21,533 research outputs found

    First adaptation of quinoa in the Bhutanese mountain agriculture systems

    Get PDF
    Bhutan represents typical mountain agriculture farming systems with unique challenges. The agriculture production systems under environmental constraints are typical of small-scale agricultural subsistence systems related to family farming in the Himalayan Mountains with very low level of mechanization, numerous abiotic stresses influenced by climate and other socio-economic constraints. Quinoa was first introduced in 2015 through FAO's support to Bhutan as a new crop to enhance the food and nutritional security of the Bhutanese people. The main objective was to adapt this versatile crop to the local mountain agriculture conditions as a climate resilient crop for diversifying the farmer's traditional potato and maize based cropping systems. Ten quinoa varieties were evaluated at two different sites representing contrasted mountain agroecologies in Bhutan and were tested during the two agricultural campaigns 2016 and 2017. Yusipang (2600 masl) represents the cool temperate agroecological zone, and Lingmethang (640 masl) the dry subtropical agroecological zone. The sowing time differed depending on the growing season and elevation of the sites. Results indicate that quinoa can be successfully grown in Bhutan for the two different agroecological zones. The grain yields varied from 0.61 to 2.68 t.ha-1 in the high altitude areas where quinoa was seeded in spring and harvested in autumn season. The grain yield in the lower elevation ranged from 1.59 to 2.98 t.ha-1 where the crop was sown in autumn and harvested in winter season. Depending on genotypes' characteristics and agroecological zones, crop maturity significantly varied from 92 to 197 days with all genotypes maturing much earlier in the lower elevations where mean minimum and maximum temperatures during the growing season were higher. Quinoa is rapidly promoted across different agroecological contexts in the country as a new climate resilient and nutrient dense pseudo cereal to diversify the traditional existing cropping system with some necessary adjustments in sowing time, suitable varieties and crop management practices. To fast track the rapid promotion of this new crop in Bhutan, four varieties have been released in 2018. In just over three years, the cultivation of quinoa as a new cereal has been demonstrated and partially adapted to the maize and potato based traditional cropping systems under the Himalayan mountain agriculture. Quinoa is also being adapted to the rice based cropping system and rapidly promoted as an alternative food security crop in the current 12th Five Year national development plan of Bhutan. To rapidly promote quinoa cultivation, the Royal Government of Bhutan is supporting the supply of free quinoa seeds, cultivation technologies and milling machines to the rural communities. To promote the consumption and utilization of quinoa at national level, consumer awareness are created by preparing and serving local Bhutanese dishes from quinoa during local food fairs and farmer's field days. In addition, the Royal Government of Bhutan has included quinoa in the school feeding programme recognizing the high nutrient value of the crop for enhancing and securing the nutritional needs of the young children

    When Fair Trade increases unfairness: The case of quinoa from Bolivia

    Get PDF
    Fair Trade movement tackles the question of global justice. It is experiencing growing success. Fair Trade therefore sorts the beneficiaries, usually by means of certification. Numerous impact studies have assessed the beneficial effects of Fair Trade on the intended beneficiaries. Several studies have nevertheless called into question both the impact of certification and Fair trade. Following these studies this paper shows that Fair Trade in quinoa (Chenopodium quinoa Willd.) is actually increasing inequalities between Bolivian producers.FairTrade, Inequalities, Quinoa, Bolivia

    Evaluación de fibra dietética, isoflavonas y compuestos fenólicos con propiedades antioxidantes y antimicrobianas de quinoa (Chenopodium quinoa Willd.)

    Get PDF
    The consumption of quinoa (Chenopodium quinoa Willd.) has been steadily increasing due to its high nutritional value and health benefits associated with its high antioxidant capacity. The objective of this study was to determine the contents of dietary fiber, polyphenols, flavonoids and isoflavones, and how they contribute to the antioxidant and antimicrobial activity of six ecotypes of quinoa cultivated in three different zones of Chile. The ecotypes studied were: Ancovinto and Cancosa (Northern zone), Cáhuil and Faro (Central zone), and Regalona and Villarrica (Southern zone). The results indicate that all Chilean quinoa ecotypes could be considered as good sources of dietary fiber (12.23 g 100 g-1 dry matter) and polyphenols (161.32 mg Gallic Acid Equivalents (GAE) 100 g-1 dry matter). The North and Central ecotypes exhibited the highest isoflavone concentration. The Northern Cancosa was the ecotype that showed the highest flavonoid content (211.06 mg Catechin Equivalents (CAE) 100 g-1 dry matter). Based on the ORAC (Oxygen Radical Absorbance Capacity) assay, Ancovinto, Cancosa and Faro presented the highest antioxidant capacity (67.6 mmol Trolox Equivalents (TE) 100 g-1 dry matter). Regarding antimicrobial activity, Regalona ecotype showed the best performance against Saccharomyces cerevisiae and Listeria innocua. The bioactive compounds found in this study add new knowledge to the antioxidant and antimicrobial activity of Chilean quinoa seeds.El consumo de quinua (Chenopodium quinoa Willd.) está aumentando debido a su valor nutricional y beneficios para la salud relacionados con su capacidad antioxidante. El objetivo de presente estudio fue determinar los contenidos de fibra dietética, polifenoles, flavonoides e isoflavonas, y cómo estos compuestos contribuyen a la actividad antioxidante y antimicrobiana de seis ecotipos de quinua cultivados en tres zonas de Chile. Las muestras de quinua de la zona Norte se denominan Ancovinto y Cancosa, de la zona Centro se llaman Cáhuil y Faro, y de la zona Sur se denominan Regalona y Villarrica. Los resultados mostraron que todos los ecotipos de quinua chilena pueden considerarse buena fuente de fibra dietética (12,23 g 100 g-1 materia seca) y de polifenoles (161,32 mg de Equivalentes de Acido Gálico (EAG) 100 g-1 materia seca). Los ecotipos de la zona Norte y Centro mostraron la mayor concentración de isoflavonas. El ecotipo Cancosa, de la zona Norte, fue el que mostró el mayor contenido de flavonoides (211,06 mg Equivalentes de Catequina (ECA) 100 g-1 materia seca). Basado en el ensayo ORAC (del inglés Oxigen Radical Absorbance Capacity), los ecotipos Ancovinto, Cancosa y Faro, presentaron en promedio la mayor capacidad antioxidante (67,6 mmol de Equivalentes Trolox (ET) 100 g-1 materia seca). El ecotipo Regalona mostró la más alta actividad antimicrobiana frente a Saccharomyces cerevisiae y Listeria innocua. Los compuestos bioactivos encontrados en este estudio aportan nuevos conocimientos a la actividad antioxidante y antimicrobiana de las semillas de quinua chilena.Fil: Vega Gálvez, Antonio. Universidad de La Serena; ChileFil: Zura, Liliana. Universidad de La Serena; ChileFil: Lutz, Mariane. Universidad de Vlparaíso; ChileFil: Jagus, Rosa Juana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Agüero, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Pastén, Alexis. Universidad de La Serena; ChileFil: Di Scala, Karina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Uribe, Elsa. Universidad de La Serena; Chil

    Betalains in some species of the amaranthaceae family: A review

    Get PDF
    Natural pigments are largely distributed in the plant kingdom. They belong to diverse groups, with distinct biochemical pathways. Betalains with colours that range from yellow to red-violet can de divided into two main subgroups: betaxanthins and betacyanins. These types of pigments are confined into 13 families of the order Caryophyllales and in some genera of higher fungi (Amanita muscaria, Hygrocybe and Hygrophorus). The Amaranthaceae family includes diverse genera in which betalains are present: Alternanthera, Amaranthus, Beta, Chenopodium, Celosia and Gomphrena. The biosynthesis of betalains and their general biological properties were reviwed in the present work. In addition, the types of betalains present in some species of the aforementioned genera, their stability and production, as well as biological attributes, were reviewed.Portuguese National Funding Agency for Science, Research and Technology (Fundacao para a Ciencia e a Tecnologia-FCT; Portugal) [UID/BIA/04325/2013-MeditBio

    Technological Progress and Productivity in the Quinoa Sector

    Get PDF
    The main objective of this case study is to analyze the effect that a significant technological innovation in quinoa processing has had on the productivity of companies devoted to this activity and the impact of such an innovation on the growth and organization of the quinoa cluster in Bolivia, and its possible effects on the future. The study will explain how the boost engendered by technological innovation in quinoa processing has triggered a series of events that have allowed the establishment of an ambitious development program. The sector’s main companies and producer associations are part of this program, which is called the “Quinoa Alliance.” The program has become a unique opportunity for agro-industrial development in the Bolivian Altiplano, so far characterized by subsistence agriculture.Quinoa, saponin, unit operation, specific consumption, productivity

    Integration of functional and traditional food in emerging markets. Regulatory and substantive aspects of yerba mate and quinoa

    Get PDF
    Given the rising cost of healthcare, the increase in life expectancy and the wish for a better quality of life, the request for foods and beverages producing a beneficial effect on health has increased worldwide. “Functional food” is a new concept and may play a key role in diseases’ prevention and management. Although its meaning is currently under definition, its role in global health improvement is growing constantly. This article aims at giving a description of existing legislation on functional food in South America, identifying future directions for health and marketing policies. Furthermore, authors provide a literature revision on two products widely consumed in Latin American countries: Yerba Mate and Quinoa. Thanks to their beneficial health effects in terms of disease prevention and promotion of well-being, they may be considered as functional foods with a potential key role in health care

    A holistic approach to enhance the use of neglected and underutilized species: the case of Andean grains in Bolivia and Peru

    Get PDF
    The IFAD-NUS project, implemented over the course of a decade in two phases, represents the first UN-supported global effort on neglected and underutilized species (NUS). This initiative, deployed and tested a holistic and innovative value chain framework using multi-stakeholder, participatory, inter-disciplinary, pro-poor gender- and nutrition-sensitive approaches. The project has been linking aspects often dealt with separately by R&D, such as genetic diversity, selection, cultivation, harvest, value addition, marketing, and final use, with the goal to contribute to conservation, better incomes, and improved nutrition and strengthened livelihood resilience. The project contributed to the greater conservation of Andean grains and their associated indigenous knowledge, through promoting wider use of their diversity by value chain actors, adoption of best cultivation practices, development of improved varieties, dissemination of high quality seed, and capacity development. Reduced drudgery in harvest and postharvest operations, and increased food safety were achieved through technological innovations. Development of innovative food products and inclusion of Andean grains in school meal programs is projected to have had a positive nutrition outcome for targeted communities. Increased income was recorded for all value chain actors, along with strengthened networking skills and self-reliance in marketing. The holistic approach taken in this study is advocated as an effective strategy to enhance the use of other neglected and underutilized species for conservation and livelihood benefits
    corecore