64,675 research outputs found

    Drug-Phospholipid Complex-loaded Matrix Film Formulation for the Enhanced Transdermal Delivery of Quercetin

    Get PDF
    A novel quercetin-phospholipid-complex(QPLC)-loaded matrix film for improved transdermal delivery of quercetin was developed. The QPLC formulation, prepared using a solvent-evaporation method, was optimized using a central-composite design. The optimized QPLC formulation was characterized by particle size and zeta potential analysis, thermal analysis, Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). QPLC formulation was functionally evaluated for solubility and in vitro dissolution of quercetin. Matrix films of pure quercetin (Q-MF)or QPLC QPLC-MF) were prepared using a solvent casting method. The prepared Q-MF and QPLC-MF were characterized for weight uniformity, folding endurance, moisture content, and moisture uptake. The films were also functionally characterized for in vitro diffusion of quercetin through a dialysis membrane and ex vivo permeability of quercetin across rat skin. Finally, the anti-inflammatory activity of the films was evaluated on carrageenan-induced paw edema in Wistar albino rats. The experimental design identified the optimal formulation and process variables for the preparation of QPLC. The validation of the obtained model using these values confirmed the suitability and robustness of the model. The physical-chemical characterization of the prepared QPLC supported the formation of a stable complex. The solubility analysis of QPLC showed a 22-fold increase in quercetin aqueous solubility, compared to pure quercetin. The dissolution results exhibited a significantly higher rate and extent of quercetin dissolution from QPLC compared to that of pure quercetin. The permeability of quercetin from Q-MF and QPLC-MF across rat skin mirrored those obtained from the dissolution studies. Topical application of QPLC-MF exhibited a significant (p\u3c0.05) inhibition of carrageenan-induced paw edema in rats compared to that of Q-MF. This study provides a promising combination approach, i.e., phospholipid-based complexation and transdermal film formulation for improved transdermal delivery of quercetin and similar pharmacologically active phytoconstituents

    Hypoxia-inducible factor-1 (HIF-1) pathway activation by quercetin in human lens epithelial cells

    Get PDF
    Quercetin is a dietary bioflavonoid which has been shown to inhibit lens opacification in a number of models of cataract. The objectives of this study were to determine gene expression changes in human lens epithelial cells in response to quercetin and to investigate in detail the mechanisms underlying the responses. FHL-124 cells were treated with quercetin (10 µM) and changes in gene expression were measured by microarray. It was found that 65% of the genes with increased expression were regulated by the hypoxia-inducible factor-1 (HIF-1) pathway. Quercetin (10 and 30 µM) induced a time-dependent increase in HIF-1a protein levels. Quercetin (30 µM) was also responsible for a rapid and long-lasting translocation of HIF-1a from the cytoplasm to the nucleus. Activation of HIF-1 signaling by quercetin was confirmed by qRT–PCR which showed upregulation of the HIF-1 regulated genes EPO, VEGF, PGK1 and BNIP3. Analysis of medium taken from FHL-124 cells showed a sustained dose-dependent increase in VEGF secretion following quercetin treatment. The quercetin-induced increase and nuclear translocation of HIF-1a was reversed by addition of excess iron (100 µM). These results demonstrate that quercetin activates the HIF-1 signaling pathway in human lens epithelial cells

    Use of quercetin in animal feed : effects on the P-gp expression and pharmacokinetics of orally administrated enrofloxacin in chicken

    Get PDF
    Modulation of P-glycoprotein (P-gp, encoded by Mdr1) by xenobiotics plays central role in pharmacokinetics of various drugs. Quercetin has a potential to modulate P-gp in rodents, however, its effects on P-gp modulation in chicken are still unclear. Herein, study reports role of quercetin in modulation of P-gp expression and subsequent effects on the pharmacokinetics of enrofloxacin in broilers. Results show that P-gp expression was increased in a dose-dependent manner following exposure to quercetin in Caco-2 cells and tissues of chicken. Absorption rate constant and apparent permeability coefficient of rhodamine 123 were decreased, reflecting efflux function of P-gp in chicken intestine increased by quercetin. Quercetin altered pharmacokinetic of enrofloxacin by decreasing area under curve, peak concentration, and time to reach peak concentration and by increasing clearance rate. Molecular docking shows quercetin can form favorable interactions with binding pocket of chicken xenobiotic receptor (CXR). Results provide convincing evidence that quercetin induced P-gp expression in tissues by possible interaction with CXR, and consequently reducing bioavailability of orally administered enrofloxacin through restricting its intestinal absorption and liver/kidney clearance in broilers. The results can be further extended to guide reasonable use of quercetin to avoid drug-feed interaction occurred with co-administered enrofloxacin or other similar antimicrobials.Peer reviewedFinal Published versio

    Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression

    Get PDF
    Abstract Background Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitis, emphysema and irreversible airflow limitation. These changes are thought to be due to oxidative stress and an imbalance of proteases and antiproteases. Quercetin, a plant flavonoid, is a potent antioxidant and anti-inflammatory agent. We hypothesized that quercetin reduces lung inflammation and improves lung function in elastase/lipopolysaccharide (LPS)-exposed mice which show typical features of COPD, including airways inflammation, goblet cell metaplasia, and emphysema. Methods Mice treated with elastase and LPS once a week for 4 weeks were subsequently administered 0.5 mg of quercetin dihydrate or 50% propylene glycol (vehicle) by gavage for 10 days. Lungs were examined for elastance, oxidative stress, inflammation, and matrix metalloproteinase (MMP) activity. Effects of quercetin on MMP transcription and activity were examined in LPS-exposed murine macrophages. Results Quercetin-treated, elastase/LPS-exposed mice showed improved elastic recoil and decreased alveolar chord length compared to vehicle-treated controls. Quercetin-treated mice showed decreased levels of thiobarbituric acid reactive substances, a measure of lipid peroxidation caused by oxidative stress. Quercetin also reduced lung inflammation, goblet cell metaplasia, and mRNA expression of pro-inflammatory cytokines and muc5AC. Quercetin treatment decreased the expression and activity of MMP9 and MMP12 in vivo and in vitro, while increasing expression of the histone deacetylase Sirt-1 and suppressing MMP promoter H4 acetylation. Finally, co-treatment with the Sirt-1 inhibitor sirtinol blocked the effects of quercetin on the lung phenotype. Conclusions Quercetin prevents progression of emphysema in elastase/LPS-treated mice by reducing oxidative stress, lung inflammation and expression of MMP9 and MMP12.http://deepblue.lib.umich.edu/bitstream/2027.42/78260/1/1465-9921-11-131.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78260/2/1465-9921-11-131.pdfPeer Reviewe

    HPV-18 transformed cells fail to arrest in G1 in response to quercetin treatment

    Get PDF
    Previous work with primary human keratinocytes demonstrated that quercetin, a potent mutagen found in high levels in bracken fern (Pteridium aquilinum), arrested cells in G1 with concomitant elevation of the cyclin-dependent kinase inhibitor (cdki) p27Kip1. Expression of the human papillomavirus type 16 (HPV-16) E6 and E7 oncoproteins, under transcriptional control of a heterologous promoter, in transformed keratinocytes failed to abrogate this arrest [Beniston, R., Campo, M.S., 2003. Quercetin elevates p27(Kip1) and arrests both primary and HPV-16 E6/E7 transformed human keratinocytes in G1. Oncogene 22, 5504–5514]. Given the link between papillomavirus infection, bracken fern in the diet and cancer of the oesophagus in humans, we wished to investigate further whether cells transformed by the whole genome of HPV-16 or HPV-18, with E6 and E7 under the transcriptional control of their respective homologous promoters, would be similarly arrested in G1 by quercetin. In agreement with earlier work, quercetin arrested HPV-16 transformed cells in G1 with an increase in the cyclin-dependent kinase inhibitor p27Kip1. However, HPV-18 transformed cells did not arrest after quercetin treatment. The failure of HPV-18 transformed cells to arrest in G1 was linked to the up-regulation of the HPV-18 long control region (LCR) by quercetin, maintaining high expression of the viral transforming proteins. Transcriptional up-regulation of the HPV-18 LCR was mediated by a “quercetin responsive element” homologous to the one identified previously in the bovine papillomavirus type 4 (BPV-4) LCR

    Deconjugation Kinetics of Glucuronidated Phase II Flavonoid Metabolites by B-glucuronidase from Neutrophils

    Get PDF
    Flavonoids are inactivated by phase II metabolism and occur in the body as glucuronides. Mammalian ß-glucuronidase released from neutrophils at inflammatory sites may be able to deconjugate and thus activate flavonoid glucuronides. We have studied deconjugation kinetics and pH optimum for four sources of ß-glucuronidase (human neutrophil, human recombinant, myeloid PLB-985 cells, Helix pomatia) with five flavonoid glucuronides (quercetin-3-glucuronide, quercetin-3'-glucuronide, quercetin-4'-glucuronide, quercetin-7-glucuronide, 3'-methylquercetin-3-glucuronide), 4-methylumbelliferyl-ß-D-glucuronide, and para-nitrophenol-glucuronide. All substrate-enzyme combinations tested exhibited first order kinetics. The optimum pH for hydrolysis was between 3.5-5, with appreciable hydrolysis activities up to pH 5.5. At pH 4, the Km ranged 44-fold from 22 µM for quercetin-4'-glucuronide with Helix pomatia ß-glucuronidase, to 981 µM for para-nitrophenol-glucuronide with recombinant ß-glucuronidase. Vmax (range: 0.735-24.012 µmol·min-1·unit-1 [1 unit is defined as the release of 1 µM 4-methylumbelliferyl-ß-D-glucuronide per min]) and the reaction rate constants at low substrate concentrations (k) (range: 0.002-0.062 min-1·(unit/L)-1 were similar for all substrates-enzyme combinations tested. In conclusion, we show that ß-glucuronidase from four different sources, including human neutrophils, is able to deconjugate flavonoid glucuronides and non-flavonoid substrates at fairly similar kinetic rates. At inflammatory sites in vivo the pH, neutrophil and flavonoid glucuronide concentrations seem favorable for deconjugation. However, it remains to be confirmed whether this is actually the case

    Quercetin improved spatial memory dysfunctions in rat model of intracerebroventricular streptozotocin-induced sporadic Alzheimer’sdisease

    Get PDF
    Background: Alzheimer’s disease (AD) is one of the most common neurodegenerative syndromes characterized by a progressive decline in the spatial memory. There are convincing evidences on the neuroprotective effects of flavonoids against AD. Aims and Objective: To determine the effect of quercetin on the acquisition and retention of spatial memory in a rat model of AD. Materials and Methods: Twenty-four male Wistar rats were divided into four groups (six in each): group I: control rats receiving intracerebroventricular (ICV) injection of normal saline, group II: rats induced AD by ICV injection of streptozotocin (STZ; 3 mg/kg bilaterally; twice, on days 1 and 3), and groups III and IV: ICV-STZ AD rats treated intraperitoneally (IP) with 40 and 80 mg/kg/day quercetin, respectively, over a period of 12 days. Then, the rats were trained with four trials per day for five consecutive days in the Morris water maze (MWM). On the sixth day, the memory retention was evaluated. Result: The ICV-STZ AD groups showed a significant impairment in the acquisition and retrieval of spatial memory when compared with the control group (P < 0.001). In the AD groups, the escape latency during the training trials showed a significant decrease (P < 0.001). Meanwhile, during the MWM task, theseratsspentmoretimeinthetargetquadrant in probe trials when compared with the controls. Conclusion: Quercetin acted as a spatial memory enhancer in ICV-STZ–induced AD rats. Hence, this flavonoid can be considered potentially as a promising agent for developing prophylactic and therapeutic neuroprotection. This neuroprotective effect of quercetin may be attributed to its antioxidant and scavenging properties. © 2015 Hamid Sepehri

    Metabolic engineering of Escherichia coli into a versatile glycosylation platform : production of bio‐active quercetin glycosides

    Get PDF
    Background: Flavonoids are bio-active specialized plant metabolites which mainly occur as different glycosides. Due to the increasing market demand, various biotechnological approaches have been developed which use Escherichia coli as a microbial catalyst for the stereospecific glycosylation of flavonoids. Despite these efforts, most processes still display low production rates and titers, which render them unsuitable for large-scale applications. Results: In this contribution, we expanded a previously developed in vivo glucosylation platform in E. coli W, into an efficient system for selective galactosylation and rhamnosylation. The rational of the novel metabolic engineering strategy constitutes of the introduction of an alternative sucrose metabolism in the form of a sucrose phosphorylase, which cleaves sucrose into fructose and glucose 1-phosphate as precursor for UDP-glucose. To preserve these intermediates for glycosylation purposes, metabolization reactions were knocked-out. Due to the pivotal role of UDP-glucose, overexpression of the interconverting enzymes galE and MUM4 ensured the formation of both UDP-galactose and UDP-rhamnose, respectively. By additionally supplying exogenously fed quercetin and overexpressing a flavonol galactosyltransferase (F3GT) or a rhamnosyltransferase (RhaGT), 0.94 g/L hyperoside (quercetin 3-O-galactoside) and 1.12 g/L quercitrin (quercetin 3-O-rhamnoside) could be produced, respectively. In addition, both strains showed activity towards other promising dietary flavonols like kaempferol, fisetin, morin and myricetin. Conclusions: Two E. coli W mutants were engineered that could effectively produce the bio-active flavonol glycosides hyperoside and quercitrin starting from the cheap substrates sucrose and quercetin. This novel fermentation-based glycosylation strategy will allow the economically viable production of various glycosides

    Effect of vitamin C and quercetin treatment on the liver histopathologic profile in congenital lead exposed male rat pups

    Get PDF
    Introduction: Lead is one of the most important environmental pollutants due to its vast use in various industries. Lead accumulation in different organs, especially the brain, liver and kidneys can cause serious health problems. Lead exposure is more dangerous during fetal period and childhood. Materials and Methods: Timed pregnant female rats divided into 6 groups. Group 1served as control group and received tap water, group 2 received 500 mg/liter lead acetate in the drinking water from 5th day of gestation up to 25th day post-partum, group 3 received the same dose of lead acetate along with daily IP injection of 40mg/kg quercetin, Group 4 received the same dose of lead acetate along with 2g/liter vitamin C, groups 5 and 6 received vitamin C and quercetin respectively like groups 2 and 3 but without lead acetate. On the 25th day postpartum, 6 male pups in each group were deeply anesthetized by chloroform; livers were removed and processed for Hematoxyline- Eosin staining. The microscopic slides were photographed and liver tissue morphological characteristics were evaluated. Results: Lead exposure caused extensive histopathologic changes in liver tissue including hepatocyte degradation, cell nucleus bifurcation and inflammation around hepatic veins. Quercetin and vitamin C treatment could prevent these pathologic changes to a considerable extent. Conclusion: Vitamin C in drinking water and quercetin via IP injection could protect the liver tissue against lead hepatotoxic effects. © 2015, Iranian Society of Physiology and Pharmacology. All rights reserved
    corecore