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ABSTRACT 

The paper describes a procedure for modelling the anisotropic elastic-plastic 

behavior of metals in plane stress state by the mechanical sub-layer model. In this 

model the stress-strain curves along the longitudinal and transverse directions 

are represented by short smooth segments which are considered as piecewise linear 

for simplicity. The model is incorporated in a finite element analysis program 

which is based on the assumed stress hybrid element and the viscoplasticity-theory. 

1. INTRODUCTION 

For time-independent elastic-plastic behaviors a very convenient model to 

represent kinematic hardening is to use an assembledge of elastic-perfectly-plastic 

elements to represent the stress-strain relation which is approximated by a curve 

with several piecewise linear segments. This model, which has been widely used 

for numerical analysis of multiaxial elastic-plastic behavior is named mechanical 

sublayer or overlay models [refs. 3,4,5J. For more general case including three­

dimensional solid, the method should perhaps be called mechanical sub element 

method. 

For plane stress problems the corresponding mechanical model is a laminated 

plate with layers of elastic-perfectly-plastic materials of different yield 

stresses. Differential equations for the solutions of plane stress elastic-plastic 

and isotropic stress-strain relations has been obtained for model with two layers, 

one of which is elastic and the other is elastic-perfectly-plastic [ref. 6J. The 
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equations are non-linear and for the case of uniaxial loading the resulting strain 

hardening behavior will not be a straight line. Thus, for a material with uniaxial 

stress-strain relation approximated by straight line segments, it is, strickly 

speaking, not possible to obtain exact representation by a mechanical sublayer 

described above. In Ref. 6, a relationship has been obtained between the ratio 

of the initial tangant modulus and the elastic modulus and the thickness ratio of 

the two layers. It is however, reasonable to assume that by using sufficiently 

small segments a piecewise linear model can be adopted. 

Hunsakier ~t al. [ref. 5] have also obtained a corresponding relationship for 

three-dimensional isotropic solids. In that case, for a material represented by one 

elastic subelement and one elastic-plastic subelement, the resulting uniaxial stress-

strain relation will have linear strain hardening behavior. The proportion of the 

volume of the elastic-plastic element to the total volume Vl/V is expressed simply as 

where El is the elastic modulus and E2, the tangent modulus. In this case, when 

the uniaxial stress-strain relation is represented by linear segments a corresponding 

subelement model can be constructed exactly. 

The present paper is to extend the mechanical sublayer model to materials 

with anisotropic plastic behavior. Again the plane stress problem is considered. 

Finite element method for elastic-plastic analysis based on the viscoplasticity 

theory and the stress hybrid model is used in conjunction with the present mechanical 

subelement model. An example solutioh of a time-independent elastic-plastic problem 

is presented. 
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2. Mechanical Sublayer Model for Anisotropic Plasticity Problems 

Figure 1 is a plate with two layers under plane stress loading. Layer 1 is 

elastic-perfectly-plastic and is considered tranversely isotropic with yield stresses 

Yx and Yy respectively along the longitudinal and transverse directions. Layer 2 is 

elastic. The elastic constants E and Poisson's ratio v for both layers are identical. 

The yield condition for layer 1 is governed by the Hill's generalized yield oriterion 

(1) 

where a = Yx under uniaxial loading along x direction. With yield stresses under 

uniaxial loading along y and z direction equal to Yy ' we can express the constants 

F, H etc. in terms of the yield stresses and obtain the following yield conditions 

for the plane stress problem 

where 

The flow rule is 

a = (Y IY )2 x y 

a = (Y IY )2 s x xy 

(2) 

(3) 

(4) 
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Now, consider the behavior of the laminated plate under inplane loading 

conditions. From testing tension coupons cut along the x and y directions, the 

elastic modulus for both direction is given as El while the initial tangent moduli 

are represented, respectively, by E and E as shown in Figure 2. 
x2 Y2 

Let 0 and 0 x y 

represent the average in-plane stresses, then the stress rate 0y is 

o 0 tl 0 t2 
0y = 0Yl t + °Y2 t = 0 

where t is the total thickness and tl and t2 are the individual thickness. The 

thickness ratio then is, 
o 

o 
Y2 

= - --
O. 

o y 
1 

Hene, layer 2 is elastic hence, 

From f = 0, we obtain, 

Thus, at initial yield when 0 = 0 = 0 = 0 
Y Yl Y2 

and from Eq. (4), 

We also have 
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(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11 ) 



and E: P = E: - _1 (a - va) 
Yl yEl Yl xl 

(12 ) 

From Eqs. (9) to (12), we obtain, 

(l3) 

(14 ) 

Now from the given uniaxial loading conditions the strain rate along y is given by 

• e 1· P 
= -v E - - E 

X 2 x 

Substituting 

and 

into Eq. (15) we obtain 

• • 1 1 EX2 
Ey = EX [- -2 + ( -2 - v) -E-J 

1 . 

(15 ) 

(16 ) 

(17) 

(18 ) 

Substituting into Eqs. (7) and (14) and then into Eq. (16), the following thickness 

ratio is obtained, 

tl 5 - 4v E1 
= (- - 1) 

t2 4 (1 - v2) Ex 
2 

(19 ) 

From which 

t1 
= t1 El - EX2 

= t t1 + t2 E1 - B EX2 
(20) 

where 2 
B = (l - 2v} 

5 - 4v (21) 
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It is noted that this factor S is the same for isotropic materials for which 

Eqs. (9) and (10) hold. For one dimensional problem the ratio of the area of 

plastic element to the total area is 

Al = El - E2 
A El 

(22) 

Thus S is the modification factor for plane stress problems. For v = 0.3, of 

Eq. (22) s = (1-2v)2/(5 - 4v) = 0.0421. Thus, the modification is very small when 

the uniaxial behavior along the longitudinal direction is used to determine the 

thickness ratio. 

Now if a coupon is cut along the y-axis, then when a = a = a = 0, 
x xl x2 

and 

Fo 11 owi ng the same deri va ti on gi ven above, if the tangent modul us is Ey 2' the 

thickness ratio becomes 

t, = El - EY2 
t E, - , 

S E 
Y2 

where S"= (l - 2a v)2 
1 - 4va + 4a

2 

For v = 0.3 and fora between 0.5 and 2, the values of W is in the range of 

o to 0.35. 

Equating Eqs. (19) and (26) and solving for E," we obtain a relation 

between EX2 and Ey2 ' 
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(27) 

(23) 

(24) 

(25) 

(26) 



Thus for anisotropic material represented by the mechanical sublayer model the 

initial tangent moduli for the two directions are not the same. When the 

stress-strain curves for two perpendicular directions are given, a mechanical 

sublayer can be obtained according to the following procedure. 

(1) For the stress-strain curves, for both x-and y-direction determine the 

initial yield stresses y~ and y~ 
xl Yl 

These are also the yield stresses Y and 
xl 

Y of the sublayer and are euqal to El sX
l 

and El 
Yl 

S ,respectively. 
Yl 

(2) Based on one of the curves say for the x direction try an initial tan-

gent modulus E Knowing Y ,Y ,and E ,a and S for layer 1 can be 
x2 xl Yl x2 

determined, hence, tl/t can be calculated from Eq. (2) and the initial tangent 

modulus E for the y-direction, from Eq. (27). 
Y2 

(3) The 2-sublayer model is then used to analyze two uniaxial loading 

problems and to obtain the stress-strain curves for both directions. The 

intersections of these lines to the actual stress-strain curves now determines 

the second set of transition points at which the second layer yields. The 

stresses and strains are respectively Y~ and Y~ and sand s as shown 
x2 Y2 x2 Y2 

in Figure 3. In general, the yield stresses Y and Y of the new sublayer are 
x2 Y2 

not equal to El sand El s ,although in 
x2 Y2 

the case of subelement model for 

uniaxial problems, the yield stress for the second subelement is equal to Els 2. 

For 3-~ problems with isotropic plastic behavior, Hunsaker has obtained 

closed form solutions for the case of a 2-subelement model. For a typical 

case with E2 = 0.5 El and s2 = 3 sl the difference between Y2 and El s2 is 

only 5%. 

The choice of the initial tangent modulus E must be such that the second x2 
set of transition points do fallon the actual stress-strain curve. In 

general, an iterative procedure is required. 
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(4) The plate is now considered as a new two-layer model with the yield 

stresses for the two directions equal to Y and Y Then by choosing a 
x2 Y2 

tangent modulus E for the next segment, values of (tl + t 2)/t, E ,and Y , 
x3 Y3 x3 

Y~ ,Y ,and Y can be determined following the same steps (2) and (3) 
Y3 x3 Y3 

above using 

tl + t2 
= 

El - Ex ·3 
t El - B E 

x3 

and E = 
(1 - 13) El EX3 

Y3 
(1 - 13~) E - (13 - 13~) E 

1 x3 

for the value of 13~ Eq. (26) is used with a = (Y IY )2. 
x2 Y2 

(28) 

(29) 

(5) The mechanical sublayer model may be constructed using the stress-

strain curve for the transverse direction as reference. In that case, Eq. (25) 

as used to determine the thickness ratio's and Eq. (27) is used to solve for 

E in terms of E x· y. 
1 1 

In the solution of a plane stress problem given in this paper a simolified 

procedure was adopted. The stress-strain curves for 8,ither the lonaitudinal or the 

transverse directions is replaced by a curve with linear segments. With one of the 

tangent moduli given, the other tangent modulus can be obtained and is again consid-

ered constant. Thus, the intercept of this linear segment to the actual stress-strain 

curve can be determined. The yield stresses for sublayers are obtained by the 

simple formulas, 

Y = EIE: X. X. 
1 1 (30) 

and Y = E, E:y. y. 
1 1 
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3. Finite Element Method Based on Viscoplasticity Theory 

Time independent elastic-plastic analysis can be made by using viscoplasticity 

models [ref. 7J. In the case of elastic-perfectly-plastic material, it is 

only necessary to consider the rate of viscoplastic strain components sVP as 

·vp s = y<<p>lE. au 

where F (a) = 0 represents the yi el d surface and 

< <p > for 

for 

a = equivalent stress 

a > a y 

a = a < y 

a
y 

= yield stress under uniaxial loading 

(31) 

(32) 

y = a fluidity parameter which is arbitrary for the corresponding 

elastic-plastic analysis. 

A corresponding viscoplastic model for the mechanical sublayer model is an 

arrangement of viscoplastic elements in parallel as shown in Figure 4. 

In the finite element analysis of a plane stress problem, the entire 

panel is discretized into N finite elements, the thickness of each of which is 

divided into M sublayers according to the modelling described in the previous 

section. A finite element method for the creep problem has been formulated by 

the initial strain approach using the assumed stress hybrid model [8,9]. 

The method is extended to the present multilayer model. For the incremental 

solution of the elastic-plastic problem, the procedure is as follows, 

(1) An elastic solution of nodal displacements due to a given load 

increment is made using the assumed stress hybrid elements, 
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(2) The stress increments at selected Gaussian stations in each 

element are evaluated, 

(3) The stresses in each sublayer at each Gaussian station are updated 

and the corresponding equivalent stress a evaluated, 

(4) A time increment ~ t is chosen and the increments of viscoplastic 
vp ·vp strains are ~E = ~ ~ t for all sublayers at all Gaussian stations. Here the 

viscoplastic strain rates are determined by Eqs. (31) and (32). 

(5) The equivalent nodal forces due to the viscoplastic strain increments 

can be evaluated. They are used for the determination of nodal displacements for 

the time increment. 

(6) Steps (2) and (5) are repeated until the changes in s~resses within the 

time increment become less than a small prescribed limit. 

At this stage, the equivalent stress a in each sublayer is either equal or smaller 

than the yield stress of that sublayer and stabilized stress state for this 

loading increment is obtained. The use of successive time increments is 

equivalent to an iterative procedure for this elastic-plastic problem. 

A guideline for the choice of the time increment ~t to assure numerical 

stability is, according to Cormeau [ref. 10J, 

~t < 4 (1 + v) 
- 3 E Y 

where E is the Young's modulus 

4. Anisotropic Analysis of Shear Lag Structure 

(33) 

To illustrate the finite element solution using the present anisotropic 

model, a shear lag structure which was tested in 1963 at Massachusetts Institute 

of Technology is used [ref. llJ. The structure shown in Figure 5 was integrally 
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machined from thick 2024-T4 aluminum alloy plate. It is a rectangular panel 27.94 cm 

x 25.4 cm x .203 cm, stiffened by tapered stiffners along the loading (y) 

axis. The stiffness became flu?h with the panel at the center, where the 

stresses and strains are the highest under the applied tension load through the 

stiffners. 

Fitted stress-strain curves for both the longitudinal or x-direction and 

the transverse or y-direction were obtained from tension tests as shown in 

Figure 6. An average of these two curves is also shown. 

A mechanical sublayer model for this material was constructed by the 

simplified procedure indicated in section 2. The corresponding curves with 

piecewise linear senments are shown in Figure 7. The yield stress under 

shear was not obtained in the original experiment. For the mechanical sublayer 

model, the values of Y
xY 

for each layer is set equal to YI ~ where Y is the 

larger of Y and Y. Of the five sublayers used in the models the last one is x y 

considered elastic. The strain disbribution of the panel, thus, is determined 

directly by the elastic strains offuis layer. Table 1 lists the thickness ratios 

and yield stresses of the various sublayers. 

For the finite element analysis one quarter of the panel is used. It is 

subdivided into 7 x 7 rectangular plane stress elements as shown in Figure 8. 

The tapered stiffness is also modelled as plane stress elements with constant 

thickness in each element. For the finite element solution all numerical 

integrations were obtained by using 2 x 2 Gaussian quadrature. 

The resulting strains E and E at the center of the panel were determined x y 

by extrapolating from the two Gaussian stations along the diagonal line of 

the element at closest to the center. Their variations with respect to the 

applied load are shown in Figure 9. Also plotted for comparison are: 
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(1) A finite element solution obtained by the present method but by mod-

elling as an isotropic material based on the average stress-strain curve shown 

in Figure 6. 

(2) A finite element solution obtained by Jensen et al. [ref. 12], using 

144 constant strains triangular elements and by modelling as an isotropic material. 

(3) Experimental results obtained in Ref. 11. 

It is seen that the solutions by the three finite analyses are comparable 

although they do not agree with the experimental result, especi a lly, for 

the Ey component. In this particular case the approximate solution obtained 

by considering the material property to isotropic appears to be very close to 

that by the present modelling of anisotropic material. 

5. Conclusions 

A method has been developed for the modelling of anisotropic plastic 

behaviors for metals by the mechanical subelement model. It has been incor-

porated in a finite element analysis program based on the assumed stress hybrid 

model and, on the viscoplasticity theory. 
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Table 1. Constants for Mechanical Sublayer Hodel (Anisotropic Plasticity) 

~ Number
j 

1 2 3 4 5 

t;lt 0.360 0.351 0.130 0.130 0.029 

E 
xi 

GPa 69.6 45.2 20.8 11.5 2.08 

E 
Yi 

GPa 69.6 44.7 20.3 11.2 2.01 

EXi 
10-.:s 5.01 5.33 5.52 6.01 10.0 

£Yi 
10-j 3.24 4.52 6.22 8.44 14.0 

Y (=E 1£ ) MPa 349 371 385 419 
xi xi 

<.> 

Y (~E£ ) MPa 226 315 433 587 ~ 

Yi ' Yi l-

V> 

(l E (Y IY )~ 2.39 1.39 0.789 0.508 <: 

i xi Yj -' 
w 

a = (Yx IYs )2 7.17 4.17 3 3 
si i i 

Y a 

//7'------x 

£ 

Figure 1. Two-layer Model Representing Strain Hardening Behavior Figure 2.Uniaxial Stress-Strain Relations for Two-layer Model 
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Longitudi na 1 (x) 

Transverse (y) 

Figure 3. Stress-Strain Relations by Mechanical Sublayer Model 
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Figure 4. Viscoplastic Model for Mechanical Sublayers 
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Figure 5. Dimensions of Shear Lag Structure 
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Figure 6. Fitted Stress-Strain Curves of 2024-T4 Aluminum Alloy Plate 
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Figure 7. Approximate Stress-Strain Curves by Mechanical Sublayer Model (2024-T4) 
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Figure S. Finite Element Mesh for Shear Lag Structure 

... 
o 

!: .. .. .. 
'" 

20 

15 

10 

-5 

- - Solutton by Constant 
Strltn Trianqular Elements 

_.- Present Ftntte Element Solutton -
Isotroptc Plasttc Beha.tor 

__ Present Ftnite Element SolutIon -
AntsotropiC Plasttc Beha.ior 

• 

• 

-lO'--_ ........ _~_-'-_-+_-:':_--,I;,,....-........ _---Ii-_ 
o 10 20 30 40 50 60 70 80 

P k N 

x 

Figure 9. Strain Components at Center of Shear Lag Structure - ComDarison of 

Different Finite Element Solutions 
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