1,445 research outputs found

    Discrete time domain small-signal modeling of full-bridge phase-shifted series resonant converter

    Get PDF

    Small signal modeling and analysis of microgrid systems

    Get PDF
    This dissertation focuses on small-signal modeling and analysis of inverter based microgrid systems. The proposed microgrid consists of two microsources placed on two different buses. The buses are connected using a distribution feeder with some impedance. The proposed microgrid can operate with the grid support, or without the grid support. When operated without the grid support, the standalone system’s microsources participate in controlling the system voltage and frequency. For a non-inertia source, such as the inverter, the load perturbations play an important role in system dynamics. In paper-I, such complex system was studied. In the grid-tied mode, the microsources share the load demand with other sources that are present in the main grid. The control algorithm for such system is much simpler than that of the islanded system. However, when aggregated in multi-bus system, prohibitively higher order state-space models are formed. In paper-II, a reduced order modeling of such systems was considered. Singular perturbation method was applied to identify the two time-scale property of the system. In paper-III, a similar approach was taken to develop a reduced order model of the islanded system that was developed in paper-I. Application of such reduced order models were illustrated by using them to simulate a modified IEEE-37 bus microgrid system. The islanded microgrids system’s stability is characterized in paper-IV by the Markov Jump Linear System Analysis. Conservative bounds on the expected value of the state were determined from a combination of the Markov process parameters, the dynamics of each linear system, and the magnitude of the impulses. The conclusions were verified with the simulation results. --Abstract, page iii

    Small-Signal Modeling of Mutual Saturation in Induction Machines

    Get PDF
    A small-signal model is derived for saturated induction machines. Inductances are allowed to saturate as a function of their own current (or flux), and the mutual saturation effect originating mainly from skewed or closed rotor slots is also included in the model. The model fulfills the reciprocity conditions, and it can be applied to parameter identification and to the analysis and development of flux angle estimation methods. As application examples, the parameters of a 2.2-kW induction machine were identified using the data obtained from time-stepping finite-element analysis and locked-rotor measurements. The proposed model fits well to the data, and the fitted parameters are physically reasonable.Peer reviewe

    Low-Frequency Small-Signal Modeling of Interconnected AC Microgrids

    Get PDF

    Small-signal modeling and optimal operating condition of magnetostrictive energy harvester

    Get PDF
    open5sìMagnetostrictive energy harvesting has drawn attention in recent years for its high energy conversion efficiency and environmental durability. Magnetostrictive harvesters are mainly composed of giant magnetostrictive material, a magnetic circuit, and an electric circuit, which involves complex mechanical-electromagnetic coupled problems. Therefore, in many studies, the analysis of such device was implemented by finite element method. However, numerical calculation generally requires a great deal of time and does not provide adequate physical understanding of the effect of the design parameters on the harvester characteristics. In many previous studies, magnetostrictive harvesters have been operated under a small-signal vibration imposed over a constant prestress and magnetic bias. In such operating conditions, linearized small-signal models can be used to derive important analytical expressions for the harvester characteristics and their dependency on the design parameters. This paper presents the linearized modeling of a magnetostrictive energy harvester using linearized constitutive equations. The energy loss due to eddy currents is also considered for high-frequency application. The influence of parameter variation on the output power is investigated from the algebraically obtained output power, and the existence of an optimal value in resistance and capacitance of the electric circuit is discussed. These optimal design parameters are also presented in form of an algebraic solution. The obtained output power is finally proven to fit with experimental results when an appropriate permeability and magnetostrictive constant are given.openMizukawa, Yoshito; Ahmed, Umair; Zucca, Mauro; Blažević, David; Rasilo, PaavoMizukawa, Yoshito; Ahmed, Umair; Zucca, Mauro; Blažević, David; Rasilo, Paav

    TCAD Simulations and Small Signal Modeling of DMG AlGaN/GaN HFET

    Get PDF
    This article presents extraction of small signal model parameters and TCAD simulation of novel asymmetric field plated dual material gate AlGaN/GaN HFET first time. Small signal model is essential for design of LNA and microwave electronic circuit by using the proposed superior performance HFET structure. Superior performances of device are due to its dual material gate structure and field plate that can provide better electric field uniformity, suppression of short channel effects and improvement in carrier transport efficiency. In this article we used direct parameter extraction methodology in which S-parameters of device were measured using pinchoff cold FET biasing. The measured S-parameters are then transformed into Y-parameters to extract capacitive elements and then in to Z-parameters to extract series parasitic elements. Intrinsic parameters are extracted from Y-parameters after de-embedding all parasitic elements of devce. Microwave figure of merits and dc performance are also studied for proposed HFET. The important figure of merits of device reported in the paper include transconductance, drain conductance, current gain, transducer power gain, available power gain, maximum stable gain, maximum frequency of oscillation, cut-off frequency, stability factor and time delay. Reported results are validated with experimental and simulation results for consistency and accuracy

    Small-signal modeling of grid-supporting inverters in droop controlled microgrids

    Get PDF
    An approach to modeling externally controlled inverters in droop controlled microgrids is presented. A generic three-phase grid-tied inverter and control system model is derived in synchronous reference frame. The structure of this inverter is intended to be similar in composition to other three-phase inverters whose models and dynamics are well understood. This model is used as a starting point in the development of a more comprehensive model, which is capable of representing the coupling between complex power, bus voltage, and frequency that occurs in a microgrid. This new model is a combination of the generic inverter and an autonomous, grid-forming inverter with a local load. The accuracy of the new model is verified through comparisons of small-signal dynamic predictions, simulations, and experimental results from a microgrid testbed. The proposed procedure of modifying an existing small-signal model for use in a microgrid system retains the information of the original model while successfully enabling the prediction of dynamic interactions with other generating units in the microgrid. The process is scalable for any number of inverters at the same point of connection, allowing accurate predictions of full system dynamics during distributed control actions, such as black start or grid-resynchronization. Traditional linear control techniques may be used to improve the performance and stability of the microgrid system. This is a demonstrated in an analysis of the system\u27s eigenvalues. Drawing from the insights provided by this analysis, hardware and control parameters are selected to improve the response of the generic inverter --Abstract, page iii

    Small Signal Modeling and Design Analysis for Boost Converter with Valley V2 Control

    Get PDF
    corecore