22,554 research outputs found

    Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions

    Full text link
    The production of heavy nuclides from the spallation-evaporation reaction of 238U induced by 1 GeV protons was studied in inverse kinematics. The evaporation residues from tungsten to uranium were identified in-flight in mass and atomic number. Their production cross-sections and their momentum distributions were determined. The data are compared with empirical systematics. A comparison with previous results from the spallation of 208Pb and 197Au reveals the strong influence of fission in the spallation of 238U.Comment: 20 pages, 10 figures, background information at http://www-wnt.gsi.de/kschmidt

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    On the role of secondary pions in spallation targets

    Full text link
    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the n_TOF lead spallation target, irradiated with 20 GeV/c protons, neutral pions are involved in the production of ~90% of the high-energy photons; charged pions participate in ~40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets.Comment: 17 pages, 14 figures. Submitted to Eur. Phys. J.

    Low energy neutrino scattering measurements at future Spallation Source facilities

    Full text link
    In the future several Spallation Source facilities will be available worldwide. Spallation Sources produce large amount of neutrinos from decay-at-rest muons and thus can be well adapted to accommodate state-of-the-art neutrino experiments. In this paper low energy neutrino scattering experiments that can be performed at such facilities are reviewed. Estimation of expected event rates are given for several nuclei, electrons and protons at a detector located close to the source. A neutrino program at Spallation Sources comprises neutrino-nucleus cross section measurements relevant for neutrino and core-collapse supernova physics, electroweak tests and lepton-flavor violation searches.Comment: 12 pages, 4 figures, 5 table

    Big-bang nucleosynthesis with a long-lived charged massive particle including 4^4He spallation processes

    Full text link
    We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.Comment: 12 pages, 4 figures, 1 table, references added, all figures correcte

    Cosmic Ray Spallation in Radio-Quiet Active Galactic Nuclei: A Case Study of NGC 4051

    Full text link
    We investigate conditions for and consequences of spallation in radio-quiet Seyfert galaxies. The work is motivated by the recent discovery of significant line emission at 5.44 keV in Suzaku data from NGC 4051. The energy of the new line suggests an identification as Cr I Ka emission, however the line is much stronger than would be expected from material with cosmic abundances, leading to a suggestion of enhancement owing to nuclear spallation of Fe by low energy cosmic rays from the active nucleus. We find that the highest abundance enhancements are likely to take place in gas out of the plane of the accretion disk and that timescales for spallation could be as short as a few years. The suggestion of a strong nuclear flux of cosmic rays in a radio-quiet Seyfert galaxy is of particular interest in light of the recent suggestion from Pierre Auger Observatory data that ultra-high-energy cosmic rays may originate in such sources.Comment: 14 pages, 1 figure. Accepted for publication in The Astrophysical Journa
    corecore