
ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/8

Formal and efficient verification techniques for Real-Time UML models

 T. Sadani1,2, P. de Saqui-Sannes1,2, J.-P. Courtiat2
1: ENSICA, 1 place Emile Blouin, 31056 Toulouse Cedex 05, France

2: LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse cedex 04, France

Abstract: The real-time UML profile TURTLE has a
formal semantics expressed by translation into a
timed process algebra: RT-LOTOS. RTL, the formal
verification tool developed for RT-LOTOS, was first
used to check TURTLE models against design
errors. This paper opens new avenues for TURTLE
model verification. It shows how recent work on
translating RT-LOTOS specifications into Time Petri
net model may be applied to TURTLE. RT-LOTOS to
TPN translation patterns are presented. Their formal
proof is the subject of another paper. These patterns
have been implemented in a RT-LOTOS to TPN
translator which has been interfaced with TINA, a
Time Petri Net Analyzer which implements several
reachability analysis procedures depending on the
class of property to be verified. The paper illustrates
the benefits of the TURTLE RT-LOTOS TPN
transformation chain on an avionic case study.

Keywords: UML, RT-LOTOS, formal verification.

1. Introduction

The increasing development of real-time systems
has stimulated research work on formal modeling
languages that explicitly take time into account.
Examples include timed process algebra and timed
extensions of Petri nets. In [19], we proposed to
translate specifications written using the RT-LOTOS
[7] timed process algebra into Merlin’s Time Petri
nets [14]. The purpose is to verify RT-LOTOS
specifications using tools developed for TPN, in
particular TINA (Time Petri Net Analyzer [3]).
Compared to direct verification of RT-LOTOS
specifications using RTL (Real-Time Lotos
Laboratory [18]), a RT-LOTOS to TPN translator
interfaced with TINA brings significant improvements
in terms of execution speed and classes of verified
properties.

Nowadays, most of our real-time system models are
written not directly in RT-LOTOS but in TURTLE [1],
a real-time UML profile whose formal semantics has
been given by translation into RT-LOTOS. The
purpose of this paper is to investigate how recent
work on RT-LOTOS to TPN translation might be of
interest for verifying TURTLE models. The paper is
therefore organized as follows. Section 2 introduces
the TURTLE profile. Section 3 defines a formal
verification framework for RT-LOTOS, based on RT-
LOTOS to TPN translation patterns. Section 4

presents a case study. Section 5 surveys related
work. Section 6 concludes the paper

2. TURTLE: A REAL-TIME UML PROFILE

The Unified Modeling Language [17], or UML for
short, is a wide spectrum language standardized by
the Object Management Group The concept of
“profile” allows one to customize the OMG-based
notation in order to meet specific needs, such as
better expression of real-time mechanisms. Several
real-time UML profile have been proposed by the
OMG (SPT [22] and MARTE [13]) and by research
centers (e.g. Accord/UML [26] and OMEGA [15]).

TURTLE (Timed UML and RT-LOTOS

Environment [1]) is a real-time UML profile
developed by LAAS-CNRS, ENSICA, ENST, and
Concordia University. The TURTLE profile was first
introduced as a basic design notation supported by a
formal verification tool. Basic TURTLE extends
class/object and activity diagrams. They respectively
describe the structure of the system under design
and the inner workings of the objects which are part
of that system. TURTLE extends class/objects
diagrams with “composition operators”. The latter
enable precise description of parallelism, sequence,
synchronization and pre-emption between objects.
TURTLE further extends activity diagrams with
temporal operators, in particular a non deterministic
“latency” operator. Time intervals are supported.

Starting from a pure design notation, the

TURTLE profile has evolved to cover the analysis
phase. It now includes extended interaction overview
diagrams and sequence diagrams. TURTLE has
also been extended with component and deployment
diagrams. Discussion in this paper is limited to class
and activity diagrams.

The semantics of TURTLE diagrams has been

given in terms of translation into RT-LOTOS [7], a
timed process algebra supported by a formal
validation tool named RTL [18]. The simulation and
reachability analysis techniques offered by RTL have
successfully been applied to RT-LOTOS
specifications derived from TURTLE models.
TURTLE to RT-LOTOS translation is entirely
automated by TTool [24], the TURTLE toolkit which

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12040534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/8

includes a diagram editor, an RT-LOTOS code
generator, and a Java code generator.

This paper proposes a novel approach for
verifying TURTLE models. As usually, TTool
translates a TURTLE model into an RT-LOTOS
specification. The novelty is that the latter is no
longer verified using RTL. It is translated to a Time
Petri net which can be verified using a TPN analyzer.

3. RT-LOTOS to TPN Translation

3.1 Formal Techniques and Validation Tools

RT-LOTOS and RTL : The formal description
technique LOTOS extends CCS and implements a
multiple rendezvous mechanism à la CSP. RT-
LOTOS is a timed extension of LOTOS. It supports
three canonical operators: a deterministic delay, a
non deterministic delay (latency) and a time-limited
offer.

The RTL tool takes as input an RT-LOTOS
specification and implements two complementary
validation strategies: partial exploration of the
model’s state space and exhaustive analysis. The
latter applies to bounded systems of reasonable
size. It outputs a reachability graph which can be
processed by a model checker such as Kronos or a
minimization tool such as Aldebaran [6].

Time Petri nets and the TINA tool : Merlin’s Time
Petri nets [14] are Petri nets with time intervals on
transitions. The TINA tool is a formal verification tool
for Petri Nets (PN) and Time Petri Nets (TPN). TINA
enables representation of PNs and TPNs using
various constructs. Two of them are of prime interest
in our framework. The first one preserves states and
LTL (Linear Time logic) properties and the other one
preserves states and CTL* (Computational Tree
Logic) properties. TINA is interfaced with Aldebaran
(by means of graph formats).

3.2 Proposed approach

Our goal is to use a TPN state class graph to

analyze and represent the behavior of an RT-
LOTOS specification. The latter may be derived from
a TURTLE model, or not.

Our proposal is to base RT-LOTOS to TPN

translation on a set of so-called “translation
patterns”. Direct translation turns indeed not
possible. RT-LOTOS has composition and temporal
operators. None of them has direct counterpart in
TPNs.

Next section gives the intuition behind RT-

LOTOS to TPN translation patterns. Their formal

proof is the subject of a separate paper [20]. These
patterns are implemented in a tool: RTL2TPN.

An important contribution of this paper lies in the

definition of successive transformations between
models, and their application to “top-down” design of
real-time systems. The underlying idea is that an
intermediate RT-LOTOS code derived from a
TURTLE model can be translated in turn to a
composite TPN. The main reason why we put efforts
on such transformations is that we want to benefit of
TINA’s performances and functionalities in the
TURTLE context.

The act of modeling requires a high-level and

advanced formal technique. On the other hand, and
for verification purpose, it is important that the model
remains decidable. The reachability problem is
known to be decidable for 1-bounded TPNs.

Figure1. Top-Down design of real time systems

3.3 TPN Component

Merlin’s Time Petri Nets [14] do not offer any
native mechanism to compose or decompose large
nets from or to small nets. Clearly, RT-LOTOS to
TPN translation could not be envisioned without
considering TPN as entities that can be composed.
Therefore, we have proposed to enhance TPNs with
“components”. The basic idea is to structure the Petri
nets resulting from an RT-LOTOS to TPN
translation. We consider components as the basic
building blocks of the translation procedure. A
component encapsulates a TPN which defines its
behavior. To perform an action, a component fires
one transition. Also, it communicates with its
environment using so-called « interaction points ».

Figure 2 depicts a component which may

performs, during its execution, observable action x.
The latter is attached to an interaction point (black-
filled rectangle on the component’s boundary). The
component’s input and output interfaces are

RT-LOTOS

RTL2TPN

Class and activity
diagrams

Intermediate RT-
LOTOS code

Machine level
code

Ttool

Turtle

RdPTs

Exemple.lot

Behaviour P[a]
 where
 process P[a] : exit :=
 latency(15)a{20} ; exit
 endproc

Exemple.lot

Behaviour P[a]
 where
 process P[a] : exit :=
 latency(15)a{20} ; exit
 endproc

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/8

respectively represented by the set of “in” places
(initially marked places) and one out place. When a
component’s output place is marked, we conclude
that the component in question has completed its
execution successfully

.

Figure 2. Example of component

Definition :
A component is a t-uple C = <∑ , Act, Lab, I,O >
where:

– ∑ = <P, T, Pre, Post, Mo, IS> is a TPN.

– Act= Ao ∪ Ah ∪ {exit}. Ao and Ah are finite, disjoint
sets of labels and transitions. Ao ∪{exit} represent the
component’s interaction points. During the
translation process, Ao and Ah are used to
respectively model observable and hidden actions
contained in a RT-LOTOS term.

– Lab: T (Act ∪ Time) is a labeling function which
labels every transition in ∑ with an action name or a
“Time“ label defined on {tv, delay, latency}.

– I is a set of places that define the component’s
input interface. Card(I) ≥ 1.

– O is a singleton which defines the component’s
output interface. A component has an output
interface if it has one or several transitions labeled
by “exit”. If so, O is the output place for these
transitions. Otherwise, O={}.

3.4 Component composition

RT-LOTOS has native composition operators that

enable composition of elementary behaviors.
Similarly, TPNs embedded in components may be
composed to express a behavior as a composite
TPN.

Patterns applicable to one component: These
patterns extend the T¨PN encapsulated in a given
component by an additional part linked to its input
interface. The shape of this part depends on the
RT-LOTOS operator expressed by the pattern.

Let us consider component C of Figure 2. Figure 3
depicts several patterns applied to C.

Figure 3.Patterns applicable to one component
Let us read Figure 2 from left to right and top to

down.
• Ca ;C : C is prefixed with action « a ».
• Ca{d} ;C : C is prefixed with a time-limited offer (“d”

units of time on “a”).
• Cdelay(d)C : first actions in C are delayed by a fixed

duration (d units of time).This is a deterministic
delay.

• Clatency(d)C : first actions in C are delayed by a
duration varying between zero and “d” units of
time. This is a non deterministic delay. If one
action among the first actions of C (x on Figure
3) is constrained by a time-limited offer, then the
RT-LOTOS semantics demands the latency and
the temporal offer on x to start simultaneously.

• CC[x/y] : instantiation of « x » by « y » in C.
• CRec[C] : recursive execution of C.
• CHide x in C : the Hide operator transforms

observable actions into internal actions. In RT-
LOTOS, this conveys an emergency notion
linked to the action’s occurrence. The
corresponding TPN associates a [0,0] time
interval to the transition corresponding to that
action. Consequently, that transition will be
fireable as soon as it becomes enabled.

Patterns applicable to a set of components: these
patterns transform a set of components into one
single component.

Parallel synchronization on action « x » of C1,
C2 and C3 is modeled by merging all the transitions
involved in that synchronization (Figure 3). The
resulting component is able to concurrently perform
any action that either C1, C2 or C3 are ready to

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/8

execute. There is an exception: ‘x’ is performed by
all the components. The occurrence of x is followed
by a concurrent execution of C1, C2, and C3.

Figure 4. Parallel synchronization

Figure 5 depicts the sequential composition of C1

and C2. C1’s output interface is merged with C2’s
input interface. The ‘exit’ interaction point is internal
to the resulting C component. If C1 successfully
completes its execution then C2 is executed.

Figure 5. Sequential composition

Figure 6. Pattern for the « choice » operator

At first glance, the ‘choice’ operator may be seen
as a rather simple construct. Nevertheless, things
are no longer so simple when the ‘choice’ operator is
combined with other operators, in particular the
‘parallel’ operator. A survey of the literature on
translations between process algebra and Peti nets
indicates that some authors prevent alternatives in a
choice from containing parallelism [23]. RT-LOTOS
makes the situation more difficult, since it contains
temporal operators. We propose to introduce specific
places that we call ‘lock’. Figure 6 depicts an
example where a component behaves either like C1
or like C2. The set of initial actions in C is the union
of the initial actions of C1 and C2. The occurrence of
the initial action of C1 (resp. C2) freezes the
execution of C2 (resp. C1) by ‘stealing’ the token
contained in the relevant ‘lock’ places. The latter
exclusively interact with those transitions which
represent initial actions and with other ‘Time” actions
they are linked to. These ‘Time’ actions put the token
back to the ‘lock’ places. They indeed not represent
an action occurrence but a time progression which
must not interfere with the other components’
execution.

Figure 7. Pattern for the disrupt operator

Figure 7 depicts the behavior of some component
C1 that may be interrupted at any time by another
component C2. C2 steals a token from shared place
‘disrupt”. The control is irreversibly transferred from
C1 to C2. Note that ‘disrupt’ is an input place for the
first action in C2 and for ‘exit’ action in C1. It also
serves as input and output place for all other
transitions in C1.

4. Case Study

In [5], the authors proposed to compare different
formal methods and their verification tools on a case
study based on a flight command system embedded
on board A340 airplanes. We reuse that example to
compare our approach based on the couple
RTL2TPN+TINA versus the RTL tool.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/8

We consider a system which controls a rudder
and periodically sends a command to that rudder.
The system has three redundant functions, each
being executed on a calculator. The three functions
are as follows:

- A master function FR which is a periodic task
with a period of 20 ms. It is executed on calculator
CR. It generates a CmdR command over Bus1. FR is
initially in command mode until it fails.

- A spare function FL which is a periodic task with
a period of 20 ms. It is executed on calculator CL. If
FR fails, FL issues a CmdR command over Bus2. FL
considers FR as failed if it did not receive any CmdR
command during two clock cycles (40 ms). If so, FL
switches to command mode until it fails, and issues
CmdL.

- A second spare function FB which is a periodic
task with a period of 20 ms. It is executed on
calculator CB. If both FL and FR fail, then FB issues a
CmdB command. FB considers FL and FR are both
failed if FL did not receive any CmdR or CmdL
command for 5 clock cycles (100 ms). If so, FB
switches to the command mode and issues a CmdB.

The system also includes three channels - CRL,
CRB and CLB – whose respective latencies are
defined by the following intervals: [0,20ms], [0,40ms]
and [0,40ms]. The CRL channel can store one
message. The CRB and CLB channels can store two
messages.

Figure 8. Class diagram

“F1”

“F2”

“F3”

Figure 9a. Activity diagram for F1, F2 and F3

Figure 9b. Activity diagrams for C1, C2, C3

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/8

 Classes / Transitions CPU
RTL2TPN+ TINA 566/ 1447 <1s
RTL 104/152 430s

Table 1. Reachability analysis results

Table 1 shows the results we obtained for a
workstation with 512 MB memory and a 1.6 Ghz
processor. These results clearly indicate that TINA
has better run time performances than RTL. Also, it
turns that using Time Petri Nets as an intermediate
language for RT-LOTOS has obvious advantages in
terms of state graph generation.

Let us note that RTL generates a minimal
reachability graph preserving branching properties.
TINA also implements a construct which preserves
branching properties (atomic class graph). The main
differences between the graphs respectively
generated by RTL and TINA are as follows:

- A minimization procedure [25] is carried out in
RTL but not in TINA. That minimization permits
to consider regions larger than the ones
required from a strict reachability point of view,
thereby minimizing the number of regions within
the Region graph.

- Also, RTL considers a latency, a deterministic

delay or a time-limited offer expiration as a time
progression that might occur inside a time
region (this may be called an “implicit’ time
progression). TINA works differently. The
occurrence of either of the three previously
listed temporal actions is considered as a
specific action that necessarily leads to another
state class.

5. Related Work

5.1 Real-time UML Profiles
Section 2 pointed out two major features of the
TURTLE diagrams used at design stage:
composition operators in class diagrams and
temporal operators that particularly enable working
with time intervals. TURTLE temporal operators are
generic. Although they are not directly built upon the
real-time mechanisms and features described in the
OMG-based SPT profile, the three temporal
operators can be combined to express duration such
as an execution or answer time. There is no need to
add annotations. Further, the latest release of the
TTool tool contains a library of TURTLE class that
model basic objects of the SPT profile (e.g., a timer).

An in-depth comparison of TURTLE and other
profile can be found in [1]. In this paper, we focus on

formal verification. Again, TURTLE has been given a
formal semantics by translation into a formal
language (RT-LOTOS), which had made it possible
to reuse already available verification tools. A similar
approach has been followed by the OMEGA project.
UML models edited with commercial tools (not an
autonomous and open-source tool such as Ttool) are
translated to IF, a formalism for which verification
tools had already been developed. Like TURTLE,
OMEGA uses Aldebaran to minimize graphs. Unlike
OMEGA, the TURTLE project has not yet applied
model checking to real-time UML models. The
situation will evolve in a near future since the latest
release of TINA integrates a model checker.

5.2 Timed Process Algebra to Petri Net Translation

Translating process algebras to Petri net has
been the subject of several research papers [23] [16]
[10].

Petri Box Calculus [4] is a model which combines
Petri nets and process algebra in order to take the
advantages of both formalisms. The authors
consider Petri nets as their basic model and look for
a CCS-like process algebra whose operators might
be easily expressed using Petri nets. A timed
extension of PBC has recently been proposed in
[11]. Although the component-oriented model
proposed in this paper is not intended to be used at
specification level but as an intermediate model
between RT-LOTOS and TPNs, we find it important
to compare our work to [11].

In [11], the author associates a time interval to
actions (like in TPNs). The strong time semantics of
TPNs demands that actions must be fired as soon as
their upper bound is reached (this does not apply to
a transition which conflicts with another transition).
We think that this strong semantics is not
appropriate for process algebra, since the latter put
the focus on interactions between the system and its
environment. Consequently we think that there
should not be any obligation to fire an enabled
transition just because it became fireable. Indeed, in
most “soft” real-time systems, it seems unlikely to be
in position to oblige the environment to synchronize
with the system. In order to relax the strong
constraint inherent to TPNs, the patterns presented
in this paper have been designed avoiding to
associate time intervals with actions. We make one
exception for urgent actions and give the latter a
time interval equal to [0, 0]. The first advantage of
our approach with respect to [11] is that, since
transitions do not have any time interval, we
synchronize actions by merging transitions.
Conversely, [11] needs to combine several time
intervals with an incompatibility risk between these
intervals. An incompatibility leads to undesired
actions which are coined as “illegal” actions. Note

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/8

that to model hard real-time systems, a RT-LOTOS
user may combine the time-limited offer, latency, and
hide operators. This gives him/her more flexibility.

Let us now focus on research work on LOTOS.

Work on transferring to LOTOS analysis techniques
originally developed for Petri nets was pioneered at
a time where no timed extension of LOTOS had
been published yet [2], [8] [9]. [9] is the only paper
which translates a full process algebra, including the
data part. The translation approach is implemented
by CAESAR. This tool compiles both the control and
data part of LOTOS to Petri nets. It implements a 3-
step procedure: expansion, generation and
simulation. CAESAR uses ε-transitions. The latter
are atomic transitions labeled by fictive gates which
do not correspond to any observable action. The test
bench published in [19] shows that our approach
based on RTL2TPN and TINA supersedes the
approach implemented by CAESAR for a specific
construct, namely the ‘disrupt” operator. The latter is
of high importance in real-time system design. [19]
shows that the ‘disrupt” pattern implemented in
RTL2TPN is more robust in a combinatorial
explosion situation.

6. Conclusions

The TURTLE real-time UML profile extends UML
class diagrams with composition operators and
activity diagrams with temporal operators. One of the
main advantages of adding formality to TURTLE and
to rely on RT-LOTOS to express TURTLE’s formal
semantics lies in the possibility to apply the formal
validation tool RTL to RT-LOTOS specifications
derived from TURTLE models. The purpose of this
paper is to show how the TURTLE profile may now
benefit of the most recent achievements [19] in
verifying RT-LOTOS specifications relying on a RT-
LOTOS to Time Petri net translation. Thus a
TURTLE model edited with TTool can be
transformed into an RT-LOTOS specification which
can be transformed in turn into a Time Petri Net in
such a way the latter can be verified using the TINA
tool [3]. The main benefits of using TINA include
runtime performances and optimized constructs
depending on the class of properties to be verified.

This paper gives the principle of RT-LOTOS to
TPN translation. Translation patterns are proposed.
The patterns cover the “control part” of RT-LOTOS.
They handle composition operators (pure
parallelism, rendezvous synchronization, sequence,
and preemption) and temporal operators (fixed
duration, non deterministic delay (latency) and time-
limited offer. The paper particularly shows how the
component concept makes it possible to overcome
an important limitation of TPNs, namely their lack of
structuring facilities.

The proposed approach is supported by the
RTL2TPN tool. The latter reuses RTL’s syntax
analyzer and type checker. Experience in using
RTL2TPN has demonstrated how the translation
patterns proposed in [19] are ingenious. The tool
positively compares with RTL (for the control part of
RT-LOTOS specifications) and with CAESAR (for
some pathological case studies and for an untimed
LOTOS). This paper has reused the case study
proposed in [5] to show that RTL2TPN can be
applied to an RT-LOTOS specification derived from
a TURTLE model.

Work is being done to handle the data part of
RT-LOTOS specifications. The objective is to take
the attributes of TURTLE objects into account. In
addition, new patterns are to be proposed in order to
cover advanced TURTLE operators, such as the
Suspend/Resume operator that is used to suspend
or resume tasks. The ultimate goal remains to offer
system designers a formal verification environment
based on TINA, including its recently released model
checker.

7. References
[1] L. Apvrille, J.-P. Courtiat, C. Lohr, P. de Saqui-

Sannes, “TURTLE : A Real-Time UML Profile
Supported by a Formal Validation Framework”, IEEE
Transactions on Software Engineering, Vol.30, No.4,
July 2004.

[2] M. Barbeau, G. von Bochmann, “Extension of the
Karp and Miller Procedure to Lotos Specifications”,
DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, volume 3, 1991.

[3] B. Berthomieu, P.O. Ribet, F. Vernadat, “The TINA
Tool: Construction of Abstract State Space for Petri
Nets and Time Petri Nets”, International Journal of
Production Research, Vol.42, N°14, pp.2741-2756,
2004.

[4] E.Best, R.Devillers and M.Koutny : Petri Net Algebra,
Monographs in theoretical Computer science, an
EATC series. Springer-Verlag, Berlin 2001.

[5] F. Boniol, G. Bel, J. Ermont. « Trois Approches pour
la Modélisation et la Vérification de Systèmes
Embarqués », Techniques et science informatique,
2003.

[6] http://www.inrialpes.fr/vasy/cadp/
[7] J.-P. Courtiat, C.A.S. Santos, C. Lohr, B. Outtaj,

“Experience with RT-LOTOS, a Temporal Extension
of the LOTOS Formal Description Technique”,
Computer Communications, Vol. 23, No. 12, p. 1104-
1123, 2000.

[8] D. Larrabeiti, J. Quelmada, S. Pavón, From LOTOS
to Petri nets through expansion, FORTE/PSV’96,
Kaiserslautern, Germany, 1996.

[9] H. Garavel, J. Sifakis, Compilation and Verification of
LOTOS Specifications, In: Logrippo, L.; et al.:
Protocol Specification, Testing and Verification, X.
Proceedings of the IFIP WG 6.1 Tenth International
Symposium, 1990, Ottawa, Ont., Canada, pages
379-394. Amsterdam, The Netherlands: North-
Holland, 1990.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/8

[10] U. Goltz, On Representing CCS programs by finite
Petri nets. In M.P. Chytil, L. Janiga, and V. Koubek,
editors, proc. Math. Founf. Of Comput. Sci. 1988,
Lecture Notes in Computer Science 324, pages 339-
350. Springer-Verlag, 1988.

[11] M. Koutny, A Compositional Model of Time Petri
Nets, 21st International Conference on Application
and Theory of Petri Nets (ICATPN 2000), Aarhus,
Denmark, Lecture Notes in Computer Science, pages
303-322. Springer-Verlag, 2000.

[12] ISO, “LOTOS – A Formal Description Technique
Based on the Temporal Ordering of Observational
Behavior”, ISO Information Processing Systems –
Open Systems Interconnection IS 8807, September
1988.

[13] UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE), Request For
Proposal, http://www.omg.org, February 2005.

[14] P.M. Merlin, D.J. Farber, Recoverability of
Communication Protocols: Implications of a
theoretical Study, IEEE Transactions on
Communications, Vol.24, No.9, 1976.

[15] ww.verimag.imag.fr/~ober/docs/OberNeptune05.pdf
[16] E.-R. Olderog, Nets, Terms and Formulas,

Cambridge Tracts in theoretical Computer Science
23, 1991.

[17] Object Management Group, “UML 2.0 Superstructure
Specification”, http://www.omg.org/docs/ptc/03-08-
02.pdf.

[18] Real-time LOTOS Laboratory, http://www.laas.fr/RT-
LOTOS.

[19] T. Sadani, J.-P. Courtiat, P. de Saqui-Sannes, From
RT-LOTOS to Time Petri Nets New Foundations for a
Verification Platform, SEFM’05,.3rd IEEE International
Conference on Software Engineering and Formal
Methods, Koblenz, Germany, September 2005.

[20] T. Sadani, M. Boyer, J.-P. Courtiat, P. de Saqui-
Sannes. Effective Representation of Regular RT-
LOTOS terms by Finite Time Petri Nets. LAAS
Research Report, October 2005.

[22] UML® Profile for Schedulability, Performance, and
Time, version 1.1, http://www.omg.org, January
2005.

[23] Dirk Taubner, Finite Representations of CCS and
TCSP Programs by Automata and Petri Nets. Lecture
Notes in Computer Science, vol 369, Springer 1989.

[24] http://www.eurecom.fr/~apvrille/TURTLE/index.html.
[25] M. Yannakakis, D. Lee, “An efficient algorithm for

minimizing real-time transition system, CAV’93,
Lecture Notes in Computer Science, vol. 697,
Springer, Berlin.

[26] http://www-list.cea.fr/labos/fr/LLSP/accord_uml/
AccordUML_presentation.htm

