331,686 research outputs found

    The active control of wing rotation by Drosophila

    Get PDF
    This paper investigates the temporal control of a fast wing rotation in flies, the ventral flip, which occurs during the transition from downstroke to upstroke. Tethered flying Drosophila actively modulate the timing of these rapid supinations during yaw responses evoked by an oscillating visual stimulus. The time difference between the two wings is controlled such that the wing on the outside of a fictive turn rotates in advance of its contralateral partner. This modulation of ventral-flip timing between the two wings is strongly coupled with changes in wing-stroke amplitude. Typically, an increase in the stroke amplitude of one wing is correlated with an advance in the timing of the ventral flip of the same wing. However, flies do display a limited ability to control these two behaviors independently, as shown by flight records in which the correlation between ventral-flip timing and stroke amplitude transiently reverses. The control of ventral-flip timing may be part of an unsteady aerodynamic mechanism that enables the fly to alter the magnitude and direction of flight forces during turning maneuvers

    Experimental performance of three design factors for ventral nozzles for SSTOVL aircraft

    Get PDF
    An experimental study of three variations of a ventral nozzle system for supersonic short-takeoff and vertical-landing (SSTOVL) aircraft was performed at the NASA LeRC Powered Lift Facility. These test results include the effects of an annular duct flow into the ventral duct, a blocked tailpipe, and a short ventral duct length. An analytical study was also performed on the short ventral duct configuration using the PARC3D computational dynamics code. Data presented include pressure losses, thrust and flow performance, internal flow visualization, and pressure distributions at the exit plane of the ventral nozzle

    The role of human ventral visual cortex in motion perception.

    Get PDF
    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral 'form' (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion

    Perceiving pictures

    Get PDF
    I aim to give a new account of picture perception: of the way our visual system functions when we see something in a picture. My argument relies on the functional distinction between the ventral and dorsal visual subsystems. I propose that it is constitutive of picture perception that our ventral subsystem attributes properties to the depicted scene, whereas our dorsal subsystem attributes properties to the picture surface. This duality elucidates Richard Wollheim’s concept of the “twofoldness” of our experience of pictures: the “visual awareness not only of what is represented but also of the surface qualities of the representation.” I argue for the following four claims: (a) the depicted scene is represented by ventral perception, (b) the depicted scene is not represented by dorsal perception, (c) the picture surface is represented by dorsal perception, and (d) the picture surface is not necessarily represented by ventral perceptio

    Glutamatergic Plasticity in Medial Prefrontal Cortex and Ventral Tegmental Area Following Extended-Access Cocaine Self-Administration

    Get PDF
    Glutamate signaling in prefrontal cortex and ventral tegmental area plays an important role in the molecular and behavioral plasticity associated with addiction to drugs of abuse. The current study investigated the expression and postsynaptic density redistribution of glutamate receptors and synaptic scaffolding proteins in dorsomedial and ventromedial prefrontal cortex and ventral tegmental area after cocaine self-administration. After 14 days of extended-access (6 h/day) cocaine self-administration, rats were exposed to one of three withdrawal regimen for 10 days. Animals either stayed in home cages (Home), returned to self-administration boxes with the levers withdrawn (Box), or underwent extinction training (Extinction). Extinction training was associated with significant glutamatergic plasticity. In dorsomedial prefrontal cortex of the Extinction group, there was an increase in postsynaptic density GluR1, PSD95, and actin proteins; while postsynaptic density mGluR5 protein decreased and there was no change in NMDAR1, Homer1b/c, or PICK1 proteins. These changes were not observed in ventromedial prefrontal cortex or ventral tegmental area. In ventral tegmental area, Extinction training reversed the decreased postsynaptic density NMDAR1 protein in the Home and Box withdrawal groups. These data suggest that extinction of drug seeking is associated with selective glutamatergic plasticity in prefrontal cortex and ventral tegmental area that include modulation of receptor trafficking to postsynaptic density

    Release of ATP in the ventral medulla during hypoxia in rats: role in hypoxic ventilatory response

    Get PDF
    P2X2 receptor subunits of the ATP-gated ion channels are expressed by physiologically identified respiratory neurons in the ventral respiratory column, implicating ATP in the control of respiratory activity. We now show that, during hypoxia, release of ATP in the ventrolateral medulla (VLM) plays an important role in the hypoxic ventilatory response in rats. By measuring ATP release in real time at the ventral surface of the medulla with novel amperometric biosensors, we found that hypoxia (10% O2; 5 min) induced a marked increase in the concentration of ATP (~3 µM). This ATP release occurred after the initiation of enhanced respiratory activity but coincided with the later hypoxia-induced slowing of the respiratory rhythm. ATP was also released at the ventral surface of the medulla during hypoxia in peripherally chemodenervated animals (vagi, aortic, and carotid sinus nerve sectioned). By using horizontal slices of the rat medulla, we found that, during hypoxia, ATP is produced throughout the VLM in the locations corresponding to the ventral respiratory column. Blockade of ATP receptors in the VLM (microinjection of P2 receptor antagonist pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulphonic acid; 100 µM) augmented the hypoxia-induced secondary slowing of the respiratory rhythm. Our findings suggest that ATP released within the ventral respiratory column is involved in maintenance of the respiratory activity in conditions when hypoxia-induced slowing of respiration occurs. These data illustrate a new functional role for ATP-mediated purinergic signaling in the medullary mechanisms controlling respiratory activity

    Control of astrocyte progenitor specification, migration and maturation by Nkx6.1 homeodomain transcription factor.

    Get PDF
    Although astrocytes are the most abundant cell type in the central nervous system (CNS), little is known about their molecular specification and differentiation. It has previously been reported that transcription factor Nkx6.1 is expressed in neuroepithelial cells that give rise to astrocyte precursors in the ventral spinal cord. In the present study, we systematically investigated the function of Nkx6.1 in astrocyte development using both conventional and conditional Nkx6.1 mutant mice. At early postnatal stages, Nkx6.1 was expressed in a subpopulation of astrocytes in the ventral spinal cord. In the conventional Nkx6.1KO spinal cord, the initial specification of astrocyte progenitors was affected by the mutation, and subsequent migration and differentiation were disrupted in newborn mice. In addition, the development of VA2 subtype astrocytes was also inhibited in the white matter. Further studies with Nkx6.1 conditional mutants revealed significantly delayed differentiation and disorganized arrangement of fibrous astrocytes in the ventral white matter. Together, our studies indicate that Nkx6.1 plays a vital role in astrocyte specification and differentiation in the ventral spinal cord

    Frontostriatal Maturation Predicts Cognitive Control Failure to Appetitive Cues in Adolescents

    Get PDF
    Adolescent risk-taking is a public health issue that increases the odds of poor lifetime outcomes. One factor thought to influence adolescents' propensity for risk-taking is an enhanced sensitivity to appetitive cues, relative to an immature capacity to exert sufficient cognitive control. We tested this hypothesis by characterizing interactions among ventral striatal, dorsal striatal, and prefrontal cortical regions with varying appetitive load using fMRI scanning. Child, teen, and adult participants performed a go/no-go task with appetitive (happy faces) and neutral cues (calm faces). Impulse control to neutral cues showed linear improvement with age, whereas teens showed a nonlinear reduction in impulse control to appetitive cues. This performance decrement in teens was paralleled by enhanced activity in the ventral striatum. Prefrontal cortical recruitment correlated with overall accuracy and showed a linear response with age for no-go versus go trials. Connectivity analyses identified a ventral frontostriatal circuit including the inferior frontal gyrus and dorsal striatum during no-go versus go trials. Examining recruitment developmentally showed that teens had greater between-subject ventral-dorsal striatal coactivation relative to children and adults for happy no-go versus go trials. These findings implicate exaggerated ventral striatal representation of appetitive cues in adolescents relative to an intermediary cognitive control response. Connectivity and coactivity data suggest these systems communicate at the level of the dorsal striatum differentially across development. Biased responding in this system is one possible mechanism underlying heightened risk-taking during adolescence

    Altered intrinsic organisation of brain networks implicated in attentional processes in adult attention-deficit/hyperactivity disorder: a resting state study of attention, default mode and salience network connectivity

    Get PDF
    Deficits in task-related attentional engagement in attention-deficit/hyperactivity disorder (ADHD) have been hypothesized to be due to altered interrelationships between attention, default mode and salience networks. We examined the intrinsic connectivity during rest within and between these networks. Six minutes resting state scans were obtained. Using a network-based approach, connectivity within and between the dorsal and ventral attention, the default mode and the salience networks was compared between the ADHD and control group. The ADHD group displayed hyperconnectivity between the two attention networks and within the default mode and ventral attention network. The salience network was hypoconnected to the dorsal attention network. There were trends towards hyperconnectivity within the dorsal attention network and between the salience and ventral attention network in ADHD. Connectivity within and between other networks was unrelated to ADHD. Our findings highlight the altered connectivity within and between attention networks, and between them and the salience network in ADHD. One hypothesis to be tested in future studies is that individuals with ADHD are affected by an imbalance between ventral and dorsal attention systems with the former playing a dominant role during task engagement making individuals with ADHD highly susceptible to distraction by salient task-irrelevant stimuli
    corecore