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Low-Frequency Small-Signal Modeling of
Interconnected AC Microgrids

Mobin Naderi, Student Member, IEEE, Qobad Shafiee, Senior Member, IEEE, Frede Blaabjerg, Fellow, IEEE
and Hassan Bevrani, Senior Member, IEEE,

Abstract—As a solution for optimized, reliable and flexible
operation of distribution systems, multiple AC microgrids can
be interconnected. In this paper, a low-order low-frequency
small-signal model is proposed for large-scale interconnected AC
microgrids in order to analyze stability and dynamics as well as
synthesize high-level controllers, e.g. inter-microgrid power flow
controller. A sensitivity analysis-based technique is introduced
to find significant modules of fully inverter-based AC microgrids
for preserving the dominant low-frequency modes. The low-order
model of AC microgrids including both droop-based and PQ-
controlled distributed generation units is obtained by removing
insignificant modules of the detailed model and reconfiguring
the significant modules. The concept of virtual swing equation
and the aggregation modeling method are employed to achieve
a single-order model from the low-order model for each AC
microgrid with any number of sources. The analysis and synthesis
of the large-scale interconnected microgrids can easily be done
using the proposed single-order model. The frequency analysis
and control of three interconnected AC microgrids are presented
as a case study, which leads to introducing the inter-microgrid
oscillatory modes.

Index Terms—Aggregation method, dominant low-frequency
modes, interconnected AC microgrids, sensitivity analysis, sim-
plified model, virtual swing equation.

I. INTRODUCTION

S INCE the distributed generation units (DGUs) have lim-
itations and the loads are dispersed, they have been

integrated within the concept of microgrid (MG). As a solution
for accessing more flexibility, reliability and sustainability, the
interconnected microgrids (IMGs) have recently been intro-
duced. Both AC and DC MGs and different interconnections
among them are taken into account in terms of optimal
operation, control and stability analysis [1]–[10]. However,
the AC IMGs have been more favorable due to available AC
distribution systems and their challenges. As the first step, the
challenges of stability and control of IMGs should be solved,
especially when they lead to large-scale nested systems. In
such systems, low-order models focusing on the slow dynamic
modes are more interesting for main modules, i.e. AC MGs.
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Hence, modeling, stability analysis, and high-level controller
design of several IMGs with different structures are facilitated.

Generally speaking, the modeling methods are divided into
small-signal and large-signal types. Although the large-signal
methods are based on nonlinear equations, linearized equations
around an equilibrium point are utilized for the small-signal
modeling. On the other hand, the modeling method types are
dependent on the kind of studied dynamics. For MG dynam-
ics, the phenomena can be classified into four groups, i.e.
very fast, fast/medium, slow and very slow phenomena. Har-
monic studies, voltage/frequency control, demand response,
and power management are examples, respectively [11]. For
each phenomena group, different types of modeling methods
with their requirements are needed to model corresponding
dynamics, which in turn can be categorized into detailed and
simplified modeling types. A detailed modeling method for
fast/medium MG dynamics has been presented in [12], which
leads to a large range of frequencies to be assessed. In contrast,
the simplified models are addressed focusing on a special
frequency range, particularly low frequencies [13]–[17].

The simplified modeling methods can be organized
into three clusters, i.e. model-based, module-based, and
measurement-based simplification approaches. In the first clus-
ter, the detailed model should be obtained for each studied
system, then its order can be reduced using aggregation and
perturbation methods [18]. The perturbation methods including
regular (e.g., [19]) and singular (e.g., [13]–[17], [20]) types are
often used in the MG dynamic studies. The second cluster
tries to find the simplified model without calculating the
detailed model. The dominant modules in the desired dynamics
are preserved and the other are removed according to the
knowledge of the system [6], [21]. Methods of the third cluster
benefit from the measured data and system identification tech-
niques, e.g. fast Fourier transform, Prony analysis [22], [23],
discrete wavelet transform [24] and vector fitting technique
[25]. Artificial-intelligence modeling techniques are also a
group of the measurement-based methods [26], [27].

The AC MGs can be interconnected via circuit breakers [6],
[20], [21], [28], static switches [3] or back-to-back converters
[4], [5], [29]. The first case is often of interest since it is
economic. Modeling of such AC IMGs is based on modeling
of the main modules, i.e. individual AC MGs, where inter-
linking lines have a simple model and the circuit breakers
can be neglected. Most of the literature have concentrated
on the AC MG with fully inverter-based DGUs [13]–[17],
[21], [30], [31], which is also the basic structure in this
paper. The simplification procedure can be of two steps,
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comprising of simplifying the electrical network and reducing
the order of inverters individually. The first step have usually
been accomplished using Kron reduction method [13], [17],
[21]. However, non-simplified networks [15], [16], [30] and
simple networks with single point of common coupling (PCC)
[14], [31] are also considered in the literature. In addition, a
reduced-order model based on the modified Krylov subspace
method is developed for active distribution networks [32].
Regarding the second step, several reduced-order models have
been presented for inverters consisting of eighth-order [15],
fifth-order [13], third-order [13], [16], [31], [33], second-order
[17] and single-order [13], [14]. In [13], [14], [17], [20] the
coupling line is included in the inverter model as a significant
module in forming the dominant modes.

In an order-reducing process, mostly, the fast dynamic
modes are removed and the slow dominant modes are pre-
served using the balanced Residualization realization (singular
perturbation theory) [13]–[17], [20]. Nevertheless, in [19], the
balanced Truncation realization (regular perturbation theory)
is used in order to achieve a second-order model of PQ-
controlled grid-feeding inverters. Furthermore, in [21], the
aggregation methods and quasi-static equations are employed
for IMGs to map all similar modules in each AC MG,
e.g. droop-based DGUs have one equivalent module. In this
method, each module model has not been simplified. Another
study on IMGs focuses on the stability assessment through
finding the critical clusters of DGUs, which has employed the
singular perturbation method [20].

In this paper, a reduced-order low-frequency model is pro-
posed for circuit breaker-coupled AC IMGs with fully inverter-
based DGUs employing both perturbation and aggregation
methods. The low-order IMG model with the method of
calculating the main parameters, i.e. the virtual moment of
inertia and the damping coefficient of MGs, is the main paper
novelty. Compared with existing works, the contribution of
this paper can be clarified as follows:

• Unlike existing works [17], [20], the proposed simpli-
fication method is not just based on the participation
matrix. Here, a family of AC MGs are considered with
different ranges of parameters using the sensitivity analy-
sis. Therefore, the significant modules for preserving the
dominant low-frequency modes (DLFMs) can be found
for all possible amounts of parameters. In other words,
the method is robust against the parameter changes.

• The proposed simplification method is a module-based
scalable one. Here, the detailed model is used just for
the searching process of the significant modules. After
finding these significant MG modules on the DLFMs, any
number of the preserved modules can be interconnected
to form any desired MG structure.

• The simplification starts by using singular and regular
perturbation methods regarding modules dynamics, and
then it will be completed by aggregating the oscillatory
DLFMs into a couple of complex conjugate eigenvalues.
It leads to a second-order model for AC MGs.

• The concept of virtual swing equation is introduced to
achieve a single-order model for autonomous AC MGs
with reasonable and calculated values for virtual inertia
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Fig. 1. General structure of interconnected AC MGs via circuit breakers, and
tie lines under the four-level control architecture.

and damping coefficient. In [34], a single-order model
is considered for AC MGs with both inertia-less and
rotational DGUs, which in fact shows the real inertia of
the rotational units and neglects the inertia-less units. A
similar system is represented in [35], where the single-
order model is calculated based on a Prony measurement-
based method. In [36], [37], the amounts of equivalent
inertia for the single-order model of AC MGs is not
reasonable, because they have just been assumed, but not
been calculated according to the real AC MGs data.

• The single-order frequency model of AC MGs is able
to be used in modeling the large-scale IMGs, stability
analysis and also high-level controller design. While, high
and medium-order models presented in [15], [17], [20],
[21] are more hard to be employed in such studies.

• The oscillatory inter-microgrid modes are also addressed,
which are not already known in the literature and can be
of interest in the studies of IMG stability analysis and
load-frequency control synthesis.

The rest of this paper is arranged as follows. An overview
of the control and detailed modeling of IMGs is provided in
Section II. The simplified low-frequency model and the single-
order model of individual AC MGs are addressed in Sections
III and IV, respectively. As an application of the proposed
low-order model, a secondary frequency control of three IMGs
and the simulation results are presented in Sections V and VI,
respectively. Finally, the paper is concluded in Section VII.

II. REQUIREMENTS OF INTERCONNECTED MICROGRIDS

A general structure of interconnected AC MGs via circuit
breakers and AC tie-lines is shown in Fig. 1. Each MG may
have different configuration with any number of DGUs and
loads and it is assumed to be able to connect to other MGs
and main grid through a PCC, e.g. Bn for MGn. Both droop-
based and PQ-controlled DGUs are considered in the AC MGs.
The droop-based DGUs can participate in voltage/frequency
control and power sharing. However, the PQ-controlled DGUs
try to maximize the production of renewable units and cannot
contribute to droop-based DGU duties.

A multi time-scale control is required for a coordinated
control among IMGs, as well as controllable units within each
AC MG. Here, four-level hierarchical control [11] is employed,
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Fig. 2. The structure of the studied autonomous AC microgrids including both droop-based and PQ-controlled DGUs, and considering a simplified network
into coupling DGU lines and also an integrated load.

containing the primary, secondary, central and global con-
trol levels. Voltage/frequency stability, primary active/reactive
power sharing, and current limiting are the main purposes
of the primary control (PC). Power sharing improvement
and voltage/frequency restoration to the nominal values are
accomplished by the secondary control (SC) [38]. The central
control (CC) coordinates the controllable DGUs and loads for
power balance and enhances the supervisory activities, e.g.
islanding detection and emergency control [11]. At last, the
global control apply the optimal power flow among IMGs
themselves and the main grid.

Interlinking circuit breakers are assumed to switch as quick
as they are neglected in the proposed slow dynamic modeling.
Therefore, the main modules of the IMGs needed to be
modeled are the AC individual MGs and the tie-lines as shown
by Z impedances in Fig. 1.

A. Detailed Microgrid Model

Fig. 2 shows the general structure of the studied AC
MG comprising m droop-based and k PQ-controlled DGUs
using the primary control. Two assumptions are considered
in relation to the power part: 1) the structure of single-PCC
is selected [14], [31], where all DGUs are connected by the
coupling lines, 2) all loads including local DGU loads and
common loads are integrated into one equivalent load at the
PCC. Here, the focus is not on the power part simplification
since it is not important for finding the slow dynamics except
the coupling lines [17], which are included in the modeling.
However, for more generalizing of MG structure, one can
consider a multiple-PCC network structure or different load
types, which each idea is able to be taken into account in
future works and dealt with the corresponding challenges, i.e.
the impacts of the MG structure and the load types on the
IMG dynamic modeling and stability.

The authors have previously presented an interconnection
modeling method [29], which is employed here for finding

the detailed model of autonomous AC MGs. In this method,
state space representation of each module/component of an
AC MG is separately calculated as presented in Section II-B.
Then all the interconnections among any number of modules
are easily realized using the corresponding functions of the
Robust Control Toolbox/MATLAB. Fig. 3 shows the process
of the interconnection method for AC MGs with more details.

B. Main Microgrid Modules

Modeling of each module is realized by finding its state
space representation as follows

Ẋm = AmXm +BmUm, (1a)
Ym = CmXm +DmUm, (1b)

where Xm, Um, and Ym are the state, input, and output vectors
of the module and they are presented in Table I for all modules.
The matrices Am, Bm, Cm, and Dm can easily be found by
considering the vectors expressed in Table I and using the
circuit and control laws in Fig. 2. Furthermore, they are given
in [29] in detail. Note that the modeling of tie-lines is similar
to the coupling line modeling shown in Table I.

III. SIMPLIFIED LOW-FREQUENCY MODEL

The purpose of this Section is to present a systematic
method to find a low-order model of autonomous AC MGs
containing only slow modes. In fact, the significant mod-
ules for finding the DLFMs should be preserved and the
insignificant modules must be removed from the detailed
model. Reconfiguring the maintained modules completes the
simplification method.

The participation matrix is a well-known tool for recog-
nizing the correlation between eigenvalues/modes and state
variables of the modules. However, its array amounts is
correlated to the system parameters. Therefore, the results are
not acceptable for different amounts of AC MG parameters.
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TABLE I. VARIABLES, INPUT, AND OUTPUT VECTORS OF STATE SPACE
REPRESENTATION OF MICROGRID MODULES RELATED TO FIG. 2

Module State variables
(Xm)

Inputs
(Um)

Outputs
(Ym)

Droop-based DGUm

Output filter [iml vmo ]T [Em ωcom imo ]T = Xm

Current controller Integrator outputs [iml vmo iml,ref ]T Em

Voltage controller Integrator outputs [vmo vmo,ref ]T iml,ref
Power controller [δm Pm Qm]T [vmo imo ωcom]T a

PQ-controlled DGUk

Output filter [ikPQ,l v
k
PQ,o]T b = Xm

Current controller Integrator outputs [ikPQ,l v
k
PQ,o]T EPQ,k

PLL Integrator outputs [vkPQ,o ωcom]T δPLL

Power sections
Coupling linesc ikPQ,o

d = Xm

PCC voltage - e vnPCC
Integrated load inlo [vnPCC ωcom]T = Xm
a [ ωm vmo,ref δm]T , b [Ek

PQ ωcom ikPQ,o]T , d [vnPCC vkPQ,o ωcom]T
c For instance, DGUk , e Currents of coupling lines, tie-lines and load

In fact, the participation matrix is not enough to specify the
important state variables (modules) for finding the DLFMs
when a family of autonomous AC MGs are considered, which
is formed by changing the parameters in acceptable ranges.
Hence, the sensitivity analysis is employed to analyze such
MGs family.

A. Sensitivity Analysis-Based Simplification Method
Fig. 4 shows how the sensitivity analysis is used for sifting

out the significant modules for preserving the DLFMs from
the insignificant ones. The detailed model is the start point in
order to be sure that all modules are checked. For each module,
all its parameters are changed within acceptable ranges. The
criterion for preserving a module is a minimum sensitivity (ε)
of at least one of the DLFMs to at least one of its parameters:

dλDLFM/dp
i
k > ε, (2)

where pik is k’th parameter of i’th module. The variation of
real value, imaginary value, damping ratio, or a combination
of them for each eigenvalue can be selected to realize (2), i.e.
recognizing the eigenvalue locus sensitivity to the parameter
changes. Here, (2) is realized for oscillatory modes as follows

∆f > ∆fTr, (3a)
∆ζ > ∆ζTr, (3b)

where, ∆f and ∆ζ are the frequency and damping ratio
variations of the DLFM due to changing pik. ∆fTr and
∆ζTr are the threshold values specifying the ease/hardness of
fulfilling (2). However, the absolute real value variation (∆σ)
is considered for the non-oscillatory modes as follows

∆σ > ∆σTr. (4)

∆fTr, ∆ζTr, and ∆σTr are selected as 0.1 of the average
frequency of the DLFMs such that fDLFM > 0, 0.1 of the
maximum damping ratio i.e. 1, and 0.1 of the margin between
dominant and non-dominant modes, respectively. Finally, If
the sensitive parameter set of i’th module (SPi) is null, its
states should be removed. Otherwise, they are preserved.

Fig. 5 shows the sensitivity analysis results typically for
two modules including the power controller (Fig. 5(a)) and
output filter (Fig. 5(b)) of a droop-based DGU in an MG
with two droop-based DGUs. The vertical blue line shows
the margin between dominant and non-dominant modes. The
radial lines determine margins for recognizing (3b). Obviously,
the DLFMs are sensitive to the power controller parameters,
i.e. ω − P droop gain (mp) and V −Q droop gain (nq), but
not to the DER output filter parameters, i.e. filter capacitance
(Cf ) and inductance (Lf ). In addition, the sensitivity analysis
is done for two different X/R ratio of the DER coupling line,
i.e. X/R = 0.63 and X/R = 1.26.

Employing the sensitivity analysis-based sifting method,
one can classify the modules into two groups: 1) the significant
modules for preserving the DLFMs including droop-based
DGU power controller and coupling line, and PQ-controlled
DGU current controller and PLL, and 2) insignificant modules
comprising all other modules of the detailed model presented
in Table I.

B. Removing/Reconfiguration Process of Modules

Note that all of the insignificant modules for preserving
the DLFMs cannot be removed using the regular perturbation
method. It is due to the inevitable effects of such modules
in the solving process of the set of governing MG equations.
Thus at least, their static model should be preserved, which
can be found using the singular perturbation method. To this
end, Consider the state space representation of a module with
insignificant dynamics (XID) as

εẊID = AIDXID +BIDUID, (5a)
YID = CIDXID +DIDUID, (5b)

where UID and YID are the input and output vectors and
AID, BID, CID, and DID are the corresponding matrices with
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appropriate sizes. Since all of the dynamics are insignificant,
if ε→ 0 and AID is nonsingular, one can consider ẊID → 0
and replace XID from (5a) into (5b) in order to find the static
model as follows

YID = (DID − CIDA
−1
IDBID)UID. (6)

The dynamics of the output filter and coupling line of PQ-
controlled DGUs as well as the integrated load are deleted
from the simplified model using this method and their static
models are used.
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Reconfiguration of the dynamic and static models of the
preserved modules is shown in Fig. 6. The droop-based DGUm

including the power controller and the common reference
frame transformations (DQ/dq and dq/DQ) with the coupling
line and PCC voltage are restructured as shown in Fig. 6(a).
Since the dynamics of the current and voltage controllers are
fast and can be removed, the input of the voltage controller
vmodq will be equal to the output of the current controller vmref .
The structure of the simplified model of PQ-controlled DGUk

can be obtained by replacing the static models of the output
filter and coupling line as shown in Fig. 6(b).

In the representation of singular perturbation, the dynamics
of compound modules such as droop-based DGUm or PQ-
controlled DGUk can be divided into fast dynamics (XFD)
and slow dynamics (XSD), which their relationship is as

εẊFD = A11XFD +A12XSD, (7a)

ẊSD = A21XFD +A22XSD, (7b)

where A11, A12, A21, and A22 are the sub-matrices of the
compound module state matrix. If ε → 0 and A22 is nonsin-
gular, by replacing XFD from (7a) to (7b), the dynamic modes
of the simplified module model are approximated as follows

ẊSD = (A22 −A21A
−1
11 A12)XSD. (8)

C. Validation of the Proposed Simplified Model

1) DLFMs Comparison of the Detailed and Proposed Mod-
els: In order to validate the proposed simplified model for
autonomous AC MGs, the DLFMs are compared to DLFMs of
the detailed model [12]. Figs. 7(a) and 7(b) show a comparison
for an MG with two droop-based and one PQ-controlled DGUs
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TABLE II. STATE VARIABLES OF THE COMPARED MODELS IN FIG. 8

Model State variables Ref.
M1 ∆δ,∆P,∆Q,∆vodq ,∆ildq ,∆iodq , CCIOa, VCIOb [12]

M2 Droop-based DGU: ∆δ,∆P,∆Q,∆iodq
PQ-controlled DGU: ∆δPLL, CCIO, PLLIOc Sec. III

M3 ∆δ,∆P,∆Q,∆iodq [13]
M4 ∆δ,∆P,∆iodq [17]
M5 ∆δ,∆ω,∆Vod [16]

a current controller integrator outputs, b voltage controller integrator
outputs, c PLL integrator output

and another MG with four droop-based DGUs, respectively.
The error can be calculated for each eigenvalue using the
relative error percentage, which is 2.3 % in the worst case. In
Fig. 7(a), the dynamic mode in Group (1) is the inter-inverter
mode [17] expressing the interaction between the two droop-
based DGUs. Note that the common reference frame is based
on the frequency for one of the DGUs, e.g. the first droop-
based DGU, which is named the base DGU in this paper. The
dynamic mode in Group (2) shows the interaction between the
single PQ-controlled DGU and the base DGU. An important
fact is that the DLFMs, which show the interaction among
DGUs are complex conjugates (oscillatory). In Fig. 7(b), there
exist three oscillatory DLFMs showing the interaction between
each droop-based DGU and the base DGU.

The two case studies indicate an oscillatory DLFM emu-
lating the interaction between each DGU and the base DGU
within the MGs. It is noteworthy that the result is generalized
for droop-based DGUs in the studied family of AC MGs with
any number of DGUs. Furthermore, the result is applicable
for MGs with different power network structures [17]. Nev-
ertheless, the oscillatory DLFMs expressing the interaction
between PQ-controlled DGUs and the base DGU are limited
to a relatively large subset of the studied MG family. Outside
the specific parameter range, the oscillatory DLFMs will be
transformed into two non-oscillatory modes. Here, the param-
eters of PQ-controlled DGUs are considered to be within the
range causing the oscillatory DLFMs. The parameter ranges
can easily be obtained via sensitivity analysis.

2) The Oscillatory DLFM Comparison of the Existing and
Proposed Simplified Models: A sensitivity analysis is provided
in Fig. 8 to compare the proposed simplified model with
existing simplified models, which are usually named by the
model order of each inverter belonged to each DGU. The
simplified models includes a 5th-order model [13], a 4th-
order model [17], and a 3rd-order model [16], which their
preserved state variables are shown in Table II Moreover,
the detailed model [12] is considered to be the reference
model. An MG with two droop-based DGUs is considered.
The oscillatory DLFM is of interest to be compared and non-
dominant dynamic modes are not shown. For low values of
mp the proposed model has a higher accuracy due to its more
similar behaviour to the detailed model behaviour. Generally,
the proposed model shows almost a similar behaviour to the
5th-order model behaviour to the mp changes. It is more
accurate than the 4th-order and 3rd-order models. However, all
the reduced-order models have lower tendency to be unstable
by increasing mp than the detailed model.
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Fig. 7. The simplified model validation by comparing to the detailed model
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IV. AGGREGATED SINGLE-ORDER MODEL

Using the sensitivity analysis-based simplification method,
the order of droop-based and PQ-controlled DGU models
including the coupling line are reduced from 13 and 10 to
5 and 4, respectively. Moreover, the order of the case study
MGs in Figs. 7(a) and 7(b) are reduced from 38 and 54 to 14
and 20, respectively. Although the low-frequency MG models
are reduced well, the high-level dynamic studies, e.g. the
frequency stability and control of IMGs justify the importance
of finding a very low-order model.

As mentioned in Section III-B, the low-frequency dynamic
behaviour of autonomous AC MGs can be summarized in
the oscillatory DLFMs representing the interactions among
DGUs and the base DGU. In fact, each DGU excluding
the base DGU, whether droop-based or PQ-controlled, is
equivalent to an oscillatory DLFM. Aggregating any number
of the oscillatory DLFMs to one oscillatory mode leads to a
low-frequency second-order model for autonomous AC MGs,
which in turn results in a single-order frequency model.
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Fig. 9. Four-step method for calculating the single-order frequency model of
autonomous AC microgrids.

Fig. 9 shows four steps for finding the proposed single-order
model for autonomous AC MGs as follows:

• Step 1: Aggregate the dominant oscillatory modes ob-
tained from the simplified low-frequency model presented
in Section III.

• Step 2: Find the second-order model using the aggregated
complex conjugate mode.

• Step 3: Calculate the virtual inertia and damping coeffi-
cient (J ,D) by mapping the second-order model on the
virtual swing equation.

• Step 4: Exclude the single-order frequency model for
autonomous AC MGs from the second-order model.

A. Aggregation Method for Dominant Oscillatory Modes

Consider that k oscillatory DLFMs are obtained from
the proposed simplified model presented in Section III as{
λ1DLFM , ..., λ

2k
DLFM

}
, which can be represented by a state

space model as

ẋ = Ax, (9)

where x ∈ R2k×1 and A = diag
{
λ1DLFM , ..., λ

2k
DLFM

}
. The

goal is to find the state matrix F of the aggregated system as

ż = Fz, (10)

where z ∈ Rl×1 is called the aggregation of x and they
are correlated as z(t) = Cx(t). C ∈ Rl×2k, (l < 2k) is
constant aggregation matrix of x. Finally, F can be calculated
as follows [18]

F = CAC+, (11)

where C+ is the pseudo-inverse of the non-square matrix C,
which can be calculated as C+ = CT (CCT )−1.

Since all oscillatory DLFMs are interested to be aggregated
as one oscillatory mode, z is a 2 × 1 vector comprising a
pair of complex conjugate eigenvalues. Thus one can find a
second-order transfer function for each autonomous AC MG
as follows

GMG(s) =
1

s2 + 2ζω0s+ ω2
0

, (12)

where ζ and ω0 are the damping ratio and undamped natural
frequency of the aggregated model. The input and output of
the transfer function can be determined according to the details
of the simplified MG model. Based on the models presented in

Fig. 6 for droop-based and PQ-controlled DGUs, the simplified
model of each DGU can be represented as

∆iDGU
odq = GDGU

com (s)∆ωcom +GDGU
pcc (s)∆vnpcc,dq, (13)

where GDGU
com (s) and GDGU

pcc (s) can be calculated employing
the interconnection method [29]. By applying KCL for the
PCC in Fig. 2, ∆vnpcc,dq is obtained as follows

∆vnpcc,dq = Rv

S∑
s=1

∆iDGUs

odq +Rv

R∑
r=1

∆inrTL,dq −Rv∆iLo,dq,

(14)

where Rv is the virtual resistor [12], [29]. Substituting (13) and
the static model of integrated load in (14), all DGU currents
are aggregated at the PCC and ∆vnpcc,dq can be indicated as

∆vnpcc,dq = Gpcc
IL (s)

R∑
r=1

∆inrTL,dq, (15)

where Gpcc
IL (s) can also be calculated using the interconnection

method [29]. Therefore,
∑R

r=1 ∆inrTL,dq and ∆vnpcc,dq are the
input and output of the second-order model of MGn (12).

B. Virtual Swing Equation-Based Single-Order Model

Here, a virtual swing equation is considered for fully
inverter-based autonomous AC MGs as

Jnωn
d∆ωn

MG

dt
= ∆Pn

MG −Dn∆ωn
MG, (16)

where Jn and Dn are the virtual moment of inertia and
damping coefficient of MGn. ∆Pn

MG is the net value of input
MGn power as

∆Pn
MG =

Q∑
q=1

Tqn(∆δqpcc −∆δnpcc), (17)

where ∆δqpcc is the PCC voltage angle of interconnected MGq

to the studied MGn and Tqn can be calculated as

Tqn =
V q
pccV

n
pcc

Z2
qn

[Rqn sin(∆δqnpcc) +Xqn cos(∆δqnpcc)], (18)

where ∆δqnpcc = δqpcc − δnpcc, Zqn =
√
R2

qn +X2
qn, Rqn and

Xqn are the resistance and reactance of the tie-line between
MGq and MGn. Substituting (17) and ∆ωn

MG = d∆δnpcc/dt in
(16) and taking Laplace transform results in

GMGn

V SE (s) =
∆δnpcc(s)

∆Pn
D(s)

=
1

Jnωns2 +Dns+Kn
S

, (19)

where Kn
S and ∆Pn

D are the synchronizing power coefficient
and disturbance power of MGn as

Kn
S =

Q∑
q=1

Tqn,∆P
n
D =

Q∑
q=1

Tqn∆δqpcc.

Note that the transfer functions (12) and (19) are equivalent.
Therefore, each autonomous AC MG can be mapped on a
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virtual swing equation, and Jn and Dn can be calculated by
comparing (12) and (19), which results in

Jn =
Kn

S

ωnω2
o

, Dn =
2Kn

Sζ

ωo

. (20)

At last, considering ∆ωn
MG = d∆δnpcc/dt and (19), the single-

order frequency model of autonomous AC MGn is as

GMGn

freq (s) =
∆ωn

MG(s)

∆Pn
D(s)

=
1

Jnωns+Dn
. (21)

V. USE OF THE SINGLE-ORDER MODEL IN FREQUENCY
CONTROL OF INTERCONNECTED MICROGRIDS

The proposed single-order model facilitates the high-level
control studies of large-scale IMGs, e.g. the frequency con-
trol. Fig. 10(a) shows three different autonomous AC MGs
interconnected through three tie-lines. The frequency and tie-
line power control among the MGs are done in the secondary
control layer. Fig. 10(b) shows the frequency model of MG1

within the studied three IMGs including the single-order model
of MG1, tie-line power (∆PTL1) model [39] and the secondary
controller. The frequency model of MG2 and MG3 is similar
to the MG1 frequency model with individual parameters. In
Fig. 10(b), β1 is the MG1 frequency bias calculated as

β1 =
∑m

i=1
(1/mi

p) +DL1, (22)

where mi
p is the ω − P droop gain of DERi and DL1 is the

damping coefficient of the MG1 load.
The secondary controller is selected as being a PI type. In

order to design the secondary controllers, the sequential loop
closing method [40] is used, such that MG1 controller is tuned
using PID tuning block in MATLAB/SIMULINK when MG2

and MG3 control loops are open. Then MG2 controller is tuned
and finally MG3 control loop is closed to tune its controller.
Note that in this method, the first loop is closed independent to
the other loops. Nevertheless, during closing next loops and
design the corresponding PI controllers, the previous loops
are closed and their interactions are considered in the design
process. Hence, the frequency control is done uniformly. In
order to consider the interactions simultaneously among the
three control loops, the centralized methods of multivariable
control systems [41] can be employed as future works.

VI. SIMULATION RESULTS

The frequency stability and dynamics of three IMGs shown
in Fig. 10(a) are studied to introduce the inter-MG DLFMs
and show a stable operation of the secondary controllers
designed in Section V. All the MGs are of low-voltage AC
type, which have the same nominal frequency and voltage as
50 Hz and 400 V. They have a general structure shown in
Fig. 2, which MG1 consists of four droop-based DGUs, MG2

has two droop-based and one PQ-controlled DGUs, and MG3

contains three droop-based and two PQ-controlled DGUs. The
general data of the MG modules is presented in [42] and
the parameters of the frequency IMG model shown in Fig.
10(b) are found by applying the four-step method introduced
in Fig. 9 for the three MGs, which are indicated in Table III.
Finally, Fig. 10(c) shows the low-order frequency model of the
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Fig. 10. Case study for frequency control: (a) Three interconnected AC
microgrids through circuit breakers and tie-lines, (b) low-order frequency
model of MG1 including the single-order model, controller, and tie-line power,
(c) low-order frequency model of the studied system.

TABLE III. CALCULATED PARAMETERS OF THE IMGS IN FIG. 10

D

( kW.s
rad

)
J

(W.s2

rad
)

β

( kW.s
rad

)
Tqn

( 10
5W

rad
)

KSC
p KSC

i

MG1 5.6 1.45 7 T21 = 1.4
T31 = 2.3

0 -9.16

MG2 1.9 0.71 1.9 T12 = 1.4
T32 = 0.9

0 -4.71

MG3 3.8 1.4 3.8 T13 = 2.3
T23 = 0.9

0 -8.98

studied three IMGs. Note that each box indicates the low-order
frequency model of each MG, e.g. the contents of MG1 box is
shown in Fig. 10(b) within red dashed outline. The frequency
interactions of the MGs is exhibited in Fig. 10(c).

A. Inter-Microgrid Oscillatory Modes

The participation matrix of the state space model of the three
IMGs shown in Fig. 10, can be seen in Fig. 11. SOM, SC, and
Int indicate the state variables of the single-order MG model,
secondary PI controller, and the integrator modeling tie-line
power dynamics, respectively. The contribution of each state
variable in each eigenvalue is calculated and then normalized
using the corresponding relationships in [43]. The participation
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Participation Matrix for three interconnected microgrids (Revised)
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secondary controllers
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all three MGs

Fig. 11. Participation Matrix of the studied three interconnected AC microgrids
shown in Fig. 10.
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Fig. 12. Eigenvalues of the studied three interconnected AC microgrids shown
in Fig. 10.

matrix results are also shown in Fig. 12 by the qualitative
interpretations added to the nine eigenvalues of the 3-IMGs.
λ1-λ6 are the main inter-MG modes affected by all modules
including the inner MG models, the secondary controllers, and
the tie-line power values. According to the larger participation
factors of each dynamic mode, i.e. column data of the partici-
pation matrix shown in Fig. 11, λ1,2, λ3,4, and λ5,6 show the
interaction between MG1 and MG2, the interaction between
MG2 and MG3, and the interaction between all three MGs,
respectively. λ7,8 are the non-oscillatory modes affected only
by the secondary controllers and λ9 is a non-critical zero mode
due to the tie-line power integrators.

Note that the main inter-MG modes are oscillatory, which
may cause the frequency oscillation and instability, especially
considering the low inertia of IMGs. The possible frequency
instability and even the frequency fluctuations can be con-
fronted by designing the secondary controller based on the
behaviour of inter-MG modes.

B. Frequency Response

The frequency response of the MGs is shown in Fig. 13.
Three load changes as +18 %, -18 %, and +23 % of the rated
controllable power for frequency control (sum of droop-based
DGU powers) are applied as ∆PD in MG1, MG2, and MG3,
respectively. Generally, the dynamics of three MG frequencies
are similar due to interlinking using circuit breakers, i.e. the
power section of IMGs is uniformed unlike interconnection
using back-to-back converters [4], [5], [29]. Moreover, the
frequency oscillations can be seen, which are caused by the
inter-MG modes. Nevertheless, there are differences in the
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Fig. 13. Frequency response of the studied three interconnected AC micro-
grids. MG1 load increase as 18 % rated controllable power at t = 1 s, MG3

load decrease as 18 % rated controllable power at t = 10 s, MG2 load
increase as 23 % rated controllable power at t = 20 s.

transients, e.g. nadir and rate of change of frequency due
to the different amounts of virtual J and D. It can be seen
that the frequency stability is guaranteed against several small
disturbances by the secondary PI controllers.

It is noteworthy to remind that the proposed IMG model
is a small-signal type, which cannot be used to investigate
the system behavior during large disturbances, e.g. DER/MG
disconnection, or inner nonlinear phenomena, e.g. limiter
saturation of converter controllers. Furthermore, the fast and
medium speed dynamics are removed. Therefore, the corre-
sponding variables studies cannot be done using the proposed
model, e.g. the voltage stability analysis.

C. Comparison between Using Detailed and Single-order
Models

Fig. 14 shows a comparison between two different models
of the studied IMGs including Model 1 with the detailed MG1

model and the single-order models of MG2 and MG3, and
Model 2 with the single-order models of all the three MGs
shown in Fig. 10(c). According to the DLFMs, it is easy
to understand that Model 2 is a simplified type of Model
1 after the perturbation and aggregation processes. Fig. 15
shows the frequency response of Model 1 for 18 % MG1 load
increase with respect to its rated controllable power at t=0
s. The characteristics like overshoot and oscillation damping
are not fully similar to the frequency response of Model 1
shown in Fig. 13 due to two reasons. The first reason is
the difference between the detailed and simplified models of
MG1 in medium and high frequencies. On the other hand, the
stabilizing parameter ranges of the MG1 secondary controller
are different in Model 1 and Model 2. Therefore, the secondary
controller parameters, which are obtained by the sequential
loop closing, are different for the models. In Model 1, the
KSC

p is 0 for all three MGs like Model 2, however the KSC
i

is as -3.11, -4.71, and -8.98, respectively.
The important point is the simulation time duration of the

frequency response. The simulation time of Model 2 is selected
as 30 s as shown in Fig. 13, which is executed less than 3
real seconds. Nevertheless, the simulation time of Model 1 is
selected as 3 s, which is executed in 510 real seconds using
the same processor Intel Core i7-7500U, 2.7 GHz with Turbo
boost up to 3.5 GHz. In other words, for the same simulation

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on December 08,2020 at 13:03:31 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3040804, IEEE
Transactions on Power Systems

Im
ag

 (
1
/s

)

Re (1/s)
-25 -20 -15 -10 -5 0

-80

-60

-40

-20

0

20

40

60

80

 

 

Model 1: Detailed MG1 model

Model 2: All single-order MG models

Fig. 14. The comparison between two models of the studied IMGs including
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Fig. 15. Frequency response of Model 1 when MG1 load increase as 18 %
rated controllable power at t = 0 s.

time of both the models, e.g. 30 s, the required real time for
Model 1 is as 5100/3 = 1700 times of the required real time
for Model 2. Therefore, using the detailed MG model is hard
and time-consuming to study the IMG dynamics, especially for
a large number of IMGs. In contrast, very low simulation time
duration is a significant feature for the low-order frequency
model of the IMGs.

VII. CONCLUSION

In this paper, two reduced order models are proposed for
autonomous AC microgrid analysis. The first one is the sensi-
tivity analysis-based simplification method in which singular
and regular perturbation methods are employed to reduce
the simplified model order to less than half of the detailed
model order. This low-order model is useful to study slow
dynamics and design medium-level controllers of islanded AC
microgrids, e.g. the secondary controller. The second model is
the single-order frequency model obtained by aggregating the
low-order model and using the virtual swing equation concept.
This model is applicable for the high-level control studies of
large-scale interconnected microgrids, where the detailed and
even low-order models lead to very large-order models, which
make the analysis and synthesis difficult. The frequency anal-
ysis of the typical three interconnected microgrids shows the
inter-microgrid modes expressing the interactions among the
microgrid frequencies, which cause the frequency oscillations
and may lead to the instability or protection devices trip.
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