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Abstract. This paper presents analytical, semi-analytical and numerical reference ex-
amples which can be employed for code verification of elasto-viscoplastic models under
plane stress conditions. Mainly because of the overstress function the algorithms tradi-
tionally employed in elasto-plastic implementations must be rewritten to correctly impose
the plane stress state along with the viscoplastic flow. The viscoplastic formulation pre-
sented here considers the strain-rate hardening effects by means of a hardening law that
are assumed to have terms depending on the strain rate, which removed can represent
a Voce type hardening. The proposed verification tests were employed for the numeri-
cal verification of an in-house implementation of the so-called stress-projected procedure
inside the finite element method context. Although the focus of this paper is on the stress-
projected algorithms the examples presented here can be employed for the verification of
other algorithms intended to impose the plane stress state in viscoplasticity.

1 INTRODUCTION

In many engineering practical applications, depending on specific physical and geo-
metric characteristics, useful simplifications can be conveniently assumed. For example,
either axisymmetric, plane strain or plane stress assumptions can be referred to. From
a general point of view, such assumptions greatly simplifies the problem solution since
a reduced number of variables has to be taken into account. Particularly, plane stress
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conditions can be adopted in specific engineering situations in which, by suitable mathe-
matical idealization, the out-of-plane stress components are assumed to be null. Practical
applications which allow such an assumption are those involving e.g. thin membranes,
load-free surfaces, etc.

Particularly, a straightforward formulation can be obtained when isotropic linear elas-
ticity is employed. In this simple case, conditions satisfying null out-of-plane stress com-
ponents are readily imposed both on analytical and numerical frameworks. In contrast
to the linear elastic cases, imposing the corresponding plane stress conditions in inelastic
formulations is more complex from both analytical and numerical points of views. It is
worth mentioning that imposing the correct constraints to the plastic flow under plane
stress assumption is far more complicated when compared to other simplifications, as
axisymmetric or plane strain cases, or even when a full three dimensional approach is
employed.

This paper focus on development of verification examples which can be applied es-
pecially for code verification involving viscoplasticity and in some conditions elasto-
viscoplasticity problems. In a first moment, focus is given in some simple, but very
important, verification examples in which numerical results are confronted against with
analytical and semi-analytical rigid viscoplastic solutions. The term semi-analytical is
used here to enforce that some approximation is involved in the development of the evo-
lution of the viscoplastic flow. Secondly, it is presented some comparisons considering a
more sophisticated plane stress example, also considered by other researches, serving as
reference solutions.

In this paper the enforcement of the plane stress viscoplastic flow is given by a version
of the stress-project algorithm. Although the stress-projected algorithm is very common
in elasto-plasticity, the same does not appear to be true in elasto-viscoplasticity, and few
papers on the subject are found in the literature, see subsection 3.2 for more details. The
viscoplastic formulation is given in terms of an overstress function which couples viscid
and inviscid flow. It is shown that to employ the stress-projected procedure some terms
must arise in order to assure the correct evolution of the plane stress state along the
viscoplastic flow. The elasto-viscoplastic model considered in this paper is equipped with
an internal variable that accounts for the strain-rate hardening, which removed can lead
to a Voce type of hardening, thus the procedure presented here can be employed when
enforcing the plane stress state not only when using the stress-projected algorithm but
also for other algorithms in regular viscoplastic models.

This paper is presented in a very concise manner in 6 sections, including this introduc-
tion. In section 2 the formulation of the elasto-viscoplastic constitutive model is briefly
depicted. The formulation of the stress-projected algorithm is presented in section 3 and
section 4 is devoted to the numerical aspects involved in the local integration procedure
and tangent modulus derivation. Numerical results are presented in section 5. Closing
this paper we present our conclusions in section 6.
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2 CONSTITUTIVE FRAMEWORK

This section addresses the main features of the constitutive model and some important
aspects associated with the plane stress particularization. In a first step, the adopted
elasto-viscoplastic model is outlined. It is worth mentioning that this model was for-
mulated and and adjusted within a multidimensional context in previous work [1]. The
present development has the aim of emphasizing specific aspects related to both analytical
and numerical formulations to employ the whole model (whose parameters were adjusted
in a 3D setup) in a plane stress-projected framework.

2.1 Elasto-viscoplastic model

The model adopted in this work employs a von Mises material, whose yield function is
given by

f(σ, A) = ‖s‖ −
√

2

3
(σy + A)

︸ ︷︷ ︸
R(A)

,
(1)

in which σy is the initial yield stress, A = A1 + A2 is the isotropic stress hardening,
||s|| =

√
s : s =

√
sijsij, being s the deviatoric part of the σ. Assuming a linear elastic

isotropic material, σ relates to an elastic strain measure εe, by

σ = Deεe, (2)

where
De = 2µI+ λI⊗ I, (3)

being µ and λ the Lamé constants, which are related to standard elastic parameters as
the shear G and bulk K moduli by µ = G and λ = K− 2

3
µ. In Eq. (3), I is the symmetric

part of the fourth order identity tensor, and I is the second order identity tensor. In
components, they are given respectively by Iijkl =

1
2
(δikδjl + δilδjk) and (I⊗ I)ijkl = δijδkl.

Inelastic evolution equations are given in the form

ε̇vp = λ̇
∂f

∂σ
= λ̇

s

‖s‖
, Ȧ1 = δ (A∞ − A1) ˙̄ε, A2 = cA∞ε̄, (4)

where ε̇vp = ε̇− ε̇e is the viscoplastic strain-rate, δ, A∞ and c are model parameters, ε̄ is
the accumulated viscoplastic strain , whose rate is defined given by (see Eqs. (1) and (4))

˙̄ε =

√
2

3
‖ε̇vp‖ =

√
2

3
λ̇. (5)

For a constant strain-rate, from Eqs. (4)2−3 a closed expression for the hardening variable
A = A1 + A2 can be obtained

A = A∞ [1 + cε̄− exp (−δε̄)] . (6)
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Furthermore, the present model assumes rate-dependence on A∞, as presented in [2],
given by

A∞ = [1− β ( ˙̄ε)]Alwr
∞ + β ( ˙̄ε)Aup

∞ , (7)

where Alwr
∞ and Aup

∞ are model constants. Parameters (·)lwr and (·)up are related to a lower
˙̄εlwr � 1 and an upper ˙̄εup � 1 reference strain-rates, respectively. In Eq. (7), functions
β, are given by

β ( ˙̄ε) =

(
〈 ˙̄ε− ˙̄εlwr〉
˙̄εup − ˙̄εlwr

)ξ

, (8)

satisfying β ( ˙̄εlwr) = 0 and β ( ˙̄εup) = 1. The parameter ξ > 0 is a model constant. In the
last equation, operator 〈x〉 = 1

2
(x+ |x|) is the Macaulay bracket.

Within a viscoplastic framework, multiplier λ̇ ≥ 0 of Eq. (4)1 is assumed to have a
relationship with the yield function f and hardening variable A given by a constitutive
equation [3, 4]

λ̇ = Θ(〈f〉 , A) , (9)

where Θ ≥ 0 is an overstress function complying with condition Θ (0, A) = 0. Considering
a viscoplastic loading, in which f > 0 and λ̇ > 0, the Eq. (9) can be rewritten as

f = Θ−1
(
λ̇, A

)
. (10)

In this work, function Θ−1 is assumed to have the following specific form

f = R(A)

[(
1 + ϑλ̇

)1/m

− 1

]
, (11)

where ϑ > 0 and 1/m > 0 are constants. The Eq. 11 is a variation of the Perzyna model,
[3, 4], and was proposed by [5].

3 ELASTO-VISCOPLASTICITY UNDER PLANE STRESS CONDITION

3.1 Some preliminaries

Let σ ∈ S be the Cauchy stress tensor, S being the second-order symmetric tensor
space satisfying dim [S] = 6. The plane stress condition may be stated by using the
Cauchy traction vector, t, as those sections planes, for a fixed unitary normal n, where

t (n) = σn = 0. (12)

For the sake of simplification, let n = e3 and let Sp ⊂ S be conveniently defined as the
stress vector subspace satisfying the planes stress constrains such that

Sp = {σ ∈ S|σ13 = σ23 = σ33 = 0} , (13)

where dim [Sp] = 3.

4

284



Andrey Brezolin, Tiago dos Santos, Pedro Rosa, and Rodrigo Rossi

3.2 Plane stress in viscoplasticity

Appropriate procedures have been proposed in the literature to enforce the plane stress
state in elasto-plasticity following either local or global procedures, see [6, Chap. 9] for
a review. One of these approaches is plane stress-projection algorithm, apparently first
reported in [7] but well developed in [8] and especially in [9] for a von Mises yield criterion.

Due to its complexity, the plane stress-projection has been employed mainly in works
considering a J2 yield function within elasto-plasticity, where there are “uncountable”
works published so far, and also in viscoplasticity, but in contrast, here one founds very
few works [10, 11, 12, 13]. Also, few works employing such strategy using other yield
criteria are found [14, 15, 16]. From a full three-dimensional framework, [15, 16] have de-
veloped a general consistent projected return mapping algorithm for plane stress isotropic
plasticity. They have shown that, in contrast to previous approaches [7, 8, 9, 14, 17], both
the stress return algorithm and the consistent tangent operator can be obtained by par-
ticularizing the three dimensional formulation to a bi-dimensional stress space. However,
for constitutive approaches not employing the von Mises yield function, obtaining the
corresponding plane stress-projected formulation can become very complex or even im-
practicable. Thus, other procedures shall be recommended [6], [15] has pointed out that
it could be limited to isotropic plasticity theories.

Now focusing in (elasto-)viscoplasticity, one of the first reports of plane stress state
imposition in viscoplasticity was given by [11]. In this paper the authors follows the ideas
presented in [9] to reformulate the so-called Robinson’s viscoplastic model. More recently,
in [12] an elastic–viscoplastic implicit integration algorithm was presented based on the
ideas developed for elasto-plasticity. The algorithm was developed for three-dimensional
stress states but can approach the plane stress state in viscoplasticity by introducing cor-
rections in the implicit integration evolution equations. However, it is in [13] that a more
comprehensive analysis about the imposition of the plane stress state in viscoplasticity
is delivered. Different time integration schemes are investigated and compared in a con-
stitutive formulation that considers isotropic and kinematic hardening and damage. The
viscous effect is introduced by a power or an hyperbolic sine function.

3.2.1 Plane stress projection framework

In order to formulated the corresponding plane stress framework, the Voigt notation is
conveniently adopted. Thus, constitutive relation given in Eq. (2) is rewritten as1




σ11

σ22

σ33

σ23

σ13

σ12



=

E

(1 + ν) (1− 2ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2







εe11
εe22
εe33
γe
23

γe
13

γe
12



, (14)

1Notice that σ, εe, s are second order tensors while σ, εl, and s are column matrices.
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in which E and ν are the Young modulus and Poisson ratio, respectively. To impose the
associated plane stress conditions, the in-plane stress components are assumed to be σ11,
σ22 and σ12 . Therefore, Eq. (14) reduces to




σ11

σ22

σ12


 =

E

1− ν2




1 ν 0
ν 1 0
0 0 1−ν

2






εe11
εe22
γe
12


 → σ = Deεe, (15)

with the out-of-plane strain component given by εe33 = −ν
E

(σ11 + σ22) . Seeking for a
compact notation, a plane stress vector σ ∈ Sp ⊂ S is conveniently defined

σ = [σ11 σ22 σ12]
T . (16)

Consistently, a strain vector is accordingly defined

εl = [εl11 ε
l
22 2ε

l
12]

T , (17)

where the superscript l has to be set depending on the deformation regime, elastic or
inelastic. The out-of-plane component εl33 is left to be specified along the work.

Under plane stress conditions, following the previous notation, the deviatoric stress is
assumed to belong to the vector subspace

Sd = {s ∈ S|s13 = s23 = 0, tr (s) = 0} . (18)

Being P a linear mapping P : Sp −→ Sd, it is possible to determine the deviatoric stress
vector performing

s = Pσ , (19)

where
s = [s11 s22 s12]

T , (20)

and

P :=
1

3




2 −1 0
−1 2 0
0 0 3


 . (21)

Note that the out of plane deviatoric stress is calculated as s33 = − (s11 + s22). In a
similar manner, the deviatoric strain vector, denoted by

ε = [ε11 ε22 2ε12]
T , (22)

with ε11 = ε11 −
1

3
tr (ε) and ε22 = ε22 −

1

3
tr (ε), can be obtained from the mapping

ε = Pε, (23)

where

P =
1

3




2 −1 0
−1 2 0
0 0 6


 . (24)
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3.2.2 Viscoplastic considerations

When the plane stress condition is imposed, σ ∈ Sp and s ∈ Sd, specialization of the
yield function Eq. (1) reads

fps(σ, A) =

√
2

3
(σ2

11 + σ2
22 − σ11σ22 + 3σ2

12)−R(A), (25)

which can be compactly rewritten using the operator P as

fps(σ, A) =
√
σTPσ −R(A) . (26)

It is worth mentioning that, although they have a different functional form, both the yield
functions defined in Eqs. (1) and (26) return the same numerical value for a given plane
stress state. Thus, the viscoplastic equation defined in Eq. (11) can be readily applied in
the plane stress formulation

fps = Θ−1
(
λ̇, A

)
,

= R(A)

[(
1 + ϑλ̇

)1/m

− 1

]
, (27)

or

fps +R(A) = R(A)

[(
1 + ϑλ̇

)1/m
]
. (28)

Notice that the last equation is a direct particularization of the full viscoplastic function
whose argument is the multiplier λ̇ employing model parameters (ϑ,m) adjusted in a
3D context. However, in an effort to employ the 3D adjusted model in a particular plane
stress implementation, attention is needed in the mathematical manipulation of the model
equations. Following the procedure presented in [18], it is useful to rewrite Eq. (28) as

fps +R(A) =

√
2f̃ps (σ) = R(A)

[(
1 + ϑλ̇

)1/m
]
, (29)

where 2f̃ps (σ) = σTPσ. Thus, the following relation is obtained

f̃ps =
1

3
(σy + A)2

[(
1 + ϑλ̇

)1/m
]2

. (30)

Based on the plane stress restriction and according to the adopted Voigt notation, the
evolution equation (4)1 is rewritten as (see Eq. (26))

ε̇vpps =
1√

σTPσ
λ̇Pσ, (31)

or in a convenient compact form as

ε̇vpps =
˙̃λPσ, (32)

7
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in which ε̇vpps = [ε̇vpps11 ε̇
vp
ps22

2ε̇vpps12 ]
T . Notice that in Eq. (32), since Pσ is not a unit vector,

the multiplier ˙̃λ does not represent the magnitude of ε̇vpps . Therefore, ˙̃λ is related to the

original (3D) viscoplastic multiplier λ̇ by means of

˙̃λ =
1√

σTPσ
λ̇ . (33)

In this context, in view of Eqs. (5) and (33), the accumulated viscoplastic strain rate ˙̄ε

can be given in terms of ˙̃λ according to

˙̄ε = ˙̃λ

√
2

3
σTPσ. (34)

Relation given in Eq. (33) is an important point to be highlighted in the present
plane stress particularization. Keeping in mind that λ̇ is the original argument of the

3D viscoplastic function given in Eq. (11), it is not possible to simply replace λ̇ by ˙̃λ, in
manner that

fps = R(A)

[(
1 + ϑ ˙̃λ

)1/m

− 1

]
.

If this direct replacement is done, the parameters adjusted in a 3D framework cannot
be used within the plane stress particularization, otherwise unexpected results will be
obtained.

4 NUMERICAL ASPECTS

4.1 Local integration algorithm

Once the constitutive equations under plane stress assumption have been obtained, this
section outlines the incremental counterpart and the corresponding integration algorithm
used to solve the numerical problem. Adopting a fully implicit integration (backward Eu-
ler) procedure, the whole time interval is subdivided into time increments ∆t = tn+1 − tn
and the time rate of each quantity (·) is calculated by an increment ∆ (·) := (·)n+1 − (·)n,
being (·)n+1 and (·)n the values at instants tn+1 and tn, respectively. In this sense, Eq.
(34) becomes

ε̄n+1 = ε̄n +∆λ̃

√
2

3
σT

n+1Pσn+1, (35)

in which ∆λ̃ ≥ 0 plays the role of a incremental viscoplastic multiplier.
Considering a viscoplastic loading

(
fpsn+1 > 0

)
, based on Eq. (29) the following par-

ticular plane stress relation is obtained

f̃ps =
1

2
σT

n+1Pσn+1 −
1

3
(σy + An+1)

2

(
1 + ϑ

∆λ̃

∆t

√
σT

n+1Pσn+1

)2/m

= 0. (36)
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In addition, the stress hardening variable A at tn+1 can be accounted for by means of
the following incremental equation obtained from Eqs. (4)2−3 (see also [1])

An+1 = An + A∞n+1c(ε̄n+1 − ε̄n)+

+
[
A∞n+1(1 + cε̄n)− An

]
{1− exp [−δ(ε̄n+1 − ε̄n)]} , (37)

in which A∞n+1 is given by

A∞n+1 = Alwr
∞ +

[
1

∆t

(
〈ε̄n+1 − ε̄n −∆t ˙̄εlwr〉

˙̄εup − ˙̄εlwr

)]ξ
(Aup

∞ − Alwr
∞ ) . (38)

4.1.1 Elastic predictor-plastic corrector algorithm in plane stress state

In order to solve the set of nonlinear algebraic equations (35)-(38), an elastic predictor-
plastic corrector algorithm is employed. The strategy solution is performed into two steps:
(i) a trial elastic state is assumed, if the condition fps(σ

trial
n+1 , A

trial
n+1 ) ≤ 0 is satisfied, the

solution at tn+1 is updated, (·)n+1 = (·)trialn+1 ; (ii) otherwise, if fps(σ
trial
n+1 , A

trial
n+1 ) > 0, a

viscoplastic correction has to be performed. The elastic deformation for plane stress
state, at tn+1, can be written as

εen+1 = εe
trial

n+1 −∆λ̃Pσn+1, (39)

or equivalently in term of stresses

σn+1 = H
(
∆λ̃

)
σtrial

n+1 , (40)

in which

H
(
∆λ̃

)
=

(
De−1

+∆λ̃P
)−1

De−1

. (41)

The nonlinear set of equations to be solved in the plastic corrector phase is composed by
(35), (36), (37), (38), and (39) for the following variables

{
εen+1 , ε̄n+1, ∆λ̃, An+1, A∞n+1

}
.

It is possible to reduce the number of equations by a simple mathematical manipulation
of Eq. 36 and Eq. (39) (or Eq. (40)). These last two equations can be reduced to one
equation having as unknown ∆λ̃. To perform such a task let us first write

σT
n+1Pσn+1 = γ

(
∆λ̃

)
, (42)

where the function γ
(
∆λ̃

)
is given in terms of the trial state as

γ
(
∆λ̃

)
=

(
σtrial

n+1

)T
HT

(
∆λ̃

)
PH

(
∆λ̃

)
σtrial

n+1 . (43)

Previous equation has to be solved in terms of a single scalar unknown: ∆λ̃. However, as
pointed out by [6], given the fact that Eq. (43) involves the multiplication and inversion of

9
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other matrices, its solution can lead to a cumbersome calculation. Therefore, in an effort
to avoid such operations one can take the advantage of specific characteristic associated
with an elastic and isotropic material. That means P and De share the same eigenvectors,
i.e. both have diagonal representation on the same basis, as well as De−1

and H. The
orthogonal matrix Q representing such transformation is

Q =




1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1


 , (44)

implying in the following results

P∗ ≡ QPQT =




1
3

0 0
0 1 0
0 0 2


 , (45)

De∗ ≡ QDeQT =




E

1− ν
0 0

0 2G 0
0 0 G


 , (46)

H∗
(
∆λ̃

)
≡

(
D∗e−1

+∆λ̃P∗
)−1

D∗e−1

=




3(1− ν)

3(1− ν) + E∆λ̃
0 0

0
1

1 + 2G∆λ̃
0

0 0
1

1 + 2G∆λ̃



, (47)

and the trial stress can be written as

σtrial∗

n+1 ≡ Qσtrial
n+1 =




1√
2

(
σtrial
11 + σtrial

22

)
1√
2

(
σtrial
22 − σtrial

11

)
σtrial
12


 , (48)

and Eq. (43) is rewritten as

σT
n+1Pσn+1 = γ

(
∆λ̃

)

=

(
σtrial
11 + σtrial

22

)2

6

[
1 +

E∆λ̃

3 (1− ν)

]2 +

1

2

(
σtrial
22 − σtrial

11

)2
+ 2

(
σtrial
12

)2
(
1 + 2G∆λ̃

)2 (49)

10
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The matrix H
(
∆λ̃

)
may be now written as

H
(
∆λ̃

)
= QTH∗

(
∆λ̃

)
Q, (50)

and using Eq. (44) and (47), one can derive a simpler form as

H(∆λ̃) =




1
2
(H∗

11 +H∗
22)

1
2
(H∗

11 −H∗
22) 0

1
2
(H∗

11 −H∗
22)

1
2
(H∗

11 +H∗
22) 0

0 0 H∗
33


 , (51)

in which

H∗
11 =

3 (1− ν)

3 (1− ν) + E∆λ̃
, H∗

22 =
1

1 + 2G∆λ̃
, H∗

33 = H∗
22. (52)

It is also possible rewrite Eq. (35) and (36) in terms of ∆λ̃ only, that is

1

2
γ
(
∆λ̃

)
− 1

3
(σy + An+1)

2

[
1 + ϑ

∆λ̃

∆t

√
γ
(
∆λ̃

)]2/m

= 0, (53)

and

ε̄n+1 = ε̄n +∆λ̃

√
2

3
γ
(
∆λ̃

)
. (54)

Moreover, by substituting Eq. (54) in Eqs. (37) and (38) one writes

An+1 = An + A∞n+1c

[
∆λ̃

√
2

3
γ
(
∆λ̃

)]
+

+
[
A∞n+1 (1 + cε̄n)− An

]{
1− exp

[
−δ∆λ̃

√
2

3
γ
(
∆λ̃

)]}
, (55)

with

A∞n+1 = Alwr
∞ +




1

∆t

〈
∆λ̃

√
2

3
γ
(
∆λ̃

)
−∆t ˙̄εlwr

〉

˙̄εup − ˙̄εlwr




ξ

(Aup
∞ − Alwr

∞ ) . (56)

In conclusion, the system of nonlinear equations related to the viscoplastic prediction

phase is (53), (55), and (56) which has to be solved in terms of
{
∆λ̃, An+1, A∞n+1

}
.
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Consequently, once the solution is obtained, the stress σn+1 and elastic strain εen+1 are
updated respectively as (see Eq. (40))

σn+1 = H
(
∆λ̃

)
σtrial

n+1 ,

and

εen+1 = De−1

σn+1.

4.2 Viscoplastic tangent operator for plane stress state

The viscoplastic tangent operator for plane stress state shall be derived Dvp
ps from the

linearization of equations (36), (39), and (55). After a straightforward mathematical
manipulation of this algebraic equations one identifies

Dvp
ps =

∂σn+1

∂εe
trial

n+1

=



De−1

+
Pσn+1 ⊗Pσn+1

−

(
a0

∂f̃ps
∂An+1

+
∂f̃ps

∂∆λ̃

) +∆λ̃P




−1

, (57)

where

a0 =
{
δexp

(
−a1δ∆λ̃

) [
A∞n+1 (1 + cε̄n)− An

]
+

+A∞n+1c
}(

a1 +
∆λ̃

3a1

∂γ

∂∆λ̃

)
+

+
{
ca1∆λ̃+ (1 + cε̄n)

[
1− exp

(
−δa1∆λ̃

)]} ∂A∞n+1

∂∆λ̃
, (58)

and

a1 =

√
2

3
γ
(
∆λ̃

)
. (59)

5 NUMERICAL RESULTS

This section has the aim to assess the corresponding constitutive and numerical aspects
associated with the present development. In this respect, with a view to evaluating the
whole finite element framework, simple cases, such as uniaxial tension, simple shear and
biaxial stretching, are simulated. Obtained numerical solutions are then compared to spe-
cific analytical solutions. A more detailed explanation on the derivation of the analytical
and semi-analytical solutions employed in this section is presented in [19]. Comparisons
consider strain-rates ranging from 10−2 s−1 to 104 s−1. In the sequence, in order to eval-
uate the present approach considering the structural response of more complex problem
with a non-homogeneous deformation field, the stretching of a perforated plate is also
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simulated. Since this case has been considered in the literature, the present framework is
adapted to reproduce the same constitutive formulation proposed in the works in litera-
ture allowing the comparison of the results with previous researches. After the numerical
verification of the present proposal, specific constitutive features associated with the con-
stitutive model employed herein can be further explored. For example, the strain-induced
hardening which is expected to play a major role during the high rate loading of metallic
materials. Thereby, specific simulations considering strain-rate hardening effects in plane
stress conditions are finally performed.

5.1 Monoelements - Homogeneous results

The material parameters to be employed in the following analysis are those adjusted
by [2], where annealed OFHC cooper samples were considered. Parameters values are
presented in Table 1. A standard Newton-Raphson method was employed for the numer-
ical solution of the nonlinear system of equations in the returning mapping phase. The
minimum error tolerance for the residue norm of 10−6 was employed. All the analysis in
this subsection were carried out considering a fixed number of iterations in time of N = 20
but varying the rates of deformation K.

Table 1: Material properties and model parameters for annealed OFHC cooper, with ˙̄εlwr = 10−4 s−1

and ˙̄εup = 104 s−1. Source: [2]

E ν σy δ c Alwr
∞ Aup

∞ ξ ϑ m
(GPa) (MPa) (MPa) (MPa) (s)
112 0.33 35 6.46 0.42 233 420 3.16 1.2× 103 105

5.1.1 Homogeneous compression

The problem addressed in this section consists in the solution of the application of a
homogeneous compression in a geometry with quadrilateral shape where the plane stress
state is imposed. The analyzed numerical model is formed by a single quadrilateral
element of equal side l0 = 6 mm of four nodes. The geometry and boundary conditions
are presented in Fig. 1. Also, just for sake of comparison, a single brick element was also
considered for analysis aiming to show that under the conditions specified in Fig. 1 the
multiaxial element will reproduce the plane stress state and the results have to remain
the same.

The analysis was performed by imposing a total homogeneous compression deformation
of ε22f = −0.5 at the final time tf , which is obtained by applying a total prescribed
displacement of ū2 = −2.3608 mm on the upper face of the element in Fig. 1. The
analytical response was derived considering the condition of a rigid-viscoplastic material,
resulting in the following stress evolution equation

|σ22| = (σy + A)

(
1 +

√
3

2
ϑ|K|

)1/m

. (60)
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Figure 1: Homogeneous compression - Finite element mesh and boundary conditions.

The comparisons for the stress evolution and hardening evolution for different defor-
mation rates are presented in Figs. 2 and 3. While analyzing the results of these figures
it is clear that there is a good approximation between the numerical results with respect
to the analytical solution. Due to the rigid-viscoplastic analytical solution, a slight devia-
tion between numerical and analytical response is evidenced at earlier deformation stages.
This difference is explained due to the significant contribution of the elastic deformation
part at the beginning of the deformation process, which is not taken into account in the
rigid viscoplastic analytical model.
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Figure 2: Comparison of flow stress-strain results for homogeneous compression.

It is also possible to observe that in the comparison between responses for the multiaxial
stress state and for the plane stress state the result found also agrees with the expected
response. Thus, the result indicates that the models developed respect the hypothesis that
in the plane, for a given field of homogeneous strain/stress, the stress responses between
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Figure 3: Comparison of hardening versus accumulated viscoplastic strain for homogeneous compression.

both cases must be the same.

5.1.2 Simple Shear

Here, we seek to find the same characteristics mentioned in the previous section, but
now in front of a problem where the shear components are preponderant with respect
to the normal components. The numerical model is formed by a single quadrilateral
element of equal side l0 = 6 mm of eight nodes. Figure 4 shows the geometry and
boundary conditions employed for this example. A brick element was also considered for
the multiaxial response.

Figure 4: Simple shear - Finite element mesh and boundary conditions.

A total shear deformation of 2ε12 = 0.5 at final time tf was imposed, obtained from
a prescribed displacement of u1 = 3.124 mm on the upper face of the element in Fig.
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4. For this case, the developed approximate2 response for the stress evolution, also for a
rigid-viscoplastic material, is

|σ12| =
√

1

3
(σy + A)

(
1 +

1√
2
ϑ|K|

)1/m

. (61)

Figures 5 and 6 show the evolution of the in-plane shear stress component versus the
shear deformation and of the hardening in terms of the accumulated viscoplastic strain,
respectively. Notice that, as for the first case, there is a very good agreement among the
results.
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Figure 5: Comparison of flow stress-strain results for simple shear.

5.1.3 Biaxial stretching with finite rotation

The case analyzed in this section consists in the application of a simultaneous biaxial
stretching and finite rotation on a single four node quadrilateral finite element of size
l0 = 1 mm, as depicted in Fig. 7 where the geometry and boundary conditions are
presented. The biaxial stretching occurs in the X1-X2 plane while the rotation is around
the X3 axis.

The displacement field applied for this case is given by

ū1 = �X2 and ū2 = −�X1 . (62)

At the final time the multiplier assumes the value of � = 0.7013 resulting in a homoge-
neous deformation state of 0.5.

2During the development of the analytical solution, under finite deformation, the normal stress com-
ponents were considered small with relation to the shear component. Therefore the normal components
were disregarded.
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Figure 6: Comparison of hardening versus accumulated viscoplastic strain for simple shear.

Figure 7: Stretching with rotation - Finite element mesh and boundary conditions.

The stress evolution equation, also under rigid-viscoplastic material hypothesis, is ap-
proximated by

|σ11,22| = (σy + A)

(
1 + 2

√
3

2
ϑ

K2t

K2t2 + 1

)1/m

. (63)

The comparisons between analytical and numerical for the stress and hardening evo-
lution for different deformation rates are presented in Figs. 8 and 9. The results depicted
in these figures show a very good agreement between the analytical and numerical data.
As for the last two subsections a brick element was considered in the analysis, see the
multiaxial solution.

17

297



Andrey Brezolin, Tiago dos Santos, Pedro Rosa, and Rodrigo Rossi

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

600

700

800

ε11|ε22

σ
1
1
|σ

2
2
(M

P
a)

Deformation Rate (s−1)
-Plane Stress Solution

Rate:10−2

Rate:1000

Rate:1002

Rate:1004

-Multiaxial Solution

Rate:10−2

Rate:1000

Rate:1002

Rate:1004

Analytical Solution

Figure 8: Comparison of flow stress-strain results viscoplastic strain for biaxial stretching with finite
rotation.
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Figure 9: Comparison of hardening versus accumulated viscoplastic strain for biaxial stretching with
finite rotation.

5.2 Stretching a perforated plate

This subsection describes an elasto-viscoplastic problem of a stretching of a perforated
plate. Unlike the simple problems analyzed previously, which develop homogeneous stress-
strain fields, in the present problem this does not happen.

5.2.1 Verification example using a rate-insensitive hardening

The idea here is to compare the numerical results achieved using the proposed frame-
work with those already published by other authors who employed different strategies to
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impose the plane stress state. After an extensive research in the bibliography, we found
the plane stress numerical results for the elasto-viscoplastic problem of a stretching a
perforated plate published by [5] and [6]. Accordingly [6] the numerical solution for this
problem was achieved by using the nested iteration algorithm to impose the plane stress
state, see [6], page 469, for more details. Therefore, such results serve as the reference
solution for the implementation using the stress-projected algorithm presented in this
work.

The model used for this analysis is shown in Fig. 10, in which the dimensions, boundary
conditions, discretization and material properties are shown. Also in this figure, the
hardening law employed by [5] and [6] is stated. The model was discretized with 576
triangular elements having three nodes per element. It was constructed by applying
appropriate boundary conditions to reproduce symmetry conditions resulting in only one
quarter of the plate. In this example the Perić overstress function was employed for
analysis.

Figure 10: Stretching of a perforated plate - Geometry, boundary conditions and finite element mesh.

For the hardening response to be compatible with the aforementioned publications, the
parameters Alwr

∞ and Aup
∞ were set to be unitary in Eq. (7), having c = 0.2 in Eq. (6).

Also, the initial yield stress was set to σy = 0.243 in Eq. (1). Regarding the overstress
function, it was necessary to multiply the parameter related to viscosity for the Perić
model, ϑ, by

√
2/3 . Such modification was necessary because the format of the equations

in the cited works differs from the constitutive model used in this work.
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The numerical analysis was carried out applying a total vertical displacement of u2 =
6.15 mm at the upper face of the plate, as shown in Fig. 10. Different constant rates
were employed by varying the velocity v2. The comparison with the works of [5] and
[6] was established in terms of the reaction force in the direction 2 where the vertical
displacement is prescribed. The total reaction force was obtained by the summation
of the nodal reaction forces in the direction 2 considering loading rates varying from
2v2/l0= 0.555E−4 to 2v2/l0= 0.555E+2 s−1 for the cases where the exponent m in Eq. 28
is 1, 10 and 100.

In order to compare the results obtained in this work with those presented by [5]
and [6], a careful digitization process was performed of the graphs presented by these
respective authors. Then, with help of a software, we have extracted some data points on
the curves from the digitization graph image. Of course, the process of digitization implies
introducing some uncertainties in relation to the data obtained in comparison with the
originals.

The comparison results for the stretching of the perforated plate are presented in terms
of the total reaction force versus edge displacement in the graphs of Figs. 11, 12 and 13.
Notice that, despite the uncertainties of the digitization process, the numerical results
obtained with the proposed stress projected algorithm are very close to those presented
by [5] and [6].

In addition to the rate dependent results we have also plotted the strain rate indepen-
dent response in Figs. 11, 12 and 13 which was found using the present implementation,
which serves as an illustrative and comparative feature of the proposed model. The rate
independent case was model by increasing the exponent m to be a large value.
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Figure 11: Results for stretching of a perforated plate - Force versus edge displacement for rate sensitivity
exponent m = 1 .
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Figure 12: Results for stretching of a perforated plate - Force versus edge displacement for rate sensitivity
exponent m = 10 .
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Figure 13: Results for stretching of a perforated plate - Force versus edge displacement for rate sensitivity
exponent m = 100 .

5.2.2 Rate-dependent hardening results

Now we turn our attention to the rate-dependent hardening effects on the response
of components and structures. For this purpose, we consider the same discretization
and boundary conditions shown in Fig. 10 but uses the full strain-rate hardening model
described in subsection 2.1 together with the Perić overstress function Eq. (11) and the
material parameters for OFHC cooper presented in Table 1.

The results for stretching of a perforated plate in terms of reaction force versus edge
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displacement, for different rates of loading, and considering hardening strain-rate depen-
dence and independence are presented in Fig. 14. Note that the higher the loading rate
the greater is the difference between the formulations that consider strain-rate dependent
hardening to that for which the hardening is insensitive to the strain-rate. For the higher
rate consider in this case, 104 s−1, this difference is high, showing the importance of such
consideration in viscoplastic analysis of structures.
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Figure 14: Results for stretching of a perforated plate - Force versus edge displacement for strain-rate
dependence and independence hardening formulations.

6 CONCLUSIONS

This paper presented verification examples in elasto-viscoplasticity that shall be con-
sidered for code checking, a very important issue during the development of numerical
algorithms and further implementation in the nonlinear world. Such verification examples
were developed and used to verify the numerical accuracy and precision of an in-house
implementation of the stress projected algorithm routines inside the context of elasto-
viscoplasticity and the finite element method. During the studying and developing of own
constitutive models for elasto-viscoplasticity we faced the necessity to check the program
and noticed, quite surprisingly, that there are very few works in the literature treating
of the imposition of the plane stress state inside the context of elasto-viscoplasticity. A
version of the so-called stress-projected framework to enforce the plane stress state inside
the context of viscoplasticity is presented in details. It has been demonstrated that this
strategy can be used within the viscoplasticity approach provided that special attention
is given to the treatment of the overstress function.
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