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Abstract --This paper provides an analytical discrete small-

signal state-space model of the phase-shift modulated series 

resonant converter used to obtain an explicit linearized phase-

shift to output voltage transfer function. This transfer function 

is useful for linear closed loop control design. Initially, the 

effective duty-ratio to output voltage transfer function is 

derived. It is then proven, analytically and through results, that 

it is linearly related to the phase-shift to output voltage which is 

the main research concern. The analysis is carried out using 

state-plane diagrams. Small-signal state-space model 

representation is derived which is used for closed loop controller 

gain calculations. Results validate the calculated control gains 

based on the proposed linearized model. 

 
Index Terms—Discrete time domain, Phase-Shift Modulation 

(PSM), Series Resonant Converter (SRC), Small-signal 

modeling.   

I.    NOMENCLATURE 

𝑣𝑔 DC supply voltage (V) 

𝑖𝐿 Resonant tank inductor current (A) 

𝑣𝐶  Resonant tank capacitor voltage (V) 

𝑣𝐴𝐵  Inverter output voltage (V) 

𝑣𝑝 Transformer primary voltage (V) 

𝑣𝑠 Transformer secondary voltage (V) 

𝑛 Transformer turns ratio 

𝐶𝑜 Output filter capacitance (µF) 

𝑣𝑜 , 𝑖𝑜 Output voltage and current respectively (V,A) 

𝑅𝐿 Load Resistance (Ω) 

𝑓𝑠 Inverter switching frequency (kHz) 

𝑓𝑜 Resonant frequency = 1/2𝜋√𝐿𝐶 (kHz) 

𝛿 Phase-shift angle (rad) 

𝐷 Duty-ratio = 𝑇𝑂𝑁/𝑇𝑠 where 𝑇𝑂𝑁 is the time length 

where the inverter output is +𝑉𝑔 and 𝐷 ≤ 0.5 

𝑍𝑜 Characteristic impedance = √𝐿/𝐶 (Ω) 

𝑄 Quality factor = 𝑍𝑜/𝑅𝐿 

II. INTRODUCTION 

Resonant converters have been favored over conventional 

PWM converters due to their low switching losses. High 

frequency operation is possible making them feasible for high 

power-to-size ratio modular power supplies. However, the 

non-linear control nature of resonant converters and the 

presence of fast resonant tank dynamics have made it difficult 

to model and control. 

Several linearized small-signal models have been derived 

in the literature to provide insight for analysis, stability 

studies and closed loop control design. For the series resonant 

converter (SRC), under consideration, small-signal models 

have been introduced [1]-[3]. Discrete time domain models 

including the sampled-data modeling method have been 

proposed [4]-[6]. Discrete modeling and analysis techniques 

applicable to all types of inner feedback as well as non-inner 

feedback-controlled SRC were introduced [7]-[9]. The latter 

used the discrete modeling approach to obtain linearized SRC 

models in addition to linearized inner-feedback control laws. 

Such laws have been widely covered in the literature, like 

average-current control, frequency control, capacitor voltage 

control, diode-conduction-angle control, and optimal 

trajectory control. However, the aforementioned variable 

frequency control techniques present practical disadvantages, 

like a wide noise spectrum which makes it difficult to control 

EMI, more complex filtering, poor utilization of magnetic 

components, in addition to poor voltage regulation at low 

load [10].  

Fixed-frequency modulation techniques like phase-shift 

modulation (PSM) [11]-[15], asymmetrical duty-cycle 

modulation [16], [17] and asymmetrical clamped-mode 

modulation [18], [19] overcome problems of variable-

frequency control and offer excellent control on the output 

voltage. Numerous discrete time domain models for fixed-

frequency phase-shifted LCC-type resonant converters have 

been derived [20]-[22]. However, an explicit phase-shift-to-

output voltage transfer function does not exist. This paper 

extends the generalized discrete time domain small-signal 

approach introduced in [4] to model the fixed-frequency 

phase-shifted SRC. The goal is to derive an explicit small-

signal phase-shift-to-output voltage transfer function which 

can be applied to closed loop control design. 



  

III. SYSTEM DESCRIPTION 

Fig.1 illustrates the full bridge phase-shift modulated SRC 

topology. Conventional duty-ratio control (Fig. 2a) 

implements a 180° phase shift between inverter legs, whereas 

in the phase-shift modulation technique, all switches are on 

for half the switching period and the phase angle between 

inverter legs is controlled (Fig. 2b). A linear relationship 

between effective duty-ratio (D) and phase shift angle (𝛿) 

exists (𝛿 = 2𝜋𝐷) as shown in Fig.2. For this reason, the 

analysis will be presented in terms of D. For analysis 

simplicity, the transformer is assumed to have a unity turns 

ratio with the effect of its leakage inductance added to the 

resonant inductance. The analysis is carried out for operation 

above resonance, assuming continuous inductor current. 

IV. STATE-PLANE ANALYSIS 

State-plane analysis of the PSM-SRC is carried out to take 

advantage of geometrical relations in deriving a generalized 

state-space model.  Analysis assumes inverter output voltage 

half-wave symmetry. Typical waveforms for above resonance 

continuous mode PSM-SRC operation is shown in Fig.3a. 

The state-plane diagram (𝑣𝑐−𝑖𝐿) is derived from the 

differential equations of each of the positive half-cycle sub-

periods (A-D) shown in Fig.3b.  

 

Sub-Period A:  𝑡0 ≤ 𝑡 ≤ 𝑡1 
𝑑𝑖𝐿
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Sub-Period D:  𝑡3 ≤ 𝑡 ≤
𝑇𝑠
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Solving the sub-period equations, the 𝑣𝑐−𝑖𝐿  relation can be 

expressed as 
 

(𝑍𝑜𝑖𝐿)
2 + (𝑣𝑐 − 𝑉𝑐1

)2 = 𝑉𝑀1

2  for  𝑡0 ≤ 𝑡 ≤ 𝑡1                

where   𝑉𝑐1
= 𝑉𝑜   and    𝑉𝑀1

= −𝑉𝑐𝑚𝑎𝑥
− 𝑉𝑐1

                       (1) 

 

(𝑍𝑜𝑖𝐿)
2 + (𝑣𝑐 − 𝑉𝑐2

)2 = 𝑉𝑀2

2 for  𝑡1 ≤ 𝑡 ≤ 𝑡2                

where  𝑉𝑐2
= 𝑉𝑔 + 𝑉𝑜 and  𝑉𝑀2

= −𝑉𝑐𝑚𝑎𝑥
− 𝑉𝑐2

                    (2) 

 

(𝑍𝑜𝑖𝐿)
2 + (𝑣𝑐 − 𝑉𝑐3

)2 = 𝑉𝑀3

2 for  𝑡2 ≤ 𝑡 ≤ 𝑡3                 

where  𝑉𝑐3
= 𝑉𝑔 − 𝑉𝑜 and  𝑉𝑀3

= −𝑉𝑐𝑚𝑎𝑥
− 𝑉𝑐3

                    (3) 

 

(𝑍𝑜𝑖𝐿)
2 + (𝑣𝑐 − 𝑉𝑐4

)2 = 𝑉𝑀4

2 for 𝑡3 ≤ 𝑡 ≤
𝑇𝑠

2
                  

where   𝑉𝑐4
= −𝑉𝑜 and  𝑉𝑀4

= 𝑉𝑐𝑚𝑎𝑥
− 𝑉𝑐4

                           (4) 
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Fig.1.  Full bridge SRC converter topology 
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 Fig.2.  Gating signals for: (a) conventional duty-ratio control, and (b) phase 

shift modulation. 
 

The steady state 𝑣𝑐−𝑖𝐿  state-plane trajectories are shown in 

Fig.4 with 𝑉𝑐𝑚𝑎𝑥
 being the maximum voltage across the 

resonant capacitor (C). 

V. DISCRETIZATION 

Normalizing all voltages and currents with respect to 𝑉𝑐𝑚𝑎𝑥
 

and  𝑉𝑐𝑚𝑎𝑥
/𝑍𝑜 respectively yields 

 

𝑖𝑛𝐿 =
𝑖𝐿𝑍𝑜

𝑉𝑐𝑚𝑎𝑥

,  𝑣𝑛𝐶 =
𝑣𝑐

𝑉𝑐𝑚𝑎𝑥

,  𝑣𝑛𝑜 =
𝑣𝑜

𝑉𝑐𝑚𝑎𝑥

,  𝑣𝑛𝑔 =
𝑣𝑔

𝑉𝑐𝑚𝑎𝑥

,  𝑓𝑛𝑠 =
𝑓𝑠

𝑓𝑜
   (5)  

                           

Utilizing the half-wave symmetry of the waveforms in Fig.3a, 

the system is discretized as described in [4] and sampled 

every half switching period (𝑇𝑠/2). The normalized discrete 

state-plane is shown in Fig.5. Taking the state variables as 

𝑥1 = 𝑖𝑛𝐿 ,   𝑥2 = 𝑣𝑛𝐶 ,    𝑥3 = 𝑣𝑛𝑜                     (6) 
 

The discrete state-space representation of the system will take 

the form: 

𝑥1(𝑘 + 1) = 𝑓1 (𝑥1(𝑘), 𝑥2(𝑘), 𝑥3(𝑘), 𝑣𝑛𝑔(𝑘), 𝑓𝑛𝑠(𝑘), 𝑑(𝑘)) = 𝑓1(𝑘) 

𝑥2(𝑘 + 1) = 𝑓2 (𝑥1(𝑘), 𝑥2(𝑘), 𝑥3(𝑘), 𝑣𝑛𝑔(𝑘), 𝑓𝑛𝑠(𝑘), 𝑑(𝑘)) = 𝑓2(𝑘) (7) 

𝑥3(𝑘 + 1) = 𝑓3 (𝑥1(𝑘), 𝑥2(𝑘), 𝑥3(𝑘), 𝑣𝑛𝑔(𝑘), 𝑓𝑛𝑠(𝑘), 𝑑(𝑘)) = 𝑓3(𝑘)  

Based on the geometry of the trajectory in Fig.5, and taking 

advantage of half-wave symmetry in Fig. 3a, it can be shown 

that the functions in (7) are given by 
 

𝑓1(𝑘) = 𝑖𝑛𝐿(𝑘 + 1) = (−1)𝑘 (√𝑖𝑛𝐿
2(𝑘) + ((𝑣𝑛𝑜(𝑘) − 𝑣𝑛𝐶(𝑘))(−1)𝑘)2)x 

sin (𝜑(𝑘) −
𝜋

𝑓𝑛𝑠(𝑘)
(0.5 − 𝑑(𝑘)))                                                          (8a)  



  

𝑓2(𝑘) = 𝑣𝑛𝐶(𝑘 + 1) = (−1)𝑘 (√𝑖𝑛𝐿
2(𝑘) + ((𝑣𝑛𝑜(𝑘) − 𝑣𝑛𝐶(𝑘))(−1)𝑘)2)x 

cos(𝜑(𝑘) −
𝜋

𝑓𝑛𝑠(𝑘)
(0.5 − 𝑑(𝑘))) − 𝑣𝑛𝑜(𝑘)                                             (8b) 

𝑓3(𝑘) = 𝑣𝑛𝑜(𝑘 + 1) =
4𝜏 −

1
𝑓𝑜𝑓𝑛𝑠(𝑘)

4𝜏 +
1

𝑓𝑜𝑓𝑛𝑠(𝑘)

𝑣𝑛𝑜(𝑘) +
4𝑅𝑜𝐶

4𝜏 +
1

𝑓𝑜𝑓𝑛𝑠(𝑘)

x 

[(2 − 𝑣𝑛𝐶(𝑘) − 𝑣𝑛𝐶(𝑘 + 1))(−1)𝑘]                                                         (8c) 
 

where 
 

𝜑(𝑘) = 𝑐𝑜𝑠−1[𝐴],  𝜏 = 𝑅𝑜𝐶𝑜 
 

𝐴 =
𝑖𝑛𝐿

2(𝑘) + (𝑣𝑛𝑜(𝑘) − 𝑣𝑛𝐶(𝑘))2 + 𝑣𝑛𝑔
2(𝑘) − (1 + 𝑣𝑛𝑔(𝑘) − 𝑣𝑛𝑜(𝑘))2

2𝑣𝑛𝑔(𝑘)√𝑖𝑛𝐿
2(𝑘) + ((𝑣𝑛𝑜(𝑘) − 𝑣𝑛𝐶(𝑘))(−1)𝑘)2
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Fig.3.  Continuous inductor current operation of full bridge PSM-SRC with 

half-wave symmetry: (a) waveforms, and (b) equivalent circuit diagrams for 

positive half-cycle sub-periods. 
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Fig.4. State-plane trajectory of full-bridge PSM-SRC. 
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VI. SMALL-SIGNAL ANALYSIS AND MATRIX REPRESENTATION 

For the perturbed and linearized system around a specific 

steady-state operating point (considering perturbations in 

duty-ratio �̂�(𝑘) only), a general state-space format exists 

such that 

�̂�(𝑘 + 1) = 𝐴0�̂�(𝑘) + 𝐵0�̂�(𝑘), k even               (9a) 

�̂�(𝑘 + 1) = 𝐴1�̂�(𝑘) + 𝐵1�̂�(𝑘), k odd                 (9b) 
 

Since the steady-state trajectories of the resonant states have 

symmetry about the origin (i.e. any two points on the steady-

state trajectory are one half switching period apart with 

opposite polarity), therefore it is possible to derive a new 

discrete state-vector equation which can be updated every 

half-switching period. Equations (9) can be written in a 

general format 

�̂�(𝑘 + 1) = 𝐴(𝑘)�̂�(𝑘) + 𝐵(𝑘)�̂�(𝑘)            (10a) 
 

where 

𝐴(𝑘) = 𝑃(𝑘)𝐴0𝑃(𝑘) 

𝐵(𝑘) = 𝑃(𝑘)𝐵0 

𝛼1 = 𝜔0(𝑡1 − 𝑡0) 

𝛼2 = 𝜔0(𝑡2 − 𝑡1) 

𝛼3 = 𝜔0(𝑡3 − 𝑡2) 

𝛼4 = 𝜔0(
𝑇𝑠

2
− 𝑡3) 

𝛼1 = 𝛼4 = 𝜋
𝑓0

𝑓𝑠
(0.5 − 𝐷) 

𝛼2 + 𝛼3 = 𝜋
𝑓0

𝑓𝑠
. 2𝐷 

𝛼1 + 𝛼2 + 𝛼3+𝛼4  = 𝜔0 (
𝑇𝑠

2
− 𝑡0) = 𝜋

𝑓0

𝑓𝑠
 

 

𝑣𝑛𝑀1 = −1 − 𝑣𝑛𝐶1 = −1 − 𝑣𝑛𝑜 

|𝑣𝑛𝑀1| = 1 + 𝑣𝑛𝑜 

𝑣𝑛𝑀2 = −1 − 𝑣𝑛𝐶2 
           = −1 − (𝑣𝑛𝑔 + 𝑣𝑛𝑜) 

|𝑣𝑛𝑀2| = 1 + 𝑣𝑛𝑔 + 𝑣𝑛𝑜 

𝑣𝑛𝑀3 = −1 − 𝑣𝑛𝐶3 
           = −1 − (𝑣𝑛𝑔 − 𝑣𝑛𝑜) 

|𝑣𝑛𝑀3| = 1 + 𝑣𝑛𝑔 − 𝑣𝑛𝑜 

𝑣𝑛𝑀4 = 1 − 𝑣𝑛𝐶4 = 1 + 𝑣𝑛𝑜 

|𝑣𝑛𝑀4| = 1 + 𝑣𝑛𝑜 



  

Matrix 𝑃(𝑘) is a 3x3 matrix given by  
 

𝑃(𝑘) = [
(−1)𝑘 0 0

0 (−1)𝑘 0
0 0 1

]                         (10b) 

 

Matrices 𝐴0 and 𝐵0 are defined, as given in [4], by using 

Taylor Series Expansion, 
 

𝐴0 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] =

[
 
 
 
 
𝜕𝑓1(0)

𝜕𝑥1(0)

𝜕𝑓1(0)

𝜕𝑥2(0)

𝜕𝑓1(0)

𝜕𝑥3(0)

𝜕𝑓2(0)

𝜕𝑥1(0)

𝜕𝑓2(0)

𝜕𝑥2(0)

𝜕𝑓2(0)

𝜕𝑥3(0)

𝜕𝑓3(0)

𝜕𝑥1(0)

𝜕𝑓3(0)

𝜕𝑥2(0)

𝜕𝑓3(0)

𝜕𝑥3(0)]
 
 
 
 

       (10c) 

𝐵0 = [

𝑏1

𝑏2

𝑏3

] =

[
 
 
 
 
𝜕𝑓1(0)

𝜕𝑑(0)

𝜕𝑓2(0)

𝜕𝑑(0)

𝜕𝑓3(0)

𝜕𝑑(0) ]
 
 
 
 

                              (10d)  

Since the output voltage has even symmetry, it is constant 

and is not a function of k. 

Although a unified discrete state-space representation is 

given by (10a), the system matrices 𝐴(𝑘) and 𝐵(𝑘) are a 

function of the 𝑘𝑡ℎ half-switching period, i.e. the matrices 

change according to k. Constant matrices must be obtained to 

have a linear time-invariant system. Using a transformation 
 

�̂�1(𝑘) = (−1)𝑘+1�̂�1(𝑘),   since  �̂�1(0) < 0         (11a) 

�̂�2(𝑘) = (−1)𝑘+1�̂�2(𝑘),   since  �̂�2(0) < 0         (11b) 

�̂�3(𝑘) = �̂�3(𝑘)                                 (11c) 

�̂�(𝑘) = [
(−1)𝑘+1 0 0

0 (−1)𝑘+1 0
0 0 1

] �̂�(𝑘) = 𝑄(𝑘)�̂�(𝑘)   (12) 

Replacing 𝑘 by 𝑘 + 1, 
 

�̂�(𝑘 + 1) = [
−1 0 0
0 −1 0
0 0 1

] [
(−1)𝑘+1 0 0

0 (−1)𝑘+1 0
0 0 1

] �̂�(𝑘 + 1) 

= 𝑅𝑄(𝑘)�̂�(𝑘 + 1)                                              (13) 
 

Substituting (12) and (13) into (10a) and taking into account 

𝑅𝑅 = 𝐼 and 𝑄𝑄 = 𝐼, 

𝑅𝑄(𝑘)�̂�(𝑘 + 1) = 𝐴(𝑘)𝑄(𝑘)�̂�(𝑘) + 𝐵(𝑘)�̂�(𝑘)       (14) 

�̂�(𝑘 + 1) = 𝑄(𝑘)𝑅𝐴(𝑘)𝑄(𝑘)�̂�(𝑘) + 𝑄(𝑘)𝑅𝐵(𝑘)�̂�(𝑘) (15) 

�̂�(𝑘 + 1) = 𝐴2�̂�(𝑘) + 𝐵2�̂�(𝑘)                   (16) 

where 

𝐴2 =  𝑄(𝑘)𝑅𝐴(𝑘)𝑄(𝑘) = 𝑄(𝑘)𝑅𝑃(𝑘)𝐴0𝑃(𝑘)𝑄(𝑘) 

= [

−𝑎11 −𝑎12 𝑎13

−𝑎21 −𝑎22 𝑎23

−𝑎31 −𝑎32 𝑎33

]                                        (17a) 

𝐵2 = 𝑄(𝑘)𝑅𝐵(𝑘) = [

𝑏1

𝑏2

𝑏3

]                     (17b)  

Notice that due to the transformation used in (11), 𝐴2 and 𝐵2 

are constant matrices independent of sampling instant 𝑘. 

Applying the z-transformation to (16), the small-signal 

frequency response of the converter, in the complex 

frequency domain, can be calculated using the relation 

𝑧 = 𝑒𝑠𝑇𝑠/2, which can be approximated by a bilinear 

transformation as in (18). The duty-ratio to output voltage 

transfer function is 
 

�̂�𝑛𝑜(𝑠)

�̂�(𝑠)
= [0 0 1][𝑧𝐼 − 𝐴2]

−1𝐵2|𝑧≈
1+𝑇𝑠𝑠/4

1−𝑇𝑠𝑠/4

         (18) 

 

Coefficients of the matrices 𝐴2 and 𝐵2 are derived by 

obtaining the partial derivatives in (10c) and (10d). These 

coefficients are expressed as 
 

𝑎11 =
𝑉𝑛𝑀1cos (𝜑−𝛼4)𝑠𝑖𝑛(𝜑−𝛼4)

𝑠𝑖𝑛 𝜑
(

𝑐𝑜𝑠𝜑

𝑉𝑛𝑀1
−

1

𝑉𝑛𝑔
) + 𝑠𝑖𝑛2(𝜑 − 𝛼4)  

𝑎12 = −[
𝑉𝑛𝑀1cos2(𝜑−𝛼4)

𝑠𝑖𝑛 𝜑
(

𝑐𝑜𝑠𝜑

𝑉𝑛𝑀1
−

1

𝑉𝑛𝑔
) + 𝑐𝑜𝑠(𝜑 − 𝛼4)𝑠𝑖𝑛(𝜑 − 𝛼4)]  

𝑎13 =
𝑉𝑛𝑀1𝑐𝑜𝑠(𝜑−𝛼4)

𝑠𝑖𝑛 𝜑
(

𝑐𝑜𝑠𝜑cos (𝜑−𝛼4)

𝑉𝑛𝑀1
−

cos(𝜑−𝛼4)+
𝑉𝑛𝑀3
𝑉𝑛𝑀1

𝑉𝑛𝑔
) + 𝑐𝑜𝑠(𝜑 − 𝛼4)𝑠𝑖𝑛(𝜑 − 𝛼4)  

𝑎21 = −
𝑉𝑛𝑀1𝑠𝑖𝑛2(𝜑−𝛼4)

𝑠𝑖𝑛 𝜑
(

𝑐𝑜𝑠𝜑

𝑉𝑛𝑀1
−

1

𝑉𝑛𝑔
) + 𝑐𝑜𝑠(𝜑 − 𝛼4)𝑠𝑖𝑛(𝜑 − 𝛼4)  

𝑎22 =
𝑉𝑛𝑀1𝑠𝑖𝑛(𝜑−𝛼4)𝑐𝑜𝑠(𝜑−𝛼4)

𝑠𝑖𝑛 𝜑
(

𝑐𝑜𝑠𝜑

𝑉𝑛𝑀1
−

1

𝑉𝑛𝑔
) − 𝑐𝑜𝑠2(𝜑 − 𝛼4)  

𝑎23 = −
𝑉𝑛𝑀1𝑠𝑖𝑛(𝜑−𝛼4)

𝑠𝑖𝑛 𝜑
(

𝑐𝑜𝑠𝜑cos (𝜑−𝛼4)

𝑉𝑛𝑀1
−

cos(𝜑−𝛼4)+
𝑉𝑛𝑀3
𝑉𝑛𝑀1

𝑉𝑛𝑔
) + 𝑐𝑜𝑠2(𝜑 − 𝛼4) − 1  

𝑎31 = −
4𝑅𝑜𝐶

4𝜏+𝑇𝑠
𝑎21  

𝑎32 = −
4𝑅𝑜𝐶

4𝜏+𝑇𝑠
(1 + 𝑎22)  

𝑎33 =
4𝜏−𝑇𝑠

4𝜏+𝑇𝑠
−

4𝑅𝑜𝐶

4𝜏+𝑇𝑠
𝑎23  

𝑏1 = 𝑉𝑛𝑀1
𝜋

𝐹𝑛𝑠

cos (𝜑 − 𝛼4)  

𝑏2 = −𝑉𝑛𝑀1
𝜋

𝐹𝑛𝑠
sin (𝜑 − 𝛼4)  

𝑏3 =
4𝑅𝑜𝐶

4𝜏+𝑇𝑠
[𝑉𝑛𝑀1

𝜋

𝐹𝑛𝑠
sin (𝜑 − 𝛼4)]  

 

Using the linear relation from Fig.2 (𝛿 = 2𝜋𝐷), it follows 

that the small signal quantities are similarly related (�̂� =

2𝜋�̂�). Therefore the phase shift to output voltage transfer 

function can be derived from 
 

�̂�𝑛𝑜(𝑠)

�̂�(𝑠)
=

�̂�𝑛𝑜(𝑠)

�̂�(𝑠)
∗

1

2𝜋
                            (19) 

VII. CLOSED-LOOP PI CONTROL DESIGN 

In order to verify (19), closed-loop PI control design is 

according to the duty-ratio to output voltage transfer function 

in (18). Using this design, the closed loop control 

performance for both, conventional duty-ratio control and 

phase-shift control, is compared. The analogy of results 

proves the validity of (19). 

A. Duty-Ratio Control 

The typical structure of the closed-loop feedback control 

system for duty-ratio control of the SRC is shown in Fig.6. 

From Fig.6, the overall open-loop transfer function of the is 

𝑇𝑂𝐿(𝑠) = 𝑇1(𝑠)𝑇𝑐(𝑠)                       (20) 

where 

𝑇1(𝑠) =
�̂�𝑜(𝑠)

�̂�𝑐(𝑠)
=

�̂�𝑜(𝑠)

�̂�(𝑠)

�̂�(𝑠)

�̂�𝑐(𝑠)
= 𝑇𝑝(𝑠)𝑇𝑚(𝑠)  

and                    𝑇𝑚(𝑠) = 𝐾1 = constant                             (21) 

𝑇𝑐(𝑠) = PI controller transfer function= 𝐾𝑝 + 𝐾𝑖
𝑠

. 
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 Fig.6.  Feedback control structure for closed-loop duty-ratio control of SRC. 
 
 

As explained in [23], for a given 𝑇1(𝑠), the transfer 

function of the compensated amplifier 𝑇𝑐(𝑠) must be tailored 

so that 𝑇𝑂𝐿(𝑠) meets the performance requirements expected 

of the power supply. These include, high dc gain to minimize 

steady-state error in power supply output and adequate phase 

margin to ensure system stability.  

By selecting a steady-state operating condition (values in 

Table I), the small-signal transfer function in (18) can be 

computed as in (22). PI controller is then designed using 

Bode-plot (complex frequency) analysis and is given by (23). 

Fig.7 shows the open-loop Bode-plot before and after 

controller implementation. The integrator has lead to system 

dc gain improvement (necessary to reduce steady-state error) 

and the phase-delay is reduced leading to a faster dynamic 

response. 
 

TABLE I 

STEADY-STATE VALUES FOR SMALL-SIGNAL LINEARIZATION  
 

Parameter Value 

𝑉𝑔 100 V 

𝐿 100 µH 

𝐶 0.28 µF 

𝑍𝑜 18.85 Ω 

𝐹𝑜 30 kHz 

𝐹𝑠 40 kHz 

𝐷 0.4 

𝑛 1 

𝐶𝑜 100 µF 

𝑅𝐿 9.425 Ω 

𝑄 2 
 

�̂�𝑛𝑜(𝑠)

�̂�(𝑠)
=

−1358𝑠2+2.173∗108𝑠−0.03474

𝑠3+1.7∗105𝑠2+1.828∗109𝑠+1.629∗1012                   (22) 
 

𝑇𝑐(𝑠) = 16000 (
1+0.00079𝑠

𝑠
)                         (23) 

B. Phase-Shift Control 

The typical structure of the closed-loop feedback control 

system for SRC phase-shift control is shown in Fig.8. The 

same PI controller design is used, with the PSM-SRC 

cascaded with a gain of 2𝜋 to mimic the duty-ratio controlled 

SRC. This makes use of (19) with the phase shift modulator 

acting as a gain, analogous to the saw-tooth PWM generator. 

Simulation results for both control methods are compared in 

the next section. 

VIII. RESULTS AND DISCUSSION 

A comparative time domain analysis of the closed loop 

duty-ratio controlled and PSM series resonant converter is 

performed using the detailed converter switching model and 

utilizing the controller in (23). Fig.9 shows simulation results 

for the SRC with both control techniques. The similarity in 

step response validates the derivation of the phase-shift to 

output voltage transfer function obtained from the duty-ratio 

to output voltage transfer function in (19). 

 

 
Fig.7.  Open loop bode plots 
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 Fig.8.  Feedback control structure for closed-loop PS control of SRC 
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Fig.7.  Simulation results for SRC closed loop control: (a) Duty-ratio control, 
and (b) Phase-shift control. 



  

CONCLUSION 

Discrete time domain modeling has been used to derive a 

linearized small-signal phase-shift to output voltage transfer 

function for the PSM-SRC. This is used for linear closed loop 

PI control design. The duty-ratio to output voltage transfer 

function for the duty-ratio controlled SRC was derived 

through state-plane analysis and discretization. A linear 

relationship exists between the phase-shift angle in the PSM 

technique and the actual duty-ratio in the PWM technique. 

This relation has been investigated and used to derive the 

phase-shift to output voltage transfer function, which shows 

similar response. Closed-loop controller design has been 

carried out to tune the PI controller parameters to the required 

step response. The designed controllers were applied to the 

non-linear switching model of the converter, obtaining 

satisfactory step response.  
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