal corners.

4.4 Cyclic analysis of a circular plate

We consider a clamped circular plate under cyclic loading conditions. The plate is loaded with uniformly dis-
tributed load with the amplitude that corresponds to twice of the load at the �rst yield pmax = 2

�
1:5(hr )

2�y
�
.

We examine three hardening cases: (i) isotropic hardening (Hiso = 2100 kN=cm2, Hkin = 0 kN=cm
2), (ii)

kinematic hardening (Hiso = 0 kN=cm2, Hkin = 2100 kN=cm2), (iii) combined isotropic and kinematic
hardening (Hiso = Hkin = 1050 kN=cm

2). The remaining material and geometry parameters are the same
as those adopted for the limit load analysis, except for plate thickness which is now h = 4 cm. In Figure 12
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the load-displacement curves for the �rst two cycles are presented for stress resultant formulation and stress
resultant formulation with parameter �. Isotropic hardening enlarges the yield surface which can be seen in
Figure 12 where the curve appears as a closed loop after the �rst cycle. After the initial cycle the plate can
sustain greater stress resultants and still remain elastic. The shift of the initial curve to the right represents
the plastic deformation. Purely kinematic hardening curve is wider and is virtually unchanged from one cycle
to another. In this case the size of the yield surface is unchanged whereas the e¤ect of kinematic hardening
changes the position of it. We can look at the combined hardening curve as a combination of the purely
isotropic and purely kinematic hardening curves. Isotropic hardening e¤ects prevail and after the �rst cycle
the plate remains in elastic state.

4.5 Elastoviscoplastic analysis of a circular plate

In this example we consider a clamped circular plate of elastoviscoplastic material. All material and geometry
parameters are the same as in the case of limit load analysis. Three di¤erent values of viscosity parameter
are chosen, � = 0, � = 1, � = 10, for two sets of loading conditions. In the �rst set we gradually apply a
point load in the centre of the plate until it reaches its �nal value F = 22 kN at time t = 1. The second
set is displacement driven with a prescribed �nal value of midpoint de�ection w = 11 cm. Loading curves
for both loading sets are presented in Figure 13. We show the time-de�ection curve of the plate under �rst
loading condition in Figure 14. The viscosity coe¢ cient � has a signi�cant e¤ect on a nature of inelastic
response. The value � = 0 corresponds to plasticity whereas for values � > 0 the inelastic deformations
are time dependent. One can note that the strain in elastoviscoplastic material held at constant stress will
gradually reach the level of strain in a time independent material. Time response of the plate for the strain
driven loading is presented in Figure 15. We see a hardening like response in viscoplastic materials (� > 0)
but resistance is slowly dropping to the value corresponding to the time independent material.

5 Concluding remarks

The stress resultant plasticity for plates has been revisited and reformulated. It has been systematically
derived from the principle of maximum plastic dissipation and presented in a form suitable for e¤ective
computational implementation. Stress resultant overstress viscoplasticity has been introduced in such a
manner that both inelastic formulations can be treated within one computational framework. We note
that one could also use the same framework for power-law strain and strain-rate hardening viscoplasticity.
Numerical results of the presented formulation have been compared with the stress formulation (ABAQUS) as
well as with the stress resultant formulation with � parameter. It has been shown that, regarding the accuracy
of the limit load computation, the mesh density plays more important role than the type of elastoplastic
formulation. An extension of this work to geometrically nonlinear shells will be adressed in a separate work.
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Figure 1: Notation of the used �nite element

Figure 2: Load - displacement diagram for simply supported rectangular plate
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Limit load Yield criterion Reference
q = 1:629h

2

r2 �y present present (�ne mesh)
q = 1:625h

2

r2 �y - [6]
q = 1:500h

2

r2 �y Tresca (analytical solution) [17], [19]
q = 1:629h

2

r2 �y Von Mises (analytical solution) [19]
q = 2:000h

2

r2 �y Von Mises (analytical upper bound) [19]
q = 1:500h

2

r2 �y Von Mises (analytical lower bound) [19]

Table 1: Limit load solutions for circular simply supported plate

Limit load Yield criterion Reference
q = 3:240h

2

r2 �y present present (�ne mesh)
q = 3:125h

2

r2 �y - [6]
q = 2:815h

2

r2 �y Tresca (analytical solution) [17], [19]
q = 3:138h

2

r2 �y Von Mises (analytical solution) [19]

Figure 3: Load - displacement diagram for clamped rectangular plate

Figure 4: Load - displacement diagram for simply supported rectangular plate; � parameter case

Figure 5: Load - displacement diagram for clamped rectangular plate; � parameter case

Figure 6: Meshes used for: (a) rectangular plate - �ne, (b) rectangular plate - coarse, (c) circular plate - �ne
and (d) circular plate - coarse

Figure 7: Simply supported circular plate - limit load analysis

Figure 8: Clamped circular plate - limit load analysis

Figure 9: Skew plate - (a) �ne mesh, (b) coarse mesh

Figure 10: Skew plate - elastoplastic analysis

Figure 11: Spreading of plastic zones

Figure 12: Clamped circular plate - cyclic load

Figure 13: Loading curve for viscoplastic analyses

Figure 14: Time response for force-prescribed viscoplastic circular plate

Figure 15: Time response for displacement-prescribed viscoplastic circular plate
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