
Verifying Service Continuity in a Dynamic
Reconfiguration Procedure: Application
to a Satellite System

L. APVRILLE apvrille@ece.concordia.ca
GET/ENST/COMELEC/Lab SoC, Institut Eurecom BP 193, 2229 route des crètes, 06904 Sophia, Antipolis Cedex,
France

P. de SAQUI-SANNES desaqui@ensica.fr
P. SÉNAC senac@ensica.fr
ENSICA, 1 place Emile Blouin, 31056 Toulouse Cedex 05, France; LAAS-CNRS, 7 avenue du Colonel Roche,
31077 Toulouse Cedex 04, France

C. LOHR lohr@laas.fr
LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 04, France; Concordia University, Electrical
and Computer Engineering Department, 1455 de Maisonneuve W., Montreal, QC, H3G 1M8, Canada

Abstract. The paper discusses the use of the TURTLE UML profile to model and verify service continuity
during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular.
TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators.
Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and
makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at
LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL,
and discusses its application to a payload software application in charge of an embedded packet switch. The paper
demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded
software.

Keywords: dynamic reconfiguration, real-time UML, RT-LOTOS, formal validation, satellite

1. Introduction

Formerly limited to signal processing, satellite payloads nowadays perform cell switching
and dynamic multiplexing. Consequently, they request heavier network signaling and more
complex software support. The complexity in building and maintaining such systems is
increased by the fact that multimedia data streams handled by payloads evolve in nature
throughout satellite’s lifetime (a fifteen year average). Two avenues have been explored
to answer this problem. The first solution corresponds to the active networking paradigm
(Chen, 2000): a programming code embedded in data streams implements a per-user or per
stream network customization. In the second solution, a satellite operation center performs
regular dynamic reconfiguration on the embedded software (Boutry, 2000).

The paper addresses the second solution, in particular the dynamic reconfiguration of em-
bedded and software-implemented network functions. The problem to be solved is service

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12040501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

APVRILLE ET AL.

continuity. It can be phrased as follows. On the one hand, the upgrade of a satellite software
service should guarantee to end-users an improved quality of service without degrading
previously active functions. On the other hand, services not modified by the upgrade should
not be interrupted.

Today, satellite software upgrades are exclusively implemented using the patch technique.
This causes service interruptions (Stevens, 2000), and therefore the upgrade does not meet
service continuity requirements. Given the cost of testing software on a satellite prototype,
it would be interesting to analyze and predict the consequences of upgrading software
before performing it to the satellite. This is where a priori validation can play an important
role. What we name as “a priori validation” is the possibility to check a model of the
system under design against its expected properties before the system is coded and tested.
The paper proposes a novel approach that consists in adding a priori validation to Kramer
(1990) and Purtilo (1991)’s techniques for the dynamic reconfiguration of applications.
Even if applying a priori validation in the context of dynamic reconfiguration has been
considered as a promising avenue (Gupta, 1996), little work has been published in this area.

In the paper, the purpose of applying a priori validation is to demonstrate service con-
tinuity in situations where embedded software is upgraded, and to prove that portions of
software that are modified by the upgrade should go on running in conformance with their
specifications. The proposed methodology relies on TURTLE (Timed UML and RT-LOTOS
Environment (Apvrille, 2001b)), a real-time UML profile with a formal semantics given in
terms of the Formal Description Technique RT-LOTOS (Courtiat, 2000). RT-LOTOS code
derived from TURTLE models is validated using RTL, the Real-Time Lotos Laboratory
developed at LAAS-CNRS.

The paper is organized as follows. Section 2 surveys solutions for software dynamic
reconfiguration and demonstrates the need for intrinsically reconfigurable software archi-
tectures and formal validation techniques. Section 3 introduces the TURTLE profile, which
is dedicated to real-time system modeling and validation. Section 4 discusses how a priori
validation of TURTLE models makes it possible to prove that software properties remain
true during software dynamic reconfiguration. The case study in Section 5 addresses a dy-
namic reconfiguration performed in the context of a telecommunication protocol embedded
onboard a satellite. Finally, Section 6 concludes the paper.

2. Related work

A major concern in applying software dynamic reconfiguration is to check whether the sys-
tem’s intrinsic and extrinsic properties are altered. According to Kramer (1985), so-called
“intrinsic” properties deal with the application’s internal logical consistency. These intrinsic
properties include resources used by the application (for example, memory resources). Also,
they include the interconnection logical consistency, which in procedure-based applications,
refers to the logical consistency of procedure interconnection. We propose to extend the list
of intrinsic properties with correct internal behavior properties (no deadlock, no deadline
violation, etc.). Most reconfiguration environments are limited to the management of in-
trinsic properties. Nevertheless, our objective is also to prove that the service offered by an
application, if not modified, remains unaltered during and after reconfiguration. This service

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

is defined as a set of extrinsic properties characterizing logical and real-time properties due
by an application to its environment.

Three main proposals have been made to ensure that application properties are satisfied
during and after dynamic reconfigurations.

In the first proposal, the reconfiguration generates a brand-new application, and then
switches between the old application and the new one. In telecommunication systems,
switching from a calculator to another one has been implemented by hardware redundancy
(Rey, 1986). Obvious reasons of weight and power consumption make this solution impos-
sible to adapt to space environments.

The second proposal assumes the underlying operating system handles application con-
straints. This approach is mostly used for active networking. New user code contained in
packets is integrated into the application using a plug-in software mechanism. The operating
system must provide the code with appropriate physical and software resources, such as
bandwidth and resources scheduling (Yan, 2001). A drawback is that reconfigurations are
limited to pre-defined functionalities customization and cannot upgrade routing and other
advanced functions. Transposition to space embedded calculators is impossible since the
functions to reconfigure are major ones.

The third family of solutions addresses dynamic reconfiguration at the application layer
level. For telecommunication software developed with a functional approach,
Frieder (1989), Segal (1993) and Okamoto (1994) have proposed techniques to dynam-
ically replace one software procedure by another, and proved their solutions preserve soft-
ware’s logical consistency. Yet, the procedure replacement mechanism is too complex be-
cause of the difficulty (1) to implement runtime analysis of the software heap and (2)
to detect logical and semantic relations between procedures (Shrivastava, 1998). Another
approach implemented at the application layer relies on component-based software archi-
tectures based on weakly coupled components that asynchronously communicate through
gates (Kramer, 1985; Hofmeister, 1993; Oreizy, 1998). Component-based architectures are
described using an ADL (Application Description Language) (Medvidovic, 2000). If we
compare component-based software and procedure-based application in the context of dy-
namic reconfiguration, the former is preferred over the latter. The reasons are twofold. The
first reason lies in the diversity of reconfiguration operations supported by such architec-
tures (Kramer, 1990; Purtilo, 1991, 1994) (component addition or withdrawal, connector
modification, etc.). The second reason is that reconfiguration points are easier to identify
(Kramer, 1990; Purtilo, 1991). But, a major drawback of this approach is that it incorrectly
handles intrinsic and extrinsic real-time constraints of the system (Gupta, 1996).

As a solution, Gupta (1996) suggests to model the system and its properties, and to per-
form a priori validation in early stages of the system’s life cycle, i.e. before the system is
implemented and tested. Several approaches have been proposed in the literature. Allen
(1998) introduced wright, an ADL that enables joint description of the architecture, con-
figuration, and intrinsic constraints of an application. Wright’s semantics is given in terms
of translation to CSP (Hoare, 1985), which enables formal proof of system liveness prop-
erties. However, wright does not handle the intrinsic real-time and extrinsic constraints of
applications. Conversely, the environments introduced in Feiler (1998) and PBO (Stewart,
1997) do handle some real-time constraints. Unfortunately, environments of Feiler (1998)

APVRILLE ET AL.

and PBOs have no mechanism for checking system liveness: only the consistency of the
system is taken into consideration. Neither do they have a formal semantics. Besides using
an ADL, other solutions have been proposed based on informal simulations performed on
top of a real-time operating system (Cailliau, 2001). The disadvantage of that approach is
that it cannot offer any kind of formal guarantees regarding reconfiguration procedure.

This paper defines a formal framework for a software dynamic reconfiguration method-
ology. Applications are developed according to a component-based architecture. Software
architecture is described using the UML real-time profile TURTLE, which serves as an
ADL. Following Allen (1997)’s approach, our objective is to model the component-based
architecture together with its different configurations. Furthermore, our approach enables
explicit modeling of intrinsic and extrinsic logical and real-time software constraints, and
validates them against a dynamic reconfiguration script.

3. TURTLE

3.1. UML extensibility mechanisms

The Unified Modeling Language is defined by an international standard at OMG (OMG,
2003). UML 1.5, the latest release of the standard at the time of writing this paper, enables
language profiling for a specific application domain, such as real-time systems. A UML
“profile” may contain selected elements of the reference meta-model, a description of the
profile semantics, additional notations, and rules for model translation, validation, and
presentation. A profile definition enhances UML in a controlled way, using in particular
the “stereotype” extensibility mechanism. A stereotype extends the vocabulary of UML,
allowing one to create new kinds of modular blocks. These blocks are derived from existing
ones but are specific to a category of problems.

3.2. The TURTLE profile

UML 1.5 defines nine types of diagrams which provide complementary views of the system
to be designed. The masterpiece of a UML design is definitely the class diagram which
describes a structured view of the system’s architecture. The internal behavior of these
entities can be described in a state machine fashion using statecharts or activity diagrams.

The purpose of TURTLE, the Timed UML and RT-LOTOS Environment introduced in
Apvrille (2001b), is to remain compliant with UML 1.5, but also to reinforce UML’s ex-
pressive power in two directions. On the architecture description side, TURTLE extends
class diagrams with stereotyped classes names Tclasses and composition operators which
unambiguously define interactions between Tclasses. On the behavioral description side,
TURTLE extends activity diagrams with synchronized actions including data exchange,
and three temporal operators, namely a deterministic delay, a non-deterministic delay and
a time-limited offer.

The Tclass stereotype represents a new type of UML class (see figure 1). Communications
through public attributes or method calls are limited to communications between a Tclass
and a normal class, or between two normal classes. Tclasses communicate with each other

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

Figure 1. Structure of a Tclass.

Figure 2. Using a composition operator inherited from composer.

exclusively using so-called “gates”. A gate is a particular Tclass attribute of type Gate. A
gate can be used for synchronized communication two Tclasses, or for an internal Tclass
action. A Gate abstract type is introduced. Its specialization as Ingate and Outgate makes it
possible to describe gates dedicated to receiving and sending, respectively. Unlike “ports” in
Rose RT, TURTLE gates are not defined by a list of authorized messages. A synchronization
action between two Tclasses T1 and T2 is syntactically valid if and only if T1 and T2 use
two interconnected gates and compatible parameter lists.

A Tclass behavior must be described with an activity diagram.
In UML 1.5, parallelism between objects is implicit. In TURTLE, parallelism and syn-

chronization between Tclasses are made explicit and given a formal semantics: an associ-
ation between two Tclasses can be attributed with a composition operator (figure 2). Five
composition operators inherit from the Composer abstract type: Parallel, Synchro, Invoca-
tion, Sequence, and Preemption. In figure 2(a), the Parallel operator indicates that the two
Tclasses execute in parallel without any means to synchronize each other.

A Synchro operator on an association between two Tclasses enables synchronization
with value passing. It requires an OCL formula such as {T1.g1 = T2.g2} to indicate which
synchronization gates are paired.

An Invocation operator symbolizes an object oriented method call (see figure 2(b). First,
a caller and a callee synchronize on a gate g. Then, the caller’s activity, which has made the
synchronization on g, is blocked until the callee executes action g again (it symbolizes the
return of a object-oriented method call).

The Sequence operator is used to model a configuration where a task runs after another
task has completed its execution (see figure 2(c)).

APVRILLE ET AL.

TURTLE symbol Description

g !x ?y

Call on gate g, x being sent and y received.

Figure 3. Synchronization operators.

TURTLE symbols Description

d
AD

Deterministic delay. Sub-diagram AD is interpreted after d
units of time.

t
A D

Non-deterministic delay. Sub-diagram AD is interpreted at
most after t units of time.

t a

AD1 AD2

Time limited offer. Offer on gate a is valid during a period of
time which is lower or equal to t. If the offer is performed, then
AD1 is interpreted. Otherwise, AD2 is interpreted.

Figure 4. Temporal operators.

Finally, the Preemption operator allows a Tclass to interrupt another Tclass once for all
and at any time.

Again, each Tclass contains an activity diagram which models the Tclass’s behavior. UML
constructs listed in (OMG 2003) are extended with two groups of pictograms dedicated to
synchronization and temporal operators, as depicted in figures 3 and 4, respectively.

3.3. A profile with a formal semantics

TURTLE has a formal semantics expressed in RT-LOTOS (Courtiat 2000), a real-time ex-
tension of the ISO-based Formal Description Technique LOTOS (ISO, 1988). Any TURTLE
model can be translated to a RT-LOTOS specification (Lohr, 2002).

A TURTLE model structures a system into Tclasses and associates an activity diagram
with each Tclass. (Lohr, 2002) introduced a two-step TURTLE to RT-LOTOS translation
algorithm. Step 1: an RT-LOTOS process is computed for each activity diagram. Step 2:
RT-LOTOS processes obtained at Step 1 are composed using information from the class
diagram. More precisely, this two-step algorithm can be sketched as follows:

1. Activity diagrams. Each Tclass contains an activity diagram that is translated to an RT-
LOTOS process. The latter possibly encapsulates sub-processes that implement loop or
junction structures. TURTLE temporal operators (deterministic delay, non-deterministic
delay, and time limited offer of synchronization on Gates) have direct counterparts in
RT-LOTOS.

2. Class diagram. Associations between Tclasses may be attributed with Composition op-
erators. Let T1 be a Tclass involved in a relation specified by a Composition operator
and P1.1 the RT-LOTOS process obtained from the translation of T1’s activity diagram
at step 1. At step 2, for each Tclass, a new RT-LOTOS process P1.2 taking into account

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

the composition operators involving T1 is created. The body of process P1.2 may call
P1.1 using appropriate RT-LOTOS gates (declaration or renaming), and may also make
references to other processes Pn.2 where Tn denotes another Tclass related to T 1 with
a TURTLE composition operator. Given a class diagram, Tclasses are processed in the
following order:

a. Tclasses at the origin of Preemption operators,
b. Tclasses at the origin of Sequence operators,
c. Tclasses pointed out by Preemption or Sequence operators,
d. Tclasses at the origin of both Sequence and Preemption operators, and
e. Subsets of Tclasses connected either by Parallel or by Synchro operators.

For each Tclass Tn active when the system starts, the RT-LOTOS specification instanciates
a Pn.2 process.

Finally, The TURTLE to RT-LOTOS translation algorithms give the profile a formal
semantics.

3.4. Formal validation tool

As we do not intend to develop new tools for the formal validation of TURTLE designs, we
propose to reuse RTL, the Real-Time Lotos Laboratory developed by LAAS-CNRS. RTL
implements efficient simulation strategies. When the system has a finite and reasonable
number of states, RTL can also generate a “reachability graph”. By essence, reachability
analysis explores all the stable states that the system possibly reaches starting from its initial
state. In that sense, reachability analysis is a form of formal verification. Thus, RTL offers
simulation and verification capabilities, both with a formal basis. Therefore, we say that
RTL is a “formal validation” tool.

Let us now consider a reachability graph generated from a RT-LOTOS specification. A
transition between two states may involve a synchronization action between two Tclasses.
If so, the transition is labeled by an identifier corresponding1 to one of the gates involved in
the synchronization. Figure 5 depicts the complete validation process applied to TURTLE
models.

Figure 5. The TURTLE validation process.

APVRILLE ET AL.

3.5. Comparison with other real-time UMLs

3.5.1. Commercial tools. Rose RT (RoseRT, 2003) implements a real-time UML pro-
file that basically makes class diagram and UML Statecharts evolve towards a language
which is close to SDL, the protocol modeling language supported by Telelogic’s TAU
suite (TAU, 2003) and now partly included in UML 2.0, as confirmed by the recent re-
lease of Tau Generation 2. A common point between Rose RT and TAU is to support a
formal modeling language based on extended communicating finite state machine com-
position. In both Rose RT and TAU, that composition is implicit. It takes the form of
“connectors” in Rose RT and of “channels” and “routes” in TAU. Conversely, TURTLE
inherits from the RT-LOTOS process algebra a concept of composition operator which
makes composition a native construct of the profile. In other words, software compo-
nent composition is explicit in TURTLE. Further, the composition operators supported
by TURTLE are not limited to enable communication between Tclasses. They also handle
“pure” parallelism, sequencing and preemption. In Lohr (2003), we have also demonstrated
the power of TURTLE’s native operator by extending the profile with high-level operators,
such as “Periodic” and “Suspend” that we use to describe a periodic task and to sus-
pend/resume a task, respectively. These high-level operators have a formal semantics given
in terms of native TURTLE operators. With its native and explicit composition operators,
TURTLE has therefore a great advantage over UML profiles that handle class composition
implicitly.

Another difference between TURTLE and its counterpart implemented by TAU or Rose
RT lies in the communication mechanism between software components. Communication
between TURTLE Tclasses is based on rendezvous synchronization. By contrast, TAU
Generation 2 and Rose RT associate message queues with the interface of their respec-
tive stereotyped classes. The ACCORD/UML profile (Gérard, 2002) also implements an
asynchronous communication paradigm, including a broadcast mechanism. Rose RT, TAU,
ACCORD and TURTLE share in common the support of asynchronous communication.
By contrast, the profile defined in André (2002) defines “Synccharts” based on the Es-
terel synchronous language. TURTLE’s rendezvous synchronization is more abstract than
queued communication in Rose RT and TAU. TURTLE does not implement a communi-
cation mechanism specific to a target operating system. This is not surprising. TURTLE is
intended to provide system designers with a modeling technique and a model analysis tool
that remain implementation independent in terms of operating system and programming
language.

Last but not least, an important difference between TURTLE and its counterpart in TAU or
Rose RT lies in the set of temporal operators that it offers. TAU and Rose RT support a fixed
delay operator that enable description of timeouts and other basic protocol mechanisms.
Their limitations appear when the problem is to model time intervals, variable delays, jitter
and other features common to timed constrained systems, such as networked multimedia
systems.

3.5.2. Academic research work. Important differences between TURTLE and related re-
search work are the following. Unlike the Petri Net based extension proposed by Delatour

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

(1998), the TURTLE profile remains UML 1.5 compliant in the way it integrates
RT-LOTOS features to UML class and activity diagrams. TURTLE preserves the asyn-
chronous paradigm of RT-LOTOS, and thus differs from André (2002)’s work on joint use
of UML and the synchronous language Esterel. A common point with Dupuy (2001), Traoré
(2000) and Clark (2000) is that our profile is given a formal semantics via a translation to
a formal language. An advantage of our proposal is that RT-LOTOS is supported by a
validation tool (Section 4).

Coupling UML and a process algebra was already discussed in the literature.
Clark (2000) considered E-LOTOS, which misses the latency operator of RT-LOTOS.
Theelen (2002) considers coupling UML and CCS for performance evaluation purposes.
So far, performance issues have not been investigated in the context of UML and
RT-LOTOS.

Finally, a comparison between real-time UMLs must address the question of temporal
operators and their expression power. It is commonly admitted that characterizing temporal
constraints requires to express temporal intervals. Theelen (2002) states that a “delay”
operator suffices to model real-time systems as soon as that “delay” can be combined
with an “interrupt” operator. It is indeed possible to handle a temporal interval using two
instances of “delay” operator in parallel: one instance expresses delaying and the other
expresses a deadline. An interrupt operator is requested so that the latter delay can interrupt
the former. Therefore, one might conclude that a fixed delay operator is sufficient to model
real-time systems. In practice, the situation is not so simple. Indeed, one can distinguish
between two types of time interval depending whether the concern is on “uncertainness”
or “opportunity”. Uncertainness refers to a situation where a system waits for an external
event inside a time interval, and therefore cannot be certain about the date of occurrence of
that event. In that case, we use a time limited offer. Opportunity refers to the possibility for
a system to generate an event inside a time interval, at a date selected by this system. In that
case, we use a combination of deterministic and non-deterministic delays. As a conclusion, a
major concern for real-time modeling languages is to support temporal operators to describe
the two types of time intervals.

4. Using TURTLE to verify service continuity during dynamic reconfiguration

4.1. Definitions

A continuous service offered to users by an application can be characterized by a set of prop-
erties to be verified by the application at any moment, including dynamic reconfiguration.
Hereafter, we formally define this set of properties.

We denote by t1 the date at which the dynamic reconfiguration starts, and t2 its completion
date.

We denote by P1 and P2 the set of properties valid before and after reconfiguration,
respectively.

We also denote by P the set of properties that must be verified during dynamic reconfiguration
(see figure 6).

APVRILLE ET AL.

Figure 6. Chronogram of dynamic reconfiguration service continuity.

A dynamic reconfiguration is said to offer no-service continuity with regards to P1 and
P2 if and only if the three following assertions are true:

1. ∀ t < t1, ∀p ∈ P1, p = true
2. ∀ t > t2, ∀p ∈ P2, p = true
3. P= Ø

Indeed, all properties of P1 are true before dynamic reconfiguration and therefore, be-
fore t1. All properties of P2 are true after reconfiguration i.e. after t2. Because no service is
offered between t1 and t2, P = Ø.

A dynamic reconfiguration ensures partial service continuity if some of the services
offered by the application before dynamic reconfiguration, i.e. before t1, are still offered
after t1. This definition can be formally termed as follows.

We note :P2 = {p21, p22, . . . , p2n}.

A dynamic reconfiguration ensures partial service continuity if and only if the three
following assertions are true:

1. ∀ t < t1, ∀p ∈ P1, p = true
2. ∀ t > t2, ∀p ∈ P2, p = true
3. ∀ t, ∃p ∈ P1, (p21 ∧ p22 ∧ · · · ∧ p2n ⇒ p) ⇒ p ∈ P(The set of predicates p that satisfy

this assertion define a set of services that are continuously delivered).

Indeed, all properties of P1 that are valid after reconfiguration must also be valid during
reconfiguration. But after t2, services are described with properties of P2. Therefore, each
property of P1 implied by properties of P2 must belong to P.

At last, a dynamic reconfiguration ensures total service continuity if all services of P1
are preserved by dynamic reconfiguration i.e. after t1.

We note P = {p1, p2, . . . , pn}

A dynamic reconfiguration is said to ensure total service continuity if and only if the
following four assertions are true:

1. ∀t < t1, ∀p ∈ P1, p = true
2. ∀t ∈ [t1, t2] , ∀p ∈ P, p = true

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

3. ∀t > t2, ∀p ∈ P2, p = true
4. ∀p ∈ P1, (p1 ∧ p2 ∧ · · · ∧ pn ⇒ p) ∧ (p21 ∧ p22 ∧ · · · ∧ p2n ⇒ p) (all services offered

before t1 are preserved).

4.2. Using observers to check properties

In order to model application properties that must be valid before, during and after dynamic
reconfiguration, we propose to use the concept of observers (Jard, 1988). An observer is a
module external to the modeling of the system under design and usually expressed in the
same language as the system’s modeling. An observer can access the system’s model com-
ponents, such as its variable or message queues when applicable. In the TURTLE context, an
observer can synchronize with a Tclass on a dedicated gate so that the observer remains non
intrusive. Any synchronization between a Tclass and its observer appears in the reachability
graph under the form of a labeled transition. Researching Tclass-to-observer synchroniza-
tion labels in the reachability graph makes it possible to analyze properties checked by
the observer. The way the observer technique can be applied to dynamic reconfiguration is
further discussed in Section 4.4.

To demonstrate service continuity, we consider a dynamic reconfiguration TURTLE model
obtained in three steps (figure 7):

Step 1: Modeling the first software configuration (Software modeling 1) and the properties
verified by the software in configuration 1 (Observers of P1).

Step 2: Modeling the software after reconfiguration (Software modeling 2). Observers of
P2 model the properties to be satisfied by the software in configuration 2.

Step 3: Writing the reconfiguration script—Configuration Manager—that makes software
evolve from configuration 1 to configuration 2. Also, modeling the observers which check
the properties to remain valid during the dynamic reconfiguration. Here, we address the
observers which check for properties of P (Observers of P).

Figure 7. Dynamic reconfiguration process using TURTLE.

APVRILLE ET AL.

As explained in subsequent sections, all the models (Software Modeling 1, Configuration
Manager, Software Modeling 2, all observers) are gathered to form the dynamic reconfig-
uration modeling to be formally validated against service continuity needs. This modeling
includes the two software configurations together, and a description of how the dynamic
reconfiguration is performed i.e. which dynamic reconfiguration operations are performed
on the software, and how they are performed, etc. The execution of reconfiguration oper-
ations is described in the behavior diagram of a special Tclass named ConfManager. Full
details about this modeling are given in the following sections.

4.3. Modeling software configurations

As explained in Section 2, the ADLs used in the field of dynamic reconfiguration (Purtilo,
1991; Stewart, 1997; Allen, 1998) were not designed with formal verification of service
continuity in mind, even if that issue had been identified of great importance since Gupta
(1996). As a consequence, a major concern is to define an ADL capable of offering formal
validation of logical and real-time properties during dynamic reconfiguration.

Space-based embedded software is built upon tasks that communicate asynchronously.
Therefore, we propose to associate a component per task, and we call such a component
a “module”. Such association is a common practice in dynamically reconfiguration archi-
tecture modeling (Liskov, 1985; Stewart, 1997; Shrivastava, 1998). Modules offer to their
environment communicating gates that we name ports. Each port is either an input port
dedicated to data receiving, or an output port dedicated to data sending. Connectors, called
links, connect an output port to an input one. TURTLE has not been primarily designed for
software architecture in the sense used by Kramer (1985), Stewart (1997) and Shrivastava
(1998). Therefore, we hereafter describe how such architecture may be modeled with
TURTLE, and more particularly how TURTLE may be used to model modules, ports,2 and
links.

Thus, we consider a software architecture structured into modules. The TURTLE rep-
resentation for a module is a Tclass (see figure 1). Modules communicate using ports.
Therefore, for each port in a module, we create a gate in the relevant Tclass. Each gate
must have a type. The TURTLE profile definition includes an abstract type Gate which
is specialized in InGate and OutGate (see Section 3.2). The input and output ports of a
module are modeled by attributes of type InGate and OutGate respectively. We introduce
a Module abstract type from which concrete modules can be derived later on. This abstract
class Module contains active and stop, two attributes of type InGate. In figure 8, a module
M1 inherits from Module. M1’s activity diagram starts with a synchronization on active and
then offers a choice between what we refer to as its “normal activity” and the possibility to
be stopped and reactivated. Whenever a Tclass performs synchronization on the stop Gate
of Module M1, M1 is supposed to reach its reconfiguration point as soon as possible. As
a consequence, the system works under the assumption that modules such as M1 period-
ically leave their normal activity to check whether synchronization can be performed or
not on its stop gate (otherwise, it can never get into its reconfiguration point). The active
gate allows reactivation of a module that is at its reconfiguration point. In our dynamic
reconfiguration environment, it is the programmers’ responsibility to ensure that the stop

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

Figure 8. How a module may be modeled using TURTLE.

gate is checked as often as possible so that modules can reach their reconfiguration point as
soon as possible. In the CONIC environment, Kramer (1990) has proved that the quiescent
state (the “reconfiguration point” in CONIC) of a module is always reachable. Using the
TURTLE formal validation process described in Section 3.3, system designers can predict
whether modules can reach their reconfiguration point, and if so, if they can reach it as fast as
required. Indeed, in case of dynamic reconfiguration failure identified at validation process,
the reachability graph contains traces of the sequence of events leading to the failure. Thus,
it becomes possible to determine if the failure is due to the fact a module couldn’t reach its
reconfiguration point, or has been too slow to reach it.

A link connecting a module OutGate og to a module InGate ig is modeled as follows:

• The asynchronous semantic of links is modeled using an Invocation composition operators
and a Tclass that models a message buffer on the receiving module’s side.

• The link behavior (delay, loss, etc.) is modeled in Routing, a Tclass common to all links.
Thus, the software communication architecture can be modified by reconfiguring Routing
only.

For example, consider the two links modeled in figure 9. The first one connects the Out-
Gate g1 of M1 to the InGate g3 of M3. There is an Invocation Operator between M1 and
Routing. An OCL formula {g1} indicates that gates g1 of both M1 and routing are involved
in this invocation. The left part of Routing Behavior diagram describes the link behavior: it
represents the link’s transmission delay and the buffer the message is forwarded to. For this
link, the forwarding delay is at least 8 time units and at most 10 time units (8 + 2). These
values can be obtained by simulations (see Section 5). An Invocation operator between
Routing and BufferPort1 models the forwarding of the message to the Tclass BufferPort1
when Routing performs action g1buf. On the receiving side, M3 is connected to Buffer-
Port1 with an Invocation operator. Two gates g3 and g3nb make it possible for M3 to
read a message in BufferPort1 and to get the number of available messages in BufferPort1,
respectively.

APVRILLE ET AL.

Figure 9. Modeling of software communication links with TURTLE.

The use of an intermediate class BufferPort makes it possible to model an asynchronous
link between Routing and the receiving module. Using the Routing Tclass simplifies the
dynamic reconfiguration of links. Indeed, a link behavior modification can be performed
at Routing level. Further, a link interconnection can be modified by changing the output
gate to which the message is forwarded. For example, if action “g1buf!m1” is switched by
action “g2buf!m2” in Routing, then, the link from M1 to M3 becomes a link from M1 to
M4 (see figure 9). Further information on link reconfiguration is provided in Section 4.5.

4.4. Modeling intrinsic and extrinsic application constraints

Intrinsic and extrinsic application constraints are described inside observers which are
modeled as TURTLE Tclasses. Observer Tclasses are external to the application but belong
to the application’s class diagram.

Observers analyze specific properties in a non-intrusive way; indeed, they do not modify
the behavior of application modules, including modules observers get data from. For ex-
ample, suppose that a Tclass O (Observer) has to get information data from a module M.
To model data retrieval, we use a Synchronization composition operator between O and M.
O may always perform this synchronization when M is ready to do it (non-intrusiveness
property).

Observers should also report on property violation during the formal validation process.
For each observer, we introduce error, a special synchronization action that is executed each
time a property is violated. The error action is afterwards easy to identify in the reachability
graph. For easier property identification, the validation process can be stopped whenever
such an error action is encountered.

Figure 10 describes an observer analyzing logical and real-time constraints. The two
observed properties are:

• Property 1 (logical constraint): the 2k + 1 and 2(k + 1) integer values received by M on
gate g1 should be identical.

• Property 2 (temporal constraint): no more than t time units should elapse before two
synchronizations on gate g2.

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

Figure 10. Observing logical and temporal properties in a module M.

Observer O analyzes the two properties by getting data from module M. Therefore, there
is a Synchro operator between O and M. Gates involved in the synchronization are listed
in an OCL formula: obs g1 and obs g2 are connected to g1 and g2, respectively. Gate
obs g1 is used for checking property 1 and gate obs g2 is used for checking property 2. The
two properties are checked in parallel (parallel behavior operator in O). As long as both
properties remain true, actions g1 and g2 are always offered, which means that the observer
is not intrusive. As soon as one property becomes false, action error is performed and the
corresponding observation gate g-g is either g1 or g2—is not offered by the observer. Also,
M will be stopped next time it synchronizes on g.

4.5. Modeling a dynamic reconfiguration script

This section explains how it is possible to build the TURTLE dynamic reconfiguration model.
The building of this model relies on the modeling of software configurations introduced in
Section 4.3 and on the modeling of observers introduced in Section 4.4.

A TURTLE class named ConfManager manages the initial software configuration, the ex-
ecution of the application in this first configuration, and the execution of the reconfiguration
script.

ConfManager first starts all the modules in configuration 1 by synchronization on their
active gate. Then, it executes a (non-)deterministic delay to model the time during which the
application runs in configuration 1. The lower portion of the activity diagram in ConfMan-
ager represents the execution of the reconfiguration script i.e. all dynamic reconfiguration
operations possibly performed on our application. This script can modify:

• The general architecture of modules, in particular module addition or removal,
• The internal behavior of modules, and
• The interconnection architecture between modules, in particular links creation or

destruction.

APVRILLE ET AL.

Figure 11. Modeling a module replacement.

As a first example, figure 11 depicts a dynamic reconfiguration that withdraws module M1
and adds module M2.

First, ConfManager starts Module M1 (active1). The application works in this state for
at least d1 time units and at most during d1 + d2 time units. Then, the dynamic reconfigu-
ration starts. The dynamic reconfiguration stops module M1 (stop1) and starts module M2
(active2).

During each configuration phase (initial configuration, execution of application in con-
figuration 1, dynamic reconfiguration, and execution of the application in configuration 2),
some application’s intrinsic and extrinsic constraints must remain true and others are super-
seded. Indeed, when deleting from software a service to users, of course, properties relative
to this service don’t have to be true anymore. Therefore, we propose to activate an observer
when the property it checks has to be verified by the system, and to inactivate it when
the property it checks is not valid any more. For example, at figure 11, observers of M1
should be activated before M1 starts (start o1) and should be stopped when M1 is stopped
(stop o1). Also, the starting of M2 should be followed (or preceded) by the activation of
M2 observers (start o2).

As a second example, we address the internal behavior reconfiguration of a module
(figure 12).

1. A module, M1, executes its ‘first activity’ once ConfManager has executed action active1.
2. After at least d1 time units and at most after d1 + d2 time units,
3. ConfManager executes stop1 which stops M1 after its current activity is completed

(reconfiguration point). Then, ConfManager changes M1 conf variable using synchro-
nization on gate chConf. Finally, it reactivates M1 (active1), which now executes ‘Re-
configured activity’ instead of ‘First activity’.

The third example deals with the dynamic reconfiguration of links between modules, an
operation modeled by modifying the Routing Tclass. In figure 13, the link between modules

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

Figure 12. Modeling a module’s Internal behavior reconfiguration.

Figure 13. Modeling the dynamic reconfiguraton of a link.

M1 and M3 is modeled in the Routing Tclass: when M1 sends a message on its OutputGate
g1, Routing forwards it (g1buf!m) to the input buffer class of M3 (BufPort1). Then, M3
can receive the message by executing g3. The link reconfiguration consists in connecting
a new module M2 to the same input buffer of M3, and simultaneously to remove the link
between M1 and M3. First, M1 and M3 are started (1): active1, active3 (Synchronizations
between ConfManager and the Modules are not depicted). Then, after 500 time units (2),
the reconfiguration occurs (3). First, Module M1 is stopped (stop1). Then, the link between
M2 and M3 is activated. To do so, the action linkM2M3 waits for the link between M1 and
M3 to be free, and then, it supersedes it with a link between M2 and M3: messages sent by
M2 on g2 are now forwarded to g1buf. Then, module M2 is started. This modeling approach
insures that no message is lost or mis-ordered during reconfiguration.

APVRILLE ET AL.

4.6. Formal validation of service continuity

As explained in Section 4.1, a set of properties characterizes services to be offered to
users before, during and after reconfiguration. Therefore, if the configuration manager
is modeled as in configuration 1, active observers check for properties P1. Then, during
dynamic reconfiguration, active observers check for P. At last, after reconfiguration, active
observers check for P2. As a consequence, formal validation of the dynamic reconfiguration
TURTLE model makes it possible to prove service continuity. Indeed, when a service is no
longer valid, an observer executes a specific action named, e.g., error. The latter is easily
identified on the reachability graph, since the TURTLE to RT-LOTOS translation process
builds up a correspondence table between actions in TURTLE diagrams and actions in the
reachability graph (Lohr, 2002).

5. Case study

5.1. Context

The competition with high-speed terrestrial transmission technologies (Bigo, 2000) leads
telecommunication satellite manufacturers to drastically optimize bandwidth by frequency
reuse and by dynamic frequency allocation and temporal multiplex on uplinks and downlinks
(Farserotu, 2000; Wittig, 2000). These issues have been investigated in the context of the
French Research Minister project SAGAM (1998). This project focuses on the access to
multimedia services using a multi-beam geostationary satellite. The core of the system
consists in a fast and embedded ATM switch and a temporal multiplexer of ATM cells on
downlinks. Switching and multiplexing are performed according to differentiated QoS.

The SAGAM project addresses the management of the embedded ATM switch and the
management of uplink and downlink bandwidth. Bandwidth slots are allocated according
to ATM active connections (Roullet, 1999). Assuming that all bandwidth management
functionalities are embedded into the satellite and software implemented, we have modeled
the following functionalities in TURTLE:

• The sending of a frame allocation report every 50 ms from the satellite to the users. The
frame allocation report lets each user know which uplink slots he or she can send his or
her data on.

• User sending Dama-sig signals to the satellite. A Dama-sig signal indicates that an ATM
VBR connection wants to emit at its higher rate. Satellite software shares the remaining
bandwidth among all Dama-sig requests.

More information about these functionalities are available in Roullet (1999), Combes
(2001) and Apvrille (2001a, 2002).

5.2. Software modeling

The Dama-sig signals computing and the frame allocation report sending are modeled within
four modules:

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

• A Damasig module which receives Dama-sig signals, formats them, and then, forwards
them to the Dama module.

• A Dama module which computes all pre-formatted Dama-sig signals. For each Dama-
sig, it computes a new allocation for each ATM connection. The new allocation is sent
to module FarSender.

• A FarSender module, which has two input ports. The first one is dedicated to receiving
bandwidth allocation sent by Dama module. When receiving a message on the second
input port, FarSender must send immediately a frame allocation report.

• A Clock module which sends two signals every 50 ms. One is sent to the second port
of FarSender, and the other is sent to Damasig to indicate it that the next n Dama-sig
signals can be computed (n being the number of active VBR connections).

Our TURTLE modeling methodology associates a Tclass Buffer with each input port
of a module (see Section 4.3). The model includes six buffers: one per module, except
Damasig and FarSender which have two input ports (so two buffers, see Section 4.3). An
additional Tclass models message routing between each output port and its corresponding
buffer.

Each of the modules listed above implements an algorithm which is not modeled in
extenso in TURTLE but represented by its computation duration. Each duration value can
be obtained either by simulations performed with specific simulators (ERC-32 simulators,
see (ERC32, 1999)) or directly on target.

5.3. Modeling software constraints

The satellite embedded software should always respect the following two constraints on the
service offered to users:

Property 1. The sending of the frame allocation report is periodic with a period equal to
50 ms.

Property 2. All received Dama-sig have to be fully computed before the next frame allocation
report is sent.

One observer is modeled for each constraint (consequently, the system has two ob-
servers). Both observers synchronize with FarSender (see figure 14). The first one analyzes
the sending date of the first frame allocation report. Then, it checks that the next frame allo-
cation report is emitted exactly 50 ms after the previous one. The second observer checks,
for each frame period, the number of allocations sent by Dama module to FarSender:
this number must be equal to the number of Dama-sig signals to be computed by frame
period. When one of the two properties becomes false, the observer checking for that prop-
erty executes action error. Then, FarSender is stopped next time it synchronizes with this
observer.

By applying the process depicted in figure 5 to this software modeling, we have proved
that both properties are true in the first software configuration.

APVRILLE ET AL.

Figure 14. Modeling both properties with observers.

5.4. Checking a dynamic reconfiguration

Like satellite telecommunication payload algorithms in general, DAMA algorithms quickly
evolve (Boutry, 2000). Therefore, the problem we focus on is the replacement of the Dama
module while the software is running. The new Dama module, which supersedes the first
one, is called Dama2. Its main algorithm takes more time to compute a Dama-sig that the
first Dama module.

A simplified dynamic reconfiguration script contains the following: “stop Dama, instan-
tiate Dama2, copy Dama state into a new instance of Dama2, start Dama2, destroy Dama”.
The configuration manager models this script as follows: “stop Dama, wait for 30ms, start
Dama2”. This duration has been obtained by simulations performed on an experimental
platform that emulates the multimedia telecommunication system under study (Apvrille,
2001a).

Our objective is to perform dynamic reconfigurations with total service continuity. We
indeed expect service to users to remain valid before, during, and after reconfiguration.
User services are described by property1 and property2 that are checked out by observers
O1 and O2, respectively.

Formal validation is performed on the TURTLE dynamic reconfiguration model obtained
by applying the process described in Section 4.1. This model contains 15 classes: 5 mod-
ules, 6 buffers, a routing class, 2 observers and the dynamic reconfiguration manager. The
reachability graph generated from the model is far too complex to be entirely drawn in this
paper. Figure 15 shows an excerpt of this graph.

Reachability analysis has demonstrated that the software runs with a period of 50 ms: the
dynamic reconfiguration succeeds if and only if it is started in the “middle” of a period. For
instance, if t0 is the starting date of a period, the reconfiguration has to be started between
t1 = t0 + 19 ms and t2 = t0 + 45 ms. If the reconfiguration is started out of this time
range, one can identify a property violation on the reachability graph (see figure 15), i.e. the
service to users suffers discontinuity. On figure 15, error2 transition indicates that property
2 can be violated. When started in the right time interval, the reconfiguration succeeds: both
properties remain valid, which proves service continuity.

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

Figure 15. Reachability graph of the case study.

This result leads us to modify the reconfiguration script as follows: a new operation is
inserted at the top of the script. This operation waits for the software to be in interval [t1, t2]
before starting the reconfiguration. The new reconfiguration script is the following: “wait
for t ∈ [t1, t2]; stop Dama, instantiate Dama2, copy Dama state into a new instance of
Dama2, start Dama2, destroy Dama”.

5.5. Lessons learned

The purpose of this section is to report our experience in applying TURTLE and the method-
ology proposed in the paper to the dynamic reconfiguration of an embedded real-time
application. This work is part of a project funded by Alcatel Space.

In terms of architecture modeling capacity, we have defined, in Section 4.3, a framework
for the modeling of software architectures. Using TURTLE as an ADL, software recon-
figurations can be visually apprehended on a UML class diagram that features modules,
interconnection schemes (communication channels), and reconfiguration manager. Unlike
UML 1.5 and most ADLs, TURTLE also enables explicit modeling of real-time tasks and
asynchronous communications between tasks.

APVRILLE ET AL.

Let us now address behavior modeling. The risk of combinatory explosion at reachability
graph generation leads us to model task algorithms at a high level of abstraction. We consider
that an algorithm should be modeled with a temporal operator representing all its possible
computation durations. These durations can be obtained by simulations performed on an
experimental platform (see Section 5.4). TURTLE’s non-deterministic temporal operator
provides an explicit way to model lower and upper limits of algorithms’ duration. This is
an advantage of TURTLE over UML 1.5 and other ADLs.

For the case study discussed in Section 5, a finite reachability graph was generated in less
than five minutes on a SUN UltraSparc. Note that to reduce the size of the reachability graph,
we had to limit as much as possible the use of variables and of non-deterministic delays. As
a consequence, algorithms’ duration were sometimes modeled by their maximal duration
(deterministic delay) and not by a time interval starting at their minimal limit and finishing
at their maximal limit. Also, the reconfiguration validation was successfully applied only
when the number of messages transiting between modules was of reasonable size: tasks’
buffer size was commonly limited to 250. Therefore, the size of modules’ receiving buffers
was reduced as much as possible (most of the time to 250 messages).

At last, we draw positive conclusions of using the observer technique, a simple way to
formally validate the system’s model against service continuity requirements. Observers
are modeled using TURTLE classes, which are distinct from system tasks. Thus, the system
software architecture remains unmodified. Also, the TURTLE synchronization operator
makes it possible to model non-intrusive observers. Using a unique action identifier (error
label) makes it simple to identify property violations in the reachability graph. The observer
technique really helped us identifying non-trivial errors (see how we identified the violation
of property 2 in previous section) which could have occurred when applying dynamic
reconfiguration on the embedded system.

6. Conclusion

With an average lifetime of fifteen years, satellites must be regularly and dynamically
reconfigured in order to adapt payloads to multimedia data stream evolution. Dynamic
reconfiguration captures a service continuity problem. A dynamic reconfiguration should
indeed not interrupt the software portion that is not modified, and preserve a set of properties
that define the quality of service offered to end-users.

How to predict that a dynamic reconfiguration procedure guarantees service continuity is
still an open issue. Gupta (1996) suggested that an avenue to explore is a priori validation,
where a model of the software is simulated and verified against its expected properties
before the software is actually implemented and tested. The work in the paper follows that
approach with modeling in TURTLE, an enhanced real-time UML profile with a priori
formal validation capabilities.

TURTLE extends UML class diagrams with composition operators that make it possible
to explicitly model parallelism and synchronization between stereotyped classes named
Tclasses. TURTLE also enhances UML activity diagrams with three temporal operators:
a deterministic delay, a non-deterministic delay and a time limited offer. TURTLE has
a formal semantics given in terms of translation to the Formal Description Technique

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

RT-LOTOS (Lohr, 2002). RT-LOTOS code derived from TURTLE models can be validated
using the RTL toolkit (Courtiat, 2000) that implements efficient simulation algorithms and
reachability analysis.

The paper has discussed the use of TURTLE and RTL to prove service continuity in a
dynamic reconfiguration procedure. Our methodology relies on making up a dynamic recon-
figuration model that contains software configurations before and after the reconfiguration,
as well as the services to be continued during and after the upgrade. The methodology was
successfully applied in the framework of SAGAM project. It can be applied as well to a
wide range of software applications which capture dynamic reconfiguration problems.

A priori validation filters errors but does not exempt from testing software’s implementa-
tion. We are presently working on deriving timed test sequences from RT-LOTOS specifica-
tions (Saqui, 2003), including those generated from TURTLE models. Also, our objective is
to extend our reconfiguration methodology to the dynamic upgrade of distributed systems.
Assuming that a distributed system runs on several sites, the TURTLE profile addressed in
this paper does not enable explicit modeling of that distributed execution. Apvrille (2003)
defines TURTLE-P, an enhanced TURTLE with deployment diagrams and their formal
semantics. We plan to apply TURTLE-P to the validation of dynamic reconfiguration pro-
cedure in distributed systems. Last but not least, we think our approach could be used to
formally prove that the integration of a user code into an active network does not lead to
undesirable or unpredicted behaviors.

Notes

1. The TURTLE to RT-LOTOS translation renames gate identifiers.
2. A port in an ADL is different from a port in Rose RT.

References

Allen, R. 1997. A formal approach to software architecture. Ph.D. Thesis, Carnegie Mellon University, School of
computer Science, TR#CMU-CS-97-144.

Allen, R., Douence, R., and Garlan, D. 1998. Specifying and analyzing dynamic software architectures. In Pro-
ceedings of the Conference on Fundamental Approaches to Software Engineering, Lisbon, Portugal.

André, C., Peraldi-Frati, M.-A., and Rigault, J.-P. 2002. Integrating the synchronou. In J.-M. Jézéquel, H. Hußmann,
S. Cook, editors, Paradigm into UML: Application to control-dominated systems. UML 2002—The Unified
Modeling Language, 5th International Conference, Dresden, Germany, LNCS 2460, Springer, ISBN 3-540-
44254-5.

Apvrille, L. 2002. Contribution to dynamic reconfiguration of embedded real-time software: Application to a
satellite telecommunication environment Ph.D. dissertation (in French), TR #02298, LAAS-CNRS, Toulouse,
France.

Apvrille, L., Dairaine, L., Sénac, P., and Diaz, M. 2001a. Dynamic reconfiguration architecture of satellite network
software services. In Proceedings of the 19th AIAA International Communications Satellite Systems Conference,
Toulouse, France.

Apvrille, L., de Saqui-Sannes, P., and Khendek, F. 2003. TURTLE-P: A UML profile for the validation of distributed
Architectures. In Proceedings of the Colloque Francophone sur l’Ingénierie des Protocoles (CFIP’2003), Paris,
France (in french).

Apvrille, L., de Saqui-Sannes, P., Lohr, C., Sénac, P., and Courtiat J.-P. 2001b. A new UML profile for real-time
System: Formal Design and Validation. In Proceedings of the Fourth International Conference on the Unified
Modeling Language (UML’2001), Toronto, Canada.

APVRILLE ET AL.

Bigo, S. and Idler, W. 2000. Multi-terabits/s transmission over Alcatel TeraLight fiber. The Alcatel Telecom-
munications Review, 4th Quarter: 288–296. Available at: http://atr.alcatel.de/hefte/00i 4/gb/pdf gb/11idlegb.
pdf

Boutry, L. 2000. Network Evolution. France Telecom R&D Technical Memento, vol. 15. Available at:
http://www.cent.fr/sas/mento15/chap5.html (in French).

Cailliau, D., Marin, O., and Folliot, B. 2001. A joint middleware/configuration language approach for space
embedded software update. In Proceedings of Data Systems In Aerospace (DASIA), Nice, France.

Chen, T.M. 2000. Evolution to the programmable internet. IEEE Communications Magazine, 38(3):124–128.
Clarck, R.G. and Moreira, A.M.D. 2000. Use of E-LOTOS in adding formality to UML. Journal of Universal

Computer Science, 6(11):1071–1087.
Combes, S., Fouquet, C., and Renat, V. 2001. Packet-based DAMA protocols for new generation satellite networks.

In Proceedings of the 19th AIAA International Communications Satellite Systems Conference, Toulouse, France.
Courtiat, J.-P., Santos, C.A.S., Lohr, C., and Outtaj, B. 2000. Experience with RT-LOTOS, a temporal extension

of the LOTOS formal description technique. Computer Communications, 23(12):1104–1123.
Delatour, J. and Paludetto, M. 1998. UML/PNO, a way to merge UML and Petri Net objects for the analysis

of real-time systems. In Proceedings of the Workshop on Object-Oriented Technology and Real Time Systems
ECOOP’98, Brussels, Belgium.

Dupuy, S., and du Bouquet, L. 2001. A multi-formalism approach for the validation of UML models. Formal
Aspects of Computing, 12:228–230.

ERC32. 1999. Free simulation software for ERC-32, at ESTEC. Available at: http://www.estec.esa.nl/wsmwww/
erc32/freesoft.html

Farserotu, J., and Pradas, R. 2000. A survey of future broadband multimedia satellite systems, issues and trends,
IEEE Communications Magazine, 128–133.

Feiler, P., and Li, J. 1998. Consistency in dynamic reconfiguration. In Proceedings of the 4th International
Conference on Configurable Distributed Systems (ICCDS ’98), IEEE Press, ISBN 0-8186-8451-8, Annapolis,
MD, USA.

Frieder, O., Herman, G.E., Mansfield, W.H., and Segal, M.E. 1989. Dynamic program modification in telecom-
munications systems. In Proceedings of the Seventh International Conference on Software Engineering for
Telecommunication Switching Systems SETSS 89, pp. 168–172.

Gerard, S., Terrier, F., and Tanguy, Y. 2002. Using the model paradigm for real-time systems development:
ACCORD/UML. In J.-M. Bruel, and Z. Bellahsene, editors, Proceedings of the Advances in Object-Oriented
Information Systems, OOIS 2002 Workshops. Lecture Notes in Computer Science 2426, Springer: Montpellier,
France, pp. 260–269.

Gupta, D., Jalote, P., and Barua, G. 1996. A formal framework or on-line software version change. IEEE Trans-
actions on Software Engineering, 22(2):120–131.

Hoare, C.A.R. 1995. Communicating Sequential Processes. Prentice Hall.
Hofmeister, C., and Purtilo, J. 1993. Dynamic reconfiguration in distributed systems: Adapting software mod-

ules for replacement. In Proceedings of the 13th International Conference in Distributed Computing systems
(ICDCS’93), IEEE Computer Society Press, pp. 101–110.

ISO. 1998. LOTOS—A formal description technique based on the temporal ordering of observational behavior.
International Standard 8807, International Organization for Standardization—Information processing Systems
—Open Systems Interconnection, Geneva, Switzerland.

Jard, C., Monin, J.-F., and Groz, R. 1988. Development of véda, a prototyping tool for distributed algorithms.
IEEE Transactions on Software Engineering, 14(3):339–352.

Kramer, J. and Magee, J. 1985. Dynamic configuration for distributed systems. IEEE Transactions on Software
Engineering, 11(4):424–436.

Kramer, J. and Magee, J. 1990. The evolving philosophers problem: Dynamic change management. IEEE Trans-
actions on Software Engineering, 16(11):1293–1306.

Liskov, B.H. 1985. The Argus language and system. Distributed systems: Methods and Tools for Specifications,
Lecture Notes in Computer Science No. 190, Springer-Verlag, pp. 343–430

Lohr, C. 2002. Contribution to real-time system specification relying on the formal description technique RT-
LOTOS. Ph.D. dissertation (in French), Toulouse, France.

VERIFYING SERVICE CONTINUITY IN A DYNAMIC RECONFIGURATION

Lohr, C., Apvrille, L., de Saqui-Sannes, P., and Courtiat, J.-P. 2003. New operators for the TURTLE real-time
UML profile. In Proceeding of the 6th IFIP International Conference on Formal Methods for Open Object-based
Distributed Systems (FMOODS’2003), Paris, France.

Medvidovic, N. and Taylor, R. 2000. A classification and comparison framework for software architecture de-
scription languages. IEEE Transactions on Software Engineering, 26(1):70–93.

Okamoto, A., Sunaga, H., and Koyanagi, K. Dynamic program modification in the non-stop software extensible
system (NOSES). In Proceedings of the IEEE International Conference on Communications (ICC ‘94), vol. 3,
pp. 1779–1783.

OMG. 2003. Unified modeling language specification, Version 1.5. Object Management Group, Available at:
http://www.omg.org/technology/documents/formal/uml.htm

Oreizy, P., Medvidovic, N., and Taylor, R.N. 1998. Architecture-based runtime software evolution. In Proceedings
of the International Conference on Software Engineering (ICSE’1998), Kyoto, Japan.

Saqui-Sannes, P. de, Sadani, T., Lohr, C., and Courtiat, J.-P. 2003. First results in deriving timed test sequences
from RT-LOTOS specifications. TR#03336, LAAS-CNRS, Toulouse, France.

Purtilo, J.M. and Hofmeister, C. 1991. Dynamic reconfiguration of distributed programs. In Proceedings of the
11th International Conference on Distributed Computing Systems, pp. 560–571.

Purtilo, J.M. 1994. The polylith software bus. CM Transactions on Programming Languages and Systems,
16(1):151–174.

Rey, R. 1986. Engineering and Operations in the Bell System, second edition. AT&T Bell Laboratories, Murray
Hill, NJ, USA.

Rose, RT. 2003. Available at http://www.rational.com/products/rosert/index.jsp
Roullet, L. 1999. SAGAM demonstrator of a G.E.O. satellite multimedia access system: Architecture & integrated

resource manager. In Proceedings of the European Conference on Satellite Communication, Toulouse, France.
SAGAM. 1998. SAtellite Géostationnaire pour Accès Multimédia. Projet RNRT (Réseau National de la Recherche

en Télécommunication, France), France. http://www.sagam-satellite.com.
Segal, M.E. and Frieder, O. 1993. On-the-fly program modification: Systems for dynamic updating. IEEE Software,

10(2):53–65.
Shrivastava, S.K. and Wheater, S.M. 1998. Architectural support for dynamic reconfiguration of distributed work-

flow applications. IEE Proc-Software, 145(5):155–162.
Stevens, J.S. and Johnson, G.L.R. 2000. Updating the SOHO AOCS ACU On-board software. In Proceedings of

Data Systems In Aerospace (DASIA), Montreal, Canada, pp. 347–352.
Stewart, D., Volpe, R., and Khosla, P. 1997. Design of dynamically reconfigurable real-time software using port-

based objects. IEEE Transactions on Software Engineering, 23(12):759–776.
Tau. 2003. Available at: http://www.telelogic.com
Theelen, B.D., van der Putten, P.H.A., and Voeten, J.P.M. 2002. Using the SHE method for UML-based performance

modeling. In Proceeding of the Forum on Specification and Design Languages FDL’02, Marseille, France.
Traoré, I. 2000. An outline of PVS semantics for UML statecharts. Journal of Universal Computer Science,

6(11):1088–1108.
Wittig, M. 2000. Satellite onboard processing for multimedia applications. IEEE Communications Magazine,

134–140.
Yan, D.K.Y. and Chen, X. 2001. Resource management in software-programmable router operating systems. IEEE

Journal on Selected Areas in Communications, 19(3):488–500.

