125,183 research outputs found

    Verifying service continuity in a satellite reconfiguration procedure: application to a satellite

    Get PDF
    The paper discusses the use of the TURTLE UML profile to model and verify service continuity during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular. TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators. Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL, and discusses its application to a payload software application in charge of an embedded packet switch. The paper demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded software

    TURTLE-P: a UML profile for the formal validation of critical and distributed systems

    Get PDF
    The timed UML and RT-LOTOS environment, or TURTLE for short, extends UML class and activity diagrams with composition and temporal operators. TURTLE is a real-time UML profile with a formal semantics expressed in RT-LOTOS. Further, it is supported by a formal validation toolkit. This paper introduces TURTLE-P, an extended profile no longer restricted to the abstract modeling of distributed systems. Indeed, TURTLE-P addresses the concrete descriptions of communication architectures, including quality of service parameters (delay, jitter, etc.). This new profile enables co-design of hardware and software components with extended UML component and deployment diagrams. Properties of these diagrams can be evaluated and/or validated thanks to the formal semantics given in RT-LOTOS. The application of TURTLE-P is illustrated with a telecommunication satellite system

    Radial glia in the proliferative ventricular zone of the embryonic and adult turtle, Trachemys scripta elegans.

    Get PDF
    To better understand the role of radial glial (RG) cells in the evolution of the mammalian cerebral cortex, we investigated the role of RG cells in the dorsal cortex and dorsal ventricular ridge of the turtle, Trachemys scripta elegans. Unlike mammals, the glial architecture of adult reptile consists mainly of ependymoradial glia, which share features with mammalian RG cells, and which may contribute to neurogenesis that continues throughout the lifespan of the turtle. To evaluate the morphology and proliferative capacity of ependymoradial glia (here referred to as RG cells) in the dorsal cortex of embryonic and adult turtle, we adapted the cortical electroporation technique, commonly used in rodents, to the turtle telencephalon. Here, we demonstrate the morphological and functional characteristics of RG cells in the developing turtle dorsal cortex. We show that cell division occurs both at the ventricle and away from the ventricle, that RG cells undergo division at the ventricle during neurogenic stages of development, and that mitotic Tbr2+ precursor cells, a hallmark of the mammalian SVZ, are present in the turtle cortex. In the adult turtle, we show that RG cells encompass a morphologically heterogeneous population, particularly in the subpallium where proliferation is most prevalent. One RG subtype is similar to RG cells in the developing mammalian cortex, while 2 other RG subtypes appear to be distinct from those seen in mammal. We propose that the different subtypes of RG cells in the adult turtle perform distinct functions

    Formal and efficient verification techniques for Real-Time UML models

    Get PDF
    The real-time UML profile TURTLE has a formal semantics expressed by translation into a timed process algebra: RT-LOTOS. RTL, the formal verification tool developed for RT-LOTOS, was first used to check TURTLE models against design errors. This paper opens new avenues for TURTLE model verification. It shows how recent work on translating RT-LOTOS specifications into Time Petri net model may be applied to TURTLE. RT-LOTOS to TPN translation patterns are presented. Their formal proof is the subject of another paper. These patterns have been implemented in a RT-LOTOS to TPN translator which has been interfaced with TINA, a Time Petri Net Analyzer which implements several reachability analysis procedures depending on the class of property to be verified. The paper illustrates the benefits of the TURTLE->RT-LOTOS->TPN transformation chain on an avionic case study

    EFFECT OF RACCOON (PROCYON LOTOR) REDUCTION ON BLANDING’S TURTLE (EMYDOIDEA BLANDINGII) NEST SUCCESS

    Get PDF
    The Lake County Forest Preserve District has monitored a state-endangered Blanding’s Turtle (Emydoidea blandingii) population at two adjoining nature preserves along the Illinois–Wisconsin border since 2004. Prior to predator management, 92.3% of documented and unprotected natural Blanding’s Turtle nests (12 of 13) and 88% of monitored artificial nests have been at least partially depredated. The goal of this study was to determine the efficacy of subsidized Raccoon (Procyon lotor) removal efforts in increasing the nest success of Blanding’s Turtles. During April–May 2013 and 2014, we captured and euthanized 78 Raccoons from our 2 km2 study area. We estimated pre-removal abundance estimates using the Leslie depletion method; it appeared that we removed 83–89% of the Raccoons from the study area each year and pre-removal density estimates were 37.5% lower in 2014 than 2013. During the study period, we monitored 22 Blanding’s Turtle in situ unprotected nests. In 2013, one of seven (14%) Blanding’s Turtle nests was partially depredated and no nests were completely depredated, indicative of a successful impact of Raccoon removal on Blanding’s Turtle nest success. However in 2014, nine of 15 (60%) Blanding’s Turtle nests were depredated. Our results provide some evidence that removal of Raccoons may have increased Blanding’s Turtle nest success but other factors, such as a functional response of surviving Raccoons or depredation by other subsidized predators may be contributing to decreased nest success

    Leech Parasitism of the Gulf Coast Box Turtle, Terrapene carolina major (Testudines:Emydidae) in Mississippi, USA

    Get PDF
    Ten leeches were collected from a Gulf Coast box turtle, Terrapene carolina major, found crossing a road in Gulfport, Harrison County, Mississippi, USA. Eight of the leeches were identified as Placobdella multilineata and 2 were identified as Helobdella europaea. This represents the second vouchered report of leeches from a box turtle. Helobdella europaea is reported for the first time associated with a turtle and for the second time from the New World

    Novel Bio-Logging Tool for Studying Fine-Scale Behaviors of Marine Turtles in Response to Sound

    Full text link
    Increases in the spatial scale and intensity of activities that produce marine anthropogenic sound highlight the importance of understanding the impacts and effects of sound on threatened species such as marine turtles. Marine turtles detect and behaviorally respond to low-frequency sounds, however few studies have directly examined their behavioral responses to specific types or intensities of anthropogenic or natural sounds. Recent advances in the development of bio-logging tools, which combine acoustic and fine-scale movement measurements, have allowed for evaluations of animal responses to sound. Here, we describe these tools and present a case study demonstrating the potential application of a newly developed technology (ROTAG, Loggerhead Instruments, Inc.) to examine behavioral responses of freely swimming marine turtles to sound. The ROTAG incorporates a three-axis accelerometer, gyroscope, and magnetometer to record the turtle\u27s pitch, roll, and heading; a pressure sensor to record turtle depth; a hydrophone to record the turtle\u27s received underwater acoustic sound field; a temperature gauge; and two VHF radio telemetry transmitters and antennas for tag and turtle tracking. Tags can be programmed to automatically release via a timed corrodible link several hours or days after deployment. We describe an example of the data collected with these tags and present a case study of a successful ROTAG deployment on a juvenile green turtle (Chelonia mydas) in the ParanaguĂĄ Estuary Complex, Brazil. The tag was deployed for 221 min, during which several vessels passed closely (\u3c2 km) by the turtle. The concurrent movement and acoustic data collected by the ROTAG were examined during these times to determine if the turtle responded to these anthropogenic sound sources. While fine-scale behavioral responses were not apparent (second-by-second), the turtle did appear to perform dives during which it remained still on or near the sea floor during several of the vessel passes. This case study provides proof of concept that ROTAGs can successfully be applied to free-ranging marine turtles to examine their behavioral response to sound. Finally, we discuss the broad applications that these tools have to study the fine-scale behaviors of marine turtles and highlight their use to aid in marine turtle conservation and management

    Pathogenic, Molecular, and Immunological Properties of a Virus Associated with Sea Turtle Fibropapillomatosis. Phase II : Viral Pathogenesis and Development of Diagnostic Assays

    Get PDF
    Research conducted under this RWO from July 1, 1997 through June 30, 2000 has provided important new information about the pathogenesis, virology, and immunology of marine turtle fibropapillomatosis. In particular, we have provided strong evidence for the association of a herpesvirus with fibropapillomatosis of the green turtle,Chelonia mydas, and the loggerhead turtle, Caretta caretta, in Florida. In addition we have provided new evidence for the absence of papillomaviruses from sea turtle fibropapillomas. Although unsuccessful, important new attempts were made to cultivate the FP-associated herpesvirus in vitro in collaboration with the National Wildlife Health Center. During this period of time, we completed publication of the first comprehensive description of the comparative pathology and pathogenesis of experimentally induced and spontaneous fibropapillomas of green turtles (Chelonia mydas). We initiated innovative studies on the persistence of a Chelonian herpesviruses in the marine environment demonstrating for the first time that the environmental survivability of Chelonian herpesviruses makes them real threats to marine turtle health. Finally, we explored development of a serological assay for FP using synthetic herpesvirus peptides and developed methodologies for detection of antibodies to LETV [Iung-eye-trachea virus] a disease-associated herpesvirus of the green turtle, Chelonia mydas.. This last initiative is ongoing and will further our efforts to develop specific immunological assays for the FP-associated herpesvirus and FP. (17 page document

    The Turtle Head Immobilization System (THIS): A Tool for Faster and Safer Handling and Processing of Aggressive Turtle Species

    Get PDF
    The turtle head immobilization tool (THIS) is an efficient and cost effective tool to aid in the processing of large, aggressive turtles such as the Eastern Snapping Turtle (Chelydra serpentina). THIS aids in the reduction of aggressive behaviors by calming the animal during processing and minimizing injuries to the turtle and handlers. This simple tool also streamlines the processing itself, by allowing researchers to focus on measurements and markings, instead of having to maintain the constant vigilance often needed to work safely around these animals

    The Turtle Head Immobilization System (THIS): A Tool for Faster and Safer Handling and Processing of Aggressive Turtle Species

    Get PDF
    The turtle head immobilization tool (THIS) is an efficient and cost effective tool to aid in the processing of large, aggressive turtles such as the Eastern Snapping Turtle (Chelydra serpentina). THIS aids in the reduction of aggressive behaviors by calming the animal during processing and minimizing injuries to the turtle and handlers. This simple tool also streamlines the processing itself, by allowing researchers to focus on measurements and markings, instead of having to maintain the constant vigilance often needed to work safely around these animals
    • 

    corecore