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Abstract --This paper provides an analytical discrete small-
signal state-space model of the phase-shift modulated series
resonant converter used to obtain an explicit linearized phase-
shift to output voltage transfer function. This transfer function
is useful for linear closed loop control design. Initially, the
effective duty-ratio to output voltage transfer function is
derived. It is then proven, analytically and through results, that
it is linearly related to the phase-shift to output voltage which is
the main research concern. The analysis is carried out using
state-plane  diagrams. Small-signal  state-space  model
representation is derived which is used for closed loop controller
gain calculations. Results validate the calculated control gains
based on the proposed linearized model.

Index Terms—Discrete time domain, Phase-Shift Modulation

(PSM), Series Resonant Converter (SRC), Small-signal
modeling.
I. NOMENCLATURE
Vg DC supply voltage (V)
i Resonant tank inductor current (A)
Ve Resonant tank capacitor voltage (V)
Uyp Inverter output voltage (V)
Vp Transformer primary voltage (V)
W Transformer secondary voltage (V)
n Transformer turns ratio
Gy Output filter capacitance (1F)
Vy, o Output voltage and current respectively (V,A)
R; Load Resistance (Q2)
fs Inverter switching frequency (kHz)
fo Resonant frequency = 1/2mVLC (kHz)
1) Phase-shift angle (rad)
D Duty-ratio = Ty /Ts where Ty is the time length
where the inverter output is +1; and D < 0.5
Z, Characteristic impedance = /L/C (Q0)
Q Quality factor=Z7,/R;,

II. INTRODUCTION

Resonant converters have been favored over conventional
PWM converters due to their low switching losses. High
frequency operation is possible making them feasible for high

power-to-size ratio modular power supplies. However, the
non-linear control nature of resonant converters and the
presence of fast resonant tank dynamics have made it difficult
to model and control.

Several linearized small-signal models have been derived
in the literature to provide insight for analysis, stability
studies and closed loop control design. For the series resonant
converter (SRC), under consideration, small-signal models
have been introduced [1]-[3]. Discrete time domain models
including the sampled-data modeling method have been
proposed [4]-[6]. Discrete modeling and analysis techniques
applicable to all types of inner feedback as well as non-inner
feedback-controlled SRC were introduced [7]-[9]. The latter
used the discrete modeling approach to obtain linearized SRC
models in addition to linearized inner-feedback control laws.
Such laws have been widely covered in the literature, like
average-current control, frequency control, capacitor voltage
control, diode-conduction-angle control, and optimal
trajectory control. However, the aforementioned variable
frequency control techniques present practical disadvantages,
like a wide noise spectrum which makes it difficult to control
EMI, more complex filtering, poor utilization of magnetic
components, in addition to poor voltage regulation at low
load [10].

Fixed-frequency modulation techniques like phase-shift
modulation (PSM) [11]-[15], asymmetrical duty-cycle
modulation [16], [17] and asymmetrical clamped-mode
modulation [18], [19] overcome problems of variable-
frequency control and offer excellent control on the output
voltage. Numerous discrete time domain models for fixed-
frequency phase-shifted LCC-type resonant converters have
been derived [20]-[22]. However, an explicit phase-shift-to-
output voltage transfer function does not exist. This paper
extends the generalized discrete time domain small-signal
approach introduced in [4] to model the fixed-frequency
phase-shifted SRC. The goal is to derive an explicit small-
signal phase-shift-to-output voltage transfer function which
can be applied to closed loop control design.



III. SYSTEM DESCRIPTION

Fig.1 illustrates the full bridge phase-shift modulated SRC
topology. Conventional duty-ratio control (Fig. 2a)
implements a 180° phase shift between inverter legs, whereas
in the phase-shift modulation technique, all switches are on
for half the switching period and the phase angle between
inverter legs is controlled (Fig. 2b). A linear relationship
between effective duty-ratio (D) and phase shift angle (&)
exists (6 = 2mD) as shown in Fig.2. For this reason, the
analysis will be presented in terms of D. For analysis
simplicity, the transformer is assumed to have a unity turns
ratio with the effect of its leakage inductance added to the
resonant inductance. The analysis is carried out for operation
above resonance, assuming continuous inductor current.

IV. STATE-PLANE ANALYSIS

State-plane analysis of the PSM-SRC is carried out to take
advantage of geometrical relations in deriving a generalized
state-space model. Analysis assumes inverter output voltage
half-wave symmetry. Typical waveforms for above resonance
continuous mode PSM-SRC operation is shown in Fig.3a.
The state-plane diagram (v.—i;) is derived from the
differential equations of each of the positive half-cycle sub-
periods (A-D) shown in Fig.3b.

Sub-Period A: ty <t<t; Sub-Period B: t; <t <t,
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Solving the sub-period equations, the v.—i; relation can be
expressed as

(ZoiL)2 + (vc — Vcl)z
where V. =V, and Vy = -V

Cmax

=V’ for tp<t<t
-V (1)

(ZoiL)? + (v — Vp,)> =V’ for t; St <ty
where Vi, =V, +V,and Vy, = -V, =V, 2)
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where Vo, =V, =V, and Vy, = -V, -V, 3)
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Fig.1. Full bridge SRC converter topology
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Fig.2. Gating signals for: (a) conventional duty-ratio control, and (b) phase
shift modulation.

The steady state v,—i; state-plane trajectories are shown in
Fig4 with V,  being the maximum voltage across the
resonant capacitor (C).

V. DISCRETIZATION

Normalizing all voltages and currents with respectto V
and V. /Z, respectively yields

Cmax

iLZ, Ve Vo Vg

san—V ’Vno—V ’vng—V »fns
Cmax Cmax Cmax

Iy =
Vﬁmax

_ 5
== 0

Utilizing the half-wave symmetry of the waveforms in Fig.3a,
the system is discretized as described in [4] and sampled
every half switching period (7;/2). The normalized discrete
state-plane is shown in Fig.5. Taking the state variables as

X3 = Upo (6)

The discrete state-space representation of the system will take
the form:

xy(k + 1) = £ (.00, %206, %3(K), Vg (), fos (), d()) = oK)
xa(k + 1) = 5 (3206, %00, %3 (K), Vg (), fons (), d(K)) = oK) (7)
x3(k+1) = f; (xl(k);xz(k)rx3(k)rvng(k)rfns(k)rd(k)) = f3(k)
Based on the geometry of the trajectory in Fig.5, and taking
advantage of half-wave symmetry in Fig. 3a, it can be shown
that the functions in (7) are given by

A0 = e+ 1) = COF (0 + (0na 1 = eG4

sin (¢ (k) — —— (0.5 — d(k))) (8a)

X1 = lpg, X2 = Upe,

fn (k)






Matrix P (k) is a 3x3 matrix given by

-DF 0 0
PKY=[ 0o (-D* o
0 0 1

Matrices A, and B, are defined, as given in [4], by using
Taylor Series Expansion,

(10b)

O£0) AO) AN
a, Ay s 9x1(0) 0x2(0) 9x3(0)
A =lay ay ay|=|22@ 220 5O 1
0= |21 22 23| T 5(0) 0x2(0) 0x3(0) (10¢)
31 A3z 433l Nop0) ap0) 9500
laxl(O) 0x,(0)  0x3(0)
3f1(0)
ad(O)
3f2(0)
By = |b l |ad(0) (10d)
3f3(0)
ad(o)

Since the output voltage has even symmetry, it is constant
and is not a function of £.

Although a unified discrete state-space representation is
given by (10a), the system matrices A(k) and B(k) are a
function of the k" half-switching period, i.e. the matrices
change according to k. Constant matrices must be obtained to
have a linear time-invariant system. Using a transformation

2,(k) = (=1)k*1%,(k), since £,(0) <0 (11a)
2,(k) = (=1)¥*1%,(k), since %,(0) <0 (11b)
23(k) = %3(k) (11¢)

(_1)k+1 0 0
2(k) = [ 0 (—1)k+1 0] 2(k) = Q(k)z(k) (12)
0 0 1

Replacing k by k + 1,

-1 0 O0][(—=1)k* 0 0
k+1)=]0 -1 0 0 (=D)k*1 o|ZCk +1)
0 0 1 0 0 1

= RQ(K)2(k + 1) (13)

Substituting (12) and (13) into (10a) and taking into account
RR =1and QQ =1,
RQ(k)2(k + 1) = A(k)Q(K)2(k) + B(k)d(k)  (14)
2(k +1) = Q(k)RA(K)Q(k)z(k) + Q(K)RB(k)d (k) (15)
2(k + 1) = A,2(k) + B,d(k) (16)
where

Ay = Q(k)RA(K)Q(k) = QURP (k) A P(k)Q (k)

11 — Q12 Qg3
=[_a21 —Qzz Q3 (17a)
—Qa3z; —04zz d4zz
1
&=memm=k4 (17b)
bs

Notice that due to the transformation used in (11), 4, and B,
are constant matrices independent of sampling instant k.

Applying the z-transformation to (16), the small-signal
frequency response of the converter, in the complex
frequency domain, can be calculated using the relation

z=e5"/2 which can be approximated by a bilinear

transformation as in (18). The duty-ratio to output voltage
transfer function is

Dno(s) _
d(s)

=[0 0 1][z - A] "Byl _ (18)

1+Tgs/4
1-Tss/4
Coefficients of the matrices A, and B, are derived by
obtaining the partial derivatives in (10c) and (10d). These
coefficients are expressed as
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o = _ Vamasin(p—ay) [ cospcos(p-as) sy +cos?(p—a) — 1
23 sin g VaMmi Vng 4
a 4RoC
s = 4r+TS i
4R,C
G32 = = - T 1+ az;)
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Using the linear relation from Fig.2 (6 = 2mD), it follows
that the small signal quantities are similarly related (6 =
2rtd). Therefore the phase shift to output voltage transfer
function can be derived from

Dno(s) _ Pnol(s) = 1
3¢s)  d(s) Yo 19)

VII. CLOSED-L0oOP PI CONTROL DESIGN

In order to verify (19), closed-loop PI control design is
according to the duty-ratio to output voltage transfer function
in (18). Using this design, the closed loop control
performance for both, conventional duty-ratio control and
phase-shift control, is compared. The analogy of results
proves the validity of (19).

A. Duty-Ratio Control

The typical structure of the closed-loop feedback control
system for duty-ratio control of the SRC is shown in Fig.6.
From Fig.6, the overall open-loop transfer function of the is

ToL(s) = Ti(s)Te(s) (20)
where
0,(s) _ 0,(s) d(s)
T,(s) = = — — =T,(s)T,,(s
T O O EXO AR
and T,n(s) = K; = constant (21)
T,(s) = PI controller transfer function= K, + %
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CONCLUSION

Discrete time domain modeling has been used to derive a
linearized small-signal phase-shift to output voltage transfer
function for the PSM-SRC. This is used for linear closed loop
PI control design. The duty-ratio to output voltage transfer
function for the duty-ratio controlled SRC was derived
through state-plane analysis and discretization. A linear
relationship exists between the phase-shift angle in the PSM
technique and the actual duty-ratio in the PWM technique.
This relation has been investigated and used to derive the
phase-shift to output voltage transfer function, which shows
similar response. Closed-loop controller design has been
carried out to tune the PI controller parameters to the required
step response. The designed controllers were applied to the
non-linear switching model of the converter, obtaining
satisfactory step response.
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