28,348 research outputs found

    Evaluation of Vibration Analysis to Assess Bone Mineral Density in Children

    Get PDF
    The effectiveness of vibration analysis to assess bone mineral density (BMD) in children with suspected reduction in bone density was studied. A system was designed that measured the ulna's vibration responses in vivo. The system was evaluated on the ulnae of 48 children (mean age=12.0, std=3.5 years), 31 of whom had been confirmed to have osteogenesis imperfecta (OI). All children had dual energy X-ray absorptiometry (DXA) scan as part of their routine clinical care and vibration analysis was performed on the same day. Frequency spectra of the ulnae's vibration responses were obtained and processed by principal component analysis. Four main principal components were selected and together with age, sex and right hand ulna's length were used in a regression analysis to estimate BMD. Regression analysis was repeated using the children's leave-one-out and partitioning methods. The percentage similarity and correlation between the DXA-derived and vibration analysis estimated BMDs using the leave-one-out were 80.34% and 0.59 and for partitioning were 74.2% and 0.64 respectively. There was correlation between vibration analysis BMD readings and those derived from DXA however a larger study will be needed to better establish the extent to which vibration analysis can assist in assessing bone density in clinical environments

    Vibration analysis utilizing Mossbauer effect

    Get PDF
    Measuring instrument analyzes mechanical vibrations in transducers at amplitudes in the range of a few to 100 angstroms. This instrument utilizes the Mossbauer effect, the phenomenon of the recoil-free emission and resonant absorption of nuclear gamma rays in solids

    Using Acoustic Holography for Vibration Analysis

    Get PDF
    Disertační práce se zabývá bezkontaktní analýzou vibrací pomocí metod akustické holografie v blízkém poli. Akustická holografie v blízkém poli je experimentální metoda, která rekonstruuje akustické pole v těsné blízkosti povrchu vibrujícího předmětu na základě měření akustického tlaku nebo akustické rychlosti v určité vzdálenosti od zkoumaného předmětu. Konkrétní realizace této metody závisí na použitém výpočetním algoritmu. Vlastní práce je zaměřena zejména na rozbor algoritmů, které využívají k rekonstrukci zvukového pole v blízkosti vibrujícího objektu transformaci do domény vlnových čísel (prostorová transformace), kde probíhá vlastní výpočet. V úvodu práce je vysvětlena základní teorie metody akustické holografie v blízkém poli s popisem základních vlastností a dále rozborem konkrétních nejčastěji používaných algoritmům pro lokalizaci a charakterizaci zdroje zvuku a pro následnou vibrační analýzu. Stěžejní část práce se věnuje pokročilým metodám zpracování, které se snaží určitým způsobem optimalizovat přesnost predice zvukového pole v blízkosti vibrujícího předmětu v reálných podmínkách. Jde zejména o problematiku použitého měřicího systému s akustickými snímači, které nejsou ideální, a dále o možnost měření v prostorách s difúzním charakterem zvukového pole. Pro tento případ byla na základě literárního průzkumu optimalizována a ověřena metoda využívající dvouvrstvé mikrofonní pole, které umožňuje oddělení zvukových polí přicházejících z různých stran a tedy úspěšné měření v uzavřených prostorách např. kabin automobilů a letadel. Součástí práce byla také optimalizace, rozšíření a následné ověření algoritmů publikovaných v posledních letech pro měření v reálných podmínkách za použití běžně dostupných akustických snímačů.The main aim of the thesis is application of near-field acoustic holography for non-contact vibration analysis. Near-field acoustic holography is an experimental technique for reconstruction of sound field close to the surface of the vibrating object based on measurement of sound pressure or acoustic particle velocity in certain distance from the examined object. Practical realization of this method depends on used calculation procedure. The thesis is focused on analysis of acoustic holography algorithms with transformation into wavenumber domain (spatial transformation) where the reconstruction of the sound field near vibrating object is calculated. The introductory part of the thesis describes the theory of near-field acoustic holography with general characteristics and with analysis of most common algorithms used for localization and characterization of sound source and consequent vibration analysis. Principal part of the thesis deals with advanced processing methods where these methods try to optimize the accuracy of prediction of sound field near vibrating object in real environment. In this study, real measurement conditions represent the measurement system with non-ideal acoustic sensors and also areas with reverberant sound field. Based on literature study, there has been optimized and verified the new method which uses double layer microphone array to separate incoming and outgoing sound field, thus allows successful measurement in confined space e.g. cabins of cars and airplanes. Part of the thesis has been also focused on optimization, extension and successive experimental validation of selected classical algorithms published in last decade for possible measurement in real conditions and with common acoustic sensors.

    Vibration Analysis of Unbalance on Axial Fan Engine 5.5 KW

    Full text link
    The unbalance on an axial fan engine causes vibration and noises in a small open wind tunnel construction circuit. The unbalance is not only speeding up the damage to the engine but also disrupt the convenience surrounding the engine, especially for the engine users. In this research, measurement analysis is done to find the cause of the unbalance. Initial vibration measurement results show the amplitude exceed[s] the ISO 10816-3 standard limit (0.292 G-S equal to 15.45 mm/s). After going through the balancing process, the unbalance of the axial fan decreases by 84% with the amplitude of 0.047 G-S equal to 2.5 mm/s, so the engine vibration and the vibrations of its surrounding rope

    Coupled rotor/airframe vibration analysis

    Get PDF
    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values

    Vibration Analysis of Silencer Based on FEM and FFT Analyser

    Full text link
    Silencer was considered with and without modifying in order to reduce the vibration. Design and modeling have been done with specifying different material properties. Finite Element Method was used for the modeling and simulations. The harmonic analysis has been performed by using ANSYS 18.0. The natural frequency and working frequency are the very important parameters to study the resonance. It is mandatory to avoid this resonating condition. These frequencies are distinguished with the help of ANSYS 18.0

    Transient vibration analysis of linear systems using transition matrices

    Get PDF
    Transient vibration analysis of liner systems using transition matrice

    Vibration analysis of the civic tower in Rieti

    Get PDF
    In the last decades the definition of a suitable monitoring system for identifying the dynamic behavior of structures has had a central position in the civil engineering research area. The vibration analysis leads to the recognition of the reference state of structures which is essential to determine the integrity level when extreme events occur, such as earthquakes. The latest seismic events occurred in the world have shown the essential role of the new passive seismic techniques which aim to protect structures and the importance of supervising the building construction operations and the adopted improvement measures. In this work the structural monitoring of the civic tower located in Rieti is presented. In the tower a non-conventional TMD has been installed via an inter-story isolation system at the top floor by means of High Damping Rubber Bearings (HDRB). The general goal is to define a monitoring system suitable with this experimental case through the vibration analysis. Several aspects will be taken into account: the choice of sensors setup, the measured quantities and the extraction of structural information. Firstly this will allow to define the structure’s reference state featured by frequencies, damping ratios and mode shapes. Moreover the effective design of the monitoring system would lead to the characterization of the dynamic behavior of the structure equipped with a passive vibration control system. Different tests have been carried forward: ambient vibration test (AVT), forced vibration test (FVT) with vibrodyne and seismic test (ST). The AVT and the FVT enable to define the monitoring system and check the reliability of the adopted identification tools, among which an Output Only algorithm stands out: the Observer Kalman Filter System Id. On the other hand the ST will point out some preliminary information about the dynamic behaviour of the structure equipped with a non conventional Tuned Mass Damper referring it to higher levels of vibrations

    Experimental set-up for investigation of fault diagnosis of a centrifugal pump

    Get PDF
    Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated
    corecore