49 research outputs found

    Quantum Synchronizable Codes From Finite Geometries

    Get PDF
    Quantum synchronizable error-correcting codes are special quantum error-correcting codes that are designed to correct both the effect of quantum noise on qubits and misalignment in block synchronization. It is known that, in principle, such a code can be constructed through a combination of a classical linear code and its subcode if the two are both cyclic and dual-containing. However, finding such classical codes that lead to promising quantum synchronizable error-correcting codes is not a trivial task. In fact, although there are two families of classical codes that are proved to produce quantum synchronizable codes with good minimum distances and highest possible tolerance against misalignment, their code lengths have been restricted to primes and Mersenne numbers. In this paper, examining the incidence vectors of projective spaces over the finite fields of characteristic 2, we give quantum synchronizable codes from cyclic codes whose lengths are not primes or Mersenne numbers. These projective geometric codes achieve good performance in quantum error correction and possess the best possible ability to recover synchronization, thereby enriching the variety of good quantum synchronizable codes. We also extend the current knowledge of cyclic codes in classical coding theory by explicitly giving generator polynomials of the finite geometric codes and completely characterizing the minimum weight nonzero codewords. In addition to the codes based on projective spaces, we carry out a similar analysis on the well-known cyclic codes from Euclidean spaces that are known to be majority logic decodable and determine their exact minimum distances

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Intertwined results on linear codes and Galois geometries

    Get PDF

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Critical phenomena in complex networks

    Full text link
    The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.Comment: Review article, 79 pages, 43 figures, 1 table, 508 references, extende

    Space programs summary no. 37-32, volume iv, for the period 1 february - 31 march 1965. supporting research and advanced development

    Get PDF
    Space programs on telecommunications, space science, propulsion, engineer mechanics, guidance and control, systems, and project engineerin

    LLE review: Quarterly report, April--June 1996. Volume 67

    Full text link
    corecore