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ABSTRACT

This dissertation focuses on small-signal modeling and analysis of inverter based

microgrid systems. The proposed microgrid consists of two microsources placed on two

different buses. The buses are connected using a distribution feeder with some impedance.

The proposed microgrid can operate with the grid support, or without the grid support.

When operated without the grid support, the standalone system’s microsources participate

in controlling the system voltage and frequency. For a non-inertia source, such as the

inverter, the load perturbations play an important role in system dynamics. In paper-I, such

complex system was studied.

In the grid-tied mode, the microsources share the load demand with other sources

that are present in the main grid. The control algorithm for such system is much simpler

than that of the islanded system. However, when aggregated in multi-bus system, pro-

hibitively higher order state-space models are formed. In paper-II, a reduced order model-

ing of such systems was considered. Singular perturbation method was applied to identify

the two time-scale property of the system. In paper-III, a similar approach was taken to

develop a reduced order model of the islanded system that was developed in paper-I. Appli-

cation of such reduced order models were illustrated by using them to simulate a modified

IEEE-37 bus microgrid system.

The islanded microgrids system’s stability is characterized in paper-IV by the Markov

Jump Linear System Analysis. Conservative bounds on the expected value of the state were

determined from a combination of the Markov process parameters, the dynamics of each

linear system, and the magnitude of the impulses. The conclusions were verified with the

simulation results.
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SECTION

1. INTRODUCTION

1.1. MOTIVATION AND OUTCOME OF THE RESEARCH

Distributed energy sources (DERs) such as solar, wind, fuel cells etc. are now

considered to be viable alternatives for conventional fossil fuel based generation systems

to address the environmental concerns. As the national grid gets ready for integrating the

renewable energy sources as a part of modernizing the current grid architecture, the need

for microgrids has never been more obvious. Microgrids can facilitate the grouping of

these sources into smaller subsets which are easier to manage and operate. As an added

advantage, the system reliability may be improved by islanding and operating these smaller

subsets of the power system.

Although the autonomous grids have been around for many decades, the concept of

a microgrid [1] is still new and requires some attention before they could be implemented

successfully in the power grid. Olivares et al. has described microgrid as a cluster of loads

with DER units and Energy Storage Systems (ESS) connected to the distribution grid at the

point of common coupling (PCC) [2]. The microgrids became more popular in the recent

past when the use of small-scale renewable energy sources, such as solar-Photovoltaic (PV)

and wind power, increased in the main grid [3]. The number of microgrids has increased

over the last 10 years not only in Europe but also in US. A research report shows that, there

are currently 219 operational, under construction, or planned microgrid projects in US [4].

A microgrid can operate in grid-tied mode or in islanded mode. An existence of

the PCC terminal in the microgrid network means that the microgrid supports both modes

of operation. When transitioning from islanded to grid-tied operation, the coordination
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between the microsource and ESS generation, the PCC breaker and the power grid is

done using the central controllers [5]. However, a lower level microsource controller is

responsible for the output power generation. In grid-tied mode, the microsource controller

controls the active and reactive power output, which is proportional to a reference. The

reference power could be determined by the central controller, the Maximum Power Point

Tracker (MPPT) or by the user. In most cases, the DER does not participate in supplying

the reactive power to the main grid. However, at times there might be a requirement of

bus voltage regulation in the events of intermittent faults. In an islanded mode of opera-

tion, the microsource controller’s primary objectives are to maintain the standard voltage

and frequency level throughout the system. In the process, the DERs participate in sys-

tem’s load sharing. Several power-sharing control algorithms such as droop control, model

predictive control, and multi-agent based control exists. However, the droop based DER

operation is the most simple and well-understood method that is studied in several scholarly

articles [6, 7, 8, 9, 10].

In the power systems network, generating units such as synchronous machines have

been used for over a century as a reliable means of power-supply. However, with the

continuous growth in interest in renewable energy sources, and modernization of the current

grid structure, power electronics based generating units are not too far from dominating the

generating stations. These power electronics converters lack inertia. Under constant load

perturbation, these low inertia units can result in frequency deviations and affect the overall

system’s stability [2].

Development of the mathematical models of microgrids is required to understand

the system characteristics e.g. dynamic response analysis, stability analysis, modeling the

parameter uncertainty, effect of the load perturbation etc. Mathematical models allow en-

gineers to determine the eigenvalues of the system. The system states associated with the

eigenvalues with dominant dynamic characteristics can be isolated using the participation

factor analysis. The model gives insight to the individual system parameters governing the
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system response. Another important aspect of the mathematical model is, these models

can be used to perform the power flow analysis of the islanded microgrid system [11]. The

conventional power flow algorithms fail to converge in a case like this due to the absence

of the slack bus.

The primary motivation behind this work is to model the microgrid systems and

address the inaccuracies that existed in the previous works in developing the models of the

inverter-based systems. The model presented in this dissertation is more accurate and suit-

able for industry applications. In developing the model, all the circuit parasitic elements are

considered. Models are developed for both the grid-tied and the islanded system. The con-

troller operations are investigated in the Matlab/Simulink platform and their mathematical

models are formulated in the time domain. To find the eigenvalues, the non-linear equa-

tions are linearized against a stable operating point. These linearized equations are used to

form the small-signal state space model of the system.

However, the mathematical model with higher accuracy tend to include all the par-

asitic elements of the circuit. Such model contains both the slow and fast dynamics. This

makes the system "stiff" and difficult to simulate. The mathematical model of a multibus

microgrid become much time-consuming when this stiff model is simulated. The literature

survey shows that, a very few work has been accomplished to reduce the order of the in-

verter based microgrids. An attempt has been made to address this issue in this dissertation.

A simulation based study on the reduced order small-signal model of dc microgrids

was presented in [12]. The model is inapplicable to an ac system, where the dynamics

of PLL is important in determining the system stability. In [13], an ac microgrid was

modeled with all the parasitic elements, which made the model difficult for simulation in a

multi-bus system. The proposed reduced order model in this paper alleviates this problem.

A simplified converter modeling for application in microgrid was discussed in [14]. The

model is applicable to peak current-mode control algorithm only. Also, the output coupling

filter, which is important for harmonics rejection, was ignored in the model.
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The microgrid model in [15] was used for dynamic stability analysis. The model

is unsuitable for a microgrid which is dominated by the inverter based DERs. In [16], a

reduced order mathematical model of the ac microgrid was presented based on the droop

control gains only. The voltage controllers were completely ignored assuming that they

have faster dynamics. For a stable operation of the DER, the inner loop is designed faster

than the outer loop. As a result, the voltage controller can not be ignored in reduced or-

der modeling, which is shown in this paper. Also, the model was claimed to be a lower

computational burden for simulation. However, no time comparison data was presented to

show the effectiveness of the reduced model. In this paper, a time comparison between the

full order model and the reduced order model of a multi-bus microgrid is presented. The

comparison shows that, the reduced order model is a lower computational burden for the

simulator.

A review of model order reduction methods was presented in [17]. The reduction

methods are divided into three types: Singular value decomposition (SVD) based meth-

ods, Krylov based methods, and iterative methods combining aspects from both SVD and

Krylov methods. Of these methods, the singular value decomposition method is the most

popular [18, 19]. In SVD, the system is first balanced based on the controllability and

observability grammians and then the determination of the number of important states is

made based on the Hankel singular values (HSV) [20]. However, this method works only

with the linearized model. Also, the system’s model order can not be reduced without

using the expensive grammian routines. The SVD methods are heavily dependent on the

input-output relationship of the system too. To overcome these challenges, the singular

perturbation method is considered for model order reduction in this work. The slow and

the fast system states are determined from the model parameters, which eliminates the need

for determining the controllability and the observability grammians.

The islanded system’s stability in light of the load perturbation becomes an impor-

tant issue as the DER inverters lack inertia. Literature review shows different techniques for
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determining the system’s stability criteria. A method for computing the small-signal sta-

bility boundaries for large scale power systems was presented in [21]. In [22], the dynamic

stability of the isolated power system was discussed. Synchronous machines were consid-

ered to model the system in those papers, which includes the rotor inertia. An impedance-

based stability analysis was done for the inverter based microgrids in [23, 24]. Only the

grid-tied converters were considered in those papers where the grid dynamics were ig-

nored by setting it as a constant voltage source. As a result, the impedance-based method

becomes difficult to apply in an islanded system. The stability of an isolated microgrid

system was evaluated in [25] using the Nu-gap method. The stability study considered

the load variation. The system was modeled assuming that the filter capacitor was lumped

with the load capacitance and the grid-side inductance was lumped together with the in-

verter side inductance. Instead of using the conventional small-signal models, microgrid

stability in the global/semi-global sense was discussed in [26] based on the polynomial

Lyapunov function. A two-point estimate based method for probabilistic analysis of the

small-signal stability of microgrid was discussed in [27]. However, the method was only

applicable to the grid-tied system. In this work, islanded microgrids are modeled as linear

switched systems, where the state jump influences in determining the stability of the over-

all system. The bounds on the state jumps are used as a measurable factor to determine

switched system’s stability. This bound was investigated using the Markov Jump Analysis.

1.2. CONTRIBUTION TO DATE

This dissertation reports modeling and analysis of a microgrid system operated in

two different modes: grid-tied and islanded. Mathematical models are developed for a

two bus microgrid system. These models are extended to a multi-bus system. The system

dynamics obtained from the simulation, and the mathematical models are verified against

the results obtained from the hardware setup. For accelerated simulation, the multi-bus
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microgrid is modeled using singular perturbation method. Reduced order models are im-

plemented in a modified IEEE-37 bus microgrid system. Islanded system’s stability is

investigated using the Markov Jump Analysis for Linear Systems.

In paper I, a two bus islanded microgrid system is modeled and analyzed. The

small-signal model is verified using hardware test-bed results. System’s oscillatory modes

are identified for future use in the reduced order models. In paper II, a grid-tied system is

modeled and then the order of the system is reduced using singular perturbation approach.

The accuracy of the model is verified using the results obtained from the experimental

testbed. The reduced model is used in an IEEE-37 bus microgrid system. In paper III, the

oscillatory modes obtained from paper 2 are divided into two groups: fast oscillatory and

slow oscillatory modes. Fast modes are discarded keeping only the slow eigenvalues of

the system using singular perturbation technique. A reduced order model of the islanded

microgrid system is found. An algorithm has been developed for model order reduction of

such systems. The performance of the proposed algorithm has been tested in an IEEE-37

bus microgrid system. In paper IV, the small-signal model obtained from paper I is used to

determine the bounds of the state jumps for stability analysis using Markov Jump Linear

System (MJLS) Analysis. A correspondence is established between an islanded microgrid

and an impulsive MJLS.
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PAPER

I. AN ACCURATE SMALL-SIGNAL MODEL OF INVERTER-DOMINATED
ISLANDED MICROGRIDS USING dq REFERENCE FRAME

Md. Rasheduzzaman, Jacob A. Mueller, and Jonathan W. Kimball

Department of Electrical and Computer Engineering

Missouri University of Science & Technology, Rolla, MO 65409

ABSTRACT— In islanded mode operation of a microgrid, a part of the distributed

network becomes electrically separated from the main grid, while loads are supported by

local sources. Such distributed energy sources (DERs) are typically power electronic based,

making the full system complex to study. A method for analyzing such a complicated sys-

tem is discussed in this paper. A microgrid system with two inverters working as DERs is

proposed. The controllers for the inverters are designed in the dq reference frame. Non-

linear equations are derived to reflect the system dynamics. These equations are linearized

around steady state operating points to develop a state-space model of the microgrid. An

averaged model is used in the derivation of the mathematical model, which results in a sim-

plified system of equations. An eigenvalue analysis is completed using the linearized model

to determine the small-signal stability of the system. A simulation of the proposed micro-

grid system consisting of two inverter based DERs, passive loads, and a distribution line

is performed. An experimental test bed is designed to investigate the system’s dynamics

during load perturbation. Results obtained from the simulation and hardware experiment

are compared to those predicted by the mathematical model in order to verify its accuracy.

Index Terms— Microgrid, small-signal model, reference frame, switched system
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1.1. INTRODUCTION

Significant efforts are underway to modernize the nation’s electric delivery net-

work. To accelerate progress, the Office of Electricity Delivery and Energy Reliability

(OE) of the U.S. Department of Energy (DOE), has established the Smart Grid R&D pro-

gram to provide research and financial assistance to certain projects related to distributed

energy sources (DERs). The OE is currently supporting nine projects with a total value

exceeding US$100 million. The goal of this program is to reduce the peak demand at the

distribution feeder level by 15% using DERs and microgrids [2]. Most DERs use power

electronics to process and interface energy to the grid. Furthermore, there is a constant

growth in the demand of power electronic components in the current power system [2].

Uses of these components are important considering the evolution of smart grid and ac-

dc microgrids and their interconnections. Advantages of DER based distribution systems

were mentioned in [3]. R.H. Lasseter proposed the concept of microgrid in [4], where he

defined a microgrid as a cluster of loads and microsources operated as a single controllable

system. He presented a method of sharing power during microgrid islanding operation as

well. Some of the technical challenges associated with the microgrid were discussed in [5].

Microgrid control strategies with single-master and multi-master operation were explained

in [6]. A more detailed control algorithm was presented for grid-connected and islanded

operation in [7]. The algorithms were implemented in a test bed and results were verified

for different control architectures. Apart from these control strategies, different types of

droop controllers have been used for power sharing during islanded operation of parallel

inverters [8, 9, 10, 11]. A control strategy for different distribution line impedances was

discussed in [12], and small-signal models were developed. Experimental results for dif-

ferent controller modes of operation were presented as well. An improved control method

for an isolated single-phase inverter was shown in [13]. Active and reactive power sharing

methods were explained with simulation results by T.L. Vandoorn et al. [14, 15].
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Small-signal modeling and steady-state analysis of an autonomous microgrid was

investigated in [9]. A mathematical model for the microgrid was developed. Small-signal

results were verified with a time domain simulation. Howerver, the dynamics of the phase

locked loop (PLL) were not discussed. A more detailed small-signal modeling was done

by F. Katiraei et al. [16], in which the autonomous system was built with both conventional

and electronically interfaced DERs to study the system’s stability and dynamic behavior.

Filter dynamics were ignored, though, which are an essential part of electronically inter-

faced DER systems. Although the filter components were included in [17] for modeling

an inverter, line parameters, an important aspect of the network, were ignored for parallel

inverter operation. A model including distribution line and filter dynamics was prepared in

[18], but only for a single inductor based filter, which does not always guarantee stability.

A method for modeling a microgrid with all network components was presented in [19], but

the procedure for obtaining the small-signal model was rather complex. Also, the damping

resistors of the LCL filters, which play an important role in ensuring stability of the system,

were ignored. Additionally, the model was designed such that a load current transient was

used as a perturbation input, while in practice a change in impedance was observed during

the transient analysis. This improper perturbation technique resulted in a significant reac-

tive power mismatch between the experimental results and the results obtained from the

model. Another small-signal model was derived in [20]. Again, the model did not include

the passive damping properties of the filter. Results from this model were not validated

against those from a hardware experiment. The models from the last two papers did not

include the dynamics of the PLL to verify system frequency during load perturbation. A

small-signal model was developed in [21] which included the PLL dynamics and a damp-

ing resistor in the filter. Once again, the model was not validated against the experimental

results. Also, the input matrix was defined in such a way that it did not reflect the load

perturbation in the system.
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As a solution to the issues associated with these prior models, a more accurate

small-signal model is presented in this paper. The development and verification of this

model is as follows. First, the proposed control structure is described using a block dia-

gram. A set of nonlinear equations is then derived from the controller blocks and the plant.

These equations are linearized around stable operating points. To simulate the effect of

the load perturbation, a switched system arrangement is implemented. Finally, the tran-

sient response predicted by the mathematical model is verified against both the simulation

and experimental results. The proposed model is intended to serve as a building block for

control of more complex systems of modern distributed generation sources.

1.2. OVERVIEW OF THE SYSTEM

The islanded microgrid under consideration is presented in Fig. 1.1. Each inverter

is connected to a respective bus through a filter. Variable passive loads connected to these

buses are considered as local loads. Depending on the status of the system, either grid-

connected or islanded, the switch at the point of common coupling (PCC) may connect

the system to the main grid. A distribution line with impedance ZL is used to couple the

inverter buses. While the proposed system can operate in either grid-connected mode or as

an autonomous system, only the autonomous operation will be considered in this paper.

ZL

Main

grid

DER1 DER2

Bus1 Bus2

PCC

Line

Load1 Load2

Microgrid

1 2

Figure 1.1. Proposed microgrid architecture
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In autonomous operation, the inverter is controlled using the droop control method.

An individual inverter control strategy is depicted in Fig. 1.2. The output of the inverter is

passed through an LCL filter to reject the high frequency switching noise. The filtered volt-

age and current measurements are then converted to dq axis components using a reference

frame transformation. The inverter’s output power is calculated based on these measure-

ments. The calculated power is passed through a low pass filter and sent to the droop

controllers. Droop controllers set voltage and frequency references based on the current

level of active and reactive power being generated. These voltage and frequency references

are then compared with the measured voltage and frequency.

The ‘error signal’ obtained by comparing the reference values and measured values

are passed through PI controllers to generate references for the current flowing through the

output filter inductor. These reference current signals are then compared with the corre-

sponding measured filter inductor currents, and are passed through another set of PI con-

trollers to produce voltage commands. These voltage values appear across the input of the

LCL filter. The coupling inductor of the filter is used to connect the inverter to the bus.

A resistor in series with the filter capacitor ensures the proper damping of the resonant

frequency associated with the output filter.

As mentioned before, a frequency measurement is needed for voltage controllers

to operate. The frequency of the system is measured by forcing the d axis component of

the voltage to zero in a dq based PLL. This PLL not only measures the frequency of the

system but also calculates the phase angle of the voltage. This angle is used to make all

the conversions between stationary and synchronous reference frames. All controllers and

filters are modeled in the individual reference frame local to each inverter as determined

by the phase angle from the PLL. The inverters’ dynamics are influenced by the output

filter, coupling inductor, average power calculation, PLL, droop controllers, and current

controllers. The overall system dynamics include those of each individual inverter, load,

and the distribution line between them.
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1.3. SYSTEM MODELING IN STATE-SPACE FORM

1.3.1. Nonlinear Equations of the Inverter Model. In this section, the controllers

shown as blocks in Fig. 1.2 are analyzed and expressed in terms of mathematical equations.

These equations are nonlinear and need to be linearized around an operating point to study

the system dynamics.

Average Power Calculation. The dq axis output voltage and current measure-

ments are used to calculate the instantaneous active power (p) and reactive power (q) gen-

erated by the inverter.

p =
3
2
(
vodiod + voqioq

)
(1.1)

q =
3
2
(
voqiod− vodioq

)
(1.2)

Instantaneous powers are then passed through low pass filters with the corner frequency ωc

to obtain the filtered output power.

P =
ωc

s+ωc
p⇒ Ṗ =−Pωc +1.5ωc

(
vodiod + voqioq

)
(1.3)

Q =
ωc

s+ωc
q⇒ Q̇ =−Qωc +1.5ωc

(
voqiod− vodioq

)
(1.4)

Droop Equations. In grid-connected mode, the inverter’s output voltage is set by

the grid voltage magnitude. The PLL ensures proper tracking of grid phase so that inverter

output remains synchronized to the grid. During islanded operation, the inverter does not

have these externally generated reference signals. As a result, the inverter must generate its

own frequency and voltage magnitude references using the droop equations. The references

are generated using conventional P−ω and Q−V droop equations. Fig. 1.3 shows the

characteristics of these droop curves.

ω
∗ = ωn−mP (1.5)
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

Figure 1.3. Droop characteristic curves

voq
∗ =Voq,n−nQ (1.6)

Phase Locked Loop (PLL). A PLL is required to measure the actual frequency

of the system. A dq based PLL was chosen [22, 23, 24]. The PLL input is the d axis

component of the voltage measured across the filter capacitor. Therefore, the phase is

locked such that vod = 0 (Fig. 1.4). Some researchers instead set the PLL to lock such that

voq, which would essentially swap d-axis quantities throughout the remainder of this work.

There are three states associated with this PLL architecture.

377



odv
0

kp,PLL

ki,PLL1/s 1/s
,

,

c PLL

c PLL
s



 ,od fv

Figure 1.4. PLL used for the DER

v̇od, f = ωc,PLLvod−ωc,PLLvod, f (1.7)

ϕ̇PLL =−vod, f (1.8)
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δ̇ = ωPLL (1.9)

ωPLL = 377− kp,PLLvod, f + ki,PLLϕPLL (1.10)

Voltage Controllers. The reference frequency and voltage magnitude generated

by the droop equations are used as set point values for the voltage controllers. Standard

PI controllers are used for this purpose, shown in Fig. 1.5. The process variables are the

angular frequency ω from the PLL and the measured q axis voltage (voq).

ωPLL ilq
*voq

*
ild

*

kpv,q

kiv,q1/s

kpv,d 

kiv,d1/s

ω* voq

Figure 1.5. Voltage controllers

ϕ̇d = ωPLL−ω
∗; ild∗ = kiv,dϕd + kpv,dϕ̇d (1.11)

ϕ̇q = voq
∗− voq; ilq∗ = kiv,qϕq + kpv,qϕ̇q (1.12)

Current Controllers. Another set of PI controllers are used for the current con-

trollers as shown in Fig. 1.6. These controllers take the difference between the commanded

filter inductor currents (ildq
∗), the measured filter inductor currents (ildq), and produce com-

manded voltage values (vidq
∗). The values of correspond to the inverter output voltages

before the LCL filter. Cross coupling component terms are eliminated in these controllers

as well.

γ̇d = ild∗− ild; vid
∗ =−ωnL f ilq + kic,dγd + kpc,d γ̇d (1.13)

γ̇q = ilq∗− ilq; viq
∗ = ωnL f ild + kic,qγq + kpc,qγ̇q (1.14)
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vid
*

ilq

viq
*

ild

ilq

ilq
*

ild

ild
* 1/s1/s

kpc,d

kic,d

-ωnLf 

kpc,q

kic,q

ωnLf 

Figure 1.6. Current controllers

1.3.2. LCL Filter. The filter used for a DER is shown in Fig. 1.7. Without any

major inaccuracies, we can assume that the commanded voltage (v∗idq) appears at the input

of the filter inductor i.e. v∗idq = vidq . This approach neglects only the losses in the IGBT

and diodes. The resistors rc and r f are the parasitic resistances of the inductors. A damping

resistor Rd is connected in series with the filter capacitor. The capacitor’s ESR is not

considered, as it can be lumped into Rd . The state equations governing the filter dynamics

are presented below.

vidq

iℓdq

Lf

Cf

Rd

rf vodq

iodq

vbdqLc rc

Figure 1.7. LCL filter for the DER

i̇ld =
1

L f

(
−r f ild + vid− vod

)
+ωPLLilq (1.15)

i̇lq =
1

L f

(
−r f ilq + viq− voq

)
−ωPLLild (1.16)

i̇od =
1
Lc

(−rciod + vod− vbd)+ωPLLioq (1.17)
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i̇oq =
1
Lc

(
−rcioq + voq− vbq

)
−ωPLLiod (1.18)

v̇od =
1

C f
(ild− iod)+ωPLLvoq +Rd(i̇ld− i̇od) (1.19)

v̇oq =
1

C f

(
ilq− ioq

)
−ωPLLvod +Rd(i̇lq− i̇oq) (1.20)

1.3.3. Equations for the Load. The loads for this system are chosen as combina-

tion of resistors and inductors (RL loads). A typical RL load connected to an inverter bus

is shown in Fig. 1.8. Line ‘a’ connected to the bus represents the base load and line ‘b’

works as a variable load for that bus. In order to check the system’s dynamic behavior, a

load perturbation is done on ‘b’. Line ‘b’ appears in parallel to ‘a’ when the breaker closes

the contact. State equations describing the load dynamics are given below.

Rload

Lload

a b

Rpert

Lpert 

vbDQ

iloadDQ

Figure 1.8. Load configuration

i̇loadD =
1

Lload
(−RloadiloadD + vbD)+ωPLLiloadQ (1.21)

i̇loadQ =
1

Lload

(
−RloadiloadQ + vbQ

)
−ωPLLiloadD (1.22)

1.3.4. Equations for the Distribution Line. Similar to loads, the distribution line

parameters consist of resistance and inductance. Resistor rline represents the copper loss

component of the line. Inductor Lline is considered as the lumped inductance resulting
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from long line cables. Assuming that the line is connected between i-th and j-th bus of the

system, the line dynamics are represented as follows.

i̇lineDi j =
1

Lline

(
−rlineilineD + vbD,i− vbD, j

)
+ωPLLilineQ (1.23)

i̇lineQi j =
1

Lline

(
−rlineilineQ + vbQ,i− vbQ, j

)
−ωPLLilineD (1.24)

The frequency is constant throughout the system, so the equations for the load and line

dynamics can use the term derived from the ωPLL of the first inverter. The variable subscript

with upper case DQ denotes measurements from the global reference frame. Since the

system does not have a fixed grid connected to it, the first inverter’s phase angle can be

arbitrarily set as the reference for the entire system. This results in a change in the reference

angle calculation when small-signal model’s matrices are derived. The new phase angle

derivations for DER1 and DER2 are given in (1.25) and (1.26), where ωPLL,1 and ωPLL,2

come from DER1 and DER2 respectively.

δ̇1 = ωPLL,1−ωPLL,1 = 0 (1.25)

δ̇2 = ωPLL,1−ωPLL,2 (1.26)

1.3.5. Linearized Model of the System. Each inverter system contains 15 states,

and each load and line model contain 2 states. A total of 36 states are contained in the full

vbDQ,i vbDQ,jrline
Lline

ilineDQij

Figure 1.9. Line configuration
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two inverter islanded microgrid system. The states are:

xinv1 = [δ1 P1 Q1 ϕd1 ϕq1 γd1 γq1 ild1 ilq1 vod1 voq1 iod1 ioq1 ϕPLL1

vod1, f ] (1.27)

xinv2 = [δ2 P2 Q2 ϕd2 ϕq2 γd2 γq2 ild2 ilq2 vod2 voq2 iod2 ioq2

ϕPLL2 vod2, f ] (1.28)

xload = [iloadD1 iloadQ1 iloadD2 iloadQ2] (1.29)

xline = [ilineD21 ilineQ21] (1.30)

The states of the system under consideration are then:

x = [xinv1 xinv2 xload xline]
T (1.31)

These nonlinear equations are linearized around stable operating points and a state-space

equation of the form (1.32) is generated using Matlab’s symbolic math toolbox.

˙̃x = Ax̃+Bũ (1.32)

Where the inputs are defined as:

u = [vbD1 vbQ1 vbD2 vbQ2]
T (1.33)

1.3.6. Virtual Resistor Method. When bus voltages were used as an input to the

system, as in previous microgrid models, effects of load perturbation could not be accu-

rately predicted. In practice, the only perturbation that occurs in the system comes from



22

the step change in load. A method is needed to include the terms relating to the bus voltages

in the system ‘A’ matrix. This effectively translates the inputs defined in (1.33) to states.

To do this, a virtual resistor with high resistance can be assumed connected at the inverter

bus as shown in Fig. 1.10. This resistor (rn) has a negligible impact on system dynamics.

Using KVL, the equations describing the bus voltage in terms of the inverter, load currents

and line currents can be expressed. This is shown in (1.34) and (1.35).

ioDQ,i

ilineDQ,i

iloadDQ,i

vbDQ,i

rn

Figure 1.10. Virtual resistor at a DER bus

vbD,i = rn
(
ioD,i + ilineD,i− iloadD,i

)
(1.34)

vbQ,i = rn
(
ioQ,i + ilindQ,i− iloadQ,i

)
(1.35)

1.3.7. Reference Frame Transformation. As previously discussed, inverter bus 1

serves as the system’s reference and consequently is labeled as the global reference frame.

Each inverter operates in its own local reference frame. The individual inverter state equa-

tions are derived in terms of their individual local reference frame. A transformation is

necessary to translate between values defined in the local reference frame to the global

reference frame. An application of this transformation is shown graphically in Fig. 1.11.

Again, the difference in subscript capitalization denotes whether the quantity is defined in

the local or global reference frame.
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vbdq

iodq

Inverter Bus

3ɸ Inverter

and 

LCL filter

vbDQ

Local to global

reference frame 

ioDQ

Global to local

reference frame 

To the rest

of the system

Figure 1.11. Reference frame transformation

 fD

fQ


global

=

 cosθ sinθ

−sinθ cosθ


 fd

fq


local

(1.36)

 fd

fq


local

=

cosθ −sinθ

sinθ cosθ


 fD

fQ


global

(1.37)

Where θ is the difference between the global reference phase and the local reference phase

as depicted in Fig. 1.12.

This transformation [25] is used to refer the virtual resistor equations that are de-

fined in the global reference frame to the local reference frame. The equations (1.36),

(1.37) and the reference frame transformations can then be linearized and included in the

symbolic ‘A’ matrix. A new state matrix, ‘Asys’, then describes the system in state space

form. The states of this new system are the same as those given in (1.31):

˙̃x = Asysx̃ (1.38)
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d1 = D

q2

q1 = Q

d2

1 0global  



2

Figure 1.12. Transformation angle

1.4. EVALUATION OF THE MATHEMATICAL MODEL

The autonomous system described by the matrix ‘Asys’ needs to be linearized around

stable operating points. There are two ways of finding these operating points. One method

is to set the nonlinear state equations to zero as (ẋ = 0). Another approach is to simulate

the averaged model in PLECS to determine numerical solutions to the nonlinear system

equations. Because both methods yielded same results, the simulation based method was

used for convenience.

As mentioned previously, loads are connected to inverter buses as in Fig. 1.8. Ini-

tially load ‘a’ at bus 1 and bus 2 is switched on. A set of operating points is determined for

this loading condition. These operating points are given in (1.39). A new set of operating

points is determined after applying ‘b’ parallel to the initial load at bus 1 to simulate a

load perturbation. Rload1, Lload1 and Rload2, Lload2 are the initial loads at bus 1 and bus 2,

respectively. Rpert1 and Lpert1 are the new loads added to bus 1. New operating points for

the equivalent load impedance seen at bus 1 are obtained. These operating points are given

in (1.40). The dynamic response when changing between these two operating points yields
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the mathematical model’s prediction for a load step change transient [26]. The controller

gains and system parameters are listed in Table 1.1 and Table 1.2.

Fig. 1.13 shows the small-signal model evaluation arrangement in Simulink. Matri-

ces ‘A1’ and ‘A2’ are obtained through linearization around stable operating points given

in (1.39) and (1.40). Operating points are arranged in the order given in (1.31).

ioq

 >= 0.5
1

s

A2* u

A1* u

X2'

X1'

d

P

Q

 

Figure 1.13. Small-signal simulation arrangement in Simulink

Table 1.1. Controller Gains

PI gains for Parameter Value

Voltage kpv,d , kpv,q 0.50

controllers kiv,d , kiv,q 25.0

Current kpc,d , kpc,q 1.00

controllers kic,d , kic,q 100

PLL kp,PLL 0.25

controller ki,PLL 2.00
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Table 1.2. System Parameters and Initial Conditions

Parameter Value Parameter Value

L f 4.20 mH r f 0.50 Ω

Lc 0.50 mH rc 0.09 Ω

C f 15 µ f Rd 2.025 Ω

ωc 50.26 rad/s ωn 377 rad/s

ωc,PLL 7853.98 rad/s ωPLL 377 rad/s

m 1/1000 rad/Ws n 1/1000 V/Var

rn 1000 Ω Voq,n 85.0 V

Rload1 25 Ω Lload1 15 mH

Rload2 25Ω Lload2 7.50 mH

Rpert1 25 Ω Lpert1 7.50 mH

rline 0.15 Ω Lline 0.40 mH

VbD1 0.60585 V VbQ1 84.516 V

VbD2 0.63937 V VbQ2 84.529 V

X1 =[0;418.18;76.104;0.0034259;0.13152;0.0014666;0.86569;0.1198;3.2871;

0.041403;84.923;0.59961;3.2813;−0.20887;0.042771;0.00038;415.95;70.12;

0.001539;0.13084;0.001221;0.86564;0.0719;3.2716;0.042439;84.929;0.55145;

3.2659;−0.20868;0.042;0.74987;3.2113;0.40117;3.3359;0.15028;−0.0699]T

(1.39)

X2 =[0;627.15;148.07;0.027375;0.19731;0.0035517;0.87317;0.6842;4.9328;

−0.0037896;84.835;1.1644;4.927;−0.3135;0.00253;−0.0036217;627.13;53.113;

−0.002506;0.19709;−0.0001836;0.87411;−0.06246;4.9273;0.0032628;84.959;

0.41577;4.9216;−0.31357;−0.00298;1.16;6.518;0.4117;3.33;0.0042;1.5911]T

(1.40)
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1.5. EXPERIMENT SETUP

In order to validate the results of the mathematical model, the dynamic response is

compared against those of a simulation and experiment in hardware. An averaged model

of the proposed system is simulated in PLECS. This average model is perturbed through a

load change in bus 1 as discussed in the previous sections. In hardware implementation, a

Texas Instruments TMS320F28335 digital signal processor was used to apply the control

system to a 10 kW inverter designed around an Infineon BSM30GP60 IGBT module. A dc

source was connected directly to the dc link and the three phase outputs were connected to

the loads. Space vector modulation (SVPWM) was used as the switching scheme at a fre-

quency of 10 kHz. The experimental results collected correspond to the actual values in the

DSP, which were logged in real time. This was accomplished through transmission of the

required values over serial connections to a host computer, as the internal storage capacity

of the DSP was not sufficient to save the large volumes of data generated by the logs. In the

same way as in the simulation, the system was perturbed by manually switching between

load configurations and logging the dynamic response. A diagram of the experiemntal setup

was provided in Fig. 1.1. Beacuse we are considering the islanded case, the switch shown

as the PCC to the main grid in 1.1 was open for the entire experiment. Fig. 1.14 shows a

partial photograph of the experimental setup, including sensors and circuit board, output

filter, and load configuration. Although, only one DER is presented here, both the invert-

ers had similar configuration. Each inverter had an individual DSP used for the controller

implementation.

LCL filters with damping resistors are used at the IGBT output terminals. The

impact of using an LCL filter in this kind of system is discussed in [27]. The filter was

designed such that the resonant frequency was greater than 10 times the line frequency and

less than half the switching frequency [27]. The resonant frequency of this wye-connected

LCL filter, ignoring parasitic resistances, was found to be 1.94 kHz using (1.41). The ratio
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(a) (b)

(c)

Figure 1.14. Partial photograph of the test bed

a. DER2 b. LCL filter c. Loads at bus 1
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of L f to Lc was adequate for improving the total harmonic distortion (THD) and providing

better bus voltage regulation.

fres ∼=
1

2π

√
L f +Lc

L f LcC f

∼= 1.944 kHz (1.41)

Passive damping using a damping resistor (Rd) in series with the filter capacitor was used to

suppress the resonance frequency of the LCL filter. The value of Rd was found using [29]:

Rd =
1

3ωresC f
= 1.8193 Ω (1.42)

A resistor of this value was unavailable during the time the test bed was built. As a result,

Rd with slightly higher value was used, as listed in the Table 1.2. Although the results were

obtained with a grid voltage of 60 VLN , the small-signal models are equally applicable to

120 VLN voltage levels commonly used at the distribution side of a power system.

1.6. RESULTS AND DISCUSSIONS

A comparison of the small-signal model prediction, simulation results, and exper-

imental results are shown below. Subscripts ’exp’ and ‘models’ on y-axis labels denote

whether the values were obtained from the experimental data or from the model data. The

load perturbation takes place at t = 1.885 s. When plotted on the same graph, results

from the averaged model simulation and from the mathematical model overlap, shown in

Fig. 1.15 and Fig. 1.16. This indicates that the results from the models are consistent.

The controller was designed such that vod is maintained at zero. This is shown in the d

axis voltage plot. From (1.1) and (1.2) it is clear that the dynamics of active and reactive

power, P and Q, are dependent on the dynamics of ioq and iod respectively, provided that

voq remains constant. This is shown graphically in Fig. 1.16 as well. In all of the graphs,

the transient response decays in 1 s, which is acceptable for a power system application.
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For all signals considered, the prediction of the mathematical model very closely resem-

bles that found in the simulation and the hardware experiment, both in terms of transient

and steady state response. In contrast to [19], the proposed small-signal model reaches

a proper steady state value after a load perturbation in the system. The frequency of the

system shows the actual variation during transient response, as opposed to the reference

values generated by the P−ω droop controller. High frequency switching ripple cannot be

completely avoided, and is visible in the experimental results for vod , iod , ild , ilq and ωpll .

Also, overshoots and undershoots of slightly larger magnitude were present in the voltage

graphs compared to that of the experimental results. Un-modeled breaker resistance in the

mathematical model is the reason behind these behaviours. In practice, the values of the
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Figure 1.15. Frequency of the system
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Figure 1.16. Varification of system dynamics with load perturbation

load resistors might vary slightly from the actual values, which could have some impact on

the system damping.

The eigenvalues for ‘A1’ are determined and listed in Table 1.3. The first four

eigenvalues’ real parts are much more negative (on the order of 108) compared to the rest

of the eigenvalues. These eigenvalues primarily correspond to the virtual resistor, rn. They



32

are not considered when eigenvalues are plotted in Fig. 1.17. The negative real part of the

eigenvalues obtained from ‘A1’ and ‘A2’ signifies the linearized system’s local stability.

According to Lyapunov’s second method for stability analysis, the system is asymptotically

stable in the small-signal sense. Although the sub-systems are exponentially stable, the

stability of the overall system cannot be guaranteed [30, 31]. This is because the switched

systems may have divergent trajectories for certain switch signals. However, these models

may be used for a future study of the switched system.
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Figure 1.17. Partial eigenvalue plot of A1

An eigenvalue analysis investigates the dynamic behavior of a power system under

different characteristic frequencies or ‘modes’. In a power system it is required that all

modes are properly damped to nullify the effect of oscillation due to perturbation in states.

A well damped system provides good stability. Eigenvalues presented in Table 1.3 show
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that there are 15 distinct oscillatory modes in the system. A participation factor analysis

was done to identify the states which are major participants in those modes. Participation

factors can be positive, zero, or negative. A positive participation factor associated with a

particular state means that state is contributing to the oscillation of the system. A negative

participation factor indicates a state that is dampening the system oscillation.

Table 1.3. Eigenvalues of A1

Index Real Im ξ 1 ωo
2 Mode Major

(1/s) (rad/s) (%) (Hz) participants

1,2 −7.10×108 ±376.57 100 1.13×108 1 ilineDQ

3,4 −2.09×108 ±376.58 100 3.34×108 2 iodq1, iodq2

5,6 −1951.65 ±10980.03 17.50 1774.92 3 voq1,voq2

7,8 −1781.19 ±10234.93 17.15 1653.42 4 vod1,vod2

9 −7981.28 0 100 1270.26

10 −7915.62 0 100 1259.81

11,12 −822.46 ±5415.18 15.02 871.74 5 voq1,voq2

13,14 −674.16 ±4643.15 14.37 746.73 6 vod1,vod2

15,16 −2889.85 ±351.71 99.27 463.33 7 iloadDQ1, iloadDQ2

17,18 −1500.35 ±336.76 97.57 244.73 8 iloadDQ1, iloadDQ2

19,20 −267.94 ±82.01 95.62 44.60 9 ildq1, ildq2

21,22 −69.76 ±21.47 95.58 11.62 10 γdq1,γdq2

27,28 −25.38 ±31.18 63.12 6.40 11 ϕq1,γq1,ϕq2,γq2

29,30 −6.16 ±22.90 25.97 3.77 12 ϕd1,γd1,ϕd2,γd2

34,35 −2.24 ±4.68 43.21 0.83 13 ϕdq1,ϕdq2

31,32 −10.65 ±8.14 79.45 2.13 14 δ2,ϕPLL1,ϕPLL2

33 −7.53 0 100 1.20

23,24 −50.25 ±0.02 100 8 15 P1,Q1,P2,Q2

25 −50.27 0 100 8

26 −50.27 0 100 8

36 0 0 ∞ 0

1Damping ratio
2Natural frequency
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The participation factor analysis shows that mode 1 and mode 2 are properly damped

in the system. However, modes 3,4,5, and 6 are lightly damped. The states in these modes

are more likely to make the system unstable during disturbances. Modes 10,11,12, and 13

are low frequency oscillatory and are largely influenced by the states related to the voltage

and current controllers. Among them, mode 12 is not well damped. This mode can be des-

ignated as the ‘problem mode’ for this system. Mode 14 is heavily participated in by the

phase angle of the second inverter. This is another low frequency oscillatory mode. This

mode is also influenced by the dynamics of the PLL, which help dampen the oscillation

generated by the phase angle. The states relating to the inverter output powers participate

in mode 15. The natural frequency of oscillation of this mode is 8 Hz or 50.26 rad/s. This

also happens to be the cut-off frequency of the low pass filter used during controller design.

From this analysis, modes 3,4,5, and 6 are at higher oscillatory frequencies and

they have lower damping ratios. The dq axis output voltages participate heavily in those

modes. Equations (1.19) and (1.20) show that the vodq dynamics are governed by the damp-

ing resistor, Rd , along with some other state variables. As a result, any change in Rd will

result a change in the output voltage dynamics as well. The initial value of the damping

resistor was chosen based on its ability to suppress the resonant frequency of the filter. A

higher damping resistor may be selected, but will contribute additional loss to the system.

The advantage of using a higher damping resistance is explained using Table 1.4, which

shows the system eigenvalues when a damping resistor of Rd = 10 Ω is used. Another

method to increase damping in the system is to include active damping techniques in con-

troller design. This method does not contribute loss to the system. Such controllers are

beyond the scope of this paper but discussed more elaborately in [32].

Table 1.4 shows that the higher damping resistance Rd increases the damping ratio

of modes 3,4,5, and 6. This improves the stability margin for the system. The low fre-

quency oscillatory modes are now the dominant dynamics of the system. A good controller

design for this system would achieve higher damping ratios for these modes such that they
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decay as quickly as possible after a disturbance. This analysis is important to identify the

states related to the low frequency oscillatory modes with lower damping ratios. During

model reduction procedures these modes must be retained.

Table 1.4. Eigenvalues of A1 With Rd = 10 Ω

Real Im ξ ωo

Index (1/s) (rad/s) (%) (Hz) Mode

1,2 −7.1×108 ±376.60 100 1.1×108 1

3,4 −2.1×108 ±376.63 100 3.4×108 2

5,6 −9270.13 ±6519.71 81.80 1803.74 3

7,8 −8366.74 ±6038.22 81.09 1642.17 4

9 −7767.72 0 100 1236.27

10 −7783.94 0 100 1238.85

11,12 −2617.87 ±4785.71 48 868.18 5

13,14 −2070.05 ±4221.23 44.03 748.26 6

15,16 −2926.93 ±365.68 99.23 469.46 7

17,18 −1502.25 ±338.92 97.55 245.10 8

19,20 −267.94 ±82.04 95.62 44.60 9

21,22 −69.76 ±21.48 95.57 11.62 10

27,28 −25.38 ±31.18 63.12 6.40 11

29,30 −6.16 ±22.90 25.97 3.77 12

34,35 −2.24 ±4.68 43.21 0.83 13

31,32 −10.65 ±8.14 79.45 2.13 14

33 −7.53 0 100 1.20

23,24 −50.25 ±0.02 100 8 15

25 −50.27 0 100 8

26 −50.27 0 100 8

36 0 0 ∞ 0
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A sparsity pattern of ‘A1’ is depicted in Fig. 1.18. The pattern shows that there

are six regions in the matrix where the non-zero elements are distributed. Regions 1 and

3 are formed by DER1 and regions and 2,4, and 5 are formed by DER2. Regions 3 and

4 are generated by the inclusion of the virtual resistor, rn, in the respective inverter buses.

These regions also include rn’s interaction with the damping resistors and the coupling

inductors. Region 5 is formed based on (1.26), where the first inverter’s phase angle was

set as the reference angle for the second inverter. Region 6 is formed by the loads and the

distribution line. If another inverter is added to this system then the new sparsity matrix

will have additional patterns identical to those in regions 2,4, and 5. These regions will be

located on the diagonal of the matrix following the second inverter’s sparsity pattern.

Figure 1.18. Sparsity pattern of A1
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1.7. CONCLUSION

This work presents an accurate small-signal model of a multiple inverter microgrid

system operating in islanded mode. The model is based on the nonlinear equations that

describe system dynamics. These nonlinear equations is then linearized around stable op-

erating points to develop the small-signal model. Load perturbation is done to study the

system dynamics. The accuracy of the model is assessed through comparison to simulation

and experimental results. An eigenvalue analysis is done using the small-signal model to

determine the stability of the system. Low and high frequency oscillatory modes are iden-

tified from the eigenvalue analysis. A participation factor analysis is included to identify

the states contributing to the different oscillatory modes. It is found that some of these os-

cillatory modes can be controlled using proper damping resistors. A sparsity pattern of the

system is investigated. The most important contribution of this paper is the proposed model

of an islanded microgrid and its ability to accurately predict the dynamic response of the

system. It is possible that similar power system networks could be accurately developed as

switched autonomous systems. Future work for this project will include determination and

application of a proper model reduction technique to reduce the fast decaying states. Also,

system modeling with capacitive and nonlinar load are considered as separate research ob-

jectives.
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ABSTRACT— The integration of renewable energy sources as a means of power

generation will result in an increase in the number of grid-tied inverters. Linear, small-

signal models of these inverters and their controllers are required in order to perform power

system stability and eigenvalue analyses. State-space models of such sources, when aggre-

gated in multi-bus systems tend to be of prohibitively high order, thus need to be reduced for

faster calculation of the dominant eigenvalues and simplified determination of the important

dynamics. The objective of this study was to develop a reduced order small-signal model

of a microgrid system capable of operating both in the grid-tied and islanded conditions.

Part-I of the paper discussed the grid-tied microgrid, and part-II of the paper discussed

the islanded operation of the microgrid system. The nonlinear equations of the proposed

system were derived in the dq reference frame and then linearized around stable operating

points to construct a small-signal model. The large order state matrix was then reduced

using the singular perturbation technique. The first part of the paper presents the model-

ing and reduction of the grid-tied inverters in a microgrid. Step responses of the model

were compared to the experimental results from a hardware test to assess their accuracy

and similarity to the full order system. The proposed reduced order model was applied to a

modified IEEE-37 bus grid-tied microgrid system.

Index Terms— Microgrid modeling, singular perturbation, grid-tied inverter, volt-

age source inverter.
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2.1. INTRODUCTION

Integration of the renewable energy sources to the distribution grid has increased

over the years. Unlike the conventional synchronous generators, these distributed energy

resources (DERs) are inertia-less. From a power systems point of view, use of these inertia-

less sources makes the time domain simulations of the distribution system very interesting

during both transient response and fault analysis. The DER converter uses the modern con-

trol algorithm and controller design approach [1] for stable operation in grid-tied mode as

well as in islanded mode of operation. The concept of a microgrid is now well-established

as a step towards modernizing the nation’s electric delivery network to smart-grid using

DERs [2]. Microgrids supply power to local loads with or without the grid support to en-

sure energy security [3], [4]. As the concept of the microgrid system is getting popular

among the researchers, the reduced order modeling of such systems is still emerging.

In this study, operation of a grid-connected DER and its controllers are discussed.

The power processing unit is a voltage source inverter (VSI). The controllers for the VSI

are developed in the synchronous reference frame [5]. The 15th order mathematical model

of the VSI, consisting of the controllers and the LCL filter, are developed to facilitate

the dynamics analysis and the eigenvalue studies. The IGBT’s dynamic response was ap-

proximated using a controlled voltage source, which eliminated the need of including the

parasitic elements in the state equations. However, the time domain analysis of a microgrid

system with such numerous DERs, each having 15 states, is still time-consuming and a

computational burden. As a result, the necessity of the reduced order modeling of these

grid-tied inverters has never been more obvious.

The use of the reduced order grid-tied inverter model is suggested for dynamic

response analysis during the black-start of the decentralized islanded microgrid. During

the black-start procedure, the microgrid is first energized using a synchronous generator or

a master DER which sets the voltage and frequency reference for the system. After that,



43

slave DERs are connected to the system one-by-one using the grid-connected controllers

before they switch to droop controlled mode [6, 7, 8, 9]. The proposed reduced order model

is useful not only for the stability analysis of inverter based generator emulator in test-bed

for power systems [10] but also for transient stability analysis in a microgrid system [11].

Similarly, the wind turbine’s grid side converter could be modeled using the reduced order

models to simulate the impact of wind farm’s installations in utility grid [12]. In addition,

development of common quadratic Lyapunov function becomes easier by using the reduced

order state matrices linearized around different operating points.

Another important use of this reduced order model includes the study of the system

stability using Markov Jump Linear System (MJLS) [20] analysis. The microgrid’s tran-

sition from grid-tied to islanded mode results in a change in the controller operation mode.

Stability of such system could be characterized using the switched system analyses, where

the system jumps from one state space model to another. An example of such system is

presented in the second part of this work.

Model order reduction techniques based on the behavior of coherent groups of gen-

erators were used to study system dynamics in large-disturbance stability analyses [14, 15,

16, 17]. Another type of model order reduction method based on the state variable group-

ing and eigenvalue grouping was introduced in [18]. This technique ignored states with

large time constants associated with the inertia of the synchronous generators and did not

consider the input-output dynamics of the full model [19].

Often equations with larger time constants were ignored in the transient analysis

as the information they carry can be neglected. These techniques are not applicable for

the proposed inertia-less inverter system. Moreover, the plant model is nothing but the

LCL filter at the inverter output. This study shows that the LCL filter contributed to the

less important dynamics compared to the other states such as the voltage and the current

controllers. This is opposite to [20] where the output filter consists of only an inductor

and the controller dynamics are ignored while reducing the order of the model. However, a
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more realistic model of the microgrid inverter includes an LCL filter instead of using only

an L (inductor type) filter.

Construction of a reduced order model of the proposed system by ignoring the states

from the LCL filter would result in erroneous output when simulated. As a result, a full

order model is developed considering all the states present in the grid-tied inverter system

and then the model is reduced using well-known singular perturbation technique. The

proposed reduced order grid-tied inverter model is verified using the experimental results

obtained from the laboratory test bed. Once verified, the proposed model becomes useful

for application in a larger system such as in IEEE-37 node distribution test feeder.

The rest of this paper, which is Part-I, is ordered as follows: section II presents a

brief background on the singular perturbation technique, section III contains a derivation

of a linearized small-signal model of a grid-tied inverter, and section IV demonstrates the

model order reduction technique. Section V presents the experimental test-bed and section

VI contains the results obtained from the reduced order model of the grid-tied inverter

and the experimental test bed. Part-II of the paper contains reduced order modeling of the

islanded microgrid system. Verification of the microgrid dynamics during islanded mode

of operation and during grid-tied to islanded mode transition are presented in the second

part of the paper.

2.2. PRELIMINARIES

In a grid-tied microgrid network, all the bus voltages and the system frequency

are maintained by the stiff main grid. As a result, the same model that is developed for

a particular grid-tied inverter could be applied to the rest of the inverters in a microgrid

system. The system under consideration is depicted in Fig. 2.1.

The DER in question consists of a three-phase VSI and its controllers. In a practical

system, this DER could be replaced with the renewable energy inverters such as the DC-AC
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side of the wind firm’s power converter or the photo-voltaic energy converter. In a typical

microgrid system numerous DERs could be found that supply power to the local loads in

coordination with the main grid. To study the dynamics of a microgrid, such large scale

systems are needed to be modeled and analyzed.

Large scale systems are a computational burden because of the storage capacity

and computational speed they require, as well as accuracy complications resulting from the

likelihood of an ill-conditioned matrix [21]. According to the parsimony principle, the best

model of a system is defined as “the one that accurately represents a transfer function with a

minimum number of parameters” [22]. A model order reduction (MOR) algorithm provides

a tool to replace the original system with one of a smaller dimension. The guidelines for

model order reduction are discussed in [21, 23, 24].

The non-linear equations that capture the system dynamics are expressed in terms

of the slow dynamic variables (x) and the fast dynamic variables (z). With the pres-

ence of the system input variable vector u, and the small model parameter ε , where ε =

Main

grid

DER1

Bus1

PCC

Load1

1

Figure 2.1. A grid connected DER in a microgrid system
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diag{ε1,ε2, ...,εm}, the slow subsystem and the fast subsystem are presented as:

ẋ(t) = f (x,z,u, t,ε) (2.1a)

ε ż(t) = g(x,z,u, t,ε) (2.1b)

The small–signal model of the system is then:

ẋ = A11x+A12z+B1u (2.2a)

ε ż = A21x+A22z+B2u (2.2b)

y = [C1 C2][x z]T +Du (2.2c)

Here, the system state matrix is A =

A11 A12

A21 A22

 ∈ ℜn×n, the input matrix is B =

B1

B2


∈ ℜn×m and the output matrix is C =

[
C1 C2

]
∈ ℜp×n. The feed-through matrix is D ∈

ℜp×m. The transfer function of the original system is:

G(s) =C(sI−A)−1B+D =

A B

C D

 (2.3)

The expected rth order reduced order system (r < n) is then:

Gr (s) =Cr(sI−Ar)
−1Br +Dr =

Ar Br

Cr Dr

 (2.4)

The interaction of fast and slow phenomena in high-order systems results in ’stiff’

numerical problems which require expensive integration routines. The singular perturba-

tion approach alleviates both dimensionality and stiffness difficulties [25]. It lowers the
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model order by first neglecting the ‘fast’ phenomena. It then improves the approximation

by reducing their effect as ‘boundary layer’ corrections calculated in separate time scales.

Singular perturbation technique provides a means for justifying the elimination of

fast dynamic states without losing the physical nature of the states. A very small perturba-

tion parameter ε , (0 < ε << 1), is associated with the fast states, signifying the fact that

their elimination has little effect on the dynamics.

In the singular perturbation technique, instead of discarding the less important states

entirely in the reduced model, residues from the less important states are substituted in the

important states. This substitution results in a better approximation at steady-state, meaning

the dc gain of the reduced order model is approximately the same as that of the full order

system.

As ε → 0 the quasy-steady-state (QSS) solution obatined from (2.2b) is:

z =−A−1
22 A21x−A−1

22 B2u (2.5)

Substituting z in (2.2a) provides us with the reduced order model:

Ar = A11−A12A−1
22 A21; Br = B1−A12A−1

22 B2 (2.6a)

Cr =C1−C2A−1
22 A21; Dr = D−C2A−1

22 B2 (2.6b)

Thus, the new reduced order system is given by (2.4). The modification of the feed-through

matrix to Dr ensures that the gain of the reduced system matches the gain of the high order

system at low frequency [26].

2.3. SMALL-SIGNAL MODEL OF THE GRID-TIED INVERTER

The DER in Fig. 2.2 consists of a synchronous reference frame based three-phase

inverter with LCL filter connected to the distribution grid at the inverter bus. The inputs to
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the system are the commanded active and reactive power, P* and Q*. The control architec-

ture has an outer power control loop and an inner current control loop. A phase-locked loop

(PLL) ensures tracking of the grid voltages’ phase. The power control loop compares the

commanded active and reactive power to the calculated active and reactive power, P and Q.

The error signals derived from this comparison are used as an input to proportional-integral

(PI) controllers whose outputs are current references ild* and ilq*. The current controller

compares the measured filter inductor currents ild and ilq to the commanded currents and

provides commanded output voltages vid
* and viq

* using another set of PI controller. This

loop removes the cross-coupling terms caused by the reference frame transformation. Com-

manded voltages are passed through a qd0 to abc transformation block and then through the

space vector modulation (SVPWM) to generate the appropriate switching sequence. The

reference frame transformations use a reference phase angle δ calculated by the PLL. The

PLL used in the system is a conventional synchronous reference frame PLL, which drives

the d-axis voltage component to 0 [27]. By adding a low-pass filter to the PI controller of

the PLL, much of the high-frequency ripple in the d-axis voltage is eliminated.

2.3.1. Nonlinear Equations of the Inverter Model. In this section, controllers

shown as blocks in Fig. 2.2 are analyzed and their dynamics are expressed using equations.

Although similar controllers were used by different authors in [28], [29] and [30], the

controller dynamic equations are presented here for better clarity and understanding of the

two time-scale property of the system.

Average Power Calculation. The dq axis output voltage and current measure-

ments are used to calculate the instantaneous active and reactive power generated by the

inverter:

p =
3
2
(
vodiod + voqioq

)
; q =

3
2
(
voqiod− vodioq

)
(2.7)
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Figure 2.2. Proposed DER and the controller block diagram
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Instantaneous powers are then passed through low pass filters with corner frequency

ωc to obtain the average output power.

P =
ωc

ωc + s
p⇒ Ṗ =−Pωc +1.5ωc

(
vodiod + voqioq

)
(2.8)

Q =
ωc

ωc + s
q⇒ Q̇ =−Qωc +1.5ωc

(
voqiod− vodioq

)
(2.9)

Phase Locked Loop (PLL). The PLL presented in this paper is the same as that

one presented in [31]. There are three states governing PLL dynamics.

v̇od, f = ωc,PLLvod−ωc,PLLvod, f (2.10)

ϕ̇PLL =−vod, f (2.11)

δ̇ = ωPLL (2.12)

ωPLL = 377− kp,PLLvod, f + ki,PLLϕPLL (2.13)

Power Controller. Two PI controllers (Fig. 2.3) are used in the power controller

block. The set-points are the commanded active and reactive powers.

P* 

P

ilq*

Q

Q*
ild*

kp,pq

ki,pq1/s

kp,pq

ki,pq1/s

Figure 2.3. Power controllers

ϕ̇P = P∗−P; ilq∗ = ki,pqϕp + kp,pqϕ̇P (2.14)
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ϕ̇Q = Q∗−Q; ild∗ = ki,pqϕQ + kp,pqϕ̇Q (2.15)

Current Controllers. The current controllers consist of another set of PI con-

trollers [31].

γ̇d = ild∗− ild; vid
∗ =−ωnL f ilq + kicγd + kpcγ̇d (2.16)

γ̇q = ilq∗− ilq; viq
∗ = ωnL f ild + kicγq + kpcγ̇q (2.17)

LC Filter and Coupling Inductor. The state equations governing the filter dy-

namics presented in [31] are:

i̇ld =
1

L f

(
−r f ild + vid− vod

)
+ωnilq (2.18)

i̇lq =
1

L f

(
−r f ilq + viq− voq

)
−ωnild (2.19)

i̇od =
1
Lc

(−rciod + vod− vbd)+ωnioq (2.20)

i̇oq =
1
Lc

(
−rcioq + voq− vbq

)
−ωniod (2.21)

v̇od =
1

C f
(ild− iod)+ωnvoq +Rd(i̇ld− i̇od) (2.22)

v̇oq =
1

C f

(
ilq− ioq

)
−ωnvod +Rd(i̇lq− i̇oq) (2.23)

Reference Frame Transformation. The DER state equations are derived in terms

of the local reference frame. The main grid is assumed to be in the global reference frame.

A transformation is necessary to translate into values defined in the local reference frame

to the global reference frame. An application of this transformation is shown graphically in

Fig. 2.4. The difference in subscript capitalization denotes whether the quantity is defined

in the local or global reference frame.
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 fD

fQ


global

=

 cosθ sinθ

−sinθ cosθ


 fd

fq


local

(2.24)

 fd

fq


local

=

cosθ −sinθ

sinθ cosθ


 fD

fQ


global

(2.25)

Where θ is the difference between the global reference phase and the local reference phase

as depicted in Fig. 2.5.

vbdq

iodq

Inverter Bus

3ɸ Inverter

and 

LCL filter

vbDQ

Local to global

reference frame 

ioDQ

Global to local

reference frame 

To the rest

of the system

Figure 2.4. Reference frame transformation

D

q1

Q

d1

0global 



Figure 2.5. Transformation angle
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2.3.2. Linearized Model . The proposed system has 15 states that describe the

system dynamics:

xsys =[P Q vod, f ϕPLL δ ϕP ϕQ γd γq

ild ilq iod ioq vod voq]
T

(2.26)

Table 2.1 shows the controller gains used, and Table 2.2 shows the other parameters needed

to linearize the system. The linearized LTI system of the form (2.27) is generated using

Matlab’s symbolic math toolbox.

˙̃xsys = Ax̃sys +Bũ; ỹ =Cx̃sys +Dũ (2.27)

Where the inputs and outputs are defined as:

u = [P∗ Q∗]T (2.28)

y = [P Q iod ioq ild ilq vod voq ωPLL]
T (2.29)

Table 2.1. Controller Gains

PI gains for Parameter Value

Power kp,pq 0.01

controllers ki,pq 0.10

Current kpc 1.00

controllers kic 100

PLL kp,PLL 0.25

controller ki,PLL 2.00
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Table 2.2. System Parameters

Parameter Value Parameter Value

Lf 4.20 mH rf 0.5 Ω

Lc 0.60 mH rc 0.425 Ω

Cf 15 µf Rd 2.025 Ω

ωc 50.26 rad/s ωn 377 rad/s

ωc,PLL 7853.98 rad/s

2.4. MODEL ORDER REDUCTION

In the singular perturbation approach, the fast states are characterized by the small

model parameters used as their coefficients. To identify the small model parameters, the

dynamic equations are normalized as:

[
1

ωc
Ṗ

1
ωc

Q̇
1

ωc,PLL
v̇od, f ϕ̇PLL δ̇

kp,pq

ki,pq
ϕ̇PQ

kpc

kic
γ̇dq

L f

r f
i̇ldq

Lc

rc
i̇odq

C f

Rd
v̇odq]

T .

(2.30)

The values of the small model parameters are obtained using Table 2.1 and Table 2.2. Us-

ing these values the dynamic equations become:

diag{0.02,0.02,1.27×10−4,1,1,0.1,0.01,8.4×10−3,1.4×10−3,7.4×10−6}× ˙̃xsys

(2.31)

The small-model parameters in (2.31) suggest that, the co-efficients of [v̇od, f , i̇ldq, i̇odq, v̇odq]

are much lower in magnitude compared to the coefficients of the rest of the states. This is

an evidence of the two-time scale nature of this model. States with these lower order co-

efficients are the fast states of the proposed system. The slow and the fast states are then
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divided as:

x̃sys =

x

z

 (2.32)

Where,

x = [P Q ϕPLL δ ϕP ϕQ γd γq], and

z = [vod, f ild ilq iod ioq vod voq].

Once the states are determined, the elements of matrices in (2.28) are reordered as in (2.2a)

and (2.2b). After that, the reduced order system is obtained by following (2.6a) and (2.6b).

The reduced model has a lower order (8th) compared to the original 15th order model. The

states associated with the voltage and current measurements in the LCL filter and the state

from the PLL filter contributed to the less important dynamics in the system.

2.5. EXPERIMENTAL SETUP AND MODEL EVALUATION PARAMETERS

A set of linearization points is obtained with u = [0 0]T to evaluate the initial

higher order matrices A,B,C,D in (2.27):

[P Q vod , f vod voq ild ilq iod ioq ϕPLL δ vbD vbQ θ ]

=[0 0 0 0 83.3 −0.4709 0.005 0 0 −0.0044 0 0 83.3 0]
(2.33)

To justify our assumption that the system is stable for any set points (within the

inverter ratings), different linearization points are considered and used for building the

system matrices. The state-space model is found stable in all cases.

In order to validate the small-signal model, the dynamic response is compared

against those of a simulation and experiment in hardware. An average model of the pro-

posed system is simulated in PLECS. This average model is perturbed using a step change

in the input. In hardware implementation, a Texas Instruments TMS320F28335 digital

signal processor is used to apply the control system to a 10 kW inverter built around an
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Infineon BSM30GP60 IGBT module. A dc source is connected directly to the DC link and

the three phase outputs are connected to the inverter bus. The switching scheme is at a

frequency of 10 kHz. The experimental results collected correspond to the actual values in

the DSP, which are logged in real time. Fig. 2.6 shows the experimental setup including

sensors, circuit board and the output filter.

The LCL filter design and the selection of the passive damping resistor are described

in [31].

2.6. RESULTS AND DISCUSSIONS

The accuracy of the reduced order model is verified using the results obtained from

the full order model and the hardware testbed. The full order model of the proposed

DER has a 15× 15 state matrix. The singular perturbation method resulted in a 8th or-

der reduced model. The full order model’s eigenvalues are: −2323.3± j11393,−2198.7±

j10686,−7834.4,−305.23± j67.56,−66.89± j54.25,−71.53± j33.91,−10.88± j7.56,

− 5.99± j0.01. The reduced order model’s eigenvalues are: −63.07± j31.41,−61.74±

(a) Inverter with sensors (b) LCL filter

Figure 2.6. Partial photograph of the test bed
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j42.2,−10.87± j7.56,−5.99± j0.008. Latter eigenvalue’s are close to that of the slow

eigenvalues of the full order system.

Some of the results of interest are presented in Fig. 2.7. Experimental results are

gathered from the DSP as dq axis quantities. Since the small-signal model is based on the

averaged model of the system, high-frequency switching noise is absent from the results

obtained using the models. The dynamics obtained from the small-signal model match with

that of the experimental results. In this case, the initial steady state condition corresponds

to both active and reactive power commands of zero i.e. the inverter is synchronized to

the grid and delivering no power. A step change in the power commands, 1000 W and

500 Var, shifts the system to a new set of steady-state operating points following a brief

transient period. The results obtained from the full-order model and the reduced order

model overlap in all the graphs. Although the results are obtained with a grid voltage of 60

VLN, the small-signal models are equally applicable to 120 VLN voltage levels commonly

used at the distribution side of a power system.

Results acquired from the experimental testbed and the simulation model indicate

that the reduced order model approximates the original model well. However, the fast

states show some error in predicting the overshoots and the undershoots. This error is

caused as the fast dynamics are overlooked in the reduced model. Although the singular

perturbation method reduced the full model’s order by 46.67%, the reduced model still

provided a good approximation for transient analysis. Different linearization points are

used for evaluating the system matrices and similar results are obtained from the reduced

order models. The model reduction techniques are independent of the choice of operating

points for the example system.

Once the accuracy of the model is verified, the model is now ready to be used in a

larger microgrid system. An IEEE-37 node distribution test feeder is selected as a sample

microgrid system. The standard IEEE-37 bus is modified by adding seven inverters in seven

different nodes. Details of the modified system including the load and line parameters are
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Figure 2.7. Verification of the system dynamics of interests

given in [20]. The modified system’s one-line diagram is shown in Fig. 2.8. The inverters

connected to bus 15, 18, 22, 24, 29, 33 and 34 are indicated by the larger circles.

The mathematical model describing the overall system’s dynamics is of 225 order.

Whereas the reduced order model is of 56th order. The full order system includes the

distribution lines and the loads. The equations for those are found from [31]. The loads

and the distribution lines are also the fast states of the system. As a result, a large number

of states are treated as fast states in this system.
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Figure 2.8. One-line diagram of the IEEE-37 node distribution test feeder

For the proposed IEEE-37 bus system, the simulation time required by the reduced

model (9.91 s) is much less compared to that of the full order system. The full order model

takes in excess of 48 hrs to simulate. The time measurements are done using ode45 solver

with both maximum step size and relative tolerance of 1× 10−3. The Simulink profiler’s

time measurement’s precision was 30 ns using a CPU clock speed of 3 GHz.

Results plotted in Fig. 2.9 verify the accuracy of the reduced model. A step change

in the active and reactive power commands in all seven DERs are observed at 0.5 s and

1 s. Output power dynamics of the inverters are preserved accurately in the reduced order

model. As before, the reduced order dynamics suffer from the loss of fast states, as a

result the overshoots and undershoots seem more damped compared to that of the full order

model.
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Figure 2.9. Active and reactive power dynamics obtained from seven inverters

2.7. CONCLUSION

A small-signal model of the proposed single bus grid-tied inverter is derived. The

full order system consists of 15 states. This system is then reduced applying the singular

perturbation algorithm. The reduced order model is compared and its accuracy is assessed
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using experimental results. The model is then applied to a multibus bus microgrid system.

A modified IEEE-37 node distribution test feeder is used for this purpose. Seven inverters

are placed at seven different nodes in that system. A linearized mathematical model of

the system is developed using the reduced order model. A step change in the active and

reactive power is simulated for all seven inverters. A graph is presented to compare the

results obtained using the full order model and the reduced model of this multi-bus system.

It is observed that the reduced model can predict the power injection at different buses. A

slight difference in predicting the overshoots and undershoots are because of the loss of the

fast states from the model. The reduced order model eliminates the issue with the ‘stiff’

solver type and runs much faster than the full order model when simulated. As an added

advantage this model could be used to study the system stability when microgrid jumps

from grid-tied mode to islanded mode. Part-II of the paper includes the reduced order

model of the islanded microgrid system. The grid-tied microgrid model and the islanded

microgrid model are integrated to predict the grid-tied to islanded transition dynamics in

the second part of the paper.
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ABSTRACT— This work develops an algorithm that can obtain the reduced or-

der model of an islanded microgrid system. This system consists of two inverters that are

connected to their respective buses with some local loads. A set of non-linear first order

differential equations was developed to describe the system dynamics. The dynamic equa-

tions were divided into two groups based on the small-signal model parameters, ε . This

process indicated the system’s two-time scale nature. State variables that fell into these

groups were listed and re-ordered. State matrices were divided into slow and fast subsys-

tems to demonstrate the two-time scale property. The ‘slow’ states which dominated the

system’s dynamics were preserved while the ‘fast’ states were eliminated by the singular

perturbation method as discussed in part-I of this work. An algorithm was developed for

the model order reduction of the proposed switched autonomous system. The dynamics

from the reduced order model were compared with both the experimental results and the

full order simulation results. A comparison of simulation time was made using both full

order and reduced order models for a multibus islanded microgrid. Once verified the model

was used in an IEEE-37 bus microgrid system to evaluate system’s dynamic response in an

islanded condition, and also when the system switches from grid-tied to islanded mode.

Index Terms— Islanded microgrid, singular perturbation, model order reduction.
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3.1. INTRODUCTION

A practical power system network is comprised of numerous generating units and

loads. Ordinary differential equations have been used to develop mathematical models

of these power system components that can investigate the physical system’s dynamics.

These equations are often non-linear and need to be linearized around some steady-state

operating points to simplify calculations that can provide a better understanding of the

system’s dynamic response. These equations represent the rate of change of states that are

evaluated with an integration algorithm at incremental time steps. The presence of both the

‘fast’ and ‘slow’ states in a model produces a two-time scale property in the system, making

real-time simulation difficult. A fast decaying state will require a small-time-step during

integration to capture the system’s fast dynamics. Thus, small-time-constant states increase

the time required for dynamic power system simulations [1]. In most cases, these fast states

originate from the moment of inertia, inductance, capacitance, and some similar parasitic

parameters. These parameters (when included) make the order of the model unacceptably

higher than required for optimal design [2]. Simplifications of these models are often made

by neglecting these components. However, neglecting the effect of small parameters does

not always guarantee system stability and accurate DC gain. The singular perturbation

method overcomes these issues by not only treating the fast transients as boundary layers

but also including them in the slow states [3].

The most well-known application of singular perturbation method includes the

model order reduction of synchronous machines [4]. S. Pekarek et al. discussed neglect-

ing the dynamic saliency in a synchronous machine by using the singular perturbation ap-

proach for faster transient analysis [5]. An iterative approach that uses singular perturbation

was adopted to obtain the reduced order model of synchronous machines in [6]. In many

cases, the singular perturbation method was used to develop induction machine models [7]

to predict the dynamic response under variable system frequency and voltage magnitude.
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Additional applications include the design of feedback stabilization systems based on the

reduced order model [8], application to PFC converters [9], long-term stability analysis

due to system frequency variation [10], and the estimation of the stability region of power

systems with saturation nonlinearity [11]. Utility distribution grid-tied systems with wind

power based renewable energy sources were previously modeled using the singular pertur-

bation method [12]. The application of singular perturbation method for developing the

reduced order model of a diode interfaced wind farm with DC power system was discussed

in [13].

However, islanded microgrid systems are relatively new trends in power system

analysis. Thus, the small-signal models developed for such systems require attention before

they can be simulated in real-time for dynamic studies. Related to this work, singular

perturbation method was applied in [14]. The inverter model used in that paper excluded

the filter capacitors. These filter capacitors are needed to meet the industry standards in

terms of the harmonics rejection especially when the inverters are used for system’s voltage

and frequency regulation. The stability assessment of the reduced order islanded microgrid

using singular perturbation approach was discussed in [15]. The inverter model was overly

simplistic and the effect of the filter dynamics were ignored in that paper. This paper

overcomes these issues by including all the necessary elements of an industry standard

inverter.

Reduced-order dynamic modeling of power electronic components using singular

perturbation method was discussed in [16]. In that paper, a full order model of the system

was developed with all the parasitic components, then the model was reduced based on the

input-output behavior of the system to preserve the model accuracy and to get the com-

putational efficiency. Because the proposed system is autonomous, reduction algorithms

including the input/output knowledge of the system are not applicable. Singular perturba-

tion technique allows for the elimination of states based on small-signal model parameters.

Similar to the approach mentioned above, in this paper, an accurate full order model of
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the microgrid is developed using all the parasitic components in the system, and then the

system’s fast and slow states are identified using the small-signal model parameters. Part-I

of this paper discusses the method to separate the fast and the slow states. The singular

perturbation method is used to eliminate the fast states using the boundary layer correction

to obtain a reduced order model of the proposed system. This new model converts the stiff

system into a non-stiff system that accelerates the simulation time. The reduced model is

applied to a modified IEEE-37 bus system to verify the dynamic response. The reduced

order model would be useful to assess the system’s stability [17], [18], [19]. The reduced

order models are also important for evaluating the feasible bounds on state jumps when

the microgrid switches from grid tied to islanded mode, the load perturbation events in an

islanded system [20] or to study the Markov chain models [21].

3.2. SYSTEM UNDER CONSIDERATION

A two bus islanded microgrid system is considered. A single line diagram of the

system is presented in Fig. 3.1. In that system, two voltage source inverters with their

local loads are connected to the respective buses. Each bus has at least one fixed load and

either one or more additional loads that can switch on or off arbitrarily. Each combination

of loads has a different nominal operating point and, therefore, a different small-signal

model. Static loads comprised of resistance and inductances are considered. These buses

are coupled with a distribution line that has line impedance Zline. A small-signal model was

developed in [22] to describe the system’s dynamic response. The proposed mathematical

model was verified against the experimental results using a hardware test-bed. For accurate

dynamic analysis, the model was developed as a switched linear autonomous system, where

switching from one state matrix to another state matrix was dependent on load perturbation.

Mathematical analysis determined the presence of both slow decaying and fast decaying

eigenvalues in the system. These slow and fast modes made the system ‘stiff’.
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ZL

Main

grid

DER1 DER2

Bus1 Bus2

PCC

Line

Load1 Load2

Microgrid

1 2

Figure 3.1. Proposed microgrid setup

In this work, a reduced order model of the proposed islanded microgrid system is

considered. Each inverter includes the power hardware and control system depicted in Fig.

3.2. This is a standard benchmark that is analyzed more thoroughly using block diagrams

in [22]. Details of these blocks are not discussed here to avoid repetitions. The output

stage uses space vector pulse width modulation (SVPWM) and an LCL filter to achieve

high performance and low ripple. All three-phase variables (denoted abc) are converted to

a rotating reference frame (denoted dq). The rotating reference frame frequency and phase

are determined with a phase-locked loop (PLL). The active (P) power, and the reactive

(Q) power are computed and filtered. The filtered powers are passed through the droop

controllers to determine the output frequency from P and the output voltage from Q. Finally,

the voltage and current control loops are used to determine the voltage vector commands

for the SVPWM block. The states that are generated from the controller blocks, the LCL

filter, the distribution line and the loads are given in Table 3.1.

A set of nonlinear equations is derived in the synchronous reference frame to de-

scribe the system’s dynamics. The variables used in those equations are given in Fig. 3.2

and in [22]. These equations are:
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Figure 3.2. Voltage source inverter, inverter controllers, loads and distribution line
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P =
ωc

s+ωc
p⇒ Ṗ =−Pωc +1.5ωc

(
vodiod + voqioq

)
(3.1)

Q =
ωc

s+ωc
q⇒ Q̇ =−Qωc +1.5ωc

(
voqiod− vodioq

)
(3.2)

ω
∗ = ωn−mP (3.3)

voq
∗ =Voq,n−nQ (3.4)

v̇od, f = ωc,PLLvod−ωc,PLLvod, f (3.5)

ϕ̇PLL =−vod, f (3.6)

δ̇ = ωPLL (3.7)

ωPLL = 377− kp,PLLvod, f + ki,PLLϕPLL (3.8)

ϕ̇d = ωPLL−ω
∗; ild∗ = kiv,dϕd + kpv,dϕ̇d (3.9)

ϕ̇q = voq
∗− voq; ilq∗ = kiv,qϕq + kpv,qϕ̇q (3.10)

γ̇d = ild∗− ild; vid
∗ =−ωnL f ilq + kic,dγd + kpc,d γ̇d (3.11)

Table 3.1. States of the Proposed System

Block States

Power+LPF P,Q

Voltage Controller ϕdq

Current Controller γdq

LPF+PLL vod, f ,δ ,ϕPLL

LCL Filter ildq,vodq, iodq

Load iloadDQ

Line ilineDQ
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γ̇q = ilq∗− ilq; viq
∗ = ωnL f ild + kic,qγq + kpc,qγ̇q (3.12)

i̇ld =
1

L f

(
−r f ild + vid− vod

)
+ωPLLilq (3.13)

i̇lq =
1

L f

(
−r f ilq + viq− voq

)
−ωPLLild (3.14)

i̇od =
1
Lc

(−rciod + vod− vbd)+ωPLLioq (3.15)

i̇oq =
1
Lc

(
−rcioq + voq− vbq

)
−ωPLLiod (3.16)

v̇od =
1

C f
(ild− iod)+ωPLLvoq +Rd(i̇ld− i̇od) (3.17)

v̇oq =
1

C f

(
ilq− ioq

)
−ωPLLvod +Rd(i̇lq− i̇oq) (3.18)

i̇loadD =
1

Lload
(−RloadiloadD + vbD)+ωPLLiloadQ (3.19)

i̇loadQ =
1

Lload

(
−RloadiloadQ + vbQ

)
−ωPLLiloadD (3.20)

i̇lineDi j =
1

Lline

(
−rlineilineD + vbD,i− vbD, j

)
+ωPLLilineQ (3.21)

i̇lineQi j =
1

Lline

(
−rlineilineQ + vbQ,i− vbQ, j

)
−ωPLLilineD (3.22)

The inverter reference angle at bus 1 is set as the reference for the rest of the system using:

δ̇1 = ωPLL,1−ωPLL,1 = 0 (3.23)

δ̇2 = ωPLL,1−ωPLL,2 (3.24)

Finally using the virtual resistor method and the reference frame transformation theory (as

in Fig. 3.3) the input bus voltages are replaced using the states as follows:

vbD,i = rn
(
ioD,i + ilineD,i− iloadD,i

)
(3.25)
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vbQ,i = rn
(
ioQ,i + ilindQ,i− iloadQ,i

)
(3.26)

Nonlinear equations are linearized around stable operating points to generate a set of linear

ordinary differential equations. The complete system in Fig. 3.1 has 36 state variables,

including both physical variables and internal control variables. These states are:

xsys =[δ1 P1 Q1 ϕd1 ϕq1 γd1 γq1 ild1 ilq1 vod1 voq1 iod1 ioq1 ϕPLL1

vod1, f δ2 P2 Q2 ϕd2 ϕq2 γd2 γq2 ild2 ilq2 vod2 voq2 iod2 ioq2

ϕPLL2 vod2, f iloadD1 iloadQ1 iloadD2 iloadQ2 ilineD ilineQ]
T

(3.27)

The dynamics of the system are verified using a hardware setup by treating it as

a switched autonomous system where switching of the state matrices is dependent on the

load perturbation. The mathematical model of the overall system is:

ẋ = Apx; p = 1,2 (3.28)

d1 = D

q2

q1 = Q

d2

1 0global  



2

Figure 3.3. Reference frame transformation
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3.3. MODEL ORDER REDUCTION OF ISLANDED MICROGRID

This section focuses on reduced order modeling of islanded microgrid systems us-

ing singular perturbation technique. The fundamentals of the singular perturbation method

are broadly covered by P. Kokotovic et al. in [23] and D.S. Naidu in [24]. Hence, the details

of this method are not discussed here. The system’s eigenvalues (listed in Table 3.2) are

evaluated before the load perturbation event. This is a ‘stiff’ system where the dynamics of

the states are influenced by both slow decaying and fast decaying eigenvalues. This system

thus possesses a two time-scale property. The objective is to identify and separate the fast

and slow subsystems using small-model parameters, ε .

A discussion on the model order reduction of this microgrid using singular pertur-

bation technique is presented in the Part - I of this work. Following that work, the fast states

of the system are characterized by the small model parameters, ε . It is necessary to nor-

malize the system dynamic equations using these small model parameters. The normalized

dynamic equations become:

[
1

ωc
Ṗ

1
ωc

Q̇
1

ωc,PLL
v̇od, f ϕ̇PLL δ̇

kp,pq

ki,pq
ϕ̇dq

kpc

kic
γ̇dq

L f

r f
i̇ldq

Lc

rc
i̇odq

C f

Rd
v̇odq

Lload

Rload
i̇loadDQ

Lline

rline
i̇lineDQ]

T (3.29)

Based on the values of the controller gains and the system parameters, given in [22],

the fast states are obtained with lower order co-efficients. States associated with the voltage

controllers, current controllers, active-reactive power filters, phase-locked loops and their

reference angles contributed to the system’s slow dynamics. Remaining states, starting

from index 1 through 20, contributed to the fast dynamics. To confirm the identification of

the slow and fast states, system’s modes are evaluated and major participant states in those

modes are found using participation factor analysis.
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Table 3.2. Eigenvalues of A1

Index Eigenvalues Major participants

1,2 -7.10×108 ± j376.57 ilineDQ

3,4 -2.09×108 ± j376.58 iodq1, iodq2

5,6 -1951.65 ± j10980.03 voq1, voq2

7,8 -1781.19 ± j10234.93 vod1, vod2

9 -7981.28 vod1,f, vod2,f

10 -7915.62 vod1,f, vod2,f

11,12 -822.46 ± j5415.18 voq1, voq2

13,14 -674.16 ± j4643.15 vod1, vod2

15,16 -2889.85 ± j351.71 iloadDQ1, iloadDQ2

17,18 -1500.35 ± j336.76 iloadDQ1, iloadDQ2

19,20 -267.94 ± j82.01 ildq1, ildq2

21,22 -69.76 ± j21.47 γdq1, γdq2

27,28 -25.38 ± j31.18 ϕq1, γq1, ϕq2, γq2

29,30 -6.16 ± j22.90 ϕd1, γd1, ϕd2, γd2

34,35 -2.24 ± j4.68 ϕdq1, ϕdq2

31,32 -10.65 ± j8.14 δ 2, ϕPLL1, ϕPLL2

33 -7.53 δ 2, ϕPLL1, ϕPLL2

23,24 -50.25 ± j0.02 P1, Q1, P2, Q2

25 -50.27 P1, Q1, P2, Q2

26 -50.27 P1, Q1, P2, Q2

36 0 δ 1
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Although the reference angle of the system (δ 1) is recorded as a slow state, its

small-signal response during both the transient and the steady-state is zero. This state is

thus ignored in calculations when the reduced order system is being developed. In the

singular perturbation method, the rate of change of the fast states is set to zero. The fast

states are solved in terms of the slow states and then added to the slow dynamics to provide

a zero steady-state error.

The steps needed to develop the reduced order model are discussed below.

1. Discard δ̇1 (corresponding to the reference angle) by removing the corresponding

row and column.

2. Rearrange the states of the original state vector xsys such that the slow states (x) are

placed in the upper rows and fast states (z) are placed at the lower rows. Use a

transformation matrix Tr for re-ordering. For example, [x1 x2 x3]
T needs to be re-

ordered as [x1 x3 x2]
T . Use the transformation matrix Tr to multiply the original

vector. The new state vector and steady-state operating point vectors become: xnew =

Trxsys and Xnew = TrXsys respectively.

Tr =


1 0 0

0 0 1

0 1 0


3. Find the new state matrix Anew using Tr: Anew = TrAsysT−1

r

4. Separate the new state matrix and the new states as follows:

ẋ

ż

=

A11 A12

A21 A22


x

z

 ; xnew =

x

z

 ; Xnew =

X

Z


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Where A11 ∈ ℜr×r, A12 ∈ ℜr×(n−r), A21 ∈ ℜ(n−r)×r, A22 ∈ ℜ(n−r)×(n−r). Also, x is

representative of the slow states and z is representative of the fast states.

5. Perform the following iteration to find the value of L for a linear system composed

of two subsystems [25]:

Li+1 = A−1
22 (A21 +LiA11−LiA12Li); i = 1,2, · · ·

Start with the initial value L0 = A−1
22 A21 and iterate 100 times. This will ensure that

the reduced order system’s eigenvalues are as close as possible to that of the full

order system’s slow eigenvalues. For this system, 100 iterations achieved excellent

accuracy with minimal computation time.

6. Transform the system into following using the slow manifold condition z f = z+Lx:

 ẋ

ż f

=

As A12

0 A f


 x

z f


Where As = A11−A12L; A f = A22 +LA12

7. Perform the following iteration to find the value of M:

Mi+1 = [(A11−A12L)Mi−MiLA12]A−1
22 +A12A−1

22

Start with the initial value M0 = A12A−1
22 and iterate 100 times as before for L.

8. Decouple the system into slow and fast time-scale using the fast manifold condition

xs = x−Mz f ẋs

ż f

=

As 0

0 A f


xs

z f


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Figure 3.4. Corrected response from the reduced order model

9. The operating points corresponding to the slow states become:

Xs = (I−ML)X−MZ

10. In order to get the corrected response xc, add Xs∆ to the output of Xs, where Xs∆ =

MLX +MZ. New outputs are similar to that of the dynamics obtained from the slow

states of the original system.

11. Predict the fast states using algebraic solutions:

z f = Lxc + zc

⇒zc =−Lxc + z f =−Lxc +(LX +Z)

12. The reduced order system is now ready for simulation. Fig. 3.4 shows the final

arrangement for obtaining the dynamic response considering both the slow and the

fast states.

The eigenvalue sensitivity of the reduced model with respect to the neglected par-

asitics is determined using (3.30), where ui and vi are the eigenvectors of As and of its
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transpose A
′
s respectively [26]. The small positive scalar ε is the ratio of speeds of slow and

fast modes.
∂λsi

∂ε
=−λsiv

′
iA12A−2

22 A21ui (3.30)

Equation (3.30) gives the actual sensitivity of the eigenvalues of the full order matrix which

remain finite as ε → 0. This also represents the change of eigenvalues when, instead of 0,

ε takes a small positive value.

3.4. RESULTS AND DISCUSSIONS

The model order reduction algorithm is applied to the proposed two bus islanded

microgrid system. The reduced order system has only 15 differential equations as compared

to 36 differential equations for its full order counterpart. This is a reduction of 58.33% of

the original state equations. The dynamics of the reduced order system are verified against

the dynamics of the full order system. This is done by switching between two state ma-

trices that correspond to two different load setups within the system. The eigenvalues of

the reduced order state matrix, ‘A1s’ and the eigenvalue sensitivities of the slow system

with respect to ε are evaluated. These are presented in Table 3.3. A large condition num-

ber measures the absolute sensitivity of an eigenvalue with respect to absolute normwise

perturbation of the matrix. Condition numbers listed in Table 3.3 are obtained from ‘A1s’.

The inverter output powers and the states from the current controllers are more sensitive to

perturbation than other slow states in the system. This shows that the method developed

in [14] is not generic and can not be applied to a system such as the one proposed in this

paper.

A stability analysis on the reduced order matrices, ‘A1s’ and ‘A2s’ proves the pro-

posed system’s quadratically stable nature. There exists a common quadratic Lyapunov

function for this system with a quadratic decay rate of −4.4731.
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Table 3.3. Eigenvalues, Eigenvalue Sensitivity and Condition Number

Index Eigenvalues Sensitivity Condition Number

1,2 -69.76 ± j21.47 9.15e-04 ± j2.77e-05 17923

3,4 -25.38 ± j31.18 -1.99e-03 ± j2.8e-03 588.5

5,6 -6.16 ± j22.90 -1.5635 ± j0.085 5.136

7,8 -2.24 ± j4.68 -2.29e-03 ± j1.21e-03 4856.3

9,10 -10.65 ± j8.14 -7.93e-04 ± j1.75e-03 3451.7

11 -7.53 -0.89858 4.201

12,13 -50.25 ± j0.02 8.87e-07 ± j1.58e-07 20349

14 -50.27 3.224e-07 1424.9

15 -50.27 3.153e-07 2477.6

The transient response plots in Fig. 3.5 compare the accuracy of the reduced order

model and the full order model with the experimental results. Both the active and reactive

power variation plots are generated from the slow states. In contrast, plots for the LCL

filter’s voltage and current dynamics are generated by the fast states. the system is perturbed

at 1.885 s by adding an RL load parallel to the initial load, at bus1. Dynamic responses

obtained from the full-scale model overlapped with those obtained from the reduced order

model. As depicted in Fig. 3.6, the fast dynamics in both the vod and the voq creates a spike

during the transient period. The effects of the fast states disappear in the reduced order

model. As a result, these fast decaying spikes are absent from the graphs once the reduced

order model is simulated.

Three different solvers (in Matlab/Simulink) are used to conduct a simulation time

comparison between the full order model and the reduced order model. The results from

the comparison verify that the reduced system accelerates the simulation speed. The ode45

solver option offers 4th order medium accuracy using Runge-Kutta method for solving a

set of differential equations numerically [27], [28]. This algorithm uses variable step size

i.e. algorithm increases the step size when the solution varies less. This method is intended
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Figure 3.5. Verification of system dynamics using results from experiment, full order model
simulation and reduced order model simulation

to be used for non-stiff differential equations and works better than other methods for such

(non-stiff) systems. However, both ode15s and ode23s provide better simulation speed for

stiff systems, the latter being less accurate than the former. These methods are useful once

ode45 fails to provide a reasonable computational time during integration. These solvers
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Figure 3.6. Fast states marked with rectangles, are oscillatory in the full order model but
disappear in the reduced order model and become straight lines

are applied with both maximum step size and relative tolerance of 1× 10−3. In all cases,

the Simulink profiler’s time measurement’s precision is 30 ns using a CPU clock speed

of 3 GHz. The two bus simulation is extended for multibus systems. Full order state

matrices are derived for these systems. Reduced order state matrices are generated using

the algorithm provided in section III. The plots in Fig. 3.7 are obtained for 2, 3, 4, 5, 7 and

10 buses within the system. In all cases, load perturbation occurs at bus1 with the same

values of RL load. Similar controller gains, loads, and line parameters are used during

system simulation and mathematical model building procedure.

Application of the model reduction algorithm converts the system from a stiff type

to a non-stiff type. This conversion allows the use of ode45 solver for solving the slow

state equations. the simulation time needed by ode45 to solve the reduced order model is
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Figure 3.7. Comparison of simulation time using different Matlab solvers

comparable to the time needed by other solvers. When ode15s is used, the simulation time

difference between the full order model and the reduced order model increased as more

buses are added to the system. However, when the ode23s is used, the simulation time

needed by both the full order models and the reduced order models is much higher than

that needed by the ode15s.

The reduced models are then used in a multi-bus system. An example of such

multibus system is IEEE-37 node distribution test feeder. The IEEE-37 bus is modified
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for islanded microgrid application. The system load and line parameters are given in [14].

There are seven inverter at seven different buses as shown in Part - I of the paper. The

overall system dynamics (in the small signal sense) is obtained using the model reduction

algorithm developed in this paper. The plot of the active and reactive power change due to

a step change in the load at 3 s is depicted in the Fig. 3.8.

The reduced order models (both grid-tied and islanded) obtained for the modified

IEEE-37 bus test microgrid system are useful to predict the dynamics during microgrid’s

transition from the grid connected mode to the islanded mode. During this transition the

inverter controllers switch from one operating mode to another. To simulate the effect of

this transition, the small-signal models are arranged similar to the switched autonomous

system in (28). The dynamics during microgrid transition are plotted in Fig. 3.9. Before

the transition occurs, the inverters were supplying 5 kW and 1 kVar to the system. As

soon the as the transition takes place the DER controllers switch to the droop mode and the

inverters share the loads of the islanded system. In future, the stability of such switched

linear autonomous system will be analyzed using the Markov jump linear system analysis

as discussed in authors previous work [20].

3.5. CONCLUSION

This study examines the small-signal model of an inverter dominated islanded mi-

crogrid system. The full order model of the example 2 bus system had 36 states governing

the overall system dynamics. Small-signal model of the proposed system possesses a two-

time scale property. From the small model parameters a total of 15 slow dominating states

are identified. The full scale system is reduced by applying the singular perturbation tech-

nique. An algorithm is developed for the model order reduction of islanded microgrid

systems. This proposed algorithm is applied to the example system, thereby reducing the

order of the system by 58.33%. The reduced system’s accuracy is verified against not only
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Figure 3.8. Inverter output powers - step change in the islanded microgrid load

the experimental results but also the full order model simulation results. The proposed

two-bus system is extended for multi-bus systems. For each of these systems, a compari-

son of simulation times, taken by different solvers in Matlab/Simulink, are presented. The

reduced order systems becomes non-stiff meaning that they are ideal for simulation using

ode45 solver type, which has better accuracy compared ode15s or ode23s. Finally, the re-

duced order model is applied to a modified IEEE-37 bus system. The islanded system’s

dynamics are verified against the full order model. The reduced order grid-tied model (ob-

tained from Part-I of this work), and the reduced order islanded system’s model (discussed
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Figure 3.9. Inverter output powers during microgrid’s transition

in this paper) are used to predict the microgrid’s dynamic response during the grid-tied to

islanded transition event.
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ABSTRACT— In a typical microgrid, the power generation capacity is similar to

the maximum total load. The low inertia of the system provides little margin for error in

the power balance, both active and reactive, and requires rapid control response to load

changes. In the present work, a microgrid is modeled as a Markov jump linear system

(MJLS). An MJLS is a dynamic system with continuous states governed by one of a set of

linear systems, and a continuous-time Markov process that determines which linear system

is active. When the discrete state of the Markov process changes, there is a “jump” in the

dynamics of the continuous states. In addition, the jump may be impulsive.

The present work first explores impulsive MJLS stability. Conservative bounds on

the expected value of the state are determined from a combination of the Markov process

parameters, the dynamics of each linear system, and the magnitude of the impulses. Then

the microgrid model is cast into the MJLS framework and stability analysis is performed.

The conclusions are verified with detailed simulations.

Index Terms— Markov jump linear system, almost sure stability, microgrid
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4.1. INTRODUCTION

Microgrids have gained significant attention in recent years in several application

scenarios. Here, a microgrid is defined as a relatively small, closed, finite-inertia power

system with generation capacity similar to the maximum load. Often, but not always,

energy storage is included. At the larger end of the scale, a microgrid is a portion of the

existing power distribution network that includes sufficient generation capacity to operate

islanded. This type of microgrid is seen as a means to increase renewable energy market

penetration, such as in the FREEDM system [1]. Similarly, military forward operating

bases (FOBs) may be operated as microgrids, connecting to the local power grid when

available or remaining islanded otherwise [2]. Microgrids may also be found on “vehicles,”

meaning any structure that is not fixed in location: naval ships [3], locomotives, hybrid

electric vehicles, and more electric aircraft [4]. A microgrid may rely on either ac or dc

power distribution. The present work will focus on ac systems, but many of the methods

discussed apply equally to dc systems.

One challenge in a microgrid is that there is less of a buffer in power generation to

accommodate changes in load, along with a tighter coupling among the various elements

in the system. A variety of analysis techniques have been proposed to address the stability

of small power systems, such as [5, 6, 7, 8].

The stability of microgrids may be studied by framing them as Markov jump linear

systems (MJLSs). An MJLS is composed of two coupled systems. First is a continuous-

time Markov process, which has some number of discrete states, N. For each discrete state

i, there is a transition rate λi that corresponds to an exponential random variable (the dwell

time, τi, spent in state i) and a set of transition probabilities πi, j that determine the relative

probabilities of transitioning to one of the other discrete states. Here, the Markov process

identifies which loads are switched “on” in the microgrid, and a particular discrete state

corresponds to a particular combination of active loads.
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To complete the MJLS, each discrete state of the Markov process is mapped to a

linear system with continuous states, either discrete-time or continuous-time. Here, the lin-

ear systems are all continuous-time small-signal models of the microgrid, each linearized

around a different nominal operating point. Conceptually, an MJLS lies somewhere be-

tween a hybrid automaton [9] and a switched system [10]. The switching has some struc-

ture, like a hybrid automaton, but the timing is stochastic. Therefore, concepts like almost

sure stability [11, 12, 13] are relevant.

To extend the MJLS framework, each discrete state transition may also include a

change in the value of the continuous states, that is, an impulse. Impulsive MJLSs have

received little study. In [14], some useful stability bounds are determined, but only for

the case where a strict subset of the possible discrete state transitions result in an impulse

and the impulses are separated by some minimum dwell time. For the generic case, where

every transition may be impulsive and dwell times are exponentially distributed (and there-

fore may be arbitrarily small), no stability results are available in the literature. The present

work therefore derives bounds for an impulsive MJLS, where the impulses correspond to

the changes in steady-state operating point when transitioning between small-signal mod-

els.

This paper is structured as follows. First, impulsive MJLS stability is studied, re-

sulting in a bound on the expected value of the state for a restricted class of systems.

The bound is conservative for the fully generic case, but is useful for typical microgrids.

Next, a model (abstracted from [15]) for a microgrid composed primarily of renewable en-

ergy sources, and therefore using switching power converters, is presented. The microgrid

model is cast into the impulsive MJLS framework and its stability is studied. Simulations

verify the analysis.



93

4.2. IMPULSIVE MJLS STABILITY ANALYSIS

4.2.1. Preliminaries. Consider a switched linear system of the form

˙̃x = Aσ j x̃ (4.1)

x̃(t+j ) = x̃(t j)+β j (4.2)

The various system models are indexed by σ ∈S = {0,1,2, ...}, the output of a Markov

process. In general, S may be finite or countably infinite. These are all small-signal

models, where the real (large-signal) state is

x(t) = x̃(t)+Xσ j (4.3)

including the nominal operating point Xσ j . The jth transition in the Markov process occurs

at time t = t j. The dwell time after the jth transition then is τ j = t j+1− t j, so that

t j =
j−1

∑
i=0

τi (4.4)

The corresponding transition from σ j−1 to σ j requires an impulsive change in x̃ because

the real state, x, is continuous. Therefore,

β j = Xσ j−1−Xσ j (4.5)

The evolution of x and x̃ for a one-dimensional system is shown conceptually in Fig. 4.1.

Whether S is finite or infinite, we assume that the impulsive changes are bounded, so that

||β j||≤ βmax ∀ j (4.6)
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Figure 4.1. Example evolution of a one-dimensional dynamical system with two impulsive
transitions

for some βmax. We also assume that each system model is stable, that is, Aσ is Hurwitz ∀σ .

Therefore, the state transition matrices Φσ given by

Φσ (t,0) = eAσ t (4.7)

may all be dominated by exponentials of the form

||Φσ (t,0)||≤ eaσ+bσ t , bσ < 0 (4.8)

Just as the impulsive changes are bounded, aσ and bσ are bounded by amax and bmax re-

spectively (remembering that bmax < 0).

The value of the discrete state σ is determined by a time-homogeneous, continuous-

time Markov process. The transition rate directly between two different states x, y is defined

as λ (x,y). The total transition rate out of state x is

λ (x) = ∑
y6=x

λ (x,y) (4.9)
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The transition rates correspond to exponentially-distributed random variables. Therefore,

E
[
τ j
]
=

1
λ (σ j)

(4.10)

4.2.2. Bounds on the State. Given the generic impulsive MJLS framework de-

scribed above, hard bounds on the state are not possible. In any finite, non-zero time, there

is a non-zero probability of an arbitrarily large number of switching events. However, one

may determine bounds on the expected value of the state. The usefulness of the bounds

depends on the transition rates, the continuous state dynamics, and the maximum possible

impulse.

Because each continuous system model is linear time-invariant, the solution of the

switched system may be found for a given switching sequence. For an initial state of x0,

the state after the jth transition is

x(t+j ) =

(
0

∏
i= j−1

eAσiτi

)
x0 +

j−1

∑
k=1

(
k

∏
i= j−1

eAσiτi

)
βk +β j (4.11)

The order of multiplication is important at this stage because all elements are matrices or

vectors. However, from (4.8), the magnitudes of the matrix exponentials may be bounded

with scalar exponentials. Furthermore, because the dwell times are exponentially dis-

tributed, the bounds on the expected values of the matrix exponentials may be found ex-

plicitly,

E
[∥∥∥eAσiτi

∥∥∥]≤ eaσi λ (σi)

λ (σi)−bσi

, γσi (4.12)

By construction, γσ > 0, and because each term in (4.12) is bounded, γσ ≤ γmax∀σ . Now

the expected value of the first product of (4.11) may be bounded,

E

[∥∥∥∥∥
(

0

∏
i= j−1

eAσiτi

)∥∥∥∥∥
]
≤

0

∏
i= j−1

γσi ≤ γ
j

max (4.13)
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Clearly, if γmax < 1, then this product will converge to zero as j → ∞. Therefore, the

contribution to x(t+j ) due to initial conditions will decay with a rate that depends on both

the transition rates of the Markov process and the dynamics of the continuous systems.

There will also be a significant contribution, though, due to the impulses. Using

similar reasoning,

E

[∥∥∥∥∥ j−1

∑
k=1

(
k

∏
i= j−1

eAσiτi

)
βk

∥∥∥∥∥
]
≤ βmaxγmax

1− γ
j−1

max

1− γmax
(4.14)

Again, convergence requires γmax < 1, but in practice requires a significant margin. For

example, if γmax = 0.9, then the asymptote for (4.14) is 9βmax—possibly significant growth,

depending on the magnitudes of the impulses. Combining all of the terms in (4.11-4.14),

E
[∥∥∥x(t+j )

∥∥∥]≤ γ
j

max||x0||+βmax
1− γ

j
max

1− γmax
(4.15)

and in the limit,

lim
j→∞

E[||x(t+j )||]≤ βmax
1

1− γmax
(4.16)

Unfortunately, this bound can be quite large for certain systems, particularly those

with lightly-damped eigenvalues or systems that have a wide range in eigenvalues. Then

the lightly-damped modes dictate the eaσi factor and the slow eigenvalues determine bσi . In

these situations, another approach is needed.

One way to compute a matrix exponential is to transform the matrix using eigen-

vectors. A solution is found to AσVσ =Vσ Dσ , where Dσ is a diagonal matrix of the eigen-

values. Then

eAσ t =Vσ eDσ tV−1
σ (4.17)
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Although this approach is not numerically stable in general, it is useful in the present case.

The product in (4.14) will contain factors like V−1
σ+1Vσ , which is generally small. Define

Wmax = max
σ
||V−1

σ+1Vσ || (4.18)

Mmax = max
σ
||Vσ || (4.19)

Then the exponential in (4.17) may be dominated by a scalar exponential, now with no

growth term (just ebσ t). Each term in the summation in (4.14) is dominated by

exp

(
j−1

∑
i=k

bσiτi

)
Vσ j−1W

j−1
max V−1

σk
βk (4.20)

The final two-factor product in (4.20) may be bounded by

||V−1
σk

βk||≤ δmax (4.21)

Defining

γ̂σ =
λ (σ)

λ (σ)−bσ

(4.22)

and following the same logic as above, we may find a new bound,

lim
j→∞

E[||x(t+j )||]≤
Mmaxδmax

1−Wmaxγ̂max
(4.23)

as long as Wmaxγ̂max < 1.

In summary, the initial assumption that each switching state corresponds to a stable

system and an additional assumption regarding the transition rates ensures that there is a

net decrease, on average, between switching events. The amount of decrease and the size

of the impulses determine the long-term bound on the expected value of the magnitude of

the state according to (4.15-4.16) or (4.23).
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4.3. MICROGRID MODEL

Consider the simple microgrid shown in Fig. 4.2. A typical microgrid is composed

of one or more power converters that interface between a renewable energy source or energy

storage device and the grid, at least one fixed load, and one or more additional loads that

may switch on or off arbitrarily. Conventional (rotating) generators may also be included,

but are not considered here. For each combination of loads, there is a different nominal

operating point, and therefore a different small-signal model. For simplicity, only one

switching load (on bus 1) and two inverters (labeled INV in Fig. 4.2) will be considered

here. The loads on the two buses are shown in Fig. 4.3.

INV1 INV2

zline

Load1 Load2

Bus1 Bus2

Figure 4.2. Microgrid under study

Bus1 Bus2

25Ω 

15mH

25Ω 

7.5mH

25Ω 

7.5mH

Load1 Load2

Figure 4.3. Load configuration
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Each inverter includes the power hardware and control system shown in Fig. 4.4.

This is a relatively standard architecture that is analyzed more thoroughly in [15]. The out-

put stage uses space vector pulsewidth modulation (SVPWM) and an LC filter to achieve

high efficiency and low ripple. All three-phase variables (denoted abc) are converted to a

rotating reference frame (denoted dq). The rotating reference frame frequency and phase

are determined with a phase-locked loop (PLL). Power (active, P, and reactive, Q) is com-

puted and filtered. Droop controllers determine the output frequency from P and the output

voltage from Q. Finally, voltage and current control loops are used to determine the voltage

vector commands for the SVPWM block.

The complete system in Fig. 4.2 has 33 state variables, including both physical

variables and internal control variables. Details are omitted here due to space constraints.

Nonlinearity arises primarily in the computation of active and reactive power (p and q

respectively),

p =
3
2
(vodiod + voqioq) (4.24)

q =
3
2
(voqiod− vodioq) (4.25)

where vo and io are the output terminal voltage and current respectively, and are represented

with d and q components in a rotating reference frame. There is also a rotation between the

dq frames of the two inverters (by an angle δ ) that is nonlinear. The desired linear systems

are determined by linearizing the nonlinear model around operating points corresponding

to different load conditions.

Fig. 4.5 shows the eigenvalues of the small-signal model when the switched load

is turned off. Notice the cluster near the origin, the highly-damped fast modes, and the

lightly-damped modes. There are also two eigenvalue pairs at −6.10× 106± j375.4 and

−2.10× 106± j376.0, not shown so that the dominant eigenvalues are more visible. The
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Figure 4.4. Inverter internal details, including power hardware and controller

eigenvalues move when the load switches, but the overall qualitative nature of the eigen-

value plot remains the same.

The system may be normalized by dividing all voltages by the rated voltage (170 V),

all power values by the rated power (1 kVA), all frequencies by the rated frequency (377 rad/s),

and currents and passive elements accordingly. Two load points are considered. The bounds

corresponding to (4.8) are

||Φ1(t,0)||≤ e6.3077−4.2577t (4.26)

||Φ2(t,0)||≤ e6.1668−3.9339t (4.27)

The impulse magnitude for the normalized state is βmax = 11.505, found by subtracting

the two steady-state operating points. Because of lightly-damped eigenvalues, the bound

of (4.16) is extremely loose and not useful. The bound of (4.23), scaled by δmax = 13.89

and Mmax = 2.3943, is shown in Fig. 4.6 for varying transition rate. A transition rate of

λ = 2.5s−1 was chosen, so that the ultimate bound on the magnitude of the normalized

state is 85.4.
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A simulation was performed using Simulink. First, a vector of random switching

times was constructed using the given λ . At each switching instance, the nominal operating

point and the system dynamics were switched. The small-signal, normalized state vector

was saved, and its magnitude computed. Fig. 4.7 shows the simulation result compared

against the computed bound.

4.4. CONCLUSIONS

A correspondence was established between a microgrid and an impulsive MJLS.

The mathematical relationship enables further study and application of results from the

control systems community to this emerging application. Furthermore, a bound on the

expected value of the continuous state was derived for a generic impulsive MJLS.
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Figure 4.7. Simulated results using one switched load and normalized state vector. The
impulses remain below the derived bound
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The primary drawback of this approach is the looseness of the bound. Ideally, we

would like a bound on terms of the general form ||Φσ j(τ j,0)β j||. Some of the information

has been abstracted away in the bounding process. Future work will focus on retaining

more information so that the bounds may be made tighter. The results presented here are

still useful for systems with highly-damped eigenvalues that are similar in magnitude.
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SECTION

2. CONCLUSION AND FUTURE WORK

This dissertation presents the modeling of microgrid system. The first paper presents

an accurate small-signal model of a multiple inverter microgrid system operating in is-

landed mode. Non-linear dynamical equations describing the system dynamics are pre-

sented. These nonlinear equations are linearized around stable operating points to develop

the small-signal model of the system. Load perturbation is done to study the system dy-

namics. The accuracy of the model is assessed through comparison to simulation and

experimental results. An eigenvalue analysis is done using the small-signal model to deter-

mine the stability of the system. Importance of the passive damping resistor is discussed

using the eigenvalue anaylsis.

In the second paper, a small-signal model is developed for a grid-tied system. The

system is then reduced applying the singular perturbation algorithm. The reduced order

model is compared and its accuracy is assessed using experimental results. The model

is then applied to a a modified IEEE-37 node distribution test feeder. The reduced order

model eliminates the issue with the ‘stiff’ solver type and runs much faster than the full

order model when simulated.

In the third paper, a reduced order model is developed for the islanded system dis-

cussed in the first paper. The reduced system’s accuracy is verified against the full order

model simulation results. The proposed two-bus system is extended for multi-bus systems.

For each of these systems, a comparison of simulation times, taken by different solvers

in Matlab/Simulink, are presented. Finally, the reduced order model is applied to a mod-

ified IEEE-37 bus system. The islanded system’s dynamics are verified against the full
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order model. The reduced order grid-tied model, and the reduced order islanded system’s

model are used to predict the microgrid’s dynamic response during the grid-tied to islanded

transition event.

In the fourth and the final paper, the stability of the islanded microgrid is studied

with the help of MJLS Analysis. A correspondence was established between a microgrid

and an impulsive MJLS. The mathematical relationship enables further study and appli-

cation of results from the control systems community to this emerging application. Fur-

thermore, a bound on the expected value of the continuous state was derived for a generic

impulsive MJLS.

The models that are developed in this dissertation could be applied to any stan-

dard microgrid system. However, the models suffer from couple of disadvantages. The

current controllers are modeled with the conventional PI controllers although they are not

completely decoupled. The passive damping resistors improve the system stability but con-

tributes to some loss. This loss could be avoided using the active damping technique. In

future, the model needs to account for the active damping. The dq based PLL works bet-

ter for a balanced system. Different kind of PLL design is suggested to make the model

work under unbalanced conditions. The system performance deteriorates under non-linear

loading. This needs further investigation in the future work.
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