
Intertwined Results on Linear Codes and Galois Geometries

Peter Vandendriessche

promotor: prof. dr. Leo Storme

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55767640?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Contents

1 Preliminaries: Finite Geometry & Coding Theory 7

1.1 Finite geometry . 7

1.2 Coding theory . 10

2 LDPC codes derived from Galois geometries 13

2.1 Motivation and preliminaries . 13

2.2 LDPC codes from projective and affine geometries 15

2.3 LDPC codes from linear representations . 21

2.4 LDPC codes from Hermitian varieties . 32

2.5 LDPC codes from partial geometries . 48

3 (q + t, t)-arcs of type (0, 2, t) 55

3.1 Preliminaries and motivation . 55

3.2 A basis for PG(2, q), q even . 56

3.3 Projective triads and (q + t, t)-arcs of type (0, 2, t) 59

3.4 A new infinite family . 61

4 Optimal blocking multisets 67

4.1 Preliminaries and motivation . 67

4.2 A new way of looking: rational sums of hyperplanes 70

4.3 Generalizations of previous results . 73

4.4 A surprising new link with coding theory . 76

iii

iv CONTENTS

5 Small line sets with few odd-points 81

5.1 Motivation and preliminaries . 81

5.2 The affine case . 83

5.3 The projective case . 88

6 Geometries over finite chain rings 93

6.1 Motivation and preliminaries . 93

6.2 Standard form representation of modules . 97

6.3 Extension of Kantor’s theorem to finite chain rings 101

7 Miscellaneous results 109

7.1 Generalizing AM-GM and Turkevich’s inequality 109

7.2 Large weight code words for PG(n, q) . 114

7.3 Blocking sets of the Hermitian unital . 122

A Building a low-cost GPU based supercomputer 135

A.1 The hardware . 135

A.2 Efficient parallel computing . 138

A.3 The LDPC decoding algorithm . 147

A.4 An OpenCL implementation . 157

Summary

The curious interweaving of Galois geometry and linear codes has been inspiring researchers
for decades to explore the many intersections of these two topics. This interweaving is also
the core theme of this PhD thesis, in which I will be presenting results which all in a sense
revolve around the intertwining of linear codes and Galois geometries.

Chapter 1 repeats the general notations in finite geometry and coding theory. This chapter
introduces the notations used throughout this thesis.

Chapter 2 is about (LDPC) codes derived from finite geometries. In Section 2.1, I discuss
the motivation to study LDPC codes from finite geometries, as well as provide some general
preliminaries on this topic, which appear in several of the sections afterwards.

In Section 2.2, I discuss the cyclic LDPC codes constructed from affine and projective geome-
tries, as this is the most well-known class of finite geometry LDPC codes. In this section I
also present some results which, even though they look like they should have been discovered
decades ago, I have not been able to find in the literature, so which I will assume to be new.
In particular, we show that the order of this code as a cyclic code is equal to the length of
the code, and we study what happens when removing the all-one vector from the code in a
canonical way, resulting in an additional application of my earlier paper [94] with J. Limbu-
pasiriporn and L. Storme, which will be discussed in Section 7.2. The results presented in
this section are (a small) part of joint work with Y. Fujiwara, which is submitted to IEEE
Trans. Inform. Theory [45].

In Section 2.3, I discuss the LDPC codes from points and lines in linear representations
T ∗2 (K). My first results on this topic date back to before my official research started, as
a spin-off of an assignment during my bachelor’s studies. Here, I showed that when K is
an arc and the characteristic of the field of the code is different from that of the field of the
underlying geometry, and another condition on the finite field is met, then the code is entirely
generated by its code words of minimum weight. Moreover, from this I could compute the
actual dimension of the code. Earlier work by Pepe et al. [113] demonstrated this behavior
only up to a certain small Hamming weight, and needed in some cases two types of small
weight code words to generate them, instead of one (hence my result implies that code words
of their second type are also a linear combination of code words of their first type). This result
was published in Des. Codes Cryptogr. [139]. Unfortunately, the “another condition on the
finite field” excluded the important case of binary codes. In the special case that K is a conic
minus one point, P. Sin and Q. Xiang showed the dimension formula for the case of binary

1

2 CONTENTS

codes [124]. Later, I managed to improve my technique and show that when the characteristic
of the field of the code is different from that of the field of the underlying geometry, then
the code is entirely generated by its code words of minimum weight, and the same dimension
formula remains valid in this more general setting. This new result improves on all of the
previous results: it generalized my own result from [140], it embedded the formula from [124]
in a large infinite class of geometries and gave a structural geometric explanation for it, and
it extends the linear combination property from [113] without weight restriction, as well as
sharpening several minimum distance bounds from [113]. These are the results that will be
presented in this section; they have been published in Adv. Math. Commun. [140].

In Section 2.4, I discuss the LDPC codes from generators and points in Hermitian varieties
H(2n + 1, q) with q sufficiently large. This class of codes was studied before in [114], where
for n = 1 the code words of small weight are classified up to weight roughly 1

2q
3/2 as a linear

combination of code words of weight 2(q + 1), and for n = 2 it is shown that the only code
words c having 0 < wt(c) ≤ 2(q3+q2) have weight 2(q3+1) and 2(q3+q2) and each comes from
one specific construction. We extend the second result to arbitrary n and add a classification
similar to the first result: the only code words c having 0 < wt(c) ≤ 4q2n−2(q − 1) arise from
n different constructions, the minimum distance is in general 2q2n−4(q3 +1) for n ≥ 2; and for
every δ > 0 the code words up to weight δq2n−1 are a linear combination of these n smallest
types, when q is sufficiently large compared to δ. These results are joint work with M. De
Boeck and are accepted for publication in Adv. Math. Commun. [30].

In Section 2.5, I discuss two more infinite families of LDPC codes, derived from the partial
geometries S(K) and T ∗2 (K) with K a maximal arc. For the first construction, I show that
swapping the role of points and lines yields an equivalent code, and I extend an earlier result
from [23] from hyperovals to Denniston arcs and Mathon arcs. For the second construction, I
pose and discuss a conjecture that relates the minimum distance of this code to the existence
of certain (q + t, t)-arcs of type (0, 2, t), to which also the next chapter is devoted. I provide
a partial proof of this conjecture for the case k = 4. These results were presented at WCC
2011 as ongoing research, but I did not deem them strong enough for journal publication.

Chapter 3 is about (q + t, t)-arcs of type (0, 2, t), or shortly KMq,t-arcs, in Desarguesian
projective planes of even order. In Section 3.1, I discuss the motivations for studying these
arcs, as well as the state of the art. In Section 3.2, I discuss an elegant basis for the projective
plane code, and I pose a motivated conjecture, supported by computer simulations, on how
linear dependency between incidence vectors of lines translates to the existence of certain
KMq,t-arcs. In Section 3.3, I prove this conjecture for the case k = q/2, and thereby indirectly
provide an alternative proof for the classification of the projective triads [122, 131]. In Section
3.4 I present my main result on this topic: despite being unable to prove the conjectures posed
in Section 3.2, I used them as inspiration to invent a new construction technique for KMq,q/4-
arcs, and subsequently proved this new construction by different means. This resulted in both
a new infinite class of KMq,t-arcs and a great support for the plausibility of the conjectures
posed in Section 3.2. The results in this chapter have been published in Finite Fields Appl.
[141].

Chapter 4 discusses optimal blocking multisets, i.e. blocking multisets which m-fold block
the hyperplanes of PG(t, q) with as few points as possible. Next to this intrinsic geometric
motivation, Section 4.1 discusses another known motivation from coding theory, related to

CONTENTS 3

highly divisible Griesmer codes. Section 4.2 discusses a new motivation: when writing the
multisets as linear combinations of hyperplanes, it turns out that these are exactly the ones
that have all coefficients nonnegative. Armed with this new observation, Section 4.3 improves
on almost all known results on this class of multisets. Finally, Section 4.4 demonstrates yet
another link with coding theory, namely a link with projective space codes over the ring of
integers modulo a prime power. The results in this chapter are joint work with I. Landjev
and were published in J. Comb. Theory Ser. A [87].

Chapter 5 deals with small line sets which have few odd-points, i.e. few points that lie on
an odd number of these lines. In particular, we are interested in the minimum value of
|B|+ | odd(B)|, where B is the set of lines and odd(B) is the set of points that are on an odd
number of these lines. In Section 5.1, several motivations for studying such sets are discussed.
In Section 5.2, the affine case is studied and we classify all sets with |B| + | odd(B)| ≤ 2q as
one of eight given constructions, or one remaining open case where only a characterization
is obtained (which is conjectured not to exist). In Section 5.3, the projective case is studied
and here we obtain a full classification of all sets with |B| + | odd(B)| ≤ 2q + 2 as one of six
given constructions. The results in this chapter were accepted for publication in Des. Codes
Cryptogr. [142].

Chapter 6 is devoted to geometries over finite chain rings. Section 6.1 introduces the relevant
preliminaries for finite chain rings, codes over these finite chain rings and geometries over
these finite chain rings.

In Section 6.2, we present a standard representation for submodules of Rn, where R is a
finite chain ring. Moreover, I provide efficient methods to compute the dual module and the
span/intersection of such modules. This section is joint work with I. Landjev.

In Section 6.3, we generalize Kantor’s theorem to arbitrary free modules by arbitrary modules.
While it may be tempting to conjecture that this holds in general for arbitrary modules by
arbitrary modules, this turns out to be false; we provide a counterexample for the more
general statement. This section is joint work with I. Landjev; the results in this section have
been accepted for publication in Des. Codes Cryptogr. [88].

Chapter 7 discusses various other results I have obtained, and published or submitted for
publication. In Section 7.1, I present a new inequality theorem that simultaneously generalizes
the inequality between the arithmetic and geometric mean of nonnegative numbers, as well
as Turkevich’s inequality [123]. This result is joint work with G. Kós and H. Lee, and was
published in the general mathematics journal Proc. Amer. Math. Soc. [81].

Section 7.2 discusses the possible weights for which large weight code words can appear in the
classical projective space code. In the case q even, this reduces to the study of small blocking
sets. For q odd, When the base prime of the field is large enough, we show that there are
code words of Hamming weight equal to the length of the code, but for smaller primes this
turns out not to be the case. In particular, for p = 3 we link the problem to the existence of
2 mod 3 sets with respect to the k-spaces, the existence of which is surprisingly still an open
problem for most cases. These results are joint work with J. Limbupasiriporn and L. Storme,
and were published in Linear Algebra and its Applications [94].

4 CONTENTS

Section 7.3 studies the existence of blocking sets on the Hermitian unital, whose complement
is also a blocking set. Here, we show that for q ≥ 4, such blocking sets exist on the Hermitian
unital of PG(2, q2). Moreover, we study the possible sizes and related results. These results
are joint work with A. Blokhuis, A.E. Brouwer, D. Jungnickel, V. Krčadinac, S. Rottey, L.
Storme and T. Szőnyi, and are submitted to Finite Fields Appl. [16].

Next to these results, I have worked on quantum coding theory, in a joint effort with Yuichiro
Fujiwara et al. We have obtained results on entanglement-assisted quantum LDPC codes,
which were published in Phys. Rev. A [43]; on high-rate quantum LDPC codes assisted by
reliable qubits, which was submitted to IEEE Trans. Inform. Theory [44]; and on quantum
synchronizable codes from finite geometries, which was submitted to IEEE Trans. Inform.
Theory [45]. However, introducing all the machinery and preliminaries for explaining these
results on quantum theory in a mathematically correct way, would require too much time to
be feasible, therefore I will just refer the reader to the cited papers for further information on
my work on these topics.

Additionally, I have also worked on the applications of my theoretical research, in order to
close the gap between the mathematical and engineering research on these topics. I have
written a (nearly finished) manuscript that shows how to utilize the property that all small
weight code words are a linear combination of a known set of code words; and I have made a
modification in the LDPC decoding algorithm to reduce the memory requirements by an order
of magnitude at the cost of a moderate reduction in performance. I have been recommended
not to add these to my PhD thesis to avoid this thesis being cited later instead of the papers
that may potentially follow from the results, but those interested in these results can feel free
to contact me.

Finally, I have written large computational libraries to efficiently work with various objects
in coding theory and finite geometry, including vector spaces, linear codes, Grassmannians
of projective subspaces, operations on subspaces, groups acting on collections of subspaces,
matrix algebra over finite fields, finite chain rings, etc. Special attention has been given to the
LDPC decoding algorithm, which I have implemented in OpenCL to perform decoding highly
efficient on GPU. In 2012 our department received a 9000 euro FCWO grant to build a GPU
computing machine, which I built from scratch myself. In Appendix A, I will report on the
building of this machine, as well as on the OpenCL implementation of the LDPC decoding
algorithm.

Acknowledgement

I would like to express a word of thanks to all people and instances that have been of great
value to me during my time as a PhD fellow at the FWO. First and foremost, the FWO, for
providing me with the necessary funds and supplementary grants.

Secondly, I want to thank my supervisor, for guiding and directing me for many years, for
being a neverending source of new problems to investigate, and for being a great networking
hub to get involved with other researchers in our field.

Thirdly, I want to thank my colleagues whom I had fruitful discussions and joint work with,
and in particular those who have shown me their hospitality while I was visiting them: Ivan
Landjev, Qing Xiang, Anton Betten and Yuichiro Fujiwara.

Finally, I would like to thank my family and close friends for being very supportive overall
and in particular for their mental and logistical supportiveness over the past years.

–Peter, April 24, 2014

5

6 CONTENTS

Chapter 1

Preliminaries: Finite Geometry &
Coding Theory

1.1 Finite geometry

Definition 1.1.1. An incidence structure (P,B, I) consists of a finite set P, the elements of
which are called points, a finite set B, the elements of which are called blocks, and a relation
I ⊆ P × B, which is called the incidence relation. Often, B is a collection of subsets of P
and the incidence relation is simply ∈. If additionally, any two distinct points are contained
in at most one common block (or equivalently, any two distinct blocks contain at most one
common point), the blocks are sometimes called lines.

Definition 1.1.2. The dual incidence structure to an incidence structure (P,B, I) is the
incidence structure (B,P, I ′) with pIb ⇔ bI ′p for all p ∈ P and all b ∈ B. For example, the
dual of (P,B,∈) is (B,P,3).

Definition 1.1.3. The incidence matrix of an incidence structure (P,B, I), where we let
P = {p1, . . . , pm} and B = {b1, . . . , bn}, is the m×n matrix, in which the rows are labeled by
the points and the columns are labeled by the blocks, such that Hij = 1 if piIbj , and Hij = 0
otherwise. The incidence matrix of the dual incidence structure is then simply the transposed
of this matrix. Sometimes this second matrix is also referred to as the incidence matrix of
the structure, so it needs to be clear from the context which matrix is referred to.

Notation 1.1.4. A finite field Fq of order q has q = ph elements, where p is a prime number
and h is a positive integer. We denote by charF the characteristic of the field F , so charFq =
p.

Notation 1.1.5. Let V = Fnq .

• By PG(n − 1, q) we denote the geometry with as its (i − 1)-spaces the i-dimensional
subspaces of V , and inclusion as its incidence relation.

• By AG(n, q) we denote the geometry with as its i-spaces the i-dimensional subspaces
of V and their cosets, and inclusion as its incidence relation.

7

8 CHAPTER 1. PRELIMINARIES: FINITE GEOMETRY & CODING THEORY

• By EG(n, q) we denote the geometry with as its i-spaces the cosets of i-dimensional
subspaces of V (but not the subspaces themselves), and inclusion as its incidence rela-
tion.

Notation 1.1.6. For n ≥ 1, AG(n, q) and PG(n, q) are called the affine and projective line
(when n = 1), plane (when n = 2), space (when n ≥ 3). Sometimes the name space is used
for general n as well, to simplify the wording.

Definition 1.1.7. A non-singular Hermitian variety in PG(m, q2) is the set of absolute points
of a Hermitian polarity, which is defined by a Hermitian matrix and the non-trivial involution
x 7→ xq of Aut(Fq2). All non-singular Hermitian varieties are projectively equivalent to the
one given by the equation

Xq+1
0 +Xq+1

1 + · · ·+Xq+1
m = 0 .

The projective index of a non-singular Hermitian variety in PG(m, q2) equals
⌊
m−1

2

⌋
. The

maximal subspaces of a Hermitian variety are called generators. From now on, we will denote
the standard non-singular Hermitian variety in PG(m, q2) by H(m, q2). A singular Hermitian
variety in PG(m, q2) is a cone with an i-dimensional subspace as vertex and a non-singular
Hermitian variety in an (m− i− 1)-dimensional subspace, disjoint from the vertex, as base,
−1 ≤ i ≤ m. All singular Hermitian varieties in PG(m, q2) with an i-dimensional vertex are
projectively equivalent to the one given by the equation

Xq+1
0 +Xq+1

1 + · · ·+Xq+1
m−i−1 = 0 .

Note that a non-singular Hermitian variety is a singular Hermitian variety with vertex di-
mension equal to −1.

Definition 1.1.8. A k-arc (or briefly an arc) in PG(2, q) is a set of k points such that no
three lie on the same line. Dually, a dual k-arc (or briefly a dual arc) is a set of k lines such
no three are concurrent.

It is easy to show that in PG(2, q), q odd, every arc has at most q + 1 points (and dually, a
dual arc in PG(2, q), q odd, has at most q+ 1 lines). Moreover, the following characterization
result on (q + 1)-arcs is known.

Theorem 1.1.9 (Segre [119]). Every (q + 1)-arc in PG(2, q), q odd, is a conic.

By duality, every dual (q+1)-arc in PG(2, q), q odd, is a dual conic. Easy counting arguments
show that every line in a dual (q + 1)-arc in PG(2, q), q odd, intersects each of the q other
lines in a different point, and hence there is exactly one 1-point on every line of the dual
(q + 1)-arc and the other q2 points in PG(2, q), q odd, are 0-points or 2-points. The 1-points
form a conic. Dually, the set of tangents to a conic in PG(2, q), q odd, also forms a dual conic.

Definition 1.1.10. A hyperoval is a set of q + 2 points in PG(2, q) such that no three of
them are collinear.

Hyperovals exist if and only if q is even, and they are the largest arcs that exist when q is
even. More background on (substructures of) projective and affine spaces can be found in
[59].

1.1. FINITE GEOMETRY 9

Notation 1.1.11. The symbol
[
n
k

]
q

with k ≤ n integers and q a prime power, denotes the
classical Gaussian coefficient: [

n

k

]
q

=
(qn − 1) . . . (qn−k+1 − 1)

(qk − 1) . . . (q − 1)
.

It is well known that
[
n+1
k+1

]
q

is the number of subspaces in PG(n, q).

Definition 1.1.12. A (q + t, t)-arc of type (0, 2, t) in PG(2, q) is a set S of q + t points in
PG(2, q) for which every projective line meets S in either 0, 2 or t points.

Definition 1.1.12 was introduced in [80] and it is proven that (q + t, t)-arcs of type (0, 2, t)
with 1 < t < q can only exist if q is even. Moreover, they prove that t needs to be a divisor
of q, i.e. t = 2r with r ≤ h. They also provide a construction of such arcs if h− r divides h.
From now on, we will assume that q is even (and hence is a power of 2) and t divides q.

Remark 1.1.13. A hyperoval in PG(2, q), q = 2h with h ≥ 1, can be seen as a (q + 2, 2)-arc
of type (0, 2, 2). One can see (q + t, t)-arcs of type (0, 2, t) as a generalization of hyperovals.
The symmetric difference of two lines of PG(2, q) can be seen as a (2q, q)-arc of type (0, 2, q).

Definition 1.1.14. A (q + t, t)-arc of type (0, 2, t) in PG(2, q), q = 2h, is said to have a
t-nucleus if all the t-secants are concurrent.

In [80] it is proven that all (q + t, t)-arcs of type (0, 2, t) have a t-nucleus if h − r + 1 6=
gcd(h, r − 1), conjecturing that it holds for all r, h. That conjecture was proven in [47].

Theorem 1.1.15 ([47]). Every (q + t, t)-arc of type (0, 2, t) in PG(2, q), q = 2h, has a t-
nucleus.

Conjecture 1.1.16 ([80]). If 4 divides t and t divides q, then there exists a (q + t, t)-arc of
type (0, 2, t).

Conjecture 1.1.16 is open for more than 20 years now. In [80] it is proven that a (2h + 2r, 2r)-
arc exists when h− r is a proper divisor of h. Later, in [47] the authors prove another infinite
class of such arcs for which h− r is not a proper divisor of h; more precisely they construct

• a (2hr + 2h(r−1), 2h(r−1))-arc of type (0, 2, 2h(r−1)) in PG(2, 2hr);

• a (2hr + 2h(r−1)+1, 2h(r−1)+1)-arc of type (0, 2, 2h(r−1)+1) in PG(2, 2hr);

• a (2hr + 2h(r−1)+s, 2h(r−1)+s)-arc of type (0, 2, 2h(r−1)+s) in PG(2, 2hr) if there exists a
(2h + 2s, 2s)-arc of type (0, 2, 2s) in PG(2, 2h).

Some (40, 8)-arcs of type (0, 2, 8) in PG(2, 32) were found in [93] via computer searches.
Shortly after, a (36, 4)-arc of type (0, 2, 4) in PG(2, 32) was discovered in [76], also via com-
puter searches. Hence, in PG(2, 32), there are (32 + t, t)-arcs of type (0, 2, t) for all divisors
t of 32. The next open cases are (68, 4)-arcs of type (0, 2, 4) in PG(2, 64), and (128 + t, t)-
arcs of type (0, 2, t) for t = 4, 8, 16, 32. In Section 3.4 I will construct a new infinite class of
(q + q/4, q/4)-arcs of type (0, 2, q/4), for all q = 2h, h ≥ 3.

10 CHAPTER 1. PRELIMINARIES: FINITE GEOMETRY & CODING THEORY

Definition 1.1.17. A dual (q+ t, t)-arc of type (0, 2, t) in PG(2, q) is a set S of q+ t lines in
PG(2, q) for which every projective point lies on either 0, 2 or t lines of S.

Note that the (binary) sum of the incidence vectors of the lines in a dual (q+ t, t)-arc is equal
to the zero word, since t is necessarily even.

It is clear that, since PG(2, q) is self-dual, arcs are equivalent to dual arcs, and all properties
for arcs also hold for dual arcs (and vice versa). In a similar fashion one can use concepts
such as dual t-nucleus, which is just the dual of the t-nucleus.

1.2 Coding theory

Definition 1.2.1. A linear [n, k, d]-code C over a finite field Fq is a k-dimensional subspace
of V (n, q), such that every two distinct vectors in C differ in at least d positions.

There are two common ways to define such codes:

• as the null space of an m× n matrix H of rank n− k over Fq
(which is called the parity check matrix H of C);

• as the row space of an m′ × n matrix G of rank k over Fq
(which is called the generator matrix G of C).

Often, one deletes dependent rows from these matrices to make them (n−k)×n, resp. k×n.

Linear codes (often with q = 2) form an important tool in information theory, communication
theory, data transmission, combinatorics, finite geometry and many other areas. In data
transmission, these codes are used for error correction:

• A message vector m ∈ V (k, q) is transmitted as v = m ·G ∈ V (n, q);

• during transmission, several errors may occur in the transmitted code word (v → v′);

• upon arrival, if less than d errors occurred, this can always be detected as Hv′ 6= 0;

• if less than d/2 errors occurred, they can even be corrected algorithmically (this is called
decoding).

Definition 1.2.2. The parameters n, k, d are called the length, dimension and minimum
distance of C.

Definition 1.2.3. Given an incidence structure (P,B, I), we define CF to be the code over
F having its parity check matrix H equal to the incidence matrix of this incidence structure
(P,B, I). If the field F is clear from the context, we will simply write C.

1.2. CODING THEORY 11

This gives the code a nice interpretation: a code word c of the code corresponds to a map
ϕ : B → F such that, for each point r ∈ P, we have

∑
L3r ϕ(L) = 0 over F. We call ϕ(L)

the coefficient of the line L in the code word c, and we denote this by cL. Similarly, when
considering the code derived from the dual structure, a code word is a map ϕ : P → F such
that, for each block L ∈ B, we have

∑
r∈L ϕ(r) = 0 over F.

Remark 1.2.4. A code word c of Ck(S)⊥ is an element of the Fp-null space of A, which is
equivalent to a mapping from P to Fp with the additional property that

∑
p∈π cp = 0, for all

π ∈ B. Hence, code words can be studied as multisets of points such that each k-space on S
contains 0 (mod p) of the points in the multiset.

Definition 1.2.5. The support of a word c is the set of positions with nonzero entry, i.e.
supp(c) = {p : cp 6= 0}, where P is the set of positions. For finite geometry codes, we
usually identify this set with the corresponding set of points (or subspaces when using the
dual incidence structure).

Definition 1.2.6. The Hamming weight wt(c) of a word c is the number of nonzero symbols
in it, i.e. it is | supp(c)|. The minimum distance d of Ck(S)⊥ is minc∈Ck(S)⊥\{0}wt(c).

Definition 1.2.7. Let C be an LDPC code defined by the parity check matrix H, with as
its rows H1, . . . ,Hm. Then we define the following distance functions:

• A code word of C is simply a word c ∈ C. The Hamming distance of C (denoted by
d(C)) is the smallest Hamming weight among all nonzero code words.

• A stopping set of C is a set S ⊆ Fn with the property

∀s ∈ S, ∀r ∈ {1, . . . ,m} : | supp(s) ∩ supp(Hr)| 6= 1.

The stopping distance of C (denoted by sd(C)) is the size of the smallest nonempty
stopping set.

Note that, while d(C) is an invariant of the code, the stopping distance depends on the parity
check matrix used to define the code.

12 CHAPTER 1. PRELIMINARIES: FINITE GEOMETRY & CODING THEORY

Chapter 2

LDPC codes derived from Galois
geometries

2.1 Motivation and preliminaries

Originally introduced by Gallager [48], low density parity check (LDPC) codes are fre-
quently used these days due to their excellent empirical performance under belief-propagation
(a.k.a. sum-product) decoding. In some cases, their performance is even close to the Shannon
limit [98]. In general, a binary LDPC code C is a linear block code defined by a sparse parity
check matrix H, this is a matrix that contains a lot more 0s than 1s.

To exploit structural properties, one usually wants explicit constructions rather than ran-
dom matrices. Early on, constructions have been proposed based on permutation matrices
[41],[135], Ramanujan graphs [100],[116], expander graphs [125], q-regular bipartite graphs
[77] or other incidence structures in discrete mathematics.

Lately, many constructions coming from Galois geometries have been investigated, because
of their low complexity decoding features [82, 108], such as projective and affine spaces [33,
34], generalized quadrangles [78, 95], linear representations [113, 139, 140] and partial and
semipartial geometries [74, 91]. Geometrical LDPC codes have been used in several high-
end modern data transmission systems [33, 34, 150] and in entanglement-assisted quantum
decoding [43].

Examples of such codes can be found in [70, 71, 72, 73, 97, 147]. Later, simulation results
of Liu and Pados [95] showed that several generalized polygon LDPC codes have powerful
bit-error-rate performance when decoding is carried out via low-complexity variants of belief
propagation. It would be interesting to perform the same simulations for the incidence ge-
ometries studied in this thesis, since all handled structures have a girth of at least 6 in their
associated Tanner graph. If K is an arc, then the Tanner graph even has girth at least 8.

The performance of LDPC codes under iterative decoding is determined by several parameters
and properties of the code and of the particular parity check matrix used for decoding. The

13

14 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

main characteristics that are of interest are the girth of the associated Tanner graph, the
minimum distance, the stopping distance, the pseudodistance and the trapping distance. We
will in this section focus on the first three.

Definition 2.1.1. The Tanner graph of an incidence structure is a bipartite graph with as
its bipartition classes the rows and columns of the incidence matrix of an incidence structure,
where two nodes are connected if and only if the corresponding matrix entry is nonzero
(i.e. equals 1).

Definition 2.1.2. Let C be a linear code defined by the sparse parity check matrix H. Let
G be the bipartite graph associated with H, then G is called the Tanner graph of this code.
The girth of the Tanner graph is the graph theoretic girth of G, i.e. the size of the smallest
cycle in G.

Determining the girth of the Tanner graph of a finite geometry is almost always trivial:

• since the Tanner graph is bipartite and simple, the girth is always even and at least 4;

• the fact that the Tanner graph has girth at least 6 can be stated equivalently as the
fact that two different blocks have at most one common point or, again equivalently, as
the fact that two different points are contained in at most one common block;

• if the girth is at least 6, it is exactly 2t, where t ≥ 3 is the smallest integer for which a
t-gon exists in the geometry.

Note that a linear code has several parity check matrices defining it, so several Tanner graphs
can be associated to a single linear code. Therefore, the notion of a Tanner graph will only
be used in circumstances where the parity check matrix is explicitly given.

The following general lower bound on the minimum distance is known.

Theorem 2.1.3 ([7]). Let C be an LDPC code defined by a {0, 1}-parity check matrix H over
the finite field Fp. If v is the minimum number of ones in a column of the parity check matrix
H, and r is the maximum number of common ones in any two different columns, then

d(C) ≥ 2

p

(
(p− 1)

v

r
+ 1
)
.

For most non-binary codes, this is the strongest bound available.

The motivation for studying the minimum distance and stopping distance of finite geometry
codes is three-fold.

• First of all, these codes have been shown by several authors to have excellent perfor-
mance for their length. Even though the performance of LDPC codes can be brought
arbitrarily close to the Shannon limit [98], this is only achieved at very large code
lengths, in which case even iterative decoding becomes unfeasible. For shorter code
lengths, finite geometry codes are among the top competitors in terms of iterative de-
coding performance.

2.2. LDPC CODES FROM PROJECTIVE AND AFFINE GEOMETRIES 15

• Secondly, theoretical and structural arguments are all we have. The length, dimension
and Tanner girth of an LDPC code can be computed easily (in polynomial time). The
minimum distance is however not at all easy to determine. In fact, it has been shown
[146] that the determination of the minimum distance is in general an NP-complete
problem, and even in the special case of LDPC codes, the problem remains unfeasible
[66]. Later on, determining the stopping distance of an LDPC code was also proven to
be NP-hard [83]. Hence, we can only find these parameters from a theoretical study.

• Thirdly, studying these parameters may also yield interesting theoretical results on the
code and on the underlying geometry. For example, in [140], I computed the minimum
distance for a code derived from T ∗2 (K), finding on the way a general formula for the
dimension of the code and an exact basis for the code. In [141], the study of the
PG(2, q)-code resulted in a new class of (q + t, t)-arcs of type (0, 2, t), the existence of
which was an open problem in finite geometry.

• Finally, when transmission is done over an erasure channel, maximum likelihood (ML)
decoding can correct any error which erases less than d(C) positions, while it is proven1

in [25, Lemma 1.1] that iterative sum-product decoding can correct any error which
erases less than sd(C) positions. For this reason, we will focus our study on these two
distance functions.

In [74], the authors show that LDPC codes derived from partial and semipartial geometries
have excellent empirical performance under LDPC decoding methods based on belief propa-
gation, and they derive bounds on the dimension and the minimum distance of these codes.
In this paper, we will improve the known bounds on the minimum distance and we provide
several new theoretical and computer results about it. We also attempt to determine the
stopping distance, or lower bounds on this stopping distance, whenever possible.

2.2 LDPC codes from projective and affine geometries

The most commonly studied finite geometry is by no doubt the projective plane/space, and
most of the applied results in engineering have been based on codes from projective spaces
PG(n, q) and their derived spaces AG(n, q) and EG(n, q) [33, 34, 43, 45, 82, 108, 150]. More
specifically, one takes the incidence matrix of t-spaces by k-spaces in PG(n, q) (or AG(n, q)
or EG(n, q)) for some values of n, t, k, and uses it as a parity check matrix. The most studied
case is n = 2, k = 1, t = 0, i.e. points and lines in the plane. Since the entries of the incidence
matrices are always 0 or 1 (which are in the prime subfield of any finite field), one usually
only considers codes over Fp′ with p′ some prime (usually p′ = 2).

The dimension of the codes created in this way, follows straightforwardly from the p′-rank of
the incidence matrices, where often one takes p′ = p (with q = ph). A general formula for the
p-rank of the incidence matrices of points by t-spaces in PG(n, q), AG(n, q) and EG(n, q) was
found by Hamada [54], see below. A general formula for the rank of the incidence matrix of
s-spaces by t-spaces is not known.

1Note that the stated lemma assumes that the channel is binary, but its proof works for arbitrary channels.

16 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

Theorem 2.2.1 ([54]). The p-rank of the incidence matrix of points by t-spaces in PG(m, ph)
is

Rm,t,p,h :=
∑

(s0,...,sh)∈S

h−1∏
j=0

L(sj+1,sj)∑
i=0

(−1)i
(
n+ 1

i

)(
m+ sj+1p− sj − ip

m

)
,

where

S = {(s0, s1, . . . , sh)|s0 = sh, ∀j : t+ 1 ≤ sj ≤ m+ 1,∀j : 0 ≤ sj+1p− sj ≤ (m+ 1)(p− 1)}

and L(sj+1, sj) =
⌊
sj+1p−sj

p

⌋
.

The p-rank of the incidence matrix of points by t-spaces in AG(m, ph) is Rm,t,p,h−Rm−1,t,p,h.

The p-rank of the incidence matrix of points by t-spaces in EG(m, ph) is Rm,t,p,h−Rm−1,t,p,h−
1.

Over fields with a characteristic different from p, these matrices have full rank or full rank
minus one, depending on whether the number of t-spaces through a point equals 0 modulo
the characteristic of this field or not.

In 2006, Chandler, Sin and Xiang showed a strong generalization of these results, by de-
composing these matrices to their Smith Normal Form over Z [24]. The rank over fields of
arbitrary characteristic follows immediately from these results.

Definition 2.2.2. A cyclic [n, k, d]-code C is a linear [n, k, d]-code in which every cyclic
shift of every code word c = (c0, . . . , cn−1) ∈ C is also a code word, that is, for any c =
(c0, . . . , cn−1) ∈ C, we have (c1, . . . , cn−1, c0) ∈ C. It is known that, by regarding each code
word as the coefficient vector of a polynomial in F2[x], a cyclic code of length n can be seen as
a principal ideal in the ring F2[x]/(xn−1) generated by the unique monic nonzero polynomial
g(x) of minimum degree in the code which divides xn − 1. When a cyclic code is of length
n and dimension k, the set of code words can be written as C = {i(x)g(x) | deg(i(x)) < k},
where the degree deg(g(x)) of the generator polynomial is n− k.

Clearly, since the Singer cycle acts transitively on the points of PG(m, q) and EG(m, q),
the codes derived from these geometries are cyclic. Moreover, one can determine the exact
generator polynomial of these codes, as well as derive some other useful properties. First, we
will introduce some simplifying notations and lemmata.

The incidence vector χπ of π in PG(m, 2h) is the binary 2h(m+1)−1
2h−1

-dimensional vector such
that the coordinates are indexed by the points and such that each entry is 1 if π contains the
corresponding point and 0 otherwise. Similarly, one can define incidence vectors of subspaces
of EG(m, 2h).

Definition 2.2.3. The complement χπ of an incidence vector χπ is the vector χπ = χπ + 1,
where 1 is the all-one vector. In other words, χπ is obtained by flipping 0’s and 1’s in χπ.

Definition 2.2.4. Denote in this section by B the set of all t-spaces in PG(m, 2h). We let
Pm,t,2h = 〈χπ | π ∈ B〉, the code spanned by all the incidence vectors of t-spaces in B, and

Cm,t,2h = 〈χπ | π ∈ B〉⊥ be the dual of the vector space spanned by the set of complements of

the incidence vectors of t-dimensional subspaces of PG(m, 2h).

2.2. LDPC CODES FROM PROJECTIVE AND AFFINE GEOMETRIES 17

The fact that Cm,t,2h = 〈χπ | π ∈ B〉⊥ is a cyclic code follows directly from the fact that
Pm,t,2h = 〈χπ | π ∈ B〉 is cyclic as a linear code.

Proposition 2.2.5. Pm,t,2h = 〈C⊥
m,t,2h

,1〉, where 1 6∈ C⊥
m,t,2h

.

Proof. Because all generators χπ of C⊥
m,t,2h

are of even weight, all code words of C⊥
m,t,2h

are

also of even weight. Since the length 2h(m+1)−1
2h−1

of this cyclic code is odd, the all-one vector is
not a code word. Recall that Pm,t,2h is the vector space spanned by the incidence vectors of

t-dimensional subspaces in PG(m, 2h). Because the number of t-dimensional subspaces that
contain a given point in PG(m, 2h) is always odd, we have∑

π∈B
χπ = 1,

which implies that 1 ∈ Pm,t,2h . Because χπ = χπ + 1, it follows that C⊥
m,t,2h

⊂ Pm,t,2h . Thus,

we have 〈C⊥
m,t,2h

,1〉 ⊆ Pm,t,2h . Now the fact that χπ = χπ + 1 is equivalent to the relation

that χπ = χπ + 1, which implies that Pm,t,2h ⊆ 〈C⊥m,t,2h ,1〉. Thus, Pm,t,2h = 〈C⊥
m,t,2h

,1〉 as
desired.

Proposition 2.2.6. Cm,t,2h = 〈P⊥
m,t,2h

,1〉, where 1 6∈ P⊥
m,t,2h

.

Proof. Because the generators of Pm,t,2h are all of odd weight, the inner product between 1

and any of the generators is nonzero, which implies that 1 6∈ P⊥
m,t,2h

. By the same token,

because the generators of C⊥
m,t,2h

are of even weight, we have 1 ∈ Cm,t,2h . By Proposition

2.2.5, C⊥
m,t,2h

⊂ Pm,t,2h , which implies that P⊥
m,t,2h

⊂ Cm,t,2h . Again by Proposition 2.2.5,

the dimensions of Pm,t,2h and C⊥
m,t,2h

satisfy the equation that dimPm,t,2h = dim C⊥
m,t,2h

+ 1.

Hence, Cm,t,2h = 〈P⊥
m,t,2h

,1〉 as desired.

Definition 2.2.7. The weight w2h(a) of the 2h-ary expansion of a positive integer a, that is,

w2h(a) =
∑
i

ai,

where addition is performed over Z and

a =
∑

i∈N∪{0}

ai2
hi

with 0 ≤ ai ≤ 2h − 1.

The following theorem gives the explicit form of the generator polynomial of Cm,t,2h .

Theorem 2.2.8. Let α be a primitive element in F2h(m+1) and β = α2h−1. The generator
polynomial g(x) of Cm,t,2h is

g(x) =
∏

j∈Im,t,h

(x− βj),

18 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

where

Im,t,h =

{
a ∈ N | a ≤ 2h(m+1) − 1

2h − 1
,

max
0≤i≤h

w2h(a(2h − 1)2i) ≤ (m− t)(2h − 1)

}
.

Proof. It is known that Pm,t,2h is the subfield subcode in F2 of a punctured generalized Reed-

Muller code [6, Chapter 16]. The generator polynomial h(x) of its dual P⊥
m,t,2h

is

h(x) = (x− 1)
∏

j∈Im,t,h

(x− βj)

(see [13, Theorem 13.9.2] and also 2). It suffices to show that h(x) = (x− 1)g(x). By Lemma
2.2.6, P⊥

m,t,2h
⊂ Cm,t,2h and dim Cm,t,2h = dimP⊥

m,t,2h
+ 1. Thus, the generator polynomial

g(x) of Cm,t,2h is a divisor of h(x), where the quotient is a polynomial of degree 1 over F2.
Since h(0) = 1, the polynomial x is not a factor of h(x). Hence, we have h(x) = (x− 1)g(x)
as desired.

Another important parameter for cyclic codes is their order (also known as the period or
exponent). This has impact on various aspects of the decoding strength, such as the ability
to synchronize misaligned transmissions [45].

Definition 2.2.9. The cardinality ord(f(x)) = |{xa (mod f(x)) | a ∈ N}| is called the order
of the polynomial f(x), where N is the set of positive integers.

Obviously, the order is at most the length of the code, and we will show that for these codes,
equality is reached.

Proposition 2.2.10. Let f(x) =
∏
i fi(x) be a polynomial over F2, where the polynomials

fi(x) are all nonzero and pairwise relatively prime in F2[x]. Then

ord(f(x)) = lcmi{ord(fi(x))}.

Proposition 2.2.11. Let q be a prime or prime power, and α a nonzero element of the
extension field Fqe of Fq for a positive integer e. Define f(x) ∈ Fq[x] to be the minimal
polynomial of α over Fq. The order ord(f(x)) is equal to the order of α in the multiplicative
group F∗qe .

For the proofs of these propositions, we refer the reader to [92, Theorems 3.9 and 3.33].

Theorem 2.2.12. Let g(x) and h(x) be the generator polynomials of Cm,t,2h and Cm,t−i,2h
for a positive integer i ≤ t− 1 respectively. Define f(x) to be the quotient of h(x) = f(x)g(x)

divided by g(x). Then ord(f(x)) = 2h(m+1)−1
2h−1

.

2To avoid confusion in notation, “m” in Theorem 13.9.2 in [13] corresponds to “m+ 1” in this paper while
“r” and “s” there are “t” and “h” here respectively. Note also that the current edition of the textbook contains
typographical errors in the statement of Theorem 13.9.2, so that “0 < j . . . ” and “0 < max . . . ” should read
“0 ≤ j . . . ” and “0 ≤ max . . . ” respectively

2.2. LDPC CODES FROM PROJECTIVE AND AFFINE GEOMETRIES 19

Proof. Let α be a primitive element in F2h(m+1) and β = α2h−1. By Theorem 2.2.8, we have

f(x) =
∏

j∈Im,t−i,h\Im,t,h

(x− βj).

We consider two special factors of f(x). Let j0 = 2h(m−t)−1
2h−1

and j1 = 2h(m−t+1)−1
2h−1

− 2. Then

max
0≤i≤h

w2h(j0(2h − 1)2i) = max
0≤i≤h

w2h(j1(2h − 1)2i)

= (m− t)(2h − 1).

Hence, the minimal polynomials Mβj0 (x), Mβj1 (x) of βj0 and βj1 are nonzero factors of f(x).
Since Mβj0 (x) and Mβj1 (x) are minimal polynomials, the two are relatively prime. So, by
Propositions 2.2.10 and 2.2.11 and the fact that j0 and j1 are relatively prime, we have

ord(f(x)) ≥ lcm
(
ord

(
Mβj0 (x)

)
, ord

(
Mβj1 (x)

))
= lcm

(
2h(m+1) − 1

gcd
(
j0(2h − 1), 2h(m+1) − 1

) ,
2h(m+1) − 1

gcd
(
j1(2h − 1), 2h(m+1) − 1

))

=
2h(m+1) − 1

2h − 1
.

Since the order of a factor of the generator polynomial of a cyclic code is at most the length

of the code, we have ord(f(x)) = 2h(m+1)−1
2h−1

.

Define Em,t,2h = 〈χπ | π ∈ B〉⊥ to be the dual of the vector space spanned by the incidence

vectors of t-dimensional subspaces in EG(m, 2h). Similar to the case of projective geometry
over a finite field, the cyclic group of order 2hm − 1 acts regularly on the points in the case
of EG(m, 2h), making Em,t,2h cyclic. It is also one the oldest efficiently decodable codes and
was first discovered in 1960’s. Its basic properties in this context can be found in [13, Section
13.8].

Theorem 2.2.13 ([26]). Let α be a primitive element in F2hm. The generator polynomial
g(x) of the code of points and t-spaces (with points as positions) is

g(x) =
∏

j∈I′m,t,h

(x− αj),

where

I ′m,t,h =
{
a ∈ N | a ≤ 2hm − 1,

max
0≤i≤h

w2h(a2i) ≤ (m− t)(2h − 1)

}
.

Theorem 2.2.14. Let g(x) and h(x) be the generator polynomials of Em,t,2h and Em,t−i,2h
for a positive integer i ≤ t− 1 respectively. Define f(x) to be the quotient of h(x) = f(x)g(x)
divided by g(x). Then ord(f(x)) = 2hm − 1.

20 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

Proof. By Theorem 2.2.13, we have

f(x) =
∏

j∈I′m,t−i,h\I
′
m,t,h

(x− αj).

Let j0 = 2h(m−t) − 1 and j1 = 2h(m−t) − 2. It is easy to see that these two relatively prime
integers belong to the set I ′m,t−i,h \ I ′m,t,h. Write the minimal polynomials of αj0 and αj1 as
Mαj0 (x) and Mαj1 (x) respectively. By Propositions 2.2.10 and 2.2.11, we have

ord(f(x)) ≥ lcm (ord (Mαj0 (x)) , ord (Mαj1 (x)))

= lcm

(
2hm − 1

gcd (j0, 2hm − 1)
,

2hm − 1

gcd (j1, 2hm − 1)

)
= 2hm − 1.

Since the order of a factor of the generator polynomial of a cyclic code is at most the length
of the code, we have ord(f(x)) = 2hm − 1 as desired.

Finally, on the other major parameter, the minimum distance, the following is known for
cyclic codes.

Theorem 2.2.15 (BCH bound for binary codes). Let g(x) be the generator polynomial of a
cyclic code of length n and minimum distance d. Let n′ be the smallest integer such that n
divides 2n

′−1 and α a primitive nth root of unity in F2n′ . If there exist a nonnegative integer
b and positive integer δ ≥ 2 such that g(αb+i) = 0 for 0 ≤ i ≤ δ − 2 in F2n′ , then d ≥ δ.

Proposition 2.2.16. Let C be the binary LDPC code of points and t-spaces in PG(n, q) or
AG(n, q), n ≥ 2 where points correspond to the positions of the code. If q is odd, then the
code is trivial or almost-trivial (dimension 1) depending on whether or not j ∈ C. If q is even
then the minimum distance is (q + 2)qn−t+1; an example of a code word of this Hamming
weight is the incidence vector a cone with as its vertex an (n − 2 − t)-space (not included)
and as its base a hyperoval.

Proof. For both geometries, the claim for q odd follows immediately from the matrix being
full rank or full rank minus one.

It follows from [21, Theorem 1] that the minimum for q even of the AG(n, q)-code is as
claimed. For PG(n, q), this is lower bound by Theorem 2.2.15, the example in the problem
statement shows equality.

Proposition 2.2.17. Let C be the binary LDPC code of points and t-spaces in EG(n, q) or
AG(n, q), n ≥ 2, where points correspond to the positions of the code. If q is odd, then the
code is trivial or almost-trivial (dimension 1) depending on whether or not j ∈ C. If q is even
then the minimum distance is (q+ 2)qn−t+1− 1; an example of a code word is a cone with as
its vertex an (n− 2− t)-space (not included) and as its base a hyperoval containing the point
(0, 0, . . . , 0).

2.3. LDPC CODES FROM LINEAR REPRESENTATIONS 21

Proof. The claim for q odd follows again from the matrix being full rank or full rank minus
one.

For q odd, let q = 2h, then we can work as follows. It is straightforward to see that the
positive integers a smaller than 2h(m−t) + 2h(m−t−1)+1 − 1 all satisfy the condition that

max
0≤i≤h

w2h(a2i) ≤ (m− t)(2h − 1).

By Theorem 2.2.13, for all positive integers i ≤ 2h(m−t) + 2h(m−t−1)+1 − 2, the generator
polynomial g(x) of Em,t,2h has x − αi as its factors. Hence, by Theorem 2.2.15, we have

d ≥ (2hm + 2)2m−t−1 − 1. The code word construction in the problem statement shows that
we have equality in this bound.

For codes over a field with characteristic different from two, the minimum distance is not
always known.

Conjecture 2.2.18. Let A be the incidence matrix of PG(2, q). For q 6= p 6= 2, the mini-
mum distance of the code defined by A as its parity check matrix, is an open problem. It is
conjectured to be d = 2q − q−p

p−1 .

For more background on these codes, we refer to [5, 43, 89].

2.3 LDPC codes from linear representations

One class of geometries studied for this purpose are linear representations of geometries. One
case that received a lot of attention lately is T ∗2 (K), with K a hyperoval [113, 139]. Here the
minimum weight is known, the dimension is known when the characteristic of the code field
charK 6= 2 and then we also know that the code is generated by its code words of minimum
weight. Other structures studied in less detail in [113] include T ∗2 (B) with B a Baer subplane,
T ∗2 (U) with U a unital, and T ∗2 (L) with L the pointwise union of two intersecting lines. One
linear representation that has received a lot of attention is LU(3, q)D (and its dual LU(3, q),
which is not a linear representation) [78, 77, 124, 139, 140]. In [77], the authors conjecture
the binary dimension of the associated code to be

q3 − 2q2 + 3q − 2

2

if q is odd. Here q = ph with p prime denotes the order of the finite field of the geometry.
This conjecture was proven in [124]. Over all code fields with charK 6= p, I proved this in
[139]. In this section we present a uniform approach, having both of these as an immediate
corollary; when charK 6= p, we compute the minimum weight, the rank and the code rate of
the code, we classify the code words of minimum weight and we prove that every code word
is a linear combination of the code words of minimum weight. These results were published
in Adv. Math. Commun [140].

22 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

2.3.1 Preliminaries

Let us begin by introducing some basic notations and definitions.

Definition 2.3.1 ([1]). Let PG(3, q) be the 3-dimensional projective space over the field Fq.
Let Π0 := PG(2, q) be a (hyper)plane in it and let K be an arbitrary subset of the points of
that hyperplane. We define the geometry T ∗2 (K) in the following way:

• the points of T ∗2 (K) are the affine points, being the points of PG(3, q) \ PG(2, q),

• the lines are the affine lines of PG(3, q) which pass through a point of K,

• the incidence relation is inherited from PG(3, q).

Remark 2.3.2. Note that through every (affine) point we have |K| lines, one through each
point of K, while every line contains q points. In total there are q3 points and |K|q2 lines: q2

through each point of K.

Remark 2.3.3. Let N = |K| and let H be the q3 × Nq2 incidence matrix of T ∗2 (K), where
points correspond to rows of H and lines correspond to columns of H and to the positions in
the code. Let C be the linear code with H as its parity check matrix, over an arbitrary finite
field K. One can associate a coefficient to each line in a code word w, being its value at the
corresponding position. A word c = (c1, . . . , cNq2) ∈ KNq2 is in C if and only if w ·HT = ~0,
hence (since Hji = 1⇔ `i 3 pj) if and only if∑

`i

ciHji =
∑
`i3pj

ci = 0

as an element of K for every point pj . Alternatively formulated: a word is a code word of C
if and only if the sum of the coefficients of the lines through every point equals 0 over K.

Definition 2.3.4. Let ri, rj ∈ K with i < j and let π be a projective two-dimensional plane
through ri, rj different from Π0. The plane word through ri and rj in π is the code word with

• +1 in the positions corresponding to the lines of π through ri,

• −1 in the positions corresponding to the lines of π through rj ,

• 0 in the positions corresponding to all other lines.

Notation 2.3.5. We denote by C ′ the code generated by all plane words. Given a plane
word w through pi and pj , define T (w) to be the plane π in Definition 2.3.4 and L(w) to be
the line pipj in Definition 2.3.4.

Definition 2.3.6. Let L be a line in Π0 containing at least two points of K. Let π be a
projective (two-dimensional) plane through L different from Π0, and let p0, . . . , pk−1 be the
points of L ∩ K. We define a generalized plane word in π to be a code word with

• a0 in the positions corresponding to the lines of π through p0,

2.3. LDPC CODES FROM LINEAR REPRESENTATIONS 23

• a1 in the positions corresponding to the lines of π through p1,

• . . .

• ak−2 in the positions corresponding to the lines of π through pk−2,

• −a0 − a1 − · · · − ak−2 in the positions corresponding to the lines of π through pk−1,

• 0 in the positions corresponding to all other lines,

for some scalars a0, a1, a2, . . . , ak−2 ∈ K.

Remark 2.3.7. Note that if a line would contain two points of K, then it is not a line of
T ∗2 (K), because it is contained in the plane at infinty and hence not an affine line.

Remark 2.3.8. Note that a sum of plane words in a fixed plane π is a generalized plane
word in π, and a sum of generalized plane words in π is still a generalized plane word in π.
Moreover, if π∩K = {p0, . . . , pk−1}, then the set of generalized plane words in π is spanned by
the plane words through (p0, p1), (p0, p2), . . . , (p0, pk−1). Hence, C ′ is also the code spanned
by all generalized plane words and we need at most one generalized plane word per plane to
obtain any word of C ′.

Remark 2.3.9. It is known that T ∗2 (K) is a partial geometry if and only if K is a (maximal)
{qn− q+n;n}-arc for some n ≥ 1 (see [136]) and T ∗2 (K) is a semipartial geometry if and only
if K is a Baer subplane or a unital (see [31]). A good general reference on T ∗2 (K) is [29].

2.3.2 Dimension of C ′

Notation 2.3.10. Denote by L the set of projective lines at infinity that contain at least one
point of K. Denote by LN the size of L, i.e.

L = {`1, `2, . . . , `LN }

and by LS the summed size of L, i.e.

LS =
∑
`∈L
|` ∩ K|.

Let K be an arbitrary field with charK 6= p.

Lemma 2.3.11. Let ` ∈ L be a line in the plane at infinity, containing exactly k points of
K. Then there are exactly q(k − 1) linearly independent plane words among all plane words
w with L(w) = `.

Proof. Number the k points p0, p1, . . . , pk−1, then the pairs

(p0, p1), (p0, p2), . . . , (p0, pk−1)

each yield q different plane words, and these are linearly independent. Now for all other
pairs, the plane words through (pi, pj), with i < j, can be written as the difference of the
corresponding plane words through (p0, pi) and (p0, pj). Hence the result follows.

24 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

Lemma 2.3.12. Fix an arbitrary point p0 ∈ K. Let3
∑n

i=1 λivi = ~0 be a linear combination
of generalized plane words yielding the zero word, at most one generalized plane word per
plane. If L(vi) = L(vj) and this line contains p0, then λi = λj.

Proof. The q affine lines through p0 in T (vi) each get a contribution of λi from vi. The q
affine lines through p0 in T (vj) each get a contribution of λj from vj . All other generalized
plane words vm contribute equally much to the sum of both sets of q lines (namely λm if
T (vm) contains p0 and 0 otherwise). Denote by R the total summed contribution to both sets
of q lines.

Since the total sum of all contributions is 0 for every line (since we assumed that this linear
combination yields the zero word) we have qλi + R = 0 = qλj + R, hence qλi = −R = qλj .
Since q 6= 0 as an element of K, it follows that λi = λj .

Corollary 2.3.13. We did not assume λi 6= 0, hence if one of the generalized plane words
vi appears in the linear combination with a nonzero λi, then all generalized plane words vj
through the same line at infinity should appear with λj = λi. Hence if we start from an empty
code (considered as vector space), and we consider one by one all lines ` at infinity and we
add the q generalized plane words through ` to this vector space, then each line increases the
dimension with at least (|`∩K| − 1)(q− 1), since the codimension can be at most |`∩K| − 1.

Theorem 2.3.14. The dimension of C ′ is (N − 1) + (q − 1)(LS − LN).

Proof. Take any point p0 and look at the lines L0, . . . , Lq through p0 in the plane at infinity.
The plane words through (p0, p), for p ∈ K \ {p0}, form a basis for the linear combinations of
plane words on the lines L0, . . . , Lq. Starting from an empty vector space V as described in
Corollary 2.3.13, these plane words contribute (N − 1)q to the dimension, because of Lemma
2.3.11. Now adding every other line L ∈ L at infinity, not through p0, contributes

• at least (|L ∩ K| − 1)(q − 1) to dimV , since Lemma 2.3.12 states that in any linear
combination of generalized plane words yielding the zero word, all planes through L
appear with the same coefficient, hence we miss at most |L∩K|− 1 degrees of freedom,

• and at most (|L∩K|− 1)(q− 1) to dimV , since one can write the zero word as a linear
combination of plane words through (p0, p), (p0, p

′), (p, p′) for any two points p, p′ ∈ L∩K
(note that all plane words through lines through p0 are already in the code at this point).

Therefore, the dimension is exactly

(N − 1)q +
∑

p0 6∈L∈L
(|L ∩ K| − 1)(q − 1).

3By convention, we choose all generalized plane words containing lines through p0 in their support, to have
coefficient +1 on the lines through p0 (this can always be accomplished by scaling the λi).

2.3. LDPC CODES FROM LINEAR REPRESENTATIONS 25

Note that
∑

p0∈L∈L(|L ∩ K| − 1) = N − 1 since both represent all points of K except for p0.
Hence

dim(C ′) = (N − 1)q +
∑

p0 6∈L∈L(|L ∩ K| − 1)(q − 1)

= (N − 1) + (q − 1)
∑

L∈L(|L ∩ K| − 1)
= (N − 1) + (q − 1)

((∑
L∈L |L ∩ K|

)
− |L|

)
= (N − 1) + (q − 1)(LS − LN).

Remark 2.3.15. We now know that C ′ is a linear [Nq2, N − 1 + (q − 1)(LS − LN)]-code.
There is no general expression for LS − LN in terms of q and N . However, there is an easy
algorithm to compute LS − LN for an arbitrary set K:

Let K be an arbitrary subset of PG(2, q). Fix any point p0 (inside K or outside of K). Call a
line through p0

• a secant if it contains two or more points of K \ {p0},

• a tangent if it contains exactly one point of K \ {p0}, and

• a passant if it contains no points of K \ {p0}.

When adding/removing a point p0,

• LS increases/decreases by q + 1, while

• LN increases/decreases by the number of passants through p0.

Hence, LS − LN increases/decreases by the number of non-passant lines through p0.

Some examples:

• If K is a k-arc, then adding the ith point increases LS − LN by i− 1. Hence,

LS − LN =

k∑
i=1

(i− 1) =
k(k − 1)

2
.

• If K is the pointwise union of two intersecting lines, then adding the points on the first
line increases LS−LN by 1 each time (except for the first point), while adding the other
q points increases it by q + 1 each time. Hence, in this case

LS − LN = q + q(q + 1) = q2 + 2q.

Remark 2.3.16. Since one has in general that LS = N(q + 1), the dimension formula can
be rewritten as q2N − q3 + (q − 1)(q2 + q + 1 − LN). Since the parity check matrix is a
q3× q2N matrix, this means that the rank deficiency of the parity check matrix is q−1 times
the number of lines at infinity, skew to K. It may be interesting to find out if there exists a
more direct way to obtain this formula.

26 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

2.3.3 Dimension of C

We will compute the dimension of T ∗2 (K) as follows. First we will compute dimC in the case
K = PG(2, q), and find that it equals dimC ′ in that case, hence C = C ′. Then we will present
a technique to keep this property valid while removing arbitrary points from K. Every subset
K of PG(2, q) can be obtained by removing a finite number of points from PG(2, q), so the
conclusion will follow. As in the previous section, we will always assume that q 6= 0 over K,
i.e. charK 6= p.

First, we study the case that K = PG(2, q), so then we simply have T ∗2 (K) = AG(3, q).
Remark that AG(3, q) is a 2-(q3, q, 1) block design, using lines as blocks. Denote by An
the incidence matrix of AG(n, q), with n ≥ 2, where points correspond to rows and lines
correspond to columns.

It is a classical result in design theory (see [22] for a proof and more general background on
designs) that AnA

T
n = (qn−1 + qn−2 + · · ·+ q2 + q)I + J , where J denotes the qn × qn matrix

with all entries equal to 1. This has determinant

(qn + qn−1 + · · ·+ q2 + q)(qn−1 + qn−2 + · · ·+ q2 + q)q
n−1.

In fact, AnA
T
n has qn−1 eigenvalues equal to qn−1+qn−2+· · ·+q2+q and one eigenvalue equal

to qn + qn−1 + · · ·+ q2 + q. The determinant is non-zero when qn−1 + qn−2 + · · ·+ q2 + q 6= 0
and qn + qn−1 + · · · + q2 + q 6= 0. For most choices of the characteristic, this already shows
that An has full rank, however in some cases further study is required:

• The case q = 0 has been excluded by our assumptions. In fact, An does not have full
rank in this case. We will further assume q 6= 0.

• The case qn−1 + qn−2 + · · · + q + 1 = 0 is easily solved. Note that this implies q 6= 0
and qn−2 + qn−3 + · · · + q + 1 6= 0, hence in this case only one of the eigenvalues of
AnA

T
n equals zero over K, and we see that (1, . . . , 1)T is an eigenvalue corresponding

to this eigenvector. Hence (1, . . . , 1)T is (up to scalar multiples) the only eigenvector
corresponding to this eigenvalue, but one can verify that

(1, . . . , 1)ATn = qn(1, . . . , 1) 6= ~0

since q 6= 0. Hence, this is not a code word, and hence there is no v 6= ~0 such that
Anv = ~0, i.e. An has full rank in this case.

• The case qn−2 +qn−3 + · · ·+q+1 = 0 is more difficult. Purely combinatorial approaches
seem to fail, but a geometric trick works. We will now develop this technique to find
the rank of An over K for the case qn−2 + qn−3 + · · ·+ q + 1 = 0.

Lemma 2.3.17. Let k ≥ 2. If the incidence matrix of AG(k+ 1, q) is rank deficient over K,
then the incidence matrix of AG(k, q) is also rank deficient over K.

Proof. Assume that the incidence matrix of AG(k + 1, q) is rank deficient. Since k ≥ 2,
there are more lines than points. Hence, rank deficiency means that there exists a linear

2.3. LDPC CODES FROM LINEAR REPRESENTATIONS 27

combination of points whose corresponding line-incidence vectors yield the zero vector (zero
for each line): ∑

pi∈AG(k+1,q)

cipi = ~0

with not all ci = 0 over K.

Now consider any hyperplane Π ∼= AG(k, q) in our AG(k + 1, q) which contains at least one
point with non-zero coefficient in the linear combination. For all lines contained in Π, the
linear combination of the point-line incidence vectors has to be zero as well. I.e. in Π we
also have

∑
pi∈Π cipi = ~0. Since Π contains at least one point with non-zero coefficient in

the linear combination, this linear combination is nontrivial. Hence, the incidence matrix of
AG(k, q) is rank deficient as well.

Theorem 2.3.18. The incidence matrix of AG(n, q) (with n ≥ 2), q = ph with p prime, has
full rank over all fields with charK 6= p.

Proof. We will prove this by induction on n. For n = 2 this is clear from the remarks in the
beginning of this section, since the problematic case above (qn−2 + · · · + q + 1 = 0) reduces
to 1 = 0, hence can be excluded immediately. For each n ≥ 2 it follows by contraposition of
Lemma 2.3.17 that if the statement is true for n, then it is also true for n + 1. Hence, by
induction, it is true for all n ≥ 2.

We have proven that if An has full rank for all n ≥ 2 when charK 6= p. Explicitly, for the
general setting of T ∗n (K) with K = PG(n, q) (which yields exactly AG(n+ 1, q)) the geometry
has qn(qn + qn−1 + · · ·+ q + 1) lines and qn+1 points, hence Theorem 2.3.18 yields

dimC = qn(qn + qn−1 + · · ·+ q3 + q2 + 1).

Now compare this to the result of Section 3. In Section 3 we worked with n = 2, hence
N = q2 + q + 1 and T ∗2 (K) = AG(3, q). This gives us

dim(C ′) = (N − 1) + (q − 1)(LS − LN)
= q2 + q + (q − 1)((q2 + q + 1)(q + 1)− (q2 + q + 1))
= q2(q2 + 1)
= dimC.

and hence dimC = dimC ′. Hence, the code associated with AG(3, q) is spanned completely
by its plane words. However, for n > 3, Theorem 2.3.14 is no longer valid. We finish with a
conjecture for the higher dimensions:

Conjecture 2.3.19. If K = PG(n, q) with n > 2 and charK 6= p then the code associated
with T ∗n (K) = AG(n+ 1, q) over K also has dimC ′ = dimC.

Now we are ready to do the general case. The main idea here is the following: if we remove a
point from K, we claim that the property that the code is spanned by its plane words remains
valid. To distinguish between different point sets, we denote by CK, C

′
K respectively the full

code and the plane words code associated with T ∗n(K). Similarly, we denote by LN,K, LS,K
the respective values of LN and LS for the set K.

28 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

Theorem 2.3.20. Let K be a nonempty subset of PG(2, q) and let charK 6= p. We have
dimCK = dimC ′K (and hence CK = C ′K).

Proof. According to Theorem 2.3.14, if T ⊆ PG(2, q), then removing a point p0 from T
decreases dimC ′ by

dimC ′T − dimC ′T\{p0} = 1 + (q − 1)((LS,T − LN,T)− (LS,T\{p0} − LN,T\{p0}))

and hence decreases dimC by at least this amount.

Fix one point p0 ∈ K. Now remove all other points of PG(2, q) one by one, first the points
outside of K then the points inside K, except for p0. Denote by Ti the set in the intermediary
step with i points:

T|PG(2,q)| = PG(2, q), TN = K, T1 = {p0},

and define Q = |PG(2, q)| − 1. Here, |PG(2, q)| denotes the number of points in PG(2, q),
which is q2 + q+ 1. Note that in any code word, every affine point lies on either 0 or at least
2 lines of the support of that code word, hence C{p0} = {~0}. Note that C{p0} is simply CK
with K = {p0}. Hence, we have

dimCPG(2,q) = dimCPG(2,q) − dimC{p0}

=

Q∑
i=1

(
dimCTi+1 − dimCTi

)
≥ dimC ′T2 − dimC ′T1 +

Q∑
i=2

(
dimCTi+1 − dimCTi

)
≥ · · ·

≥
Q∑
i=1

(
dimC ′Ti+1

− dimC ′Ti

)
= dimC ′PG(2,q) − dimC ′{p0}
= dimC ′PG(2,q).

It was proven in the previous subsection that dimCPG(2,q) = dimC ′PG(2,q), hence we must
have equality in each inequality “≥”. This means that

dimCTi+1 − dimCTi = 1 + (q − 1)((LS,Ti+1 − LN,Ti+1)− (LS,Ti − LN,Ti))

for each i. A simple induction gives dimCTi = dimC ′Ti for all i, in particular for i = N we
have dimCK = dimC ′K.

Hence for T ∗2 (K) in general it is now proven that dimC = dimC ′ and the code C is generated
completely by its plane words.

Remark 2.3.21. If Conjecture 2.3.19 is true, then Theorem 2.3.20 can be extended to arbi-
trary subsets of PG(n, q): then we have dimC = dimC ′ for the code associated with T ∗n(K)
with arbitrary K ⊆ PG(n, q).

2.3. LDPC CODES FROM LINEAR REPRESENTATIONS 29

Remark 2.3.22. As an immediate consequence, we get that in the binary code associated
with T ∗2 (K) for q odd, all code words have even weight.

Corollary 2.3.23. Since LU(3, q)D is projectively equivalent to T ∗2 (K) with K a conic minus
one point [78], and since the rank of a matrix is equal to the rank of its transposed, it follows
that the dimension of C in this case is

q3 − 2q2 + 3q − 2

2
.

Hence, Theorem 2.3.20 extends the main result from [124].

2.3.4 The minimum distance of C

Now that the dimension and structure of C are known, we can attack another one of its key
properties: the minimum distance. In some sporadic cases the minimum distance is known
[78, 113], however in most cases one only has lower bounds from the tree bound [133], the
bit-oriented bound and the parity-oriented bound [134].

Theorem 2.3.24. For any finite field K, all code words c with w(c) < 2q must be contained
in a single plane. If w(c) = 2q, then either c is a plane word, supp(c) is the set of lines of a
hyperbolic quadric with two intersecting lines contained in K, or charK = p = 2.

Proof. This follows from [113], Proposition 4.

Now, we will use the structure of C to sharpen this result and classify the minimum weight
code words.

Theorem 2.3.25. If charK 6= p, there are no code words c ∈ C with w(c) < 2q. If w(c) = 2q,
then either c is a plane word or supp(c) is the set of lines of a hyperbolic quadric with two
intersecting lines contained in K.

Proof. The second part follows immediately from Theorem 2.3.24. For the first part, assume
that there exists a code word with w(c) < 2q and let U be its support. By Theorem 2.3.24,
the support of this code word is contained in a plane T . Define m = |K ∩ T | and write
K ∩ T = {p1, . . . , pm}. Since supp(c) ⊂ T , we have that c is a generalized plane word in T .
Hence, either each of the q lines through pi appear in U , or none of them do. Since one needs
either 0 or at least 2 lines through a point, it follows that w(c) ≥ 2q, a contradiction.

Remark 2.3.26. Note that it may actually happen that there are minimum weight code
words other than plane words – Theorem 2.3.24 classfies them. However, it follows from
Theorem 2.3.20 that these other minimum weight code words are also a linear combination
of plane words. Hence, even in this case, the statements ‘C is generated by its (generalized)
plane words’ and ‘C is generated by its code words of minimum weight’ are equivalent.

30 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

So far we have proven that C is a linear [Nq2, N − 1 + (q − 1)(LS − LN), 2q]-code and it is
completely generated by its minimum weight code words.

Now, let us see what happens for T ∗n(K) with n > 2, assuming Conjecture 2.3.19 is true.

Theorem 2.3.27. If Conjecture 2.3.19 is true, then d(C) = 2q is true for T ∗n(K) with arbi-
trary n ≥ 2 and arbitrary K ⊆ PG(n, q) (still assuming charK 6= p).

Proof. Assume there exists a non-zero code word c with w(c) < 2q and let U be its support.
Let T be any plane and define t = |U ∩ T |. Since the sum of the coefficients has to be 0 in
each point, any point on a line of the support lies on at least one other line of the support.
Hence we have

t(q − t+ 1) < 2q − t,

meaning t > q or t < 2. Since t is an integer, this means t ≥ q + 1 or t ≤ 1.

Now, if there are at least two planes for which t ≥ q + 1, then w(c) ≥ 2q + 1, contradiction.
Hence there is at most one such plane and U is completely contained in this plane. The rest
of the proof can be copied from Theorem 2.3.25.

The following theorem summarizes the results obtained so far:

Theorem 2.3.28. The code associated with T ∗2 (K) over any field K, with charK 6= p, is a
linear [Nq2, N −1 + (q−1)(LS −LN), 2q]-code and it is completely generated by its minimum
weight code words. If Conjecture 2.3.19 is true, then for charK 6= p the code associated with
T ∗n(K) also has d(C) = 2q and it is also generated completely by its minimum weight code
words.

2.3.5 Some practical considerations and further work

A commonly used approach when constructing good LDPC codes is the maximization of the
girth of its Tanner graph [66, 100, 149], since high girth decreases the dependence between
passing messages in the belief-propagation sum-product algorithm. The Tanner graph of
T ∗2 (K) always has a girth of at least 6. If K is an arc, then the girth is 8, as T ∗2 (K) contains
no triangles.

Liu and Pados [95] mention an opposing objective: the minimization of the diameter of the
Tanner graph, which brings them to generalized polygons. If K is not contained within a line,
the diameter of T ∗2 (K) is at most 6. If K contains no tangents at infinity, the diameter is as
low as 4. Examples of such choices of K include K a hyperoval and K a double blocking set.

There is a unique choice for K that combines both of the preceding objectives: the case where
K is a hyperoval, which only exists for q even. Then T ∗2 (K) is a generalized quadrangle with
girth 8 and diameter 4. From the above points of view, this is probably the most appealing
case, however, the restriction charK 6= p excludes the most important field for practical
applications: F2.

2.3. LDPC CODES FROM LINEAR REPRESENTATIONS 31

Hyperoval q = ph dimF2 C dimRC = dimRC
′ dimF2 C

′

Regular hyperoval q = 2 9 9 8

Regular hyperoval q = 4 50 50 37

Regular hyperoval q = 8 341 324 194

Regular hyperoval q = 16 2670 2312 1105

Lunelli-Sce hyperoval q = 16 2550 2312 1107

Regular hyperoval q = 32 22248 17424 6578

Translation hyperoval q = 32 21258 17424 6608

Cherowitzo hyperoval q = 32 20358 17424 6613

Payne hyperoval q = 32 20388 17424 6613

Segre hyperoval q = 32 20553 17424 6613

O’Keefe-Penttila hyperoval q = 32 20343 17424 6613

Regular hyperoval q = 64 188665 135200 39937

Adelaide hyperoval q = 64 169772 135200 40312

Subiaco I hyperoval q = 64 169254 135200 40312

Subiaco II hyperoval q = 64 169388 135200 40309

Table 2.1: Simulation results for the binary codes associated with T ∗2 (K) where K is a
hyperoval.

For the binary code associated with T ∗2 (K) when K is a hyperoval, the results in this section
are no longer valid. Lemma 2.3.12 no longer guarantees the lower bound on dimC ′ and since
the 2-rank is at most the real rank, the dimension of C could be larger than what we have
derived in this section. In Table 2.1, we have calculated the dimension (and hence the code
rate, which is dimension over length) of the F2-code and R-codes associated with T ∗2 (K) with
K a hyperoval, by computer simulations, for multiple types of hyperovals in PG(2, 2h). For
h ≤ 5, these are the only hyperovals (for proofs of these facts, see [52, 110, 112, 118]). For
h = 6, it is commonly believed that these are the only hyperovals, but a proof has not been
found yet. For h > 6, a classification is not even conjectured and the computations also
become unfeasible.

We see that the results indeed deviate from the numbers in Theorem 2.3.28. In this case
we get even better parameters: the dimension increases while no other visible parameters
change. However, we lose the structural property that the code is spanned by its code words
of minimum weight. For other choices of K when q is even, even the minimum distance may
decrease. This has been investigated more closely in [113]. In general, only a minimum weight
of q + 1 can be guaranteed.

If one wants to maintain the structure property and still use a binary code, then q must be
odd. Some examples that are ‘near-optimal’ choices for K in these cases include:

• K is a (q + 1)-arc (and hence a conic by [119]). Compared to the case where K is
a hyperoval, the dimension and rate are slightly smaller, the code is a bit shorter in
length and the girth remains 8. The diameter is 6 now, but there are only very few pairs
of vertices where this distance is actually reached. It would be interesting to perform
practical simulations to find out if this case still guarantees a fast average decoding

32 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

speed.

• K has no tangents. For example, K is a dual double blocking set. Here the Tanner
graph of T ∗2 (K) has girth 6 and the diameter is still 4, but the length of the code is
necessarily longer compared to the case where K is a hyperoval, without an increase in
minimum distance.

To finish, we take a look ahead on possible further work on this subject. Each of the following
could be a significant contribution to the understanding of this class of codes.

• For T ∗n(K), with n > 2, little is known. If Conjecture 2.3.19 is true, it could be interesting
to find a generalization of the formula in Theorem 2.3.14 and to analyze its geometric
interpretation. Regarding the optimal choice of K, there is no n-dimensional equivalent
of the hyperoval, so it would be interesting to know which choices for K yield interesting
geometries (if any).

• If charK = p, few results in this section remain valid. The only trick that works
completely when charK = p is that if the incidence matrix of AG(n + 1, q) is rank
deficient, then the incidence matrix of AG(n, q) is rank deficient. A suited structural
property could potentially be preserved in a way similar to Section 4.2. This suggests
that it may be a good help to first find out the structure of the base case AG(2, q),
especially which code words remain valid if we remove certain classes of parallel lines.
Another indication that this may be an interesting topic is the minimum distance. From
Theorem 2.3.24, code words c with w(c) < 2q are necessarily contained within a plane.
If one knows the structure of the LDPC code associated with AG(2, q), one is likely to
find a general result on the minimum weight. Until now, the only known lower bounds
are the bounds in [113].

• If charK = p, it would be useful to find a structure or dimension result even just for
special cases. Even for T ∗2 (K) with K a hyperoval this seems a lot harder. From the
simulation results in Table 2.1, one can see that the dimensions are different between
different types of hyperovals. This may be related to the approach in [113]: dimC
may depend on how many points of a conic are contained in K, while the difference
in dimC ′ between regular/translation/other hyperovals may be related to Remark 7 in
[113], since other hyperovals are not known to have such special points.

2.4 LDPC codes from Hermitian varieties

A major class of geometries that has been used for LDPC decoding is that of the classical
generalized quadrangles, and in particular the quadrics and Hermitian varieties. Here, the
positions of the code correspond to the points of the geometry, and the parity check rows are
the incidence vectors of the generators (i.e. the subspaces of maximal dimension).

Due to the structure of quadrics and Hermitian varieties, there are essentially five different
families of geometries to consider: Q(2n, q), Q+(2n + 1, q), Q−(2n + 1, q), H(2n, q2) and
H(2n + 1, q2), with q a prime power. The best known results on the minimum distance and

2.4. LDPC CODES FROM HERMITIAN VARIETIES 33

the classification of small weight code words are summarized in [114]. In one particular case,
we were able to make a strong improvement to the state of the art. In particular, we improve
the earlier results for n = 2, we solve the minimum distance problem for general n, we classify
the n smallest types of nonzero code words and we characterize all small weight code words
as being a linear combination of these n types. This section is joint work with M. De Boeck
and was accepted for publication in Adv. Math. Commun. [30].

The following theorems on Cn(H(2n+ 1, q2))⊥ are known.

Theorem 2.4.1 ([78, Proposition 3.7]). Let n = 1. Then the supports of all code words c
with 0 < wt(c) < 3q are projectively equivalent, and their Hamming weights are 2(q + 1). If

wt(c) ≤
√
q(q+1)

2 , then c is a linear combination of these code words.

Theorem 2.4.2 ([114, Theorem 43]). Let n = 2. If c is a code word with 0 < wt(c) ≤
2(q3 + q2) and if q is sufficiently large, then there are only two possible projective equivalence
classes for supp(c), and the Hamming weights of the corresponding code words are 2(q3 + 1)
and 2(q3 + q2). These two types of code words are examples of the code words constructed in
Theorem 2.4.9.

In this section, we will discuss the dual code arising from the points and generators of a
Hermitian variety. This improves upon earlier work of [114, Section 5]. We determine the
minimum Hamming weight for general n, and we show that if q is sufficiently large, a similar
statement to the second part of Theorem 2.4.1 holds for general n. Our main result is as
follows.

Theorem 2.4.3. Let n be any positive integer and let δ > 0 be any constant. If c is a
code word with 0 < wt(c) ≤ 4q2n−2(q − 1) and q is sufficiently large, then there are only
n possible projective equivalence classes for supp(c); call S this set of projective equivalence
classes. For every δ sufficiently small compared to q, every code word c with wt(c) < δq2n−1

is a linear combination of code words in S. The minimum distance of Cn(H(2n+ 1, q2))⊥ is
2q2n−4(q3 + 1) for n ≥ 2.

2.4.1 The code words

In this section we introduce a set of code words of the code Cn(H(2n + 1, q2))⊥. From now
on, we consider the projective space PG(2n+ 1, q2), n ≥ 1. We begin with a few lemmata.

Lemma 2.4.4. The number of generators on H(2n+ 1, q2) is
∏n
i=0(q2i+1 + 1).

Proof. This, and many other results on Hermitian varieties, can be found in [60, Chapter
23].

Notation 2.4.5. Throughout this section, we will denote the number of points in PG(m, q)

by θm(q) = qm+1−1
q−1 and the number of points on H(m, q2) by

µm(q2) =
(qm+1 − (−1)m+1)(qm − (−1)m)

q2 − 1
.

34 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

Lemma 2.4.6. Consider a non-singular Hermitian variety H(2n + 1, q2) in PG(2n + 1, q2)
and let σ be the corresponding polarity. Let π be a k-dimensional subspace in PG(2n+ 1, q2)
such that π ∩ H(2n + 1, q2) is a cone πiHk−i−1 with Hk−i−1

∼= H(k − i − 1, q2) and πi an
i-space, −1 ≤ i ≤ min{k, n}. Then π ∩ πσ = πi. Conversely, if π ∩ πσ is an i-space πi, then
π ∩H(2n+ 1, q2) is a cone πiHk−i−1 with Hk−i−1

∼= H(k − i− 1, q2).

Proof. The first statement is [60, Lemma 23.2.8]; the second statement is a corollary of the
first.

We will use this theorem mostly in the case k = n. Using the above lemma, we can prove an
easy counting result.

Theorem 2.4.7. The number of generators on H(2n + 1, q2) through a fixed k-space on
H(2n+ 1, q2), 0 ≤ k ≤ n, equals

∏n−k−1
i=0 (q2i+1 + 1).

Proof. Let πk be a k-space on H(2n + 1, q2) and let σ be the polarity corresponding to
H(2n + 1, q2). Then πσk is a (2n − k)-space intersecting H(2n + 1, q2) in a cone πkH with
H ∼= H(2n− 2k − 1, q2). Every generator on H(2n+ 1, q2) through πk corresponds uniquely
to a generator on H. Hence, there are

∏n−k−1
i=0 (q2i+1 +1) generators on H(2n+1, q2) through

πk.

In the construction of the code words we need the following lemma.

Lemma 2.4.8. Let π be an n-space in PG(2n+1, q2) and let µ be a generator of H(2n+1, q2).
Then π ∩ µ and πσ ∩ µ are subspaces of the same dimension.

Proof. We denote µ ∩ π = πj , a j-space, possibly empty (j = −1). It follows that 2n − j =
dim((µ∩π)σ) = dim(〈µσ, πσ〉). Using the Grassmann identity and µ = µσ (µ is a generator),
we find dim(µ ∩ πσ) = dim(µ) + dim(πσ)− dim(〈µσ, πσ〉) = j.

Now, we can give the construction of small weight code words in the code Cn(H(2n+1, q2))⊥.

Theorem 2.4.9. Consider H(2n + 1, q2) and its corresponding polarity σ. Let π be an n-
space in PG(2n + 1, q2). Denote the incidence vector of π ∩ H(2n + 1, q2) by vπ and the
incidence vector of πσ ∩ H(2n + 1, q2) by vπσ . Then α(vπ − vπσ), α ∈ Fp, is a code word of
Cn(H(2n+ 1, q2))⊥.

Proof. Let µ be a generator of H(2n + 1, q2) and denote its incidence vector by vµ. Using
Lemma 2.4.8, we find µ intersects both π and πσ, or neither. In the first case |π∩µ| ≡ |πσ∩µ| ≡
1 (mod q) and in the second case |π ∩ µ| = |πσ ∩ µ| = 0. In both cases vπ · vµ = vπσ · vµ. The
theorem follows.

Example 2.4.10. We list the different possibilities for π ∩ πσ. Hereby, we use Lemma 2.4.6
for k = n and Theorem 2.4.9. We write H = H(2n+ 1, q2).

2.4. LDPC CODES FROM HERMITIAN VARIETIES 35

• π ∩ πσ = ∅. We write π ∩ H = H and πσ ∩ H = H ′. We know, H,H ′ ∼= H(n, q2). The
corresponding code words have weight 2µn(q2).

• π ∩ πσ = πi, an i-space, 0 ≤ i ≤ n − 2. We write π ∩ H = πiH and πσ ∩ H = πiH
′,

which are both cones, with H,H ′ ∼= H(n − i − 1, q2). The corresponding code words
have weight 2q2i+2µn−i−1(q2).

• π ∩ πσ = πn−1, an (n− 1)-space. Then π ∩H = πσ ∩H = πn−1 since H(0, q2) is empty.
The construction gives rise to the zero code word.

• π ∩ πσ = πn, an n-space. Then π = πσ = πn ⊂ H. Also in this case, the construction
gives rise to the zero code word.

It can easily be checked that among these four cases, the code words with smallest weight are
the ones corresponding to i = n− 3.

Remark 2.4.11. Consider the construction from Theorem 2.4.9, with π∩H = πiHn−i−1 and
πσ ∩ H = πiH

′
n−i−1. Let P be a point of πiHn−i−1 and let P ′ be a point of πiH

′
n−i−1. We

know that P ′ ∈ πσ ⊆ P σ and P ′ ∈ H. Hence, the line PP ′ is a line of H.

2.4.2 Some counting results

Lemma 2.4.12. Consider the non-singular Hermitian variety H(2n+1, q2) ⊂ PG(2n+1, q2)
and let σ be the corresponding polarity. Let τ be a j-space such that τ ∩H(2n+ 1, q2) = Hj

∼=
H(j, q2), −1 ≤ j ≤ n. The number of generators on H(2n+ 1, q2) skew to τ equals

cn,j := q(
j+1
2)

n−j−1∏
k=0

(q2k+1 + 1)

2n−j+1∏
l=2(n−j)+1

(ql − (−1)l).

Proof. By [60, Theorem 23.4.2 (i)] we know that the number of generators skew to τ only
depends on the parameters n and j and not on the choice of τ itself.

We will prove this theorem using induction on j. If j = −1, τ is the empty space and hence
cn,−1 equals the total number of generators. By Lemma 2.4.4 we find cn,−1 =

∏n
k=0(q2k+1+1).

Now, we prove that a relation between cn,j and cn−1,j−1 holds.

By Lemma 2.4.6 we know τ ∩ τσ = ∅. Hence, every point P ∈ PG(2n + 1, q2) \ (τ ∪ τσ)
can uniquely be written as Pτ + λPPτσ , Pτ ∈ τ , Pτσ ∈ τσ, λP ∈ F∗q2 . For every point

P ∈ PG(2n + 1, q2) \ (τ ∪ τσ), we define φτ (P) = Pτ . This is the projection of P from τσ

on τ . We define a correlation σ : τ → τ that maps the subspace U ⊂ τ to Uσ ∩ τ . It is
straightforward to check that σ defines a polarity on τ . Moreover, it can be seen easily that
the points of Hj are the absolute points of σ. Hence, σ is the polarity of τ corresponding to
Hj .

Now, we consider the set

S = {(P, µ) | P ∈ µ \ τσ, φτ (P) /∈ Hj , µ a generator, µ ∩ τ = ∅}.

36 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

We count the number of elements of S in two ways. On the one hand, there are cn,j generators
skew to τ . Let µ be such a generator. The intersection µ ∩ τσ is an (n − j − 1)-space
since dim(µ ∩ τσ) + dim(〈µ, τ〉) = 2n. We also know that φτ (P) = R for every point P ∈
〈R,µ ∩ τσ〉 \ (µ ∩ τσ), R ∈ τ . Hence, for each generator there are

θn(q2)− θn−j−1(q2)− µj(q2)(θn−j(q
2)− θn−j−1(q2)) = q2(n−j)(θj(q

2)− µj(q2))

points fulfilling the requirements. On the other hand, we count the points P ∈ H(2n+1, q2)\
(τ ∪ τσ) fulfilling the requirements. There are µ2n+1(q2) − µj(q2) − µ2n−j(q

2) points in this
set. We must assure that φτ (P) /∈ Hj . Let R be a point of Hj . Since τσ ⊆ Rσ, a line RQ,
Q ∈ τσ, is a tangent line (in R) to H(2n + 1, q2) or a line which is completely contained in
H(2n + 1, q2). Hence, φτ (P) is a point of Hj iff P lies on a line through φτ (P) and a point
of τσ ∩H(2n+ 1, q2). Consequently there are

µ2n+1(q2)− µj(q2)− µ2n−j(q
2)− µj(q2)µ2n−j(q

2)(q2 − 1)

= q2n−j(θj(q
2)− µj(q2))(q2n−j+1 − (−1)2n−j+1)

points P ∈ H(2n+ 1, q2) \ (τ ∪ τσ) fulfilling the requirement φτ (P) /∈ Hj . Now, we fix such a
point P and we count the number of generators skew to τ , through it. All these generators are
contained in P σ. We know P σ ∩H(2n+ 1, q2) is a cone PH2n−1, with H2n−1

∼= H(2n−1, q2).
There is a one-one correspondence between the generators of H(2n + 1, q2) through P and
the generators of H2n−1. We also find

τ ∩ P σ = τ ∩ (φτ (P) + λP ′)σ = τ ∩ ((φτ (P))σ + λqP ′σ) = τ ∩ (φτ (P))σ = (φτ (P))σ,

with P ′ ∈ τσ (and thus τ ⊂ P ′σ). Hence, the (j − 1)-space τ ∩ P σ intersects H(2n+ 1, q2) in
Hj−1

∼= H(j−1, q2), since φτ (P) /∈ Hj . We can choose the base of the cone PH2n−1 such that
it contains τ ∩ P σ. The generators through P and skew to τ correspond to the generators of
H2n−1, skew to τ ∩ P σ. There are cn−1,j−1 such generators. We conclude

cn,jq
2(n−j) [θj(q2)− µj(q2)

]
= cn−1,j−1q

2n−j [θj(q2)− µj(q2)
]

(q2n−j+1 − (−1)2n−j+1)

⇒ cn,j = cn−1,j−1q
j(q2n−j+1 − (−1)2n−j+1).

An induction calculation now finishes the proof.

From now on in this section, we use the following notation: H ∼= H(2n+1, q2) is a non-singular
Hermitian variety and σ is the polarity corresponding to it; π is an n-space in PG(2n+ 1, q2),
such that π ∩ H is a cone πiHn−i−1 with Hn−i−1

∼= H(n − i − 1, q2) and πi an i-space,
−1 ≤ i ≤ n. By Lemma 2.4.6, for k = n, we know π ∩ πσ = πi and consequently πσ ∩H is a
cone πiH

′
n−i−1 with H ′n−i−1

∼= H(n− i− 1, q2).

Definition 2.4.13. The number of generators on H intersecting π in a fixed point P ∈
πiHn−i−1 \ πi and no other point of πiHn−i−1, and intersecting πσ in a fixed point P ′ ∈
πiH

′
n−i−1 \ πi and no other point of πiH

′
n−i−1 is denoted by N(π, P, P ′). The number of

generators on H skew to π is denoted by N ′(π).

By Lemma 2.4.8 we know that the generators skew to π are also skew to πσ and that the
generators intersecting π in precisely one point also intersect πσ in precisely one point.

2.4. LDPC CODES FROM HERMITIAN VARIETIES 37

Lemma 2.4.14. The number N ′(π) only depends on the intersection parameters (n, i) of π.

Proof. This follows immediately from [60, Theorem 23.4.2 (i)].

Notation 2.4.15. Consequently, we can denote N ′(π) by N ′(n, i).

Lemma 2.4.16. For n ≥ 2, −1 ≤ i ≤ n − 2, N(π, P, P ′) = N ′(n − 2, i). Consequently,
N(π, P, P ′) only depends on the intersection parameters (n, i) of π.

Proof. Consider the points P ∈ (πiHn−i−1 \ πi) ⊆ π and P ′ ∈ (πiH
′
n−i−1 \ πi) ⊆ πσ. Denote

` = 〈P, P ′〉. Then `σ is a (2n − 1)-space intersecting H in a cone with ` as vertex and
a non-singular (2n − 3)-dimensional Hermitian variety H2n−3 as base. Since dim(` ∩ π) =
dim(` ∩ πσ) = 0, `σ ∩ π = V is an (n− 1)-space and `σ ∩ πσ = V ′ is an (n− 1)-space. Also,
` ⊂ 〈π, πσ〉 = πσi , hence πi ⊂ lσ. Let W , resp. W ′, be an (n − 2)-space in V , resp. V ′,
containing πi and not through P , resp. P ′. Denote the (2n − i − 4)-space 〈W,W ′〉 by τ ′. It
can be seen that on the one hand τ ′ ⊂ `σ and on the other hand ` ∩ τ ′ = ∅, so the (2n− 3)-
space τ containing the base H2n−3 can be chosen such that τ ′ ⊆ τ . Let σ′ be the polarity
of τ corresponding to H2n−3. Analogously to the proof of Lemma 2.4.12 we can define this
polarity as follows: Uσ

′
= τ ∩ Uσ. It now immediately follows that W σ′ = W ′ because both

are (n− 2)-spaces contained in W σ and in τ .

Arguing as in the proof of Lemma 2.4.12, we see there is a one-one correspondence between
the generators of H2n−3 and the generators of H through ` (the generators containing P
and P ′). If a generator of H through ` contains no points of π ∪ πσ but P and P ′, then its
corresponding generator of H2n−3 is skew to W and W ′. Vice versa, every generator µ of
H2n−3 skew to W and W ′, is contained in precisely one generator of H intersecting π ∪ πσ in
only the points P and P ′, namely 〈µ, P, P ′〉. Since W σ′ = W ′, the generators of H2n−3 skew
to W and W ′ are the ones skew to W , by Lemma 2.4.8. Hence, N(π, P, P ′) = N ′(n− 2, i).

The second statement of the lemma follows immediately from the first one.

Notation 2.4.17. Since N(π, P, P ′) only depends on the intersection parameters (n, i) of π,
we can denote it by N(n, i).

The previous theorem now states N(n, i) = N ′(n− 2, i) for n ≥ 2, −1 ≤ i ≤ n− 2.

Lemma 2.4.18. For n ≥ 1 and −1 ≤ i ≤ n− 2, the following equality holds:

N(n, i) = q(n−1)2−(n−i−1
2)

n−i−2∏
j=1

(qj − (−1)j).

Proof. We prove this theorem by induction. Using Lemma 2.4.16, we know that N(n,−1)
equals N ′(n − 2,−1), the number of generators of a Hermitian variety H ′ ∼= H(2n − 3, q2)
skew to an (n − 2)-space intersecting H ′ in a Hermitian variety H(n − 2, q2), if n ≥ 2. This
number equals cn−2,n−2. Hence, by Lemma 2.4.12,

N(n,−1) = q(
n−1
2)

n−1∏
l=1

(ql − (−1)l) = q(n−1)2−(n−(−1)−1
2)

n−(−1)−2∏
j=1

(qj − (−1)j),

38 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

which proves the induction base for n ≥ 2. If n = 1, it is easy to prove that N(1,−1) = 1.
Hence, the formula holds also in this case.

Now, we will prove that N(n, i) = q2n−3N(n− 1, i− 1). By Lemma 2.4.16, this is equivalent
to proving that N ′(n, i) = q2n+1N ′(n − 1, i − 1). Consider the set S = {(R,µ) | R ∈
µ, µ a generator skew to π,R /∈ 〈π, πσ〉 = πσi }. Clearly, πσi intersects H in a cone πiH2(n−i)−1.
We will count |S| in two ways.

On the one hand, there are N ′(n, i) generators skew to π. Fix such a generator µ. Then
dim(µ ∩ πσi) = n − i − 1 since dim(µ ∩ πσi) + dim(〈µ, πi〉) = 2n. So, µ contains pre-
cisely θn(q2) − θn−i−1(q2) = q2(n−i)θi(q

2) points of PG(2n + 1, q2) \ πσi . Consequently,
|S| = q2(n−i)θi(q

2)N ′(n, i).

On the other hand, there are µ2n+1(q2)−θi(q2)−µ2(n−i)−1(q2)−(q2−1)θi(q
2)µ2(n−i)−1(q2) =

q4n−2i+1θi(q
2) points in H \ πσi . Fix such a point P . The hyperplane P σ intersects π in an

(n− 1)-space V and intersects πi in an (i− 1)-space πi−1 ⊂ V . Hence, the intersection V ∩H
has intersection parameters (n − 1, i − 1). The intersection P σ ∩H is a cone PH2n−1, with
H2n−1

∼= H(2n − 1, q2). Let τ be the (2n − 1)-space containing H2n−1. We can choose τ
such that it contains V . Then, there is a one-one correspondence between the generators of
H(2n + 1, q2) through P , skew to π and the generators of H2n−1 skew to V . Consequently,
there are N ′(n− 1, i− 1) such generators. Thus, |S| = q4n−2i+1θi(q

2)N ′(n− 1, i− 1).

Comparing both expressions for |S|, we find the desired relation between N ′(n, i) and N ′(n−
1, i− 1). An easy calculation now finishes the proof.

Lemma 2.4.19. Assume n ≥ 2 and −1 ≤ i ≤ n − 2. Let P be a point of H \ (π ∪ πσ). Let
nP (n, i) be the number of generators through P intersecting both π \πi and πσ \πi in precisely
one point. Then,

• nP (n, i) = N(n− 1, i− 1)q4i
(
µn−i−1(q2)

)2
if P /∈ 〈π, πσ〉 = πσi ;

• nP (n, i) = N(n− 1, i)q4i+4
(
µn−i−2(q2)

)2
if P ∈ 〈π, πσ〉 = πσi but P does not belong to

a line of H through a point of π \ πi and a point of πσ \ πi;

• nP (n, i) = N(n − 1, i + 1)q4i+4µn−i−3(q2)
[
q4µn−i−3(q2) + q2 − 1

]
if P ∈ 〈π, πσ〉 = πσi

and P belongs to a line of H through a point of π \ πi and a point of πσ \ πi, and
i ≤ n− 4.

• nP (n, i) = q2i+2N(n, i) if P ∈ 〈π, πσ〉 = πσi and P belongs to a line of H through a
point of π \ πi and a point of πσ \ πi, and i = n− 3, n− 2.

The first case can only occur if i ≥ 0. The second case can only occur if i ≤ n− 3.

Proof. Since P /∈ π∪πσ, P σ∩π = V is an (n−1)-space and P σ∩πσ = V ′ is an (n−1)-space.
Furthermore P σ∩H is a cone PH2n−1 with H2n−1

∼= H(2n−1, q2). Let τ be the (2n−1)-space
containing H2n−1.

First we consider the case P /∈ 〈π, πσ〉 = πσi . In this case P σ intersects πi in an (i − 1)-
space πi−1 = V ∩ V ′. Also, τ can be chosen so that it contains V and V ′. Hence, the

2.4. LDPC CODES FROM HERMITIAN VARIETIES 39

number of generators through P fulfilling the requirements equals the number of generators
of H2n−1 intersecting V and V ′ in a point. Let σ′ be the polarity of τ corresponding to H2n−1.
Analogously to the argument in the proof of Lemma 2.4.16, it can be seen that V ′ = V σ′ .
Consequently there are N(n−1, i−1) generators of this type through a fixed point of V \πi−1

and a fixed point of V ′\πi−1. There are q2iµn−i−1(q2) possible choices for each of these points.
The first part of the lemma follows. Note that 〈π, πσ〉 = PG(2n + 1, q2) if i = −1. Hence,
this case cannot occur if i = −1.

We fix some notation for the remaining cases. Let W ⊆ π and W ′ ⊆ πσ be the (n−i−1)-spaces
containing Hn−i−1 and H ′n−i−1, respectively. Furthermore, let σ and σ′ be the polarities of
W and W ′, respectively corresponding to Hn−i−1 and H ′n−i−1. In all three remaining cases,
πi ⊂ P σ, hence P σ∩W = W1 and P σ∩W ′ = W ′1 are (n− i−2)-spaces. Now, the point P can
be written in a unique way as P = λPπi + λPPW + PW ′ , with PW ∈ W , PW ′ ∈ W ′, Pπi ∈ πi
and λ, λP ∈ Fq2 . Arguing as in the proof of Lemma 2.4.12 we can see that W1 = P σ∩W = P σW
and that W ′1 = P σ ∩W ′ = P σ

′
W ′ . Moreover, since P and Pπi are contained in P σ, neither or

both of PW and PW ′ are contained in P σ. Hence, we need to distinguish two cases.

• PW ∈ W1 and PW ′ ∈ W ′1 are both contained in P σ; consequently, PW ∈ P σW , thus
PW ∈ Hn−i−1 ⊂ H and P σW∩Hn−i−1 is a cone PWHn−i−3, withHn−i−3

∼= H(n−i−3, q2).
Let W2 ⊂ W1 be the (n − i − 3)-space containing Hn−i−3. Then, the intersection of
V = 〈πi,W1〉 and H is the cone with vertex 〈πi, PW 〉 and base Hn−i−3. Analogously
we introduce H ′n−i−3 ⊂ W ′2 ⊂ W ′1. Then V ′ ∩H is the cone with vertex 〈πi, PW ′〉 and
base H ′n−i−3. Furthermore, since PW ∈ V , PW ′ ∈ V ′, and Pπi ∈ V, V ′, P is contained in
〈V, V ′〉. Also, the line PPW is contained in P σ and is not a 1-secant since P, PW ∈ H,
hence it is a line of H. This line intersects πσ in a point of 〈PW ′ , πi〉 \ πi.

• PW /∈ W1 and PW ′ /∈ W ′1 are both not contained in P σ; consequently, PW /∈ P σW ,
thus PW /∈ Hn−i−1, PW /∈ H and P σW ∩ Hn−i−1 is a non-singular Hermitian variety
Hn−i−2

∼= H(n− i− 2, q2) in W1. Then, the intersection of V = 〈πi,W1〉 and H is the
cone πiHn−2−i. Analogously we introduce H ′n−i−2 ⊂ W ′1. The intersection V ′ ∩ H is
the cone πiH

′
n−i−2. Furthermore, P /∈ 〈V, V ′〉 since PW /∈ W1 and PW ′ /∈ W ′1. Also, all

lines in πσi through P intersecting π \πi and πσ \πi, are contained in 〈PW , PW ′ , πi〉, but
not in 〈P, πi〉. Since PW , PW ′ /∈ P σ, none of the lines through P can be contained in H.

These two cases clearly correspond to the three remaining cases of the lemma. We will treat
them separately.

First of all, we look at the latter, which is the second case in the statement of the lemma.
Since P /∈ 〈V, V ′〉, we can choose τ such that it contains 〈V, V ′〉. Hence, every generator
through P , intersecting both π \ πi and πσ \ πi in a point, corresponds to a generator of
H2n−1 intersecting both V \ πi and V ′ \ πi in a point, and vice versa. For a fixed point in
V \ πi and a fixed point in V ′ \ πi, there are N(n− 1, i) such generators. We also know that
|V \πi| = |V ′ \πi| = q2i+2µn−i−2(q2). The second part of the lemma follows. Note that V \πi
and V ′ \ πi are empty if i = n− 2. Hence, this case only occurs if i ≤ n− 3.

Finally, we look at the former case, the third and the fourth case in the statement of the
lemma. Let ` be a line on H through P , a point of π \ πi and a point of πσ \ πi. By

40 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

changing, if necessary, the choices for W and W ′, we can assume ` = PWPW ′ . We distinguish
between two types of generators: the ones that contain ` and the ones that do not contain `.
First we look at the ones that contain `. We know `σ ∩H is a cone with vertex ` and base
H2n−3

∼= H(2n − 3, q2). Let τ ′ be the (2n − 3)-space containing H2n−3. We can choose τ ′

so that it contains πi, W2 and W ′2. As before, one can see that 〈πi,W2〉σ̂
′

= 〈πi,W ′2〉, with
σ̂′ the polarity of τ ′ corresponding to H2n−3. The number of generators of the requested
type through ` then equals the number of generators of H2n−3 skew to 〈πi,W2〉. This number
equals N ′(n−2, i) = N(n, i). Furthermore, since ` is a line on H through P intersecting π\πi
and πσ \ πi, every line through P and a point of 〈PW , πi〉 \ πi belongs to H and intersects
〈PW ′ , πi〉 \ πi ⊂ πσ \ πi. Thus, there are θi+1(q2)− θi(q2) = q2i+2 such lines. Hence, there are
q2i+2N(n, i) generators of the first type. Now, we assume no line through P , intersecting π and
πσ, is contained in the generator. Let QW and QW ′ be the points of the generator in W and
W ′, respectively. By the previous remarks on this case, we know there are µn−i−3(q2)q2i+4

possible choices for QW and for QW ′ . Now, we consider the plane 〈P,QW , QW ′〉. Using
arguments, similar to the ones in the previous case, we find N ′(n− 3, i+ 1) = N(n− 1, i+ 1)
generators fulfilling the requirements for every choice of QW and QW ′ . Hence, the total
number of generators in this third case equals

nP = q2i+2N(n, i) +
(
µn−i−3(q2)q2i+4

)2
N(n− 1, i+ 1)

=
[
q2i+2q2i+2(q2 − 1)µn−i−3(q2) +

(
µn−i−3(q2)q2i+4

)2]
N(n− 1, i+ 1)

= q4i+4µn−i−3(q2)
[
q2 − 1 + q4µn−i−3(q2)

]
N(n− 1, i+ 1) .

Hereby we used the relation between N(n, i) and N(n − 1, i + 1) which can immediately be
derived from Lemma 2.4.18.

Note that V \ 〈πi, PW 〉 and V ′ \ 〈πi, PW ′〉 are empty if n − 3 ≤ i ≤ n − 2. In this case, we
cannot consider the points QW and QW ′ . So, there are no generators of the second type.
Consequently, all generators are of the first type and there are precisely q2i+2N(n, i) such
generators.

2.4.3 Classifying the small weight code words

Before stating the new classification theorem, we will first state the results about the codes
C1(H(3, q2))⊥ and C2(H(5, q2))⊥ to which we referred earlier.

Theorem 2.4.20 ([78, Proposition 3.7]). Let C be the code C1(H(3, q2))⊥. There is only one
non-trivial type of code words among the ones described in Example 2.4.10, namely i = −1.

These are the code words of minimal weight. Let c be a code word of C with wt(c) ≤
√
q(q+1)

2 .
Then c is a linear combination of code words of minimal weight.

Theorem 2.4.21 ([114, Theorem 43]). Let c be a code word of C2(H(5, q2))⊥, q > 893, with
wt(c) ≤ 2(q3 + q), then c is a code word of one of the types described in Theorem 2.4.9.
Regarding Example 2.4.10, we know that there are precisely two possibilities since n = 2,
namely i = −1 and i = 0.

2.4. LDPC CODES FROM HERMITIAN VARIETIES 41

It is our aim to generalise this result. We start our arguments with two lemmas about n-
spaces: the second lemma shows the existence of an n-space containing a non-trivial amount
of points of the support of a code word, while the first lemma shows that a generator cannot
contain many points of the support of a code word. In the proof of the second lemma we use
the following result.

Theorem 2.4.22. Let c ∈ Cn(H(2n + 1, q2))⊥ be a code word and denote supp(c) = S. Let
P be a point in S. Then |P σ ∩ S| ≥ 2 + q2n−1.

Proof. This is a special case of [114, Proposition 9(d)].

Throughout the three following lemmas the value Σn,i is used, −1 ≤ i ≤ n− 2. It is defined
by

Σn,i =

2q2i+2µn−i−1(q2) + 4µn−i−2(q2)(qn−i−1−1)
qn−3i−5(q2−1)

n− i odd ,

2q2i+2
[
µn−i−1(q2) + 2 q

4µn−i−3(q2)+q2−1
q2−1

]
n− i even .

.

Note that in both cases Σn,i = 2q2n−1 + f , with f ∈ O(q2n−2) and f > 0 if q > 0.

Lemma 2.4.23. Let c ∈ Cn(H(2n + 1, q2))⊥ be a code word with wt(c) ≤ w = δq2n−1, and
denote supp(c) = S. Let π be a generator of H(2n+ 1, q2). Then |π ∩ S| ≤ δθn−1(q2).

Proof. The proof is a generalisation of the proof of [114, Lemma 41].

Denote x = |π ∩ S| and let P be a point in π ∩ S. Then P σ ∩ H(2n + 1, q2) is a cone with
vertex P . Let H ′ ∼= H(2n − 1, q2) be a base of this vertex and consider the projection from
P onto H ′. Denote the projection of S ∩ P σ by S′. The projection of π is a generator π′ of
H ′. Note that S′ is a blocking set of the generators on H ′.

By [79, Lemma 10], we know there are qn
2

generators in H ′ that are skew to π′, of which
q(n−1)2 pass through a fixed point of H ′\π′. Hence, the blocking set S′ contains at least q2n−1

points not in π′. Counting the tuples (P,Q), P ∈ π ∩S, Q ∈ S \π, with PQ ⊂ H(2n+ 1, q2),
in two ways we find

xq2n−1 ≤ δq2n−1θn−1(q2) ,

where the upper bound follows from the fact that every point Q ∈ S \ π is collinear with
the points of an (n− 1)-space in π and not with the other points in π. The theorem follows
immediately.

Note that the size of a blocking set on a Hermitian variety H(2n + 1, q2) is at least the size
of an ovoid, hence at least q2n+1 + 1.

Recall that the symmetric difference A∆B of two sets A and B is the set (A ∪B) \ (A ∩B).

Lemma 2.4.24. Let p be a fixed prime and denote q = ph, h ∈ N. Let c ∈ Cn(H(2n+1, q2))⊥

be a code word with wt(c) ≤ w = δq2n−1, δ > 0 a constant, and denote supp(c) = S. Denote
H(2n + 1, q2) by H and let σ be the polarity related to H. Then a constant Cn > 0, a value
Q > 0 and an n-space π can be found such that |(π∆πσ) ∩ S| > Cnq

2n−1 and such that

42 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

p−1
p |(π∆πσ) ∩H| < Σn,i −Cnq2n−1, if q ≥ Q. Hereby, i is such that π ∩H is a cone with an
i-dimensional vertex and i ≤ n− 2.

Proof. We introduce the notion of a semi-arc. A semi-arc A is a set of k ≥ n points in
PG(2n + 1, q2) such that no n + 1 points of A are contained in an (n − 1)-space. We make
two remarks about these semi-arcs. First, if |S| >

(
k
n

)
θn−1(q2), then S contains a semi-arc

with k+1 points, since it is possible to construct the semi-arc point by point: we start with a
set of n linearly independent points in S and we extend the semi-arc point by point until we
have k + 1 points, which is possible by the condition on S. Secondly, if we choose K points
{P1, . . . , PK} in a semi-arc A ⊆ S, then

∑
{i}∈SK,1

|P σi ∩ S| −
∑

{i,j}∈SK,2

|P σi ∩ P σj ∩ S|+ . . .

+
∑

{i1,...,i2l+1}∈SK,2l+1

|P σi1 ∩ P
σ
i2 ∩ · · · ∩ P

σ
i2l+1
∩ S| ≥ |(P σ1 ∪ P σ2 ∪ · · · ∪ P σK) ∩ S| , (2.1)

since every point of (P σ1 ∪ P σ2 ∪ · · · ∪ P σK) ∩ S is counted at least once on the left hand side.
Also

∑
{i}∈SK,1

|P σi ∩ S| −
∑

{i,j}∈SK,2

|P σi ∩ P σj ∩ S|+ . . .

−
∑

{i1,...,i2l}∈SK,2l

|P σi1 ∩ P
σ
i2 ∩ · · · ∩ P

σ
i2l
∩ S| ≤ |(P σ1 ∪ P σ2 ∪ · · · ∪ P σK) ∩ S| , (2.2)

since every point of (P σ1 ∪ P σ2 ∪ · · · ∪ P σK) ∩ S is counted at most once on the left hand side.
In both expressions we denoted the set of all subsets of {1, . . . ,K} of size j by SK,j .

Now, we prove using induction, for every 0 ≤ t ≤ n, that we can find for any (t + 1)-tuple
(c0, . . . , ct), cj > 0 a constant (independent of q), a constant Kt ∈ N such that

∀K ≥ Kt,∀{P1, . . . , PK} ⊆ A ⊆ S :
∑

{i0,...,it}∈SK,t+1

|P σi0 ∩ P
σ
i1 ∩ · · · ∩ P

σ
it ∩ S| ≥ ctq

2n−1.

We consider the case t = 0, the induction base. Let {P1, . . . , PK} be a set of points in A ⊆ S
(without restriction on K). By Theorem 2.4.22, we know

K∑
i=1

|P σi ∩ S| ≥ Kq2n−1 .

Hence, it is sufficient to choose K0 = dc0e.

Next, we prove the induction step. We distinguish between two cases: t even and t odd. We
look at the former, so we assume the inequality to be proven for t ≤ 2l − 1 and we prove it
for t = 2l. Let Km be the constant arising from the (m + 1)-tuple (c0, . . . , cm), m < 2l, and

2.4. LDPC CODES FROM HERMITIAN VARIETIES 43

let {P1, . . . , PK} be a set of points in A ⊆ S with K ≥ K2l−1. By (2.1), we know that∑
{i}∈SK,1

|P σi ∩ S| −
∑

{i,j}∈SK,2

|P σi ∩ P σj ∩ S|+ . . .

+
∑

{i0,...,i2l}∈SK,2l+1

|P σi0 ∩ P
σ
i1 ∩ · · · ∩ P

σ
i2l
∩ S| ≥ |(P σ1 ∪ P σ2 ∪ · · · ∪ P σK) ∩ S| .

Using the induction hypothesis and Theorem 2.4.22, we find

∑
{i0,...,i2l}∈SK,2l+1

|P σi0 ∩ P
σ
i1 ∩ · · · ∩ P

σ
i2l
∩ S| ≥

(
K

K2l−1

)(
K−2l

K2l−1−2l

)c2l−1q
2n−1 +

(
K

K2l−3

)(
K−2l+2

K2l−3−2l+2

)c2l−3q
2n−1

+ · · ·+
(
K
K1

)(
K−2
K1−2

)c1q
2n−1

−
[(

K

2l − 1

)
+

(
K

2l − 3

)
+ · · ·+K

]
δq2n−1

+ q2n−1

and thus∑
{i0,...,i2l}∈SK,2l+1

|P σi0 ∩ P
σ
i1 ∩ · · · ∩ P

σ
i2l
∩ S|

≥
(
K
2l

)(K2l−1

2l

)c2l−1q
2n−1 +

(
K

2l−2

)(K2l−3

2l−2

)c2l−3q
2n−1 + · · ·+

(
K
2

)(
K1

2

)c1q
2n−1

−
[(

K

2l − 1

)
+

(
K

2l − 3

)
+ · · ·+K

]
δq2n−1 + q2n−1

= q2n−1f(K, δ, l,K1,K3, . . . ,K2l−1, c1, c3, . . . , c2l−1).

Note that
(K
K2i−1

)

(K−2i
K2i−1−2i)

=
(K2i)

(K2i−1
2i)

. We now study the function f , which is clearly independent

of q. Considering f as a function of K and comparing the exponents, we see that the term
(K2l)

(K2l−1
2l

)
c2l−1 dominates the others. Hence, we can find a value K2l ≥ K2l−1 such that the right

hand side is at least c2lq
2n−1 for all K ≥ K2l, with c2l as chosen above. Then the statement

follows. Note that K2l depends on the parameters l, c1, . . . , c2l chosen before (the values Ki,
0 ≤ i < 2l, depend themselves on i, c1, . . . , ci).

For the latter case, t odd, the argument is similar, in this case starting from (2.2).

We will now apply the previous result for t = n. In order to do this, we need a semi-
arc containing at least Kn points. We argued in the beginning of the proof that δq2n−1 =
|S| >

(
Kn−1
n

)
θn−1(q2) is a sufficient condition. Since Kn is a constant, independent of q, and

θn−1(q2) = q2n−2 + q2n−4 + · · ·+ q2 + 1, we can find Q′1 > 0 such that this inequality is true
for all q ≥ Q′1. Then we know∑

{i0,...,in}∈SKn,n+1

|P σi0 ∩ P
σ
i1 ∩ · · · ∩ P

σ
in ∩ S| ≥ cnq

2n−1

44 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

for the points {P1, P2, . . . , PKn} defining a semi-arc in S. Hence, we can find n + 1 points -
without loss of generality the points {P1, . . . , Pn+1} - such that

|P σ1 ∩ P σ2 ∩ · · · ∩ P σn+1 ∩ S| ≥
cn(
Kn
n+1

)q2n−1.

We can find a constant K > 0 and a value Q′ ≥ Q′1 such that cn
(Knn+1)

q2n−1 ≥ Kq2n−1 +θn−2(q2)

for q ≥ Q′. We write Cn = K − ε, max{0,K − 2
p} < ε < K, and we denote the n-space

P σ1 ∩P σ2 ∩ · · · ∩P σn+1 by π. Note that π is an n-space since the points P1, P2, . . . , Pn+1 belong
to a semi-arc. Then |π ∩ S| > Cnq

2n−1 + θn−2(q2).

We know the intersection π ∩H can be written as πiHn−i−1, with Hn−i−1
∼= H(n− i− 1, q2)

and πi an i-space, −1 ≤ i ≤ n. Let Q′′ ≥ Q′ be such that Cnq
2n−1 + θn−2(q2) > δθn−1(q2) for

all q ≥ Q′′. Such a value exists since the first term on the left hand side dominates the right
hand side. If i ≥ n − 1, then π ∩ H is contained in a generator of H. Thus, using Lemma
2.4.23 and the assumption q ≥ Q′′ we find a contradiction. Hence, i ≤ n− 2. We find:

|(π∆πσ) ∩ S| ≥ |(π \ πi) ∩ S| ≥ Cnq2n−1 + θn−2(q2)− θi(q2) ≥ Cnq2n−1 .

We still need to check the second claim in the statement of the lemma: p−1
p |(π∆πσ) ∩H| <

Σn,i−Cnq2n−1. Looking at the terms of highest degree in Σn,i−Cnq2n−1− p−1
p |(π∆πσ)∩H|,

we find 2−Cn−2p−1
p = ε− cn

(Knn+1)
+ 2
p > 0. Hence, we can find Q ≥ Q′′ such that the inequality

p−1
p |(π∆πσ) ∩H| < Σn,i − Cnq2n−1 holds for all q ≥ Q.

In this proof cn
(Knn+1)

depends also on the choice of c0, . . . , cn−1. So, investigating the possible

values for c0, . . . , cn, we can find many different values for Cn. With each of these values,
a value Q corresponds. We pick one of the possible values for Cn. By investigating differ-
ent possibilities for Cn, we can see there is a trade-off between the choice of Cn and the
corresponding value Q.

From now on, we consider Cn and the corresponding value Q to be fixed.

Lemma 2.4.25. Let c ∈ Cn(H(2n+ 1, q2))⊥ be a code word with wt(c) ≤ w = δq2n−1, δ > 0
a constant, and denote supp(c) = S. Consider H ∼= H(2n+ 1, q2). Let π be an n-space such
that π∩H is a cone πiHn−i−1 with Hn−i−1

∼= H(n− i− 1, q2). Assume that |S ∩ (π \πi)| = x
and |S ∩ (πσ \ πi)| = t. Then there exists a value Qn,i ≥ 0 such that x + t ≤ Cnq

2n−1 or
x+ t ≥ Σn,i − Cnq2n−1 if q ≥ Qn,i.

Proof. Let P be a point of S ∩ (π \ πi) and let P ′ be a point of ((πσ ∩ H) \ πi)\S and
denote ` = PP ′. By Lemma 2.4.18 we know the number N(n, i) of generators through `
intersecting π and πσ in precisely one point, namely P and P ′. Each of these generators
contains an additional point of S. Let R be a point of H\(π ∪ πσ). By Lemma 2.4.19 we
know the number nR(n, i) of generators through R intersecting both π and πσ in a point.
Hence, S \ (π ∪ πσ) contains at least

x(|(πσ ∩H) \ πi| − t)
N(n, i)

nmax(n, i)
= x(q2i+2µn−i−1(q2)− t) N(n, i)

nmax(n, i)

2.4. LDPC CODES FROM HERMITIAN VARIETIES 45

points, whereby nmax(n, i) = maxR∈S\(π∪πσ) nR(n, i). Switching the roles of π and πσ, and
adding these two inequalities, we find after dividing by two

x(q2i+2µn−i−1(q2)− t) N(n, i)

2nmax(n, i)
+ t(q2i+2µn−i−1(q2)− x)

N(n, i)

2nmax(n, i)
+ x+ t ≤ |S| ≤ w .

Rewriting this inequality yields

(x+ t)
(
q2i+2µn−i−1(q2)N(n, i) + 2nmax(n, i)

)
− 2xtN(n, i) ≤ 2wnmax(n, i) .

Using the inequality 2xt ≤ 1
2(x+ t)2 and writing y = x+ t, we find

1

2
y2N(n, i)−

[
q2i+2µn−i−1(q2)N(n, i) + 2nmax(n, i)

]
y + 2wnmax(n, i) ≥ 0 .

We now distinguish between two cases: n− i odd and n− i even. First we look at the former.
By detailed analysis one can see that in this case

N(n− 1, i)q4i+4
(
µn−i−2(q2)

)2
≥ N(n− 1, i− 1)q4i

(
µn−i−1(q2)

)2
≥ N(n− 1, i+ 1)q4i+4µn−i−3(q2)

[
q4µn−i−3(q2) + q2 − 1

]
if n− i > 3 and

N(n− 1, n− 3)q4n−8 (q + 1)2 ≥ N(n− 1, n− 4)q4n−12
(
q3 + 1

)2 ≥ N(n, n− 3)q2n−4 .

These inequalities correspond to i = n− 3. Hence,

nmax(n, i) = N(n− 1, i)q4i+4
(
µn−i−2(q2)

)2
.

Using the formula for N(n, i) from Lemma 2.4.18, and simplifying, we can rewrite this in-
equality as

1

2
qn−3i−5y2 −

[
qn−i−3µn−i−1(q2) + 2µn−i−2(q2)

qn−i−1 − 1

q2 − 1

]
y

+ 2δq2n−1µn−i−2(q2)
qn−i−1 − 1

q2 − 1
≥ 0 . (2.3)

Let αn,i(q
2) and α′n,i(q

2) be the two solutions of the corresponding equation, with αn,i(q
2) ≤

α′n,i(q
2). Then x+ t ≤ αn,i(q2) or x+ t ≥ α′n,i(q2). Moreover,

αn,i(q
2) + α′n,i(q

2) = 2q2i+2µn−i−1(q2) + 4
µn−i−2(q2)(qn−i−1 − 1)

qn−3i−5(q2 − 1)
= Σn,i .

For the given δ we calculate

αn,i = lim
q→∞

αn,i(q
2) = lim

q→∞

B′ −
√
B′2 − 4δq3n−3i−6C ′

qn−3i−5
,

46 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

with

B′ = qn−i−3µn−i−1(q2) + 2µn−i−2(q2)
qn−i−1 − 1

q2 − 1
,

C ′ = µn−i−2(q2)
qn−i−1 − 1

q2 − 1
.

Since αn,i ∈ O(q2n−2), we can find Qn,i > 0 such that αn,i(q
2) ≤ Cnq2n−1 for q ≥ Qn,i.

In the latter case, n− i even, similar arguments can be used. However, in this case we need
to distinguish between n− i > 2 and i = n− 2. First, we discuss n− i > 2. We can deduce
that

N(n− 1, i)q4i+4
(
µn−i−2(q2)

)2
≤ N(n− 1, i− 1)q4i

(
µn−i−1(q2)

)2
≤ N(n− 1, i+ 1)q4i+4µn−i−3(q2)

[
q4µn−i−3(q2) + q2 − 1

]
,

hence nmax(n, i) = N(n − 1, i + 1)q4i+4µn−i−3(q2)
[
q4µn−i−3(q2) + q2 − 1

]
. We find the in-

equality

q2 − 1

2
y2 − q2i+2

[
µn−i−1(q2)(q2 − 1) + 2(q4µn−i−3(q2) + q2 − 1)

]
y

+ 2δq2n−1q2i+2(q4µn−i−3(q2) + q2 − 1) ≥ 0 . (2.4)

Just as in the previous case, we define Σn,i, which is the sum of the solutions of the corre-
sponding equation, and αn,i:

Σn,i = 2q2i+2

[
µn−i−1(q2) + 2

q4µn−i−3(q2) + q2 − 1

q2 − 1

]
,

αn,i = lim
q→∞

B′′ −
√
B′′2 − 4δq2n−1(q2 − 1)C ′′

q2 − 1
,

with

B′′ = q2i+2
[
µn−i−1(q2)(q2 − 1) + 2(q4µn−i−3(q2) + q2 − 1)

]
,

C ′′ = q2i+2(q4µn−i−3(q2) + q2 − 1) .

Since αn,i ∈ O(q2n−2) also holds in this case, we again can find Qn,i > 0 such that αn,i(q
2) ≤

Cnq
2n−1 for q ≥ Qn,i.

Finally, we consider the case i = n− 2. The second possibility in Lemma 2.4.19 can thus not
occur. We note that

N(n− 1, n− 3)q4(n−2)(q + 1)2 ≤ q2n−2N(n, n− 2) .

The arguments in this case are analogous.

Hence, in all cases we can find Qn,i > 0 such that x+ t ≤ Cnq2n−1 or x+ t ≥ Σn,i −Cnq2n−1

for q ≥ Qn,i.

2.4. LDPC CODES FROM HERMITIAN VARIETIES 47

Using the three previous lemmas, we can now prove a classification theorem for the small
weight code words in Cn(H(2n+ 1, q2))⊥.

Theorem 2.4.26. Let p be a fixed prime, δ > 0 be a fixed constant and n be a fixed positive
integer. Then there is a constant Q such that, for any q = ph with h ∈ N and q ≥ Q, and
any c ∈ Cn(H(2n+ 1, q2))⊥ with wt(c) ≤ w = δq2n−1, c is a linear combination of code words
described in Theorem 2.4.9.

Proof. For the given values p and δ we have found a set of possible Cn-values, of which we
have chosen one, in Lemma 2.4.24, with Q, a power of p, corresponding to it. By the proof of
this lemma, we know that Cnq

2n−1 > δθn−1(q2) for all q ≥ Q. Define Q = max({Q} ∪ {Qn,i |
−1 ≤ i ≤ n− 2}), with Qn,i as in Lemma 2.4.25, corresponding to the chosen value Cn. We
assume q ≥ Q.

Denote supp(c) = S. By Lemma 2.4.24, we find an n-space π such that N := |(π∆πσ)∩S| >
Cnq

2n−1. The intersection π∩H can be written as πiHn−i−1, with Hn−i−1
∼= H(n− i−1, q2),

−1 ≤ i ≤ n− 2.

Since N > Cnq
2n−1 and q ≥ Qn,i, we know by Lemma 2.4.25 that N ≥ Σn,i − Cnq2n−1. For

each element α ∈ F∗p, we denote by Nα the sum of the number of points P ∈ π such that
cP = α and the number of points Q ∈ πσ such that cQ = −α. We can find β ∈ F∗p such

that Nβ ≥ N
p−1 . We now consider the code word c′ = c− β(vπ − vπσ), with vπ and vπσ as in

Theorem 2.4.9. We know

wt(c′) = (N −Nβ) + (|(π∆πσ) ∩H| −N) = |(π∆πσ) ∩H| −Nβ ≤ |(π∆πσ) ∩H| − N

p− 1
.

We also know that N ≥ Σn,i−Cnq2n−1 > p−1
p |(π∆πσ)∩H| by Lemma 2.4.24. It follows that

wt(c′) <
p

p− 1
N − N

p− 1
= N ≤ wt(c) .

Hence, the theorem follows using induction on w = wt(c).

We now focus on the code words that we described in Section 2.4.1.

Remark 2.4.27. Let c be a small weight code word and q sufficiently large. Following
the arguments in the proof of Theorem 2.4.26, we know that c = c1 + · · · + cm, with ci,
1 ≤ i ≤ m, a code word that we described in Theorem 2.4.9 and Example 2.4.10, such that
wt(c1 + · · · + cm′) < wt(c1 + · · · + cm′+1) for all 1 ≤ m′ ≤ m. From this observation, it
immediately follows that the code words that we described in Theorem 2.4.9 and Example
2.4.10 are the code words of smallest weights.

Now we consider small weight code words different from the ones described in Theorem 2.4.9.
Let c be a code word of weight at most 4q2n−2(q−1), q sufficiently large. Since c is not of the
type we described in Theorem 2.4.9, c can be written as a linear combination of at least two
of these code words. By the above arguments, we can find a code word c′ which is a linear
combination of precisely two of these code words, such that wt(c′) ≤ wt(c). In particular, we
can find α, α′ ∈ F∗p and n-spaces π, π′, π /∈ {π′, π′σ}, such that c′ = α(vπ−vπσ)+α′(vπ′−vπ′σ)

48 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

and wt(c′) ≤ 4q2n−2(q− 1). Let S be the support of c′. We know S ⊆ ((π∆πσ)∪ (π′∆π′σ))∩
H(2n+ 1, q2). However, it can be seen that |(π∆πσ) ∩ (π′∆π′σ)| ≤ 4q2n−2. Hence,

|S| ≥ wt(α(vπ − vπσ)) + wt(α′(vπ′ − vπ′σ))− |(π∆πσ) ∩ (π′∆π′σ)| > 4q2n−2(q − 1) ,

a contradiction. It follows that the only code words of weight at most 4q2n−2(q − 1) are of
the type described in Theorem 2.4.9.

Note that Theorem 2.4.26 only proves the second half of Theorem 2.4.3. From Remark 2.4.27
now the first half also follows.

2.5 LDPC codes from partial geometries

In this section we study several high-rate LDPC codes derived from partial geometries. We
study in particular the minimum distance and stopping distance the two main infinite classes
of these partial geometries, and we improve the known bounds on this minimum distance. In
some cases, we can determine the exact minimum distance and/or stopping distance.

We focus on the case where the largest set (P or B) corresponds to the positions, as this
results in the highest code rates, which is important for LDPC transmission. In case anything
noteworthy can be said about the other (lower-rate) code, we will add this in a remark.

Definition 2.5.1. An (s, t, α)-partial geometry is an incidence structure (P,B,∈) for which:

(a) each block contains exactly s + 1 points and each point is contained in exactly t + 1
blocks;

(b) any two distinct blocks have at most one point in common; and

(c) for any non-incident point-block pair (p, L) there are exactly α blocks which contain p
and which intersect L.

A partial geometry is called proper when 1 < α < min(s, t).

Clearly, the dual of an (s, t, α)-partial geometry is a (t, s, α)-partial geometry. In an (s, t, α)-

partial geometry (P,B, I), one has |P| = (s+1)(st+α)
α and |B| = (t+1)(st+α)

α . Hence, |P| ≥ |B|
is equivalent to s ≥ t.

Definition 2.5.2. An (n, k)-arc K in PG(2, q) is a set of n points of PG(2, q), such that each
line intersects K in at most k points. Clearly, the size |K| = n of an (n, k)-arc is at most
1 + (q + 1)(k − 1) = qk − q + k, since each of the q + 1 lines through any one point of K can
contain at most k − 1 other points of K.

Note that n, k here are new letters specific to this section, which plays entirely in a planar
setting. They do not indicate the code length/dimension or the dimension of any (sub)spaces.

2.5. LDPC CODES FROM PARTIAL GEOMETRIES 49

Definition 2.5.3. A maximal (n, k)-arc K in PG(2, q) is an (n, k)-arc of size n = qk− q+ k,
with 1 < k < q. It has been shown [9] that maximal (n, k)-arcs in PG(2, q) only exist when
q is even and k divides q. In that case, each line intersects K in either 0 (and then the line
is called skew) or k (and then the line is called secant) points. A maximum 2-arc is called a
hyperoval. When it is not necessary to specify k, or when the parameters are clear from the
context, we will simply write maximal arc.

Up to dualization, only two infinite classes of proper partial geometries are known, and both
of them are related to maximal arcs. We now provide a construction of these geometries
below.

In particular, we will focus on these two constructions.

(a) Let K be a maximal (n, k)-arc in PG(2, q), with q even. Define S(K) = (P,B,∈) as
follows: P is the set of points outside of K, and B is the set of lines which contain at
least one (and hence exactly k) points of K. Then S(K) is an (s, t, α)-partial geometry,
where s = q − k, t = q − q

k and α = q − q
k + 1− k.

(b) Let again K be a maximal (n, k)-arc in PG(2, q), with q even. Define T ∗2 (K) = (P,B,∈)
in the following way: embed this plane PG(2, q) (containing K) as a plane π0 in PG(3, q),
let P be the set of points of PG(3, q) outside of π0 and let B be the set of lines of PG(3, q)
which intersect π0 in a point of K (and in no points of π0\K). Then T ∗2 (K) is an (s, t, α)-
partial geometry, where s = q − 1, t = |K| − 1 = qk − q + k − 1 and α = k − 1.

Similar to [74], we consider C to be a linear code over a finite field F, having its parity check
matrix H equal to the incidence matrix of a partial geometry. Important hereby is that we
will always set q = ph, with F = Fp. Hence, the characteristic of the code’s field and of
the geometry’s field coincide. This is known experimentally to yield the highest code rates.
Since maximal (n, k)-arcs only exist when q is even, we will only consider binary codes in this
section. We will now further study each of these codes, and we study the minimum distance
of these codes. We improve the existing bounds from [74] and we try to determine when our
new bounds are sharp.

2.5.1 The codes arising from S(K)

In this section we will study the LDPC codes derived from the first infinite class: S(K), with
K a maximal (n, k)-arc in PG(2, q).

Points as positions

The following conjecture was proven in [23, Theorem 3.10] when K is a regular hyperoval; we
conjecture it to be true for arbitrary maximal arcs.

Conjecture 2.5.4. Let K be a maximal arc in PG(2, q), q even. Then the incidence vector
of each line in PG(2, q) can be written as a linear combination of incidence vectors of secant
lines to K.

50 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

Computer simulations show that Conjecture 2.5.4 is true for all maximal arcs in PG(2, q)
with q ≤ 32, and for all known maximal arcs in PG(2, q), q ≤ 64. We conjecture it to be true
for arbitrary q; it would be interesting to prove this in general. However, this appears to be
a nontrivial problem even for k = 2 (when K is a nonregular hyperoval). An equivalent way
of stating this problem is to ask whether the binary rank of the incidence matrix is always
equal to 3h + 1, the binary rank of the incidence matrix of PG(2, q), for q even [126].

A large class of maximal arcs in PG(2, q), q even, was constructed by Denniston [32]. In
particular, he constructed an example for all possible values of k and q. However, other
examples have been constructed as well, notably by Mathon [101] and others.

Theorem 2.5.5. If K is an arc of Denniston or Mathon type, then Conjecture 2.5.4 is true.

Proof. In [23] it is proven that the incidence vector of every projective line in PG(2, q), q
even, is a linear combination of incidence vectors of secant lines to a regular hyperoval. Since
all Denniston and Mathon arcs contain a regular hyperoval, it follows that the set of secant
lines to the Denniston arc contains the set of secant lines to this included regular hyperoval,
and hence, all projective lines are also a linear combination of secants to this Denniston arc.
Thus, Conjecture 2.5.4 holds for all Denniston and Mathon arcs.

From now on, we assume K to be a maximal (n, k)-arc for which Conjecture 2.5.4 holds (for
example, a maximal arc of Denniston or Mathon type).

Lemma 2.5.6. Let C⊥PG(2,q) be the code with the incidence matrix of PG(2, q) as its parity

check matrix. Then we have C ⊆ C⊥PG(2,q). More precisely, C is exactly the subset of code

words of C⊥PG(2,q) which do not contain any point of K in their support.

Proof. Let c ∈ C, hence c·` = 0 over F2 for every secant `. Consequently, c·(`1+`2+· · ·+`m) =
0 for any m and any linear combination `1 + `2 + · · ·+ `m of secants. We have chosen K such
that Conjecture 2.5.4 holds, hence we have c · ` = 0 for every projective line. Therefore, one
has indeed that c ∈ C⊥PG(2,q).

The second part is easy now: on one hand, c does not contain any points of K in its support;
on the other hand, any code word of C⊥PG(2,q) which does not contain a point of K in its
support, is a code word of C.

Theorem 2.5.7. For this code C, d(C) ≥ q + 2. Equality in this bound is attained if and
only if there exists a hyperoval disjoint from K.

Proof. Let c be any code word in C. From the first part of Lemma 2.5.6 it follows that
c ∈ C⊥PG(2,q). Therefore, wt(c) ≥ q+2, and equality is attained if and only if c is the incidence
vector of a hyperoval.

The second part in Lemma 2.5.6 tells us that the incidence vector of a hyperoval lies in C if
and only if the hyperoval is disjoint from K. This concludes the proof.

2.5. LDPC CODES FROM PARTIAL GEOMETRIES 51

Remark 2.5.8. Brute-force calculations for q ≤ 16 have shown that there always exists a
hyperoval skew to K when 1 < k < q, yielding d(C) = q + 2 for every maximal k-arc in
PG(2, q) with q ≤ 16. It would be interesting to find out if this holds in general.

Theorem 2.5.9. One has sd(C) ≥ q − q
k + 2.

Proof. Let S be any nonempty stopping set and let r ∈ S. Then r /∈ K and hence there are
q − q

k + 1 secant lines through r. The stopping set property requires each of these lines to
contain at least one extra point of S, hence |S| ≥ q − q

k + 2.

Lines as positions

For the geometry S(K), it turns out that we do not need to study the two types of codes
separately (once for points corresponding to positions, and once for lines corresponding to
positions), as we will now show.

Definition 2.5.10. Let K be a maximal (n, k)-arc. Consider the set of lines of PG(2, q) skew
to K. Clearly, each point lies on either 0 or q

k of these lines, hence it is the dual of a maximal
q
k -arc. This maximal q

k -arc is called the dual maximal arc of K.

Theorem 2.5.11. Let K be a maximal arc and let K′ be its dual. Then the block code derived
from K is equivalent to the point code derived from K′.

Proof. Let P and B respectively be the point and block set of S(K). Similarly, denote by P ′
and B′ the point and block set of S(K′), i.e. P ′ is the set of lines skew to K and B′ is the set
of points lying on q

k lines of P.

Clearly, B is the complement of P ′. Less clearly, B′ is the complement of P; in other words:
the points lying on q

k lines skew to K are exactly the points outside of K. We will explain
this now. A point of P is clearly not contained in B′, since any element of B′ lies on a line
skew to K. On the other hand, a point outside of P lies on qk−q+k

k = q − q
k + 1 secants to K,

hence it lies on q
k lines skew to K, i.e. it is contained in q

k elements of P ′, which is exactly
the definition of an element of B′.

Hence, the point-by-line incidence matrix of PG(2, q) can be written in the following way:(
P × P ′ B′ × P ′
P × B B′ × B

)
.

Now, a point in P cannot lie on a line of P ′, hence P × P ′ is the all-zero (sub)matrix.

Since PG(2, q) is self-dual, every row in the incidence matrix of PG(2, q) also has to appear
as a column of this matrix, and vice versa. Since there are no zero rows in P × B, and there
are no zero columns in B′ ×P ′, it follows that the set of columns of P ×B is equal to the set
of rows of B′ × P ′. Hence, the block code constructed from P × B is equivalent to the point
code constructed from the transpose of B′ × P ′, which was to be proven.

So, in this case, both are equivalent.

52 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

2.5.2 The codes arising from T ∗2 (K)

Here we consider three cases: K is a maximal k-arc, K is a Baer subplane and K is a Hermitian
arc. In each of these cases one has |K| > q, hence there are more blocks than points and the
code will be constructed using blocks (here: lines) as the positions of the code.

Definition 2.5.12. A (q + t, t)-arc of type (0, 2, t) in PG(2, q), with 2 < t < q, or shortly a
KM(q,t)-arc or KM-arc, is a set S of q + t points in PG(2, q) for which every projective line
` meets S in either 0, 2 or t points. To avoid trivial constructions we will always assume
1 < t < q.

Definition 2.5.12 was introduced by Korchmáros and Mazzocca in [80] (hence the short name)
and it was proven that KM-arcs can only exist if q is even. Moreover, they prove that t needs
to be a divisor of q, i.e. t = 2r with r ≤ h. Several infinite families of KM-arcs are known,
see [47, 80, 141]. A hyperoval in PG(2, q), q = 2h with h ≥ 1, can be seen as a KM(q,2)-arc.
One can see KM(q,t)-arcs as a generalization of hyperovals. The symmetric difference of two
lines of PG(2, q) can be seen as a KM(q,q)-arc .

For the geometry T ∗2 (K), we have to consider three cases: K is a maximal (n, k)-arc, K is a
Baer subplane, or K is a Hermitian arc. In each of these cases, one has |K| > q, hence there
are more blocks than points and the code will be constructed using blocks (here: lines) as the
positions of the code.

Definition 2.5.13. Let π be any plane different from π0 such that the line L = π0 ∩ π
contains at least two points of K. Let p1, p2 be two distinct points of K ∩ L. Define ϕ in the
following way: all the lines in π \ π0 through p1 map to 1, all the lines in π \ π0 through p2

map to −1 and all other lines map to 0. Then
∑

L3r ϕ(L) = 0 for any point r, since for r ∈ π
we get one line with coefficient 1 and one line with coefficient −1 (and all other lines 0), and
for r /∈ π we only sum up lines with coefficient 0; hence this defines a code word of weight 2q.
Such a code word is called a plane word.

Remark 2.5.14. The construction in Definition 2.5.13 was introduced in [113]. Note that
this construction yields a code word, no matter over which field F the code is considered. In
the case that charK 6= p, this code has been studied extensively in [139, 140]. In this case,
the minimum distance is 2q and when K is a maximal k-arc, a Baer subplane or a Hermitian
arc, the code words of minimum weight are exactly the plane words. Moreover, the set of
plane words generates the entire code, i.e. every code word of C is a linear combination of
plane words. The dimension of C is in this case known to be |K|−1+(q−1)(|K|(q+1)−LN)
[140, Theorem 5.5], where LN is the number of lines in π0 not skew to K. Since any line in

π0 intersects a maximal k-arc in 0 or k lines, the number of non-skew lines is |K|(q+1)
k , and as

stated before we have |K| = qk − q + k. Hence, the dimension of the code only depends on k
and n. If K is a Baer subplane or a Hermitian arc, there are no lines in π0 skew to K, and
hence the incidence matrix has full rank in these cases.

In [113, Proposition 5], it is shown4 that sd(C) ≥ q+
√
q (if K is a Baer subplane or Hermitian

arc) or sd(C) ≥ q + q
k−1 (if K is a maximal (n, k)-arc). In the first case, this bound is sharp

4Actually, their claim was about d(C), but their proof works for sd(C) as well.

2.5. LDPC CODES FROM PARTIAL GEOMETRIES 53

when p = 2, since Korchmáros and Mazzocca [80] have shown the existence of a KM(q,
√
q)-arc

with the points on a Baer subline as its dual t-secants. For p 6= 2 or if K is a maximal
(n, k)-arc with k > 2, this bound is no longer sharp, and the exact minimum distance is not
known in these cases.

In the second case (when K is a maximal (n, k)-arc and hence p = 2), we can however find
partial results. For k = 2, one can easily show that d = 2q, and the code words of minimum
weight correspond to dual KM(q,q)-arcs, which are exactly the plane words from [139, 140].
For k > 2, we can however find a geometrical upper bound on the minimum distance d, in
the following theorem, which is valid for any maximal arc K.

Theorem 2.5.15. For this code C, d(C) ≤ q + r, where r is the smallest integer for which
there exists a line ` in π0 and a dual KM(q,r)-arc having its dual r-secants contained in `∩K.

Proof. Let ` be such a line and let S be the line set of such a dual KM(q,r)-arc. Clearly, S is
the support of a code word of C, of weight q + r. Hence we have indeed d(C) ≤ q + r.

Conjecture 2.5.16. The bound in Theorem 2.5.15 is always sharp, i.e. d(C) = q+ r, where
r is the smallest integer for which there exists a line ` in π0 and a dual KM(q,r)-arc having
its dual r-secants contained in ` ∩ K.

Remark 2.5.17. Computer simulations have shown the bound in Theorem 2.5.15 to be sharp
for small values of q and for several constructions with larger q. We conjecture it to be sharp
for all q. In all cases we tested, this resulted in a maximum weight of

d(C) = q +
q

2blog2(k−1)c = q +
2q

k
. (2.5)

It would be interesting to prove this in the general case; even for k = 4 we only achieved
a partial result (the conjecture being that the case after ‘or’ in Theorem 2.5.18 can never
occur).

Theorem 2.5.18. When k = 4,

• either (2.5) holds (i.e. d(C) = 3q
2),

• or d(C) = 4s with q
3 ≤ s ≤ 3 q8 and the code words of minimum weight consist of four

sets of s lines, each concurrent at a point of a fixed line `, with the additional property
that each line contains 3s−q

2 points on four of these lines and 3(q−s)
2 points on two of

these lines.

Proof. Since k = 4, we can find four points p1, p2, p3, p4 on K ∩ L, where L is the line with
equation X0 = 0. Let c be a code word of minimum weight, then supp(c) corresponds to a
set of lines such that each point outside of L lies on either 0, 2 or 4 lines of this set.

Let S, T, U, V be respectively the set of lines in supp(c) through p1, p2, p3, p4. Denote s = |S|,
t = |T |, u = |U |, v = |V | and w = s + t + u + v. Now fix one line ` in S. Each of the affine
points on ` needs to be contained in either one or three others line of T,U, V . In particular,

54 CHAPTER 2. LDPC CODES DERIVED FROM GALOIS GEOMETRIES

since there are only q affine points on `, we know that ` contains (t+u+v)−q
2 = w−s−q

2 dual

four-secants and 3q−(t+u+v)
2 = 3q−w+s

2 dual two-secants.

Let k be the total number of dual four-secants. Summing up the above for all ` ∈ S, we
obtain s(t+u+v−q)

2 = k, or equivalently, s2 − s(w − q) + 2k = 0. Similarly for T , U and V , we
obtain the system of equations

s2 − s(w − q) + 2k = 0,
t2 − t(w − q) + 2k = 0,
u2 − u(w − q) + 2k = 0,
v2 − v(w − q) + 2k = 0.

Since the quadratic equation x2 − x(w − q) + 2k = 0 has at most two roots, there can be at
most two different values among s, t, u, v. Now there are two options: either s = t = u = v,
or not all variables are equal, without loss of generality s 6= t. If s 6= t, then their sum needs
to be w − q because of de Viete’s formula, hence s + t = w − q and u + v = q. Now, since
u, v ∈ {s, t}, we may assume without loss of generality that t = u and we split cases between
t = v and s = v:

• If t = v, then t = u = v, and since u + v = q this means t = u = v = q
2 . Since

s + t = w − q, this implies w = s + 3
2q. Either s = 0, and then T ∪ U ∪ V is a dual

KM(q,t)-arc with t = q
2 ; or s > 0 and then w > 3

2q and then this is clearly not a code
word of minimum weight.

• If t 6= v, i.e. s = v, then w− q = s+ t = v+ u = q, hence w = 2q, which is never a code
word of minimum weight.

Hence, if another code word of weight no larger than 3
2 exists, it must be of the described

form with 4s ≤ 3
2q, and since d(C) ≥ q + q

k−1 , it must also have s ≥ q
3 .

Remark 2.5.19. It is unknown whether the second case in Theorem 2.5.18 can actually
occur. Experimentally, only the first case seems to occurs, confirming the conjecture in
Remark 2.5.17.

We summarize the new results on the minimum distances in Table 2.2. In almost all cases,
we obtain improvements to the bound in Theorem 2.1.3.

Table 2.2: Summary of the new bounds obtained for partial and semipartial geometry
codes. Here, ≈ stands for conjectured equality.

Code p = 2 p 6= 2
General (semi)partial geometry
(blocks correspond to positions)

d ≥ s+ 2 d ≥ 2
p ((p− 1)s+ p)

General (semi)partial geometry
(points correspond to positions)

d ≥ t+ 2 d ≥ 2
p ((p− 1)t+ p)

S(K) with K maximal (n, k)-arc d ≈ q + 2 N/A

T ∗
2 (K) with K maximal (n, k)-arc d ≈ q + 2q

k N/A

Chapter 3

(q + t, t)-arcs of type (0, 2, t)

In this chapter I will discuss (q + t, t)-arcs of type (0, 2, t), or shortly KMq,t-arcs, in Desar-
guesian projective planes of even order. In Section 3.1, I discuss the motivations for studying
these arcs, and the state of the art. In Section 3.2, I discuss an elegant basis for the pro-
jective plane code, and I pose a motivated conjecture, supported by computer simulations,
on how linear dependency between incidence vectors of lines translates to the existence of
certain KMq,t-arcs. In Section 3.3, I prove this conjecture for k = q/2, indirectly providing
an alternative proof for the classification of the projective triads [122, 131]. In Section 3.4,
I present the main result: despite being unable to prove the conjectures posed in Section
3.2, I used them as inspiration to invent a new construction technique for KMq,q/4-arcs, and
subsequently proved this new construction by different means. This resulted in both a new
infinite class of KMq,t-arcs and a great support for the plausibility of the conjectures posed
in Section 3.2. The results in this chapter were published in Finite Fields Appl. [141].

3.1 Preliminaries and motivation

The incidence matrix Mq of PG(2, q), with q = ph and p prime, has a p-rank of
(
p+1

2

)h
+ 1

[126] and is symmetric, because of the self-duality of PG(2, q). Two linear codes related to

this matrix are commonly studied: the p-ary [q2 + q + 1,
(
p+1

2

)h
+ 1]-code generated by Mq

over Fp, which we denote by Cgen, and the p-ary [q2 + q + 1, 2
(
q+1

2

)
−
(
p+1

2

)h
]-code with Mq

as its parity check matrix over Fp, which we denote by Cpcm. In this chapter, when studying
Cgen, we let the points of the geometry correspond to the positions of the code, and when
studying Cpcm, we let the lines of the geometry correspond to the positions of the code. For
example, in the case of a binary code (p = 2), a code word of Cpcm is a set of lines such
that each point is contained in an even number of these lines, and a code word of Cgen is the
binary sum of any number of incidence vectors of lines.

The reason why we use a different setting for each code is the following. Since we will study
the row span of Cgen, and in particular the dimension of certain subspaces of it, we are
interested in linear combinations of rows of the incidence matrix M of PG(2, q) which yield

55

56 CHAPTER 3. (Q+ T, T)-ARCS OF TYPE (0, 2, T)

the zero vector. Now in the transposed matrix MT , where columns correspond to lines and
rows correspond to points, this is a linear combination of columns yielding the zero vector,
which is well-known to correspond to a code word of the code defined by MT as its parity
check matrix, which is in our case Cpcm. A code word of Cpcm hence corresponds to a set of
lines hitting each point an even number of times.

We recall from Section 2.2 that the minimum distance of Cgen is q+1 and that the code words
of minimum weight are exactly the incidence vectors of the projective lines. The minimum
weight of Cpcm is not known in general. For p = 2, the minimum weight of Cpcm is q+ 2 and
the code words of minimum weight are exactly the dual hyperovals [5].

In 1991, G.E. Moorhouse [105] found and proved an explicit basis for the rows of the incidence
matrix, in the case h = 1 (i.e.

(
p+1

2

)
+1 rows which are linearly independent). The construction

is as follows: fix one line L and let S = {L}. Now consider the line L as the line at infinity
of the projective plane. Then add to S all p affine lines through one point of L. Then add to
S any p− 1 affine lines through another point of L. Continue in this way, and finally add to
S any one affine line through the second last point of L. Do nothing for the last point of L.
Then S forms a basis for the p-ary row space of the incidence matrix.

For q = ph, with p prime and h > 1, the existence of a similar result has been an open
problem for nearly 20 years now. The nature of finite fields of non-prime order suggests that
any generalization of this result will no longer allow to pick the points/lines in arbitrary order.
This is, however, not a though restriction: a general construction, even in one particular order,
would already be an interesting result.

In Section 3.2, we provide a detailed conjecture, backed up by computer simulations, of how
such a generalized Moorhouse basis for PG(2, q) can look like for the case p = 2, i.e. q = 2h.
We discuss a strong relationship with (dual) (q + t, t)-arcs of type (0, 2, t), a special type of
small code words of Cpcm. In Section 3.3, we prove a special case of this conjecture and we
derive from it an alternative proof for the classification of the projective triads. In Section 3.4,
we construct a new infinite class of such arcs with t = q/4, parameters which were previously
unknown to exist. We end by listing some possibilities for further work.

From now on, for the rest of this chapter, we will work completely in this dual setting and
we will limit ourselves to the case that q is even, i.e. q = 2h.

3.2 A basis for PG(2, q), q even

Notation 3.2.1. We will denote

S(h, i) :=
h∑
k=i

(
h

k

)
.

For any projective point p(0, 1, β) with

β = ah−1α
h−1 + ah−2α

h−2 + · · ·+ a1α+ a0 ∈ Fq,

3.2. A BASIS FOR PG(2, Q), Q EVEN 57

where α is a primitive element of Fq and all ai ∈ F2, we denote lp(p) = max{i : ai 6= 0} + 1
and we call this the leading position of the point. The leading position of (0, 1, 0) is defined
to be 0 and the leading position of (0, 0, 1) is defined to be +∞. Finally, we denote by
|β| = |{i : ai 6= 0}|, i.e. its number of ones when written as a vector in Fh2 .

A standard way to find a basis of any vector space, is to start from the zero vector space and
sequentially add all vectors to it. A basis is then the set of vectors which caused an increase
in dimension when they were added.

Using a row-reduced form to store the basis, this can be implemented efficiently in software.
Applying this standard technique to the vector space spanned by the rows of the matrix of
PG(2, q), with q = 2h, we find that the following pattern holds for all q ≤ 512. We conjecture
it to hold for all q.

Conjecture 3.2.2. Let L be the projective line with equation X0 = 0, and let A be the
1 × (q2 + q + 1)-matrix containing the point-incidence vector of L. We again consider this
line L as the line at infinity of an affine plane. Now, for

p ∈ [(0, 1, 0), (0, 1, 1), (0, 1, α), (0, 1, α+ 1), (0, 1, α2), . . . , (0, 1, αh−1 + · · ·+ α+ 1), (0, 0, 1)],

in that order, we add the incidence vectors of each of the q affine lines through p to the set
of rows of A. Then the rank of A increases by S(h, i) when adding the lines through a point
p with lp(p) = i, for i = 0, 1, . . . , h,+∞.

This yields us a more structural rank formula: the rank of the incidence matrix of PG(2, q)
is 3h + 1, which can be written as

1 + S(h, 0) + S(h, 1) + S(h, 2) + S(h, 2)︸ ︷︷ ︸
2 terms

+S(h, 3) + · · ·+ S(h, 3)︸ ︷︷ ︸
4 terms

+ · · · .

When adding the lines in lexicographical order, one can even see a clear pattern in which
lines eventually end up in the basis:

Conjecture 3.2.3. The line X0 = 0 and the set of lines

{〈(0, 1, β), (1, 0, γ)〉 : |γ|+ lp(β) ≤ h}

together form a basis for Cgen.

Harder to verify by computer, but structurally more important, is the following Conjecture
3.2.4. Conjecture 3.2.4 provides a structural explanation for Conjecture 3.2.2 and on itself
greatly generalizes Conjecture 1.1.16.

Conjecture 3.2.4. The numbers from Conjecture 3.2.2 can be explained as follows.

• The vanishing of the term
(
h
0

)
when adding any point p with lp(p) > 0, is explained by

the presence of dual (2q, q)-arcs of type (0, 2, q) in PG(2, q) with as its dual t-secants: p
and the points with lp at most 0 (i.e. (0, 1, 0)).

58 CHAPTER 3. (Q+ T, T)-ARCS OF TYPE (0, 2, T)

• The vanishing of the term
(
h
1

)
when adding any point p with lp(p) > 1, is explained by

the presence of dual
(

3
2q,

1
2q
)
-arcs of type

(
0, 2, 1

2q
)

in PG(2, q) with as its dual t-secants:
p and the points with lp at most 1.

• The vanishing of the term
(
h
i

)
when adding any point p with lp(p) > i (with 0 ≤ i ≤ h−1)

is explained by the presence of dual
(
2h + 2h−i, 2h−i

)
-arcs of type (0, 2, 2h−i) in PG(2, q)

with as its dual t-secants: p and the points with lp at most i.

• The vanishing of the term
(
h
h−1

)
when adding any point p with lp(p) > h−1, is explained

by the presence of dual hyperovals that do not contain the line X0 = 0, and in which p
and the points with lp at most h− 1 are dual secants. These can be seen as

(
2h + 2, 2

)
-

arcs of type (0, 2, 2) in PG(2, q) with as its dual t-secants: p and the points with lp at
most h− 1.

• The vanishing of the term
(
h
h

)
when adding the point p with lp(p) = +∞ (which is

equivalent to lp(p) > h), is explained by the presence of a dual hyperoval that does
contain the line X0 = 0 and in which all points on that line are dual secants. (To some
extent, after removing the line at infinity this can be seen as

(
2h + 1, 1

)
-arcs of type

(0, 2, 1) in PG(2, q), with as its dual t-secants the whole line X0 = 0. Adding the line at
infinity yields a code word of Cpcm as in the cases above.)

Conjecture 3.2.4 is a strong generalization of Conjecture 1.1.16, which only claims the exis-
tence of the code words mentioned in Conjecture 3.2.4. Conjecture 1.1.16 has been open for
over 20 years now. We hope that this more structural conjecture can give a new impulse to
the problem. In particular, the author believes that one can find (q+ t, t)-arcs of type (0, 2, t)
for all parameters in Conjecture 1.1.16, with the additional requirement that these arcs are
defined by sets of lines with linear F2-equations on their coefficients when considering F2h as
Fh2 , as in the examples constructed in Section 3.4.

To support the plausibility of Conjecture 3.2.4, let us look at some particular cases.

• The last bullet of Conjecture 3.2.4 is clear, since for each affine line ` there exist dual
regular hyperovals containing both X0 = 0 and `.

• The first bullet is easily shown as follows: let L be a line intersecting X0 = 0 in a point
p 6= (0, 1, 0). Then the incidence vector of L can be written as the sum of all incidence
vectors of the other lines through p and the incidence vectors of all lines through (0, 1, 0).

• The second bullet is not trivial anymore. We will prove this part in Lemma 3.3.3,
which fully classifies all (q + q/2, q/2)-arcs of type (0, 2, q/2) and gives a more concise
construction than the one in [80].

• The third and fourth bullet are still open. Computer results suggest that the weight of
each code word in the code generated by all lines through points with lp ≤ i, is always
a multiple of 2h−i+1; but a proof of this is still unknown. However, despite Conjecture
3.2.4 only being a conjecture, an interesting result pops up: our linear dependence
search yields code words of Cpcm which use only a small number of points on X0 = 0.
If Conjecture 3.2.4 holds, then these code words are likely to be the sum of one or

3.3. PROJECTIVE TRIADS AND (Q+ T, T)-ARCS OF TYPE (0, 2, T) 59

more (q + t, t)-arcs of type (0, 2, t). Using this idea, we obtained a new infinite family
of (q + t, t)-arcs of type (0, 2, t), which is an interesting result on its own, and which
also greatly improves the plausibility of Conjecture 3.2.4. This new infinite family is
presented in Section 3.4.

When considering the points on X0 = 0 in a different order, it seems that the rank of
the matrix consisting of the line incidence vectors is never larger than what is claimed in
Conjecture 3.2.2. With random ordering, it is also not true that using at most 2i points of
X0 = 0, the weight of the obtained code words of Cpcm is always a multiple of 2h−i+1. For
example, for q = 64 and i = 2, one can obtain code words of weight 120 when the points are
taken on an F4-subline.

As for future work, proving Conjecture 1.1.16 or Conjecture 3.2.4 would be an important
achievement. However, it seems that this is a difficult problem. Intermediate results, im-
proving our understanding of these structures, would be a good path to follow. In particular,
proving Conjecture 3.2.2 by other methods could be a good first step, and finding more infinite
classes of arcs could also potentially bring us closer to an answer to the problem.

In Section 3.3, we will prove the second bullet, and we discuss an interesting corollary about
projective triads. As said before, if Conjecture 3.2.4 is true, then one should be able to
construct dual (q+t, t)-arcs of type (0, 2, t) by looking at linear dependencies between incidence
vectors of lines. In particular, we exploited this idea by studying the linear dependencies
between the incidence vectors of lines through the points (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, α)
and (0, 1, α2). Adding these vectors to a vector space in a well-chosen order and using the
standard technique from the start of this section, we found linear dependencies between these
lines resulting in (q + q/4, q/4)-arcs of type (0, 2, q/4) for all q ≥ 512. For q = 128 and
q = 512, this resulted in arcs of previously unknown parameters. And again, the fact that
this technique works again strengthens the plausibility of Conjecture 3.2.4. In Section 3.4,
we used the above observation and the arcs derived from it, to obtain a general construction
of dual (q+ q/4, q/4)-arcs of type (0, 2, q/4) in PG(2, q), q even. For q = 2h with h odd, such
arcs were not previously known.

3.3 Projective triads and (q + t, t)-arcs of type (0, 2, t)

Definition 3.3.1. In PG(2, q), q even, consider three lines L1, L2, L3, concurrent at a point
r. A projective triad is a set S of 3

2q + 1 points of PG(2, q), contained in L1 ∪ L2 ∪ L3 and
containing r, such that each line Li contains q

2 + 1 points of S, and each projective line not
through r intersects S in 1 or 3 points.

Projective triads are mainly studied in the context of blocking sets.

Remark 3.3.2. Let S be a projective triad and let S′ = (L1 ∪ L2 ∪ L3) \ S. Then

• each line Li contains (q + 1)−
(q

2 + 1
)

= q
2 points from S′,

• each other line through r contains 1− 1 = 0 points from S′,

60 CHAPTER 3. (Q+ T, T)-ARCS OF TYPE (0, 2, T)

• each line not through r contains 3 − i points from S′ with i ∈ {1, 3}, hence each such
line contains 0 or 2 points from S′.

All in all, each line contains 0, 2 or q
2 points of S′. Since |S′| = (3q + 1)−

(
3
2q + 1

)
= q + q

2 ,
it follows that S′ is a (q + t, t)-arc of type (0, 2, t), for t = q

2 .

On the other hand, if S′ is a (q+ t, t)-arc of type (0, 2, t) with t = q
2 , then it has a t-nucleus r,

and hence it is contained in three lines L1, L2, L3. In a similar fashion, S = (L1∪L2∪L3)\S′
is now a projective triad.

Hence, a projective triad uniquely corresponds to a (q+t, t)-arc of type (0, 2, t) with t = q
2 . We

will now classify the (dual) (q+t, t)-arcs of type (0, 2, t) with t = q
2 . Without loss of generality

we may assume the dual nucleus to be the line X0 = 0 and by a coordinate transformation,
we can let the dual secants be (0, 0, 1), (0, 1, 0) and (0, 1, 1).

Lemma 3.3.3. The subset of Cpcm of code words consisting of the lines through (0, 0, 1),
(0, 1, 0) and (0, 1, 1), different from the line X0 = 0, is a subcode of dimension h + 2 =

0 +
(
h
0

)
+
((

h
0

)
+
(
h
1

))
with weight polynomial 1 + (4q − 4)X3q/2 + 3X2q.

Proof. We will completely classify the code words of this code. Denote our three points by
p0(0, 0, 1), p1(0, 1, 0), p2(0, 1, 1). We recall that a code word here corresponds to a set of lines
through one of p0, p1 or p2, such that each point outside of X0 = 0 is contained in an even
number of lines (and hence in either 0 or 2 lines) of the set.

Let c be any code word. Denote by s, t, u respectively the number of lines in supp(c) through
p0, p1, p2. If at least one of s, t, u is zero, there are only four code words: the empty word and
the

(
3
2

)
= 3 words formed by the (2q, q)-arcs of type (0, 2, q). Now consider any other word

with s, t, u > 0. Any line through p0 must intersect exactly t+ u lines through the other two
points, hence t+ u = q. Similarly, s+ t = q and s+ u = q. Solving this system of equations,
we get s = t = u = q/2.

Now coordinatize the lines of supp(c) as follows:

• write the lines through p0(0, 0, 1) as [µ, 1, 0] with µ ∈ S, |S| = q/2,

• write the lines through p1(0, 1, 0) as [µ, 0, 1] with µ ∈ T , |T | = q/2,

• write the lines through p2(0, 1, 1) as [µ, 1, 1] with µ ∈ U , |U | = q/2.

The condition that each point (1, x, y) should be contained in an even number of lines of
supp(c), is equivalent to saying that for each x, y ∈ Fq, an even number of the statements
x ∈ S, y ∈ T , x+ y ∈ U should be fulfilled. In particular, for fixed x /∈ S we have x+ T = U
and x + U = T , hence ∀x, x′, x′′ /∈ S we have x + x′ + x′′ + T = x + T . This means that,
considering (Fq,+) as a h-dimensional vector space over F2, the elements of S form an affine
subspace. Similarly, T and U also need to be affine subspaces. From their sizes, S, T and U
are affine hyperplanes.

3.4. A NEW INFINITE FAMILY 61

For hyperplanes. it follows from x+T = U that T and U need to be equal or parallel. Similarly,
S, T, U all belong to the same parallel class. Hence, for some c, c′, c0, c1, . . . , ch−1 ∈ F2,

S = {ah−1α
h−1 + · · ·+ a1α+ a0 : ch−1ah−1 + · · ·+ c1a1 + c0a0 = c},

T = {ah−1α
h−1 + · · ·+ a1α+ a0 : ch−1ah−1 + · · ·+ c1a1 + c0a0 = c′},

U = {ah−1α
h−1 + · · ·+ a1α+ a0 : ch−1ah−1 + · · ·+ c1a1 + c0a0 = c+ c′ + 1},

where we remind that an even number of c, c′, c+ c′ + 1 are zero, for each c, c′ ∈ {0, 1}.

Clearly, for each binary choice of these h + 2 parameters, we get a different code word of
weight 3

2q, and the degenerate choice c0 = c1 = · · · = ch−1 = 0 yields the 4 code words
mentioned at the start of the proof, having weight different from 3

2q.

As a by-product, we find a complete classification of the projective triads. A classification
equivalent to Corollary 3.3.4 was found before in [131], and implicitly in [122].

Corollary 3.3.4. Let L1, L2, L3 be three concurrent lines in PG(2, q), q even. Let A ∈
PGL(3, q) be any coordinate transformation which maps these lines to the three lines [0, 0, 1],
[0, 1, 0] and [0, 1, 1]. Let Πt be any hyperplane in AG(h, 2), with equation ch−1Xh−1 + · · · +
c1X1 + c0X0 = t, and let c, c′ ∈ {0, 1}. If we let

S = {(1, 0, 0)}
∪{(ah−1α

h−1 + · · ·+ a1α+ a0, 0, 1)|(ah−1, . . . , a1, a0) ∈ Πc}
∪{(ah−1α

h−1 + · · ·+ a1α+ a0, 1, 0)|(ah−1, . . . , a1, a0) ∈ Πc′}
∪{(ah−1α

h−1 + · · ·+ a1α+ a0, 1, 1)|(ah−1, . . . , a1, a0) ∈ Πc+c′},

then {A−1s|s ∈ S} forms a projective triad on L1, L2, L3. Moreover, if q > 2, all 4q − 4
projective triads on L1, L2, L3 arise from this construction.

3.4 A new infinite family

For an n-dimensional vector space V and a vector v ∈ V , we can computationally find v
as a linear combination of a given basis {v1, . . . , vn} of V . Using only incidence vectors of
lines as basis, and with v also an incidence vector of a different line, the linear combination
v =

∑
i∈I vi shows that the corresponding set of lines forms a code word of Cpcm. If Conjecture

3.2.4 is true, every code word is composed of a linear combination of (q + t, t)-arcs of type
(0, 2, t). For t = q/4, we found that in some cases, code words obtained in this way can be
equal to such an arc. This observation led us to several examples, which we could embed in
the following construction.

Let Fq be a finite field, with q = 2h, h ≥ 4, built up with

αh = ah−1α
h−1 + ah−2α

h−2 + · · ·+ a1α+ a0

with all ai ∈ {0, 1}, as its primitive polynomial. From [37] it follows that we may choose
ah−1 = ah−2 = 0 for h ≥ 8. For h = 4, 5, 6, 7 one can easily verify that respectively α4+α+1 =

62 CHAPTER 3. (Q+ T, T)-ARCS OF TYPE (0, 2, T)

0, α5 +α2 + 1 = 0, α6 +α+ 1 = 0 and α7 +α3 + 1 = 0 are primitive polynomials of degree h
with ah−1 = ah−2 = 0.

Consider the projective line in PG(2, q) with equation X0 = 0, and consider the points
(0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, α) and (0, 1, α2); these points will be the dual t-secants and
the line X0 = 0 will be the dual t-nucleus. Now we write all other lines through (0, 0, 1) as
〈(0, 0, 1), (1, t, 0)〉 with t ∈ Fq and we write all other lines through (0, 1, x) as 〈(0, 1, x), (1, 0, t)〉
with t ∈ Fq.

Any element z ∈ Fq can be written uniquely as

z = zh−1α
h−1 + zh−2α

h−2 + · · ·+ z1α+ z0,

with each zi ∈ {0, 1}. By (z)i we will denote zi. We will now construct two (very similar)
classes of examples: let par ∈ {0, 1} be a fixed element of F2; our infinite class will depend
on par. Consider the following five sets of lines.

• A := {〈(0, 0, 1), (1, t, 0)〉 with th−2 = 0, th−3 = 1},

• B := {〈(0, 1, 0), (1, 0, t)〉 with th−1 = 0, th−2 = 1},

• C := {〈(0, 1, 1), (1, 0, t)〉 with th−2 = 0, th−3 + th−4 + · · ·+ t0 = par},

• D := {〈(0, 1, α), (1, 0, t)〉 with th−1 + th−2 = 1, th−3 + th−4 + · · ·+ t0 = par},

• E := {〈(0, 1, α2), (1, 0, t)〉 with th−1 = 0, th−2 + th−3 + th−4 + · · ·+ t0 = par},

then we will show that these form a dual (q + q/4, q/4)-arc of type (0, 2, q/4). That the set
A ∪ B ∪ C ∪ D ∪ E contains q + q/4 lines, is clear. That there are 5 points in which q/4
lines meet is also clear. What is not clear, is that each point with coordinates (1, x, y) lies on
either 0 or 2 of these lines. This will be proven in what follows.

Notation 3.4.1. Denote by S the set of lines of A ∪B ∪ C ∪D ∪ E.

From now on, we consider X0 = 0 to be the line at infinity and we consider its complement
as the affine plane AG(2, q).

Lemma 3.4.2. The union of the affine points contained in any line of a set A, B, C, D or
E, is for each of the 5 sets as follows:

• pA := {(1, x, y) : xh−2 = 0, xh−3 = 1},

• pB := {(1, x, y) : yh−1 = 0, yh−2 = 1},

• pC := {(1, x, y) : xh−2 +yh−2 = 0, xh−3 +xh−4 + · · ·+x0 +yh−3 +yh−4 + · · ·+y0 = par},

• pD := {(1, x, y) : xh−2 +xh−3 +yh−1 +yh−2 = 1, xh−4 + · · ·+x0 +yh−3 +yh−4 + · · ·+y0 =
par},

• pE := {(1, x, y) : xh−3 +yh−1 = 0, xh−4 + · · ·+x0 +yh−2 +yh−3 +yh−4 + · · ·+y0 = par}.

3.4. A NEW INFINITE FAMILY 63

Proof. For A, B and C, this is obvious. For D, let the primitive polynomial be αh =
ah−3α

h−3 + ah−4α
h−4 + · · ·+ a1α+ a0 as assumed before. Then

αx = xh−1α
h + xh−2α

h−1 + xh−3α
h−2 + xh−4α

h−3 + · · ·+ x0α
= xh−2α

h−1 + xh−3α
h−2 + (xh−4 + xh−1ah−3)αh−3 + · · ·

+(x0 + xh−1a1)α+ xh−1a0.

Hence, th−1 + th−2 = (αx+y)h−1 + (αx+y)h−2 = 1 reduces to xh−2 +xh−3 +yh−1 +yh−2 = 1
and

th−3 + th−4 + · · ·+ t0 = (αx+ y)h−3 + (αx+ y)h−4 + · · ·+ (αx+ y)0 = par

reduces to

xh−1(ah−3 + ah−4 + · · ·+ a0) + xh−4 + · · ·+ x0 + yh−3 + yh−4 + · · ·+ y0 = par.

Since ah−3 +ah−4 + · · ·+a0 = 0 (otherwise 1 is a root of the primitive polynomial), the latter
reduces to

xh−4 + · · ·+ x0 + yh−3 + yh−4 + · · ·+ y0 = par

as claimed. Finally, for E,

α2x = α(xh−1α
h + xh−2α

h−1 + xh−3α
h−2 + xh−4α

h−3 + · · ·+ x0α)
= α(xh−2α

h−1 + xh−3α
h−2 + (xh−4 + xh−1ah−3)αh−3

+ · · ·+ (x0 + xh−1a1)α+ xh−1a0)
= xh−2α

h + xh−3α
h−1 + (xh−4 + xh−1ah−3)αh−2 + · · ·

+(x0 + xh−1a1)α2 + xh−1a0α
= (xh−3 + ah−1xh−2)αh−1 + (xh−4 + xh−1ah−3 + xh−2ah−2)αh−2

+ · · ·+ (x0 + xh−1a1 + xh−2a2)α2

+(xh−1a0 + xh−2a1)α+ xh−2a0

= xh−3α
h−1 + (xh−4 + xh−1ah−3)αh−2

+(xh−5 + xh−1ah−4 + xh−2ah−3)αh−3 + · · ·
+(x0 + xh−1a1 + xh−2a2)α2 + (xh−1a0 + xh−2a1)α
+xh−2a0.

Hence, th−1 = (α2x+ y)h−1 = 0 reduces to xh−3 + yh−1 = 0 and

th−2 + th−3 + th−4 + · · ·+ t0
= (α2x+ y)h−2 + (α2x+ y)h−3 + (α2x+ y)h−4 + · · ·+ (α2x+ y)0

= par

reduces to

(xh−1 + xh−2)(ah−3 + · · ·+ a0) + xh−4 + · · ·+ x0 + yh−2 + yh−3 + yh−4 + · · ·+ y0 = par.

Since again ah−3 + · · ·+ a0 = 0, this reduces to

xh−4 + · · ·+ x0 + yh−2 + yh−3 + yh−4 + · · ·+ y0 = par

as claimed.

64 CHAPTER 3. (Q+ T, T)-ARCS OF TYPE (0, 2, T)

Lemma 3.4.3. Let L1, L2, L3 be three concurrent lines of S. Then L1, L2, L3 all belong to
the same set A, B, C, D or E.

Proof. It is clear that if two of them belong to different sets, they all belong to a different
set. So what we have to verify is that

pA ∩ pB ∩ pC = ∅, pA ∩ pB ∩ pD = ∅, . . . , pC ∩ pD ∩ pE = ∅.

If we define c := xh−4 + · · ·+x0 +yh−4 + · · ·+y0 +par, then the systems of equations obtained
in Lemma 3.4.2 become:

• pA := {(1, x, y) : xh−2 = 0, xh−3 = 1},

• pB := {(1, x, y) : yh−1 = 0, yh−2 = 1},

• pC := {(1, x, y) : xh−2 + yh−2 = 0, xh−3 + yh−3 + c = 0},

• pD := {(1, x, y) : xh−2 + xh−3 + yh−1 + yh−2 = 1, yh−3 + c = 0},

• pE := {(1, x, y) : xh−3 + yh−1 = 0, yh−2 + yh−3 + c = 0},

and one can easily verify that any three of these yield an inconsistent system of linear equations
over F2.

Theorem 3.4.4. The set of lines S is a dual (q + q/4, q/4)-arc of type (0, 2, q/4).

Proof. As we remarked before, all that is left to prove is that each affine point lies on either
0 or 2 lines of S. From Lemma 3.4.3, it follows that an affine point cannot lie on three or
more lines. Hence, each point lies on either 0, 1 or 2 lines. Now assume that there exists an
affine point p which only lies on one line L ∈ S. The q lines in the 4 sets not containing L,
intersect L in one affine point each, different from p. By the pigeonhole principle (q incidences
for q − 1 possible points), there must be two such lines intersecting L in the same point, a
contradiction with Lemma 3.4.3. Hence, every affine point lies on 0 or 2 lines of S.

Hence, we have constructed a new infinite families of (q+t, t)-arcs of type (0, 2, t) with t = q/4.

Remark 3.4.5. An important step in the construction of this new class of arcs was the result
that the coefficient of αh−1 and αh−2 can be assumed to be zero in the primitive polynomial
of the field. Without this assumption, several extra terms would usually be added to the
equations and we would no longer be able to cancel out the extra terms a0 + · · · + ah−3. It
would be very interesting to see a general construction without assumptions on the primitive
polynomial – in particular, to understand how adding the terms αh−1 or αh−2 affects the form
of the linear F2-equations imposed on t. A better understanding of this behavior would bring
us closer to a general construction.

Remark 3.4.6. A similar trick might be used to obtain an infinite family of (q + q/8, q/8)-
arcs of type (0, 2, q/8), since [37] allows to choose the first three coordinates zero, where we
only used this for the first two coordinates. Examples of such arcs however do not roll easily
out of the projective plane matrix, which is why I have not yet constructed such a family.
However I believe it can be done with relatively few effort.

3.4. A NEW INFINITE FAMILY 65

Remark 3.4.7. Lemma 3.3.3 shows that all (q+ t, t)-arcs of type (0, 2, t) are linear (i.e. they
arise from linear equations considering Fq as Fh2 , or in other words, their intersection with
each t-secant forms an affine linear set) if t = q/2. For t = q, this is also clearly the case.
For t = 2, this is trivially fulfilled since every two points in AG(2, h) form an affine subspace.
A natural question would be if there exist (q + t, t)-arcs of type (0, 2, t) which are not linear,
for 4 ≤ t ≤ q/4. If not, this would be a major step towards proving Conjecture 3.2.4, and
an important result on its own. It would also allow more efficient computer searches for
classifying (q + t, t)-arcs of type (0, 2, t) in small planes.

The author believes that Conjecture 1.1.16 can be sharpened as follows.

Conjecture 3.4.8. If 4 divides t and t divides q, then there exists a (q + t, t)-arc of type
(0, 2, t) with the additional property that its intersection with each of its t-secants forms an
affine linear set (the t-nucleus being the point at infinity).

66 CHAPTER 3. (Q+ T, T)-ARCS OF TYPE (0, 2, T)

Chapter 4

Optimal blocking multisets

In this chapter we investigate (xvt, xvt−1)-minihypers in PG(t, q), i.e. minihypers with the
same parameters as a weighted sum of x hyperplanes. We characterize these minihypers as
a nonnegative rational sum of hyperplanes and we use this characterization to extend and
improve the main results of several papers which have appeared on the special case t = 2.
We establish a new link with coding theory and we use this link to construct several new
infinite classes of (xvt, xvt−1)-minihypers in PG(t, q) that cannot be written as an integer
sum of hyperplanes. This chapter is joint work with Ivan Landjev and the results have been
published in J. Comb. Theory Ser. A [87].

4.1 Preliminaries and motivation

Notation 4.1.1. By N0, we denote the set of nonnegative integers. By P, we denote the

point set of PG(t, q). By vu+1 = qu+1−1
q−1 , we denote the number of points in any u-dimensional

subspace of PG(t, q). The set of hyperplanes of PG(t, q) will be denoted by H.

Definition 4.1.2. A multiset is a mapping K : P → N0. This mapping is extended additively
to the power set of P: for any Q ⊆ P, we put K(Q) =

∑
x∈Q K(x). The image of a point or

subset under this mapping is called the multiplicity of the point or subset. The cardinality of
the multiset is K(P). The support suppK of a multiset K is defined as the set of all points of
positive multiplicity:

suppK = {x ∈ P | K(x) > 0}.

Multisets with Im(K) = {0, 1} are called non-weighted, or projective, and can be viewed as
sets by identifying them with their supports. A multiset K is said to be proper if suppK 6= P.

Definition 4.1.3. An (f,m; t, q)-minihyper is an m-fold blocking f -multiset w.r.t. hyper-
planes in PG(t, q), i.e. a multiset of cardinality f in PG(t, q) such that each hyperplane has
multiplicity at least m. If t and q are clear from the context, we will speak of an (f,m)-
minihyper. Similarly, an (n,w; t, q)-arc, or (n,w)-arc for short, is a multiset of cardinality n
in PG(t, q) such that each hyperplane has multiplicity at most w. A proper minihyper is a

67

68 CHAPTER 4. OPTIMAL BLOCKING MULTISETS

minihyper which is proper as a multiset. To avoid trivial cases, we will always assume t ≥ 2
and f > 0.

The set of points of a u-dimensional subspace of PG(t, q) is an example of a (vu+1, vu)-
minihyper. Note that (xvt, xvt−1)-minihypers in PG(t, q), with x ≤ q, are always proper,
since their total multiplicity is only xvt ≤ qvt < vt+1.

4.1.1 Motivation 1: from finite geometry

A first motivation to study (xvt, xvt−1)-minihypers comes from the following problem.

Natural Problem 4.1.4. How can we m-block the hyperplanes with as few points f as
possible?

One easily finds the following bound on this size.

Theorem 4.1.5. Let F be a proper (f,m)-minihyper in PG(t, q). Then
f

m
≥ vt
vt−1

.

Proof. Since F is proper, there is a point u ∈ P with F(u) = 0. Let F′ =
∑
H3u

F ∩H.

• |F′| = fvt−1 since each of the f points lies exactly on vt−1 such hyperplanes;

• |F′| ≥ mvt, since each of the vt hyperplanes contain at least m points of F

Hence, fvt−1 ≥ mvt.

So naturally, we are interested in finding which minihypers would reach equality in this bound.

Definition 4.1.6. An optimal blocking multiset is a proper minihyper with equality in this
bound: fvt−1 = mvt.

Corollary 4.1.7. Since gcd(vt−1, vt) = 1, an optimal blocking multiset has f = xvt and
m = xvt−1 for some positive integer x.

Hence, the “best” blocking proper multisets in PG(t, q), are the (xvt, xvt−1)-minihypers, with
x any positive integer.

4.1.2 Motivation 2: from coding theory

Linear [n, k, d]-codes do not exist for all possible values of n, k, d. Ideally, one would like to
optimize the parameters, simultaneously requiring

• n to be low, as this requires less computational complexity in decoding the code;

4.1. PRELIMINARIES AND MOTIVATION 69

• k to be large (compared to n), allowing more data to be transmitted using the same
amount of signals;

• d to be large, allowing to detect and correct more transmission errors during decoding.

This optimization problem is called the fundamental problem of linear codes and can (for a
fixed field Fq) be stated in 3 equivalent ways:

Open Problem 4.1.8 (Fundamental Problem). • Given k, d, what is the smallest n for
which an [n, k, d]-code exists over Fq?

• Given n, k, what is the largest d for which an [n, k, d]-code exists over Fq?

• Given n, d, what is the largest k for which an [n, k, d]-code exists over Fq?

For very small n, k, d, these numbers have been computed exactly. In general, one has to rely
on bounds.

For small values of n, k, d, the optimal parameters can be computed by computer [50], but in
general one needs to rely on bounds. The three most common (and usually strongest) bounds
are as follows.

Theorem 4.1.9 (Hamming bound). For any [n, k, d]-code over Fq, one has qk
∑b d−1

2
c

i=0

(
n
i

)
(q−

1)i ≤ qn.

Theorem 4.1.10 (MDS bound). For any [n, k, d]-code over Fq, one has n+ 1 ≥ k + d.

Theorem 4.1.11 (Griesmer bound [127, 51]). For any [n, k, d]-code over Fq, one has n ≥∑k−1
i=0

⌈
d
qi

⌉
.

Definition 4.1.12. Codes meeting the Hamming, MDS and Griesmer bounds are called
perfect, MDS and Griesmer codes.

For perfect linear codes over Fq, a full classification is known. A series of papers by Van
Lint [143, 144, 145], Tietäväinen [137], Zinoviev and Leontiev [152] can be summarized in the
following theorem.

Theorem 4.1.13. Let C be a perfect [n, k, d]-code over Fq. Then C is either:

• the empty code (k = 0) or the entire space (k = n);

• a binary repetition code of odd length (k = 1, n = d);

• a Hamming code;

• a Golay code.

For MDS codes, a strong characterization theorem exists.

70 CHAPTER 4. OPTIMAL BLOCKING MULTISETS

Theorem 4.1.14. Let G be a k× n generator matrix of a code C. Let S be the set of points
of PG(k − 1, q) defined by the columns of G. Then C is MDS if and only if S is a set of n
points, no k − 1 of which lie in the same hyperplane.

Such sets are called arcs and the following result and conjecture have been made on their
existence.

Theorem 4.1.15 ([20]). If k ≤ q + 1 then such sets exist if and only if n ≤ k + 1.

Conjecture 4.1.16 (The MDS conjecture [120]). If k ≥ q+2 then such sets exist if and only
if either n ≤ q + 1, or (n = q + 2 and q is even and k ∈ {3, q − 1}).

For Griesmer codes, the characterization theorem is somewhat more complicated.

Theorem 4.1.17 ([53, 55]). There exists a bijective correspondence between the set of all
non-equivalent [n, k, d]q-codes meeting the Griesmer bound, and the set of(

k−2∑
i=0

µivi+1,

k−2∑
i=0

µivi

)
-minihypers in PG(k − 1, q) with each µi ≤ q − 1.

Griesmer codes however have a property that makes them well worth the effort, called divis-
ibility.

Theorem 4.1.18 ([148]). Let p be a prime and let C be an [n, k, d]p Griesmer code. If pe|d
for some e ≥ 1, then all code words of C have Hamming weight divisible by pe.

Conjecture 4.1.19 ([58]). Let q = ph and let C be an [n, k, d]q Griesmer code. If pe|d for
some e ≥ h, then all code words of C have Hamming weight divisible by pe+1−h.

Theorem 4.1.20 ([55]). Writing d = θqk−1 −
∑k−2

i=0 µiq
i for a Griesmer code, with µi ∈

{0, 1, . . . , q − 1}, the corresponding minihyper has parameters(
k−2∑
i=0

µivi+1,
k−2∑
i=0

µivi

)
.

To make a Griesmer code as divisible as possible, one should let µ0 = µ1 = . . . = µk−3 = 0
and µk−2 = x 6= 0. Since the characterization of minihypers with the above parameters
is equivalent to the characterization of the corresponding Griesmer codes (cf. [85] and the
references therein), this means we end up again with (xvt, xvt−1)-minihypers in PG(t, q).

4.2 A new way of looking: rational sums of hyperplanes

Given that two natural problems in finite geometry and coding theory coincide in the same
class of structures, it is of no surprise that this structure has been studied extensively before
[10, 57, 58, 84]. However, one essential property of these structures has been long overlooked.
In this section, we will take a closer look at the algebraic structure of these (xvt, xvt−1)-
minihypers.

4.2. A NEW WAY OF LOOKING: RATIONAL SUMS OF HYPERPLANES 71

Definition 4.2.1. The characteristic function of a set Q ⊆ P is denoted by

χQ(x) =

{
1 for x ∈ Q,
0 for x 6∈ Q.

Remark 4.2.2. Every multiset K in PG(t, q) can be uniquely interpreted as a vector w ∈ QP
as w = (K(u))u∈P . There is a natural bijective correspondence between the set of all multisets
in PG(t, q) and the subset NP0 ⊂ QP .

Addition (often referred to as sum or weighted sum) and scalar multiplication of multisets
can be defined by

(K1 + K2)(x) = K1(x) + K2(x), (cK)(x) = cK(x)

which is just the standard addition and multiplication for their corresponding vectors. Clearly,
the sum of two minihypers with parameters (f1,m1) and (f2,m2) is an (f,m)-minihyper with
f = f1 + f2 and m ≥ m1 +m2.

The intersection of a multiset K and a set S is defined as follows:

(K ∩ S)(x) =

{
K(x) if x ∈ S.
0 if x /∈ S.

Definition 4.2.3. An (f,m)-minihyper F is called indecomposable if it cannot be represented
as the sum of two nonempty minihypers with parameters (f1,m1) and (f2,m2), respectively,
for which m = m1 +m2 and f = f1 + f2.

Clearly, an (f,m)-minihyper which is not proper and which is not the point set of PG(t, q), is
decomposable: it can be represented as the sum of a (vt+1, vt)-minihyper (namely the entire
space PG(t, q)) and an (f − vt+1,m− vt)-minihyper.

Definition 4.2.4. Let X be a finite set of size v (which we call the points) and let B be a
family of k-element subsets of X (which we call the blocks) in which every unordered pair
of elements of X is contained in exactly λ blocks of B. Then (X,B) is called a balanced
incomplete 2 − (v, k, λ) block design. It is easy to see that each point of X is contained in
r = λ(v − 1)/(k − 1) blocks of B. Letting b = |B|, an easy double-counting argument yields
that vr = bk. If b = v, the design is called symmetric.

Definition 4.2.5. Let D = (X,B) be a 2− (v, k, λ)-design and fix any ordering of the points
and of the blocks. The incidence matrix of D is the b× v matrix A = (aij) defined by

aij =

{
1 if the jth point is contained in the ith block,

0 otherwise.

Hence, A can be interpreted as an isomorphism between QP and QH.

Remark 4.2.6. It is easily checked that ATA = (r − λ)I + λJ , where I and J are the unit
matrix of order v and the all-one matrix of order v, respectively. Hence detATA = rk(r−λ)v−1

over Q. Hence, when r 6= λ (or, equivalently, when v 6= k), ATA is nonsingular and hence
A is nonsingular. In PG(t, q), D = (P,B), with B the set of hyperplanes, is a symmetric
2 − (vt+1, vt, vt−1)-design. For proofs of these statements and an in-depth introduction to
designs (and their links with finite geometry), we refer to [5, 11, 22].

72 CHAPTER 4. OPTIMAL BLOCKING MULTISETS

The remainder of this chapter is structured as follows. In the remainder of this section,
we present a new characterization of proper (xvt, xvt−1)-minihypers in PG(t, q) as rational
sums of hyperplanes. We thereby generalize a result by Landjev and Storme [84, Theorem
5]. In Section 4.3, we extend and improve several key results that have appeared on the
special case n = 2 [58, 84]. Most notably, we prove a strong modular result and a useful
inequality between x, q and c (c is defined in Theorem 4.2.11). Finally, in Section 4.4, we
establish a new connection between the code words of certain geometrically defined codes
and indecomposable minihypers. We exploit this new connection to present a new non-trivial
construction for (xvt, xvt−1)-minihypers in PG(t, q).

Lemma 4.2.7. Let K be an arbitrary multiset in PG(t, q), q = ph. Then its incidence vector
w can uniquely be written as a linear combination over Q of incidence vectors of hyperplanes:
w =

∑
H∈H rHχH with rH ∈ Q.

Proof. Let A be an incidence matrix of the points and hyperplanes of PG(t, q). By Remark
4.2.6, A is invertible. Hence, the rows of A form a Q-basis for the vector space QP and for
any w ∈ QP , one can find a unique collection of rational coefficients {rH}H∈H such that
w =

∑
H∈H rHχH . Note that, with r = (rH)H∈H, w = rA.

Notation 4.2.8. From now on, if F is an (xvt, xvt−1)-minihyper in PG(t, q), we will denote
by rH(F) the coefficient rH associated to the hyperplane H in the rational sum obtained in
Theorem 4.2.9. If the minihyper F is clear from the context, we will simply write rH . Since
the minihyper can be written as a rational sum in a unique way, this will often be the case.

Theorem 4.2.9. Let K be a multiset in PG(t, q) and let w =
∑

H∈H rHχH be its incidence
vector. Then rH ≥ 0 for each H ∈ H if and only if w is an (f,m)-minihyper with m ≥ vt−1

vt
f .

If in addition, K is proper, then rH ≥ 0 for each H ∈ H if and only if K is an (xvt, xvt−1)-
minihyper, with x =

∑
H∈H rH ∈ N0.

Proof. Since A is invertible and JA = rJ , we may write ATA = (r−λ)I+λJ as (AT− λ
r J)A =

(r − λ)I, which yields A−1 = 1
r−λ(AT − λ

r J).

Let now w ∈ QP be the incidence vector of any multiset K (as defined in Remark 4.2.2). Then
w = (wA−1)A, which yields an explicit form for the rational coefficients:

w =
∑
H∈H

(wA−1)HχH ,

and this form is unique by Lemma 4.2.7.

Hence, we want to determine when each of the elements of wA−1 ∈ QH is non-negative. From
the explicit form derived above, wA−1 = 1

r−λ
(
wA− λ

r Jw
)
. However, Jw is a vector with

each of its entries equal to the total size of the multiset, f . Hence, we need (wAT)H ≥ λ
r f

for each H ∈ H.

Now the element (wAT)H represents the total multiplicity of the hyperplane H, K(H), and
hence this inequality is equivalent to saying that K(H) ≥ λ

r f for each H ∈ H. In other words,

4.3. GENERALIZATIONS OF PREVIOUS RESULTS 73

this is true if and only if w is the incidence vector of an (f,m; t, q)-minihyper with m ≥ λ
r f .

This proves the first statement.

If the multiset K is proper, then there is a point u with K(u) = 0. We define a new multiset K′

as follows: K′ =
∑

H3u K∩H. Then the total multiplicity of this new multiset is fλ, since for
each point of K there are λ hyperplanes through u and through this point. On the other hand,
this number is at least m times the number r of such hyperplanes, since each hyperplane
contains at least m points. Hence, we also have m ≤ λ

r f and thus m = λ
r f . However,

gcd(λ, r) = 1, so r divides f , and thus f = xr for some positive integer x. Hence, m = xλ and

since r = qt−1
q−1 and λ = qt−1−1

q−1 , we have f = x
(
qt−1
q−1

)
= xvt and m = x

(
qt−1−1
q−1

)
= xvt−1.

Remark 4.2.10. The last part of the proof of Theorem 4.2.9 shows that for every proper
(f,m)-minihyper in PG(t, q), one has f

m ≥
vt
vt−1

. This provides an additional motivation for

the study of (xvt, xvt−1)-minihypers in PG(t, q).

Theorem 4.2.11. For any proper (xvt, xvt−1)-minihyper F =
∑

H∈H rHχH in PG(t, q), the
smallest positive integer c for which crH ∈ N0 for all H ∈ H, is a power of p and a divisor of
qt−1.

Proof. From the proof of Theorem 4.2.9, we know that the coefficients rH are given by

(wA−1)H = 1
r−λ

(
(wAT)H − λf

r

)
. Since Jw is a vector with all its entries equal to f = rx,

λ
r Jw is an integer vector which only consists of entries λx. Since the entries of wAT are also

integers, wAT − λ
r Jw is an integer vector, and (r − λ)wA−1 only contains integer entries.

Since r − λ = qt−1, the smallest positive integer c for which crH ∈ N0 for all H ∈ H, is a
divisor of qt−1, and hence it is indeed a power of p.

Note that c = 1 corresponds to the minihyper being a weighted sum of hyperplanes.

Notation 4.2.12. Similar to Remark 4.2.8, we will write c(F) for the integer c from Theorem
4.2.11. If the minihyper F is clear from the context, we will simply write c.

Remark 4.2.13. A proper (xvt, xvt−1)-minihyper in PG(t, q) (with x > 0) cannot be decom-
posed into a hyperplane and an ((x−1)vt, (x−1)vt−1)-minihyper if and only if rπ < 1 for each
hyperplane π. In this case, we call the minihyper hyperplane-indecomposable. For x ≤ q, we
will see in Section 4.3 that hyperplane-indecomposability is equivalent to indecomposability.

4.3 Generalizations of previous results

In this section, we will apply Theorem 4.2.9 to generalize and improve several key results
from [58] and [84]. In what follows, we let q = ph with p prime; this defines p and h.

R. Hill and H.N. Ward [58] proved the following modular result via polynomial techniques for
t = 2. This was extended to t > 2 in [57, Theorem 4.6], using similar techniques.

74 CHAPTER 4. OPTIMAL BLOCKING MULTISETS

Theorem 4.3.1. Let F be an (xvt, xvt−1)-minihyper in PG(t, q), with x ≤ q − pg for some
nonnegative integer g. Then F(π) ≡ xvt−1 (mod pg+1qt−2) for every hyperplane π in PG(t, q).

Using Theorem 4.2.9, we can present a sharper version of this modular result. We begin with
an easy counting lemma. We recall that if F =

∑
H∈H rHχH is an (xvt, xvt−1)-minihyper in

PG(t, q), then
∑

H∈H rH = x. We also recall that whenever we write rH or c, this has to be
interpreted as in Remark 4.2.8.

Lemma 4.3.2. Let F be an (xvt, xvt−1)-minihyper in PG(t, q). Then a hyperplane π with
rational coefficient rπ has multiplicity F(π) = rπq

t−1 + xvt−1.

Proof. The hyperplane π contributes rπ to the multiplicity of each point in π, and hence
contributes rπvt to the total multiplicity of π. Every other hyperplane π′ intersects π in
λ = vt−1 points, hence contributing rπ′vt−1 to F(π). Since the sum of all rational coefficients
is x, this yields a total multiplicity in π of rπvt + (x − rπ)vt−1. Since vt = qt−1 + vt−1, this
proves the statement.

From this it follows that for any s-dimensional subspace π, one has

F(π) = xvs + qs
∑

H⊇π,H∈H
rH .

Moreover, if π contains a point u with multiplicity 0, then all hyperplanes through u (and
hence all hyperplanes through π) have their rational coefficient equal to 0. Hence, in this case
F(π) = xvs.

Theorem 4.3.3. Let F be a proper (xvt, xvt−1)-minihyper in PG(t, q). Then F(π) ≡ xvt−1

(mod qt−1

c) for every hyperplane π in PG(t, q). Moreover, if x ≤ q − pg, then pg+1 divides q
c ,

making this result stronger than Theorem 4.3.1.

Proof. Let π be an arbitrary hyperplane and let rπ be its rational coefficient. Then F(π) =
rπq

t−1 + xvt−1 by Lemma 4.3.2. Since the denominator of rπ is a divisor of c, the product

qt−1rπ is an integer multiple of qt−1

c , and hence the first part of the statement follows.

For the second part, it is sufficient to recall that c is the smallest integer such that for all

rH , crH ∈ N0. By Theorem 4.3.1, rπq
t−1 is divisible by pg+1qt−2 and hence

(
q

pg+1

)
rπ is an

integer. Since π was arbitrary, and since c is the smallest positive integer for which crπ is an
integer for all π, it follows that c ≤ q

pg+1 . Since c is a power of p by Theorem 4.2.11, it follows

that pg+1 divides q
c .

In Theorem 4.3.3, we work modulo qt−1

c = q
cq
t−2. In Theorem 4.3.1, the result is only valid

modulo pg+1qt−2. Since we just have just proven that pg+1 divides q
c , Theorem 4.3.3 is a

generalization of Theorem 4.3.1.

Corollary 4.3.4. Let F be a nonempty (xvt, xvt−1)-minihyper in PG(t, q). Then x > q − q
c .

In other words: if x ≤ q − q
c0

for some positive integer c0, then c < c0.

4.3. GENERALIZATIONS OF PREVIOUS RESULTS 75

Proof. If x ≥ q, then the statement is trivially fulfilled. Otherwise, let g be the largest
nonnegative integer for which x ≤ q − pg. By this maximality assumption, x > q − pg+1.
Since pg+1 divides q

c , it indeed follows that x > q − q
c .

As a special case of Corollary 4.3.4, we get the following corollary.

Corollary 4.3.5. For x ≤ q − q
p (and hence for x < q when q = p), we have c = 1. Hence,

if x ≤ q − q/p then any (xvt, xvt−1)-minihyper in PG(t, q) is a sum of x hyperplanes.

This special case was proven earlier for t = 2 in [58, Theorem 20] and for general t in [57,
Corollary 4.8]. The sharpness of the bound in Corollary 4.3.5 had not yet been demonstrated.
In Section 4.4, we will show the sharpness of this bound. This family of examples will show
the sharpness of the bound in Corollary 4.3.4 in general when c = pe with e|h (with q = ph).

Corollary 4.3.6. If x ≤ 2q − 2 qp + 1, then a proper (xvt, xvt−1)-minihyper is decomposable
if and only if it is hyperplane-decomposable.

Proof. Assume by contraposition that there exists a proper decomposable, but hyperplane-
indecomposable (xvt, xvt−1)-minihyper F with x ≤ 2q− 2 qp + 1. Since it is proper and decom-
posable, it can be written as F = F1 + F2, where F1 is a nonempty (x1vt, x1vt−1)-minihyper
and F2 is a nonempty (x2vt, x2vt−1)-minihyper, and x1 +x2 = x. Since x ≤ 2q−2 qp +1, it fol-

lows that min(x1, x2) ≤ q− q
p , and, by Corollary 4.3.5, this minihyper is a sum of hyperplanes.

Hence, we can subtract any such hyperplane from F and end up with an ((x−1)vt, (x−1)vt−1)-
minihyper, contradicting the assumption that F is hyperplane-indecomposable.

Remark 4.3.7. Corollary 4.3.5 and its sharpness determine the smallest x for which there
is a (hyperplane-)indecomposable (xvt, xvt−1)-minihyper in PG(t, q).

An upper bound on the largest integer x for which there exists a proper, hyperplane-indecom-
posable (xvt, xvt−1)-minihyper, can be derived as follows. Fix a point u with multiplicity 0
in this minihyper. Since we assume that F is hyperplane-indecomposable, rH < 1 for all
hyperplanes H. Since crH ∈ N0 and since c is a divisor of qt−1, by Theorem 4.2.11, this yields
rH ≤ 1− 1

c ≤ 1− 1
qt−1 . Hence,

x =
∑
H3u

rH +
∑
H 63u

rH = 0 +
∑
H 63u

rH ≤
∑
H 63u

(
1− 1

qt−1

)
= qt

(
1− 1

qt−1

)
= qt − q,

with equality if and only if all hyperplanes not through u have rH = 1− 1
qt−1 . And indeed, this

equality can occur; in that case F is qt−1 − 1 times the setwise complement of u in PG(t, q),
since each point different from u lies on qt−1 hyperplanes not containing u.

The largest x for which such a proper indecomposable minihyper exists is not known, not
even for t = 2. A generalization of the result by Landjev and Storme [84] on the case t = 2
follows straightforwardly from the techniques in this section; it is presented in Theorem 4.3.8.
We however believe that this bound is not sharp at all.

76 CHAPTER 4. OPTIMAL BLOCKING MULTISETS

Theorem 4.3.8. Let F be a proper indecomposable (xvt, xvt−1)-minihyper which is not the
setwise complement of a point. Then x ≤ qt − 2q + q

p − 1 and the multiplicity of any point in

F is at most qt−1 − 1.

Proof. Assume that F is a proper indecomposable (xvt, xvt−1)-minihyper in PG(t, q), and let
u be a point of multiplicity 0. Hence, rH = 0 for all hyperplanes H through u. Since we
assume that F is indecomposable, it is also hyperplane-indecomposable, which means that
rH < 1 for all hyperplanes. Since crH ∈ N0 and c is a divisor of qt−1 by Theorem 4.2.11, this
yields rH ≤ 1− 1

c ≤ 1− 1
qt−1 .

Let u′ be an arbitrary point different from u. From the fact that rH ≤ 1− 1
qt−1 = qt−1−1

qt−1 and

the fact that there are only qt−1 hyperplanes through u′ and not through u, it follows that
the multiplicity of this point u′ is at most qt−1 − 1. Since u′ was arbitrary, this yields the
second claim.

Now, we revisit the switching construction from [84] with respect to u. In our terminology,
it reduces to the natural substitution

ψ :

{
rH 7→ rH(= 0) if H 3 u,
rH 7→ 1− 1

qt−1 − rH if H 63 u.

Clearly, since 0 ≤ rH(F) ≤ 1 − 1
qt−1 , the same holds for rH(ψ(F)), and since each point

different from u lies on vt − vt−1 = qt−1 hyperplanes not through u, the fact that each point
has an integer multiplicity is also preserved under ψ. Hence, ψ(F) is a (yvt, yvt−1)-minihyper

in PG(t, q) with y = qt
(

1− 1
qt−1

)
− x.

Since F is not the setwise complement of u, ψ(F) is nonempty. Moreover, since rH(ψ(F)) < 1,
the minihyper ψ(F) is hyperplane-indecomposable, which means c > 1 and hence c ≥ p. By
Corollary 4.3.4, y ≥ q − q

p + 1, which means that

x = (qt − q)− y ≤ (qt − q)− (q − q

p
+ 1) = qt − 2q +

q

p
− 1.

Corollary 4.3.9. No hyperplane-indecomposable (xvt, xvt−1)-minihyper in PG(t, q) exists for
any x satisfying qt − 2q + q

p − 1 < x < qt − q.

4.4 A surprising new link with coding theory

In this section, we will establish a new correspondence between hyperplane-indecomposable
(xvt, xvt−1)-minihypers in PG(t, q) and the dual projective space code over the ring Zc, with
c the number described in Theorem 4.2.11. Let Zc be the ring of integers modulo c, i.e.
Zc = ({0, 1, 2, . . . , c− 1},+c, ·c), where a+c b and a ·c b denote the remainder of respectively
a + b and a · b after division by c. Note that the set {0, 1, 2, . . . , c− 1} is a set of integers, a
subset of Z. If c = p, then Zc is a field, isomorphic to Fp.

4.4. A SURPRISING NEW LINK WITH CODING THEORY 77

Let H be the hyperplane-by-point incidence matrix of PG(t, q). Let C⊥c (t, q) be the linear
Zc-code defined by H as a parity check matrix, where the positions of the code correspond
to the hyperplanes:

C⊥c (t, q) = {z = (zH)H∈H ∈ ZH : zH = 0̄};

hereby, the matrix multiplication is done over Zc. For this code C⊥c (t, q), we define a new
weight function wt(z) =

∑
H∈H zH , where zH is interpreted as an integer in {0, 1, . . . , c− 1}

and summation is done over Z. In the special case that c = p, C⊥c (t, q) is equivalent to the
commonly studied projective space code of points and hyperplanes.

Geometrically, code words of C correspond to multisets of hyperplanes in PG(t, q), with
hyperplane multiplicities in the set {0, 1, . . . , c − 1}, such that for each point r we have∑

H3r zH ≡ 0 (mod c). We will interpret zH in the proof of Theorem 4.4.1 as zH = c · rH ,
where rH are (as always) the rational coefficients from Lemma 4.2.7 for the minihyper F.

Theorem 4.4.1. There is a natural bijective correspondence between the code words

z = (zH)H∈H ∈ C⊥c0(t, q)

and the hyperplane-indecomposable (xvt, xvt−1)-minihypers
∑

H∈H rHχH with c = c0; this
correspondence is given by zH = c · rH .

Proof. First assume that we have a code word z = (zH)H∈H ∈ C⊥c0(t, q). By definition of the
code C⊥c0(t, q), we have

∑
H3u zH ≡ 0 (mod c0) for each point u. Hence, for each point u, the

multiplicity 1
c0

∑
H3u zH of the point u is an integer. Since we also have that each weight is

nonnegative (as zH ∈ {0, 1, . . . , c0−1}), it follows from Theorem 4.2.9 that F :=
∑

H∈H
zH
c0
χH

is an (xvt, xvt−1)-minihyper for x =
∑

H∈H
zH
c0

. Since for each H ∈ H, zH ∈ {0, 1, . . . , c− 1},
one has zH

c0
< 1, and hence F is a hyperplane-indecomposable (xvt, xvt−1)-minihyper.

For the other direction, assume that we have a hyperplane-indecomposable (xvt, xvt−1)-
minihyper F in PG(t, q). By Theorem 4.2.9, F = 1

c

∑
H∈H rHχH . By Remark 4.2.13, rH < 1

for each H ∈ H. Let zH = crH , then the multiplicity at each point u is 1
c

∑
H3u zH ∈ N0.

This implies that
∑

H3u zH ≡ 0 (mod c), which means that z = (zH)H∈H is a code word of
C⊥c (t, q).

Theorem 4.4.1 can be used in the construction of non-trivial (xvt, xvt−1)-minihypers. Ball’s
construction, mentioned in [84], can be derived as a special case of this construction. The
key is to dualize the setting: we start with an arbitrary multiset of points, dualize it to have
an arbitrary multiset of hyperplanes, and take a rational sum of them to obtain a minihyper.
This yields the following interesting constructions.

Lemma 4.4.2 (Ball’s construction). Let B be a set of points in PG(t, q) and let e be the
largest nonnegative integer such that B meets each hyperplane in 0 modulo pe points. Then

there exists a
(
|B|
pe vt,

|B|
pe vt−1

)
-minihyper in PG(t, q) with c = pe.

Proof. Let B′ be the dual set of hyperplanes of the points in B. By the self-duality of PG(t, q),
each point is contained in 0 modulo pe hyperplanes of B′. Associating a coefficient rH = 1

pe to

78 CHAPTER 4. OPTIMAL BLOCKING MULTISETS

each of these hyperplanes (and 0 to all other hyperplanes) yields a
(
|B|
pe vt,

|B|
pe vt−1

)
-minihyper.

By construction, c|pe, and by the maximality of e, it follows that c = pe.

More interestingly, we can also utilize 1 modulo pe sets to construct new examples, as the
following lemma demonstrates.

Lemma 4.4.3. Let A and B be sets of points in PG(t, q) and let e be the largest nonnegative
integer such that A and B both meet each hyperplane in 1 modulo pe points. Then for any
λ ∈ {1, 2, . . . , pe − 1} there exists an (xvt, xvt−1)-minihyper F in PG(t, q) with c = pe and

x = |B \A|+ λ |A|−|B|pe .

Proof. Since A and B represent point sets, we can consider their associated dual sets A′ and
B′ of hyperplanes. Since A and B intersect each hyperplane in 1 modulo pe points, their
differences A \B and B \A intersect each hyperplane in 0 modulo pe points. Therefore if we
add λ times the incidence vector of each hyperplane in A′ \B′ and pe−λ times the incidence
vector of each hyperplane in B′ \ A′, the multiplicity of each point will be divisible by pe.
Hence, dividing this by pe yields a minihyper with c a divisor of pe. By the maximality of e,
it follows that c = pe.

The total weight in the multiset before dividing by pe, is

λ|A \B|+ (pe − λ)|B \A| = pe|B \A|+ λ(|A| − |B|).

Dividing out pe yields x = |B \A|+ λ |A|−|B|pe as claimed.

Several examples of 1 modulo pe sets (with e ≥ 1) are known: i-dimensional subspaces with
i ≥ 1, Baer subgeometries, unitals and Hermitian varieties, linear blocking sets and many,
many other commonly studied structures in finite geometries. With Lemma 4.4.3, all of them
can be used to obtain structurally new examples. In particular, we were able to construct
a minimal nontrivial example, i.e. a minihyper with x = q − q

p + 1 which is not a sum of x
hyperplanes. This shows the sharpness of Corollary 4.3.5 and can also be used to show the
sharpness of Theorem 4.3.8. In some cases, the construction can also be used to show the
sharpness of Corollary 4.3.4.

Theorem 4.4.4. For each divisor e of h (where q = ph), there exists an (xvt, xvt−1)-
minihyper in PG(t, q) with x = q − q

pe + 1.

Proof. Let q = ph and let e be a divisor of h. Let A be the line in PG(2, q) having X0 = 0 as
its equation, and let B be the set

B = {(1, z, zpe)|z ∈ Fq} ∪ {(0, z, zp
e
)|z ∈ F∗q}.

Then it is shown in [14] that |B| = q+y and |B∩A| = y, with y = q−1
pe−1 . Moreover, it is shown

there that each line intersects B in 1 modulo pe points. This set B is called a Rédei-type
blocking set.

4.4. A SURPRISING NEW LINK WITH CODING THEORY 79

Applying Lemma 4.4.3 with this A and B and with λ = pe − 1, one obtains an (xv2, xv1)-
minihyper with x = q − q

pe + 1 in PG(2, q). This proves the statement for t = 2.

For t > 2, the construction in the plane can easily be extended. Let π be a 2-dimensional
subspace of PG(t, q) and let π′ be a (t − 3)-dimensional subspace skew to π. Let F be the
constructed example for t = 2 in the 2-dimensional space π. Now for each line L in π, let
rL be its rational coefficient in F and let HL be the hyperplane spanned by L and π′. Then
F′ :=

∑
L⊂π rLχHL is a cone with π′ as its vertex and F as its base. Moreover, F′ is an

(xvt, xvt−1)-minihyper with x = q − q
pe + 1 in PG(t, q).

Remark 4.4.5. Let again t = 2 and let q = p2 and e = 1. Repeating the construction
in the proof of Theorem 4.4.4 with the same choices of A and B, but now varying λ ∈
{1, . . . , p − 1}, one obtains a spectrum result: a nontrivial (xv2, xv1)-minihyper for each
x ∈ {q − q

p + 1, . . . , q − 1}.

Corollary 4.4.6. The bound in Corollary 4.3.5 is sharp. When e divides h (with c = pe and
q = ph), the bound in Corollary 4.3.4 is also sharp.

Proof. Consider the ((q− q
pe +1)vt, (q− q

pe +1)vt−1)-minihyper in PG(t, q) obtained in Theorem

4.4.4. Its rational coefficients are 0, 1
pe and pe−1

pe , and hence this minihyper has c = pe. This
shows the sharpness of Corollary 4.3.4 when e divides h.

For e = 1, this yields a ((q− q
p +1)vt, (q− q

p +1)vt−1)-minihyper in PG(t, q) which is a rational

sum of hyperplanes with rational coefficients 0, 1
p and p−1

p . This minihyper is not a sum of

hyperplanes (since c = p > 1) and has x = q − q
p + 1, showing the sharpness of Corollary

4.3.5.

Open Problem 4.4.7. It is not known whether the bound in Corollary 4.3.4 is sharp for all
c.

Finally, there is an interesting relation between Conjecture 2.2.18, and the similar problem
for the following modified distance function.

Definition 4.4.8. Let dS(C) = min
c∈C∗

∑
H∈H

cH with c ∈ {0, 1, . . . , c− 1}H.

With this modified distance function, Corollary 4.3.5 immediately yields the following result.

Corollary 4.4.9. One has dS(C⊥p (2, q)) = (q− q
p + 1)p, i.e. every proper line-indecomposable

(xv2, xv1)-minihyper with c = p in PG(2, q), is a sum of at least (q − q
p + 1)p lines (with

coefficient 1
p).

Conjecture 2.2.18, on the other hand, can be rephrased as follows.

Conjecture 4.4.10. One has dH(C⊥p (t, q)) = 2q− q−p
p−1 , i.e. every proper line-indecomposable

(xv2, xv1)-minihyper with c = p in PG(2, q), is a sum of at least 2q− q−p
p−1 different lines (with

coefficient a multiple of 1
p).

80 CHAPTER 4. OPTIMAL BLOCKING MULTISETS

Remark 4.4.11. The construction in the proof of Theorem 4.4.4 was inspired by the con-
struction of the smallest known code words (in terms of Hamming weight) in the dual code
C⊥PG(2,q) associated to the projective plane PG(2, q) [90]. These code words are conjectured
to be the smallest in Hamming weight. So also here we find support for our claim that these
problems are similar.

Chapter 5

Small line sets with few odd-points

In this chapter, we study small sets of lines in PG(n, q) and AG(n, q), q odd, that have a
small number of odd-points. We fix a glitch in the proof of an earlier bound in the affine case,
we extend the theorem to the projective case, and we attempt to classify all the sets where
equality is reached. For the projective case, we obtain a full classification. For the affine case,
we obtain a full classification minus one open case where there is only a characterization. The
results in this chapter have been accepted for publication in Des. Codes Cryptogr. [142].

5.1 Motivation and preliminaries

Notation 5.1.1. Denote by B a set of lines in PG(n, q) or AG(n, q), and denote by odd(B)
the set of odd-points of B, i.e. the set of points in PG(n, q) or AG(n, q) that lie on an odd
number of lines of B.

There are several motivations to study small sets of lines in PG(n, q) and AG(n, q) that have
a small number of odd-points, and in particular, sets B with a small value for |B|+ | odd(B)|.

Firstly, it is shown in [56] that erasure-resilient codes (ERC) can be very useful in RAID
setups (redundant arrays of independent disks) to allow information to survive hardware
failures on large arrays of harddisks. It was shown in [106] that good codes for this purpose
correspond to large minimal nonzero values of |B|+ | odd(B)| in the corresponding geometry.
Even though [106] mentions AG(n, q) only, this part of their observations is valid for arbitrary
point-line geometries.

Secondly, a common problem in geometrical coding theory is to use the incidence matrix of
a finite geometry (P,L) as the generator matrix (or parity check matrix) of a binary code,
and study the minimum weight of the code and classify the code words of this minimum
weight. This has been most commonly done for the classical spaces PG(n, q) and AG(n, q);
an overview of a large part of this work can be found in [5]. Unfortunately, the binary code
generated by points and lines in Desarguesian planes of odd order, is trivial for projective
planes and almost trivial (codimension 1) for affine planes. One way to make a nontrivial

81

82 CHAPTER 5. SMALL LINE SETS WITH FEW ODD-POINTS

code out of this is to add a unit matrix to the generator matrix, i.e. G = (I|A) with I the
unit matrix and with A the incidence matrix of the affine or projective plane. Studying the
minimum distance of this code and classifying its minimum weight code words, turns out to
be equivalent to the problem of determining the minimum nonzero value of |B| + | odd(B)|
and classifying the sets B that attain this value.

Thirdly, it was shown in [106, Theorem 4.2] (after fixing a small mistake in the proof) that
|B| + | odd(B)| ≥ 2q in AG(n, q), q odd, unless B is empty or B consists of a single line. It
is hence a natural geometrical question which sets of lines can have equality in this bound,
especially since there are many, seemingly unrelated examples. In a similar way, one can
wonder if under the same condition |B| + | odd(B)| ≥ 2q + 2 is valid in PG(n, q), and if one
can classify the examples where equality is attained.

Finally, it is also just an interesting problem on itself, as is suggested by [8] which explicitly
studies the minimum size of | odd(B)| in function of |B|, and obtains an exact result for
|B| ≤ q + 1.

When going from AG(n, q) to PG(n, q) and back, by adding or removing the hyperplane at
infinity, the notation odd(B) may cause ambiguity. Therefore, we will sometimes specify the
scope by adding a subscript, wherever necessary.

Notation 5.1.2. Let B be any line set in AG(n, q). By oddAG(B) we denote the set of affine
points in AG(n, q) that are contained in an odd number of lines of B.

Notation 5.1.3. Let B be any line set in PG(n, q). By oddPG(B) we denote the set of points
in PG(n, q) that are contained in an odd number of lines of B.

Note that, if we embed a line set in AG(n, q) into PG(n, q), oddPG(B) is the union of oddAG(B)
and the set of all directions with an odd number of B-lines. We will often call these directions
the “points at infinity”.

The following lemmata can be obtained by classical counting techniques.

Lemma 5.1.4. Let S be a set of affine lines in AG(2, q), q odd. Let p be any point on the
line at infinity such that an odd number of lines of S do not contain p. Then every affine line
through p that is not in S, contains at least one point of oddPG(S) \ {p} and hence at least
one point of oddAG(S). In particular, | oddAG(S)| ≥ |{L 3 p : L /∈ S}|.

Lemma 5.1.5. Let S be a set of lines in PG(2, q), q odd. Let p be any point such that an odd
number of lines of S do not contain p. Then every line through p that is not in S, contains
at least one point of odd(S) \ {p}. In particular, | odd(S)| ≥ |{L 3 p : L /∈ S}| if p /∈ odd(S)
and | odd(S)| ≥ |{L 3 p : L /∈ S}|+ 1 if p ∈ odd(S).

Lemma 5.1.6. Let B be any line set in AG(n, q) or PG(n, q), q odd. Let π be a two-
dimensional subspace of this space, and let Bπ = {L ∈ B : L ⊆ π}. Then

|B|+ | odd(B)| ≥ |Bπ|+ | odd(Bπ)|.

If there is any line L ∈ B \ Bπ that contains a point of π \ odd(Bπ), or if there is any point
of odd(B) outside of π, then the inequality is strict.

5.2. THE AFFINE CASE 83

5.2 The affine case

Example 5.2.1. The following line sets B all have a small value for |B|+| odd(B)| in AG(n, q),
q odd.

(a) If B is the empty set, then |B| = 0 and | odd(B)| = 0 (sum: 0).

(b) If B consists of a single line, then |B| = 1 and | odd(B)| = q (sum: q + 1).

(c) If B consists of any two (different) intersecting lines, then |B| = 2 and | odd(B)| = 2q−2
(sum: 2q).

(d) Let C be a dual conic in a projective plane π ≤ PG(n, q), let L be any line of C, and
embed π in AG(n, q) with hyperplane at infinity Π such that Π ∩ π = L. If B is the
embedding of C \ {L}, then |B| = q and | odd(B)| = q (sum: 2q).

(e) Let C be a dual conic in a projective plane π ≤ PG(n, q), let L be a line that contains
two 1-points of C, and embed π in AG(n, q) with hyperplane at infinity Π such that
Π ∩ π = L. If B is the embedding of C, then |B| = q + 1 and | odd(B)| = q − 1 (sum:
2q).

(f) Let p1, p2 be two points in the hyperplane at infinity. Let π be any affine plane through
〈p1, p2〉. If B = {L ∈ π : p1 ∈ L} ∪ {L ∈ π : p2 ∈ L}, then |B| = 2q and | odd(B)| = 0
(sum: 2q).

(g) Let p1 be a point in the hyperplane at infinity and let p2 be an affine point. Let π be any
affine plane through 〈p1, p2〉. If B = ({L ∈ π : p1 ∈ L} ∪ {L ∈ π : p2 ∈ L}) \ {〈p1, p2〉},
then |B| = 2q − 1 and | odd(B)| = 1 (namely odd(B) = {p2}) (sum: 2q).

(h) Let Q be the line set of a hyperbolic quadric Q+(3, q) in a 3-dimensional projective
subspace π ≤ PG(n, q), and let π′ be a 2-dimensional subspace of π that intersects Q
in two lines L1 and L2. Embed π in AG(n, q) with hyperplane at infinity Π such that
Π ∩ π = π′. If B is the embedding of Q \ {L1, L2}, then |B| = 2q and | odd(B)| = 0
(sum: 2q).

(i) Let m be an even positive integer with 4 ≤ m ≤ q− 1, let k be an odd positive integer.
Let S be a set of m points on the line at infinity in AG(2, q) . Let B be a set consisting
of k lines through each point of S, and q − (m − 1)k other lines such that each of
the q + 1 −m points at infinity outside of S lie on an even number of B-lines. Then
|B| = q + k and | odd(B)| = q − k (sum: 2q).

Theorem 5.2.2. Let B be a set of lines in AG(n, q), n ≥ 2, q odd. If |B| + | odd(B)| ≤ 2q,
then B is one of the examples in Example 5.2.1.

Proof. The proof consists of a detailed case study. Let B be a set of lines in AG(n, q) with
|B| + | odd(B)| ≤ 2q. In particular, this also yields |B| ≤ 2q. We distinguish the following
cases.

84 CHAPTER 5. SMALL LINE SETS WITH FEW ODD-POINTS

• Assume B is planar, i.e. B is completely contained in some 2-dimensional affine subspace
π of AG(n, q). From now on, we only consider this 2-dimensional subspace and hence
we act as if n = 2. We distinguish the following cases.

– |B| ≤ 1. In this case, the classification is trivial, we indeed obtain Example 5.2.1(a)
if |B| = 0 or Example 5.2.1(b) if |B| = 1.

– |B| ∈ [2, q]. Each of the |B| lines has q affine points. Each point that is not
incident with at least one other line of B, is an odd-point. Consequently, each
line of B contains at least q − (|B| − 1) odd-points. Moreover, all these odd-points
are different (since they lie on only one line of B). Hence, the total number of
odd-points of B is at least |B|(q − |B|+ 1). All together, this yields

|B|+ | odd(B)| ≥ |B|+ |B|(q − |B|+ 1) = |B|(q + 2− |B|). (5.1)

The right hand side is a strictly concave function of |B|, and hence obtains its
minimum only on (one or both of) the end points of the considered interval [2, q],
so |B| = 2 or |B| = q. In both cases, the right hand expression evaluates to 2q.
Consequently, one has |B|+| odd(B)| ≥ 2q. Since we are given that |B|+| odd(B)| ≤
2q, this can only occur when |B|+ | odd(B)| = 2q, which means the right hand side
must exactly reach its minimum and hence |B| = 2 or |B| = q.

∗ If |B| = 2, then we clearly have Example 5.2.1(c).

∗ If |B| = q, and equality is attained in equation (5.1), then each line of B
needs to contain precisely q− (|B|−1) odd-points. This implies that B cannot
contain three concurrent lines, otherwise one of these lines would have all of
its intersections with B-lines in at most |B| − 2 distinct points, which would
result in at least q − (|B| − 2) odd-points on that line. Hence, B is a dual arc
of size q.
Now, embed the affine plane in a projective plane PG(2, q). Then, in this
projective plane, B is still a dual arc of size q. It is shown in [61] that any
(dual) arc of size q is embedded in a (dual) arc of size q+1, and it is shown by
Segre [119] that any (dual) arc of size q+1 in PG(2, q), q odd, is a (dual) conic
by Theorem 1.1.9. This shows that B consists of q lines of a dual conic, and
denote by L the missing line of that dual conic. In our embedding PG(2, q),
there are two odd-points on every line of B: one on L and one outside of L.
Since |B| = q and |B| + | odd(B)| = 2q, we need | odd(B)| = q, and thus the
only way to obtain a correct example in this case is when L is the line at
infinity of our affine plane, so we end up with Example 5.2.1(d).

– |B| ∈ [q+1, 2q], |B| odd. Hence, |B| ∈ [q+2, 2q−1]. First, we will show that every
parallel class of lines in our affine plane contains at least one line of B. Assume by
contradiction that this is not the case, i.e. there is a point p on the line at infinity,
through which there are no lines in B. By Lemma 5.1.4, | odd(B)| ≥ q; together
with |B| ≥ q+ 1 this contradicts our assumption that |B|+ | odd(B)| ≤ 2q. Hence,
there is no such point p and every point of the line at infinity, belongs to at least
one line of B.

Since |B| is odd, and the number of points on the line at infinity is even (namely
q + 1), there must be some point p at infinity through which there are an even
number of lines of B (as the sum of an even number of odd numbers would be

5.2. THE AFFINE CASE 85

even, and |B| is odd). Let k be the number of lines of B through p, then Lemma
5.1.4 yields that | odd(B)| ≥ q − k. On the other hand, there are k lines of B
through p, and there is at least one line of B through each other point of the line
at infinity, resulting in |B| ≥ q + k. Since |B| + | odd(B)| ≤ 2q, it follows that
|B| + | odd(B)| = 2q and there is exactly one line of B through every other point
at infinity.

Now, embed our affine plane in a projective plane PG(2, q), and denote by L the
line at infinity of the affine plane. Then L has q odd-points in PG(2, q) (namely q
points with one line of B through each) and one k-point; we recall that k is even.
Now add L to B and call the new set B∗. The resulting set has |B∗| = q + k + 1
and | odd(B∗)| = q + 1 − k: all the q − k odd-points in the affine plane, plus the
point p (which is now a (k + 1)-point).

For any point p′ in PG(2, q), denote by deg p′ the number of B∗-lines through p′.
Now, for every odd-point p′ and for every B∗-line L′ through it, we can consider
L′ as the line at infinity of an affine plane and call B′ the embedding of B∗ in that
plane. Then, we obtain in a similar way that |B′| ≥ q + (deg p′ − 1) (since there
are deg p′ − 1 lines in B′, different from L′, through p′) and Lemma 5.1.4 yields
| odd(B′)| ≥ q − (deg p′ − 1) in this affine plane. Since p′ was chosen arbitrarily, it
follows that deg p′ = k + 1 for every odd-point of the projective line set B∗. Since
every non-B∗-line through p′ contains at least one other point of odd(B∗), and
there are only q+ 1− k of them in total, it follows that every non-B∗-line through
p′ contains exactly one other point of odd(B∗), and that any B∗-line through p′

does not contain other odd-points.

Therefore, every line in B∗ contains exactly one odd-point, and every line not in
B∗ contains 0 or 2 points of odd(B∗). This implies that we cannot have three
collinear odd-points. It also implies that each point p′ ∈ odd(B∗) is contained in
| odd(B∗)|−1 lines not in B∗, and hence in q+1−(| odd(B∗)|−1) = q+2−| odd(B∗)|
lines in B∗. Since

2q + 2 = |B∗|+ | odd(B∗)| = | odd(B∗)|(q + 2− | odd(B∗)|) + | odd(B∗)|,

solving this quadratic equation yields that | odd(B∗)| = 2 or | odd(B∗)| = q + 1.
The latter would imply |B| = q + 1, which yields k = 0 and is hence excluded by
our assumptions, so we must have | odd(B∗)| = 2 and k = q − 1; we recall that
p ∈ odd(B∗).
Finally, we return to the original affine case, with L as the line at infinity. Since p
is the only odd-point on L, this means that in the affine plane we have |B| = 2q−1
and | odd(B)| = 1, meaning all lines not through p must pass through this single
affine odd-point. Hence, we end up with Example 5.2.1(g).

– |B| ∈ [q + 1, 2q], |B| even. First, we show that if B has odd-points at infinity,
then they all have the same number k of B-lines through them, and |B| = q + k
and | odd(B)| = q − k. Let p, p′ be such points (if no two such points exist, there
are none because |B| is even, hence the claim is trivially true) and assume that
deg p = k and deg p′ = k′, with k < k′ and both are odd. Since |B|+ | odd(B)| ≤ 2q
and |B| ≥ q+1, it follows that | odd(B)| ≤ q−1. By Lemma 5.1.4, each of the q−k
distinct non-B-lines through p and each of the q − k′ distinct non-B-lines through
p′ contains at least one point of odd(B). If there are q − ε lines in B not through

86 CHAPTER 5. SMALL LINE SETS WITH FEW ODD-POINTS

p, with ε > 0, then k > 1 (otherwise this conflicts with |B| ≥ q + 1) and there are
at least kε points of odd(B) on B-lines through p, resulting in

|B|+ | odd(B)| ≥ (q − ε+ k) + (q − k + kε) > 2q,

a contradiction. So, there must be at least q lines in B not through p, and similarly
for p′. Now, if there were at least q + 1, we would have

|B|+ | odd(B)| ≥ (q + 1 + k) + (q − k) > 2q,

again a contradiction, which means there must be exactly q lines in B not through
p, and similarly for p′. Hence, |B| = q + k and similarly |B| = q + k′, resulting in
k = k′. So, if B has odd-points at infinity, then they all have the same number k
of B-lines through them. Since we have | odd(B)| ≥ q − k, it follows indeed that
we have |B| = q + k and | odd(B)| = q − k.

Denote the number of odd-points at infinity (which we have shown to be k-points)
by m. Clearly m must be even.

Now, we show that m > 0. Assume m = 0, i.e. all points of the line at infinity are
contained in an even number of lines of B. Embed our affine plane in a projective
plane PG(2, q), then since the line at infinity has no odd-points, B and odd(B)
remain invariant after this embedding. In this case, there can be no affine 1-
points: if there were an affine point that lies on a single B-line, Lemma 5.1.5 would
yield | odd(B)| ≥ 1 + q and hence |B| + | odd(B)| ≥ 2q + 2 > 2q, a contradiction.
So there cannot be any affine 1-points in this case. Let L be any line in B. Since
there are no 1-points, every point p ∈ L has at least one other B-line through it.
Since L is intersected by an odd number of lines (namely |B|−1), and there are an
even number of points on L, there must be some point p ∈ L which is intersected
by an even number of lines of B \ {L} and hence by an odd number of lines of B
in total. Therefore, the number of lines in B that do not contain p is odd, and
Lemma 5.1.5 yields

| odd(B)| ≥ (q + 1− |{L ∈ B : p ∈ L}|) + 1,

and on the other hand, we derived that every point of L \ {p} is contained in at
least one other line of B (different from L), yielding that |B| ≥ k + q, where we
denote k = |{M ∈ B : p ∈M}|. Summing up, we obtain that

|B|+ | odd(B)| ≥ (q + 1− k) + 1 + (k + q) = 2q + 2 > 2q,

a contradiction.

Hence, m ≥ 2 and we have an odd number k such that each of these m points
at infinity has degree k, all other points at infinity have even degree, |B| = q + k,
| odd(B)| = q − k, each of the q − k non-B-lines through each of these m points
contains exactly one odd-point each, and consequently there are no odd-points on
any B-lines through any of these m points.

Now we distinguish three cases.

∗ If m = 2, let p, p′ be the odd-points at infinity, both with k lines of B passing
through them. Embed B in a projective plane PG(2, q), then |B| remains

5.2. THE AFFINE CASE 87

identical and | oddPG(B)| = | oddAG(B)| + 2 (namely the odd-points p and p′

are added), hence we have |B| = q + k and | oddPG(B)| = q − k + 2. Let p′′

be an arbitrary odd-point of B and note that the number of lines in B that do
not contain p′′, is odd, so Lemma 5.1.5 yields

q + 2− k = | oddPG(B)| ≥ (q + 1− deg p′′) + 1, (5.2)

which shows that deg p′′ ≥ k. Now pick any line L ∈ B through p′′. Every
point on L is contained in at least one other line of B, or is another odd-point
which was not counted in (5.2), yielding that

2q + 2 = |B|+ | oddPG(B)| ≥ (q + deg p′′) + (q + 2− deg p′′) = 2q + 2.

Equality is met, while p′′ was random, so both inequalities must attain equality
for any odd-point p′′:

· every odd-point has the same degree k;

· every line L′ ∈ B containing an odd-point p′′, has its other q points covered
bijectively by the other q lines of B (and in particular, no two odd-points
can lie on the same B-line);

· every line L′ /∈ B containing an odd-point p′′, contains exactly one other
point of oddPG(B).

In particular, this implies that we cannot have three collinear odd-points,
i.e. oddPG(B) is an arc. Hence, each point p′′ ∈ oddPG(B) is contained in
| oddPG(B)| − 1 lines not in B, and so in q + 1 − (| oddPG(B)| − 1) = q +
2 − | oddPG(B)| lines in B. Consequently, B has at least | oddPG(B)|(q + 2 −
| oddPG(B)|) lines in total, from which it follows that

2q + 2 = |B|+ | oddPG(B)| ≥ | oddPG(B)|(q + 2− | oddPG(B)|) + | oddPG(B)|,

which yields | oddPG(B)| ≤ 2 or | oddPG(B)| ≥ q + 1. The latter would imply
| oddPG(B)| = q+ 1, and since it is an arc, it is a conic (Theorem 1.1.9). Since
no two odd-points are connected by a line of B, B must be exactly the set
of tangents to oddPG(B), which is a dual conic, and hence m = q + 1 6= 2,
contradicting our assumptions. It follows that we must have | oddPG(B)| = 2,
which means k = q and p, p′ are the only odd-points. This means there are no
affine odd-points and we end up with Example 5.2.1(f).

∗ If m = q+1, then k = 1 and so B has only 1-points on the line at infinity. Then,
|B| = q+1 and Lemma 5.1.4 on any point at infinity yields | oddAG(B)| ≥ q−1.
Since |B| + | oddAG(B)| ≤ 2q, it follows that in Lemma 5.1.4, equality holds
in every point at infinity, hence for any line L ∈ B, each of the q other lines
must hit in exactly one of its q points, which yields that B is a dual arc and
hence (by Theorem 1.1.9) a dual conic. This means we end up with Example
5.2.1(e).

∗ If 2 < m < q + 1, then we have Example 5.2.1(i).

• Assume B is not planar. Assume that |B|+ | odd(B)| ≤ 2q, then we will now determine
all possible intersections of B with planes. Let π be an arbitrary plane, and consider
the subset Bπ = {L ∈ B : L ⊆ π}, then Lemma 5.1.6 shows that |Bπ|+ | odd(Bπ)| ≤ 2q,

88 CHAPTER 5. SMALL LINE SETS WITH FEW ODD-POINTS

and by the planar case in this proof, it is one of the types of Example 5.2.1(a)-(g) or
Example 5.2.1(i).

Let π be an arbitrary plane, and let L be any line of B outside of π (which must exist for
every plane π, since B is not planar). The set Bπ ∪ {L} has |Bπ|+ 1 lines, and its set of
odd-points has size | odd(Bπ)|+q−1 (if L hits π in a point of odd(Bπ)) or | odd(Bπ)|+q
(otherwise). Now any line not in Bπ ∪ {L} can cancel at most two odd-points, while

adding to the total size of B. It follows that |Bπ|+ | odd(Bπ)| ≥ |Bπ|+ 1 + | odd(Bπ)|+q−1
2 ,

which means that if |Bπ|+ | odd(Bπ)| = 2q for some plane π, then | odd(Bπ)| ≥ q + 1.

Examples 5.2.1(d), 5.2.1(e), 5.2.1(f), 5.2.1(g) and 5.2.1(i) all have |B|+ | odd(B)| = 2q,
but | odd(B)| < q+ 1, so they cannot occur as Bπ. Consequently, Bπ is of type Example
5.2.1(a)-(c) for all planes π.

In particular, this means that B contains no line triangles, i.e. there are no lines
L,L′, L′′ ∈ B which intersect in pairwise different points. If all lines of B were concurrent
(and B is nonplanar so |B| ≥ 3), there would be at least 3q odd-points, which contradicts
the assumption |B| + | odd(B)| ≤ 2q. Therefore, the fact that B is not planar implies
that there are lines L1, L2 ∈ B which span a 3-dimensional subspace (and hence do not
intersect). Let k be the number of B-lines that intersect both L1 and L2, denote them
by M1,M2, . . . ,Mk. Since there are no line triangles, M1, . . . ,Mk intersect L1 and L2

both in k distinct points. Clearly, we have k ≥ 2, since there are 2(q − k) points which
are either odd or need a line just to cover that point, which together with the 2+k lines
L1, L2,M1, . . . ,Mk would already yield |B|+| odd(B)| ≥ 2(q−k)+2+k = 2q+2−k > 2q
if k ≤ 1.

Now, similarly, let m be the number of lines that intersect both M1 and M2, denote
them by L1, L2, . . . , Lm. Since there are no line triangles, L1, . . . , Lm intersect M1 and
M2 both in m distinct points. Now, we already have m + k lines in B, and there
are all together 4q − 2(l + k) points on L1, L2,M1,M2 which are either odd-points, or
which need another B-line through them that cannot contain any other point of these
4q− 2(l+ k) points (again because there are no line triangles). Hence, |B|+ | odd(B)| ≥
l+k+4q−2(l+k) = 4q−(l+k), where l, k ≤ q by construction. Since we assumed that
|B|+ | odd(B)| ≤ 2q, this implies l = k = q, |B| = 2q and | odd(B)| = 0, which means B
forms the union of the reguli of a hyperbolic quadric (see [62, Section 15.3.III] for more
background on hyperbolic quadrics) and hence B must be Example 5.2.1(h).

Open Problem 5.2.3. It is an open problem whether a set as in Example 5.2.1(i) can
actually exist. The author believes it cannot. Proving this remains an important open
problem: this is the only case where there is only a characterization. If this could be proven,
a full classification of these sets is known.

5.3 The projective case

In PG(n, q), we can obtain a similar classification. Here we obtain a full classification of all
examples.

Example 5.3.1. The following line sets B all have a small value for |B|+| odd(B)| in PG(n, q),
q odd.

5.3. THE PROJECTIVE CASE 89

(a) If B is the empty set, then |B| = 0 and | odd(B)| = 0 (sum: 0).

(b) If B consists of a single line, then |B| = 1 and | odd(B)| = q + 1 (sum: q + 2).

(c) If B consists of any two (different) intersecting lines, then |B| = 2 and | odd(B)| = 2q
(sum: 2q + 2).

(d) If B is the line set of a dual (planar) conic, then |B| = q+ 1 and | odd(B)| = q+ 1 (sum:
2q + 2).

(e) If B is the symmetric difference of two (different) planar pencils in the same plane, then
|B| = 2q and | odd(B)| = 2 (sum: 2q + 2).

(f) If B is the line set of a hyperbolic quadric Q+(3, q) in a 3-dimensional subspace, then
|B| = 2q + 2 and | odd(B)| = 0 (sum: 2q + 2).

Theorem 5.3.2. Let B be a set of lines in PG(n, q), n ≥ 2, q odd. If |B|+ | odd(B)| ≤ 2q+2,
then B is one of the examples in Example 5.3.1.

Proof. We distinguish the following cases.

• Assume B is planar, i.e. it is completely contained in some 2-dimensional subspace π of
PG(n, q). From now on, we only consider this two-dimensional subspace and we act as
if n = 2. We distinguish the following cases.

– Assume B has no odd-points. So, it is a set of lines which contains every point in
PG(2, q) an even number of times. This implies that B is a code word of the binary
code having the incidence matrix of PG(2, q) as its parity check matrix. It is well
known (e.g. as a special case of [42], which shows that this code has dimension 1)
that this code only contains the empty set and the set of all lines; together with
|B| + | odd(B)| ≤ 2q + 2 this means that B must be the empty set, so we have
Example 5.3.1(a).

– Assume B has at least one odd-point p. Since p is an odd-point, the number of B-
lines through p is at least one. Let L be such a line and embed B in an affine plane
by considering L as the line at infinity. Since both p and L are now at infinity, the
resulting affine structure now has |B|+ | odd(B)| ≤ 2q. Theorem 5.2.2 then yields
that the affine part of B must be one of the planar structures in Theorem 5.2.2
(and not (h) as that is not planar).

∗ if the affine part of B is Example 5.2.1(a), then B must be Example 5.3.1(b);

∗ if the affine part of B is Example 5.2.1(b), then B must be Example 5.3.1(c);

∗ if the affine part of B is Example 5.2.1(d), then B must be Example 5.3.1(d);

∗ if the affine part of B is Example 5.2.1(g), then B must be Example 5.3.1(e);

∗ if the affine part of B is Example 5.2.1(c), 5.2.1(e) or 5.2.1(f), then there would
be at least two odd-points at infinity, which would give |B|+ | odd(B)| ≥ 2q+3
projectively.

90 CHAPTER 5. SMALL LINE SETS WITH FEW ODD-POINTS

∗ if the affine part of B is is Example 5.2.1(i), then there would be at least
min(m, q + 1 −m) ≥ 2 odd-points at infinity (whether it is m or q + 1 −m
depends on whether or not the line at infinity is in B or not), which would
give |B|+ | odd(B)| ≥ 2q + 3 projectively.

• Assume B is not planar. Assume that |B|+| odd(B)| ≤ 2q+2, then we will now determine
all possible intersections of B with planes. Let π be an arbitrary plane, and consider the
subset Bπ = {L ∈ B : L ⊆ π}, then Lemma 5.1.6 shows that |Bπ|+ | odd(Bπ)| ≤ 2q + 2,
and by the planar case in this proof, it is one of the types of Example 5.3.1(a)-(e).

First of all, we show that there are no planes π such that Bπ is of type Example 5.3.1(d)
or Example 5.3.1(e). Assume that a plane π exists such that Bπ is of type 5.3.1(d). By
Lemma 5.1.6, since we have equality in the inequality there, every line in B \ Bπ must
intersect π in a point of odd(Bπ). Let L,L′ be two such lines in B \ Bπ (L and L′ exist
since B is not planar and with one line we clearly have |B|+ | odd(B)| > 2q + 2).

– If L,L′ do not intersect, each of the 2q points on them outside of π must either be
an odd-point or lie on yet another line of B. Since another line of B can intersect
L,L′ in at most one point each, odd(B) \ (π ∪ L ∪ L′) has at least 2(q − k) points,
with k = |B \ (Bπ ∪ {L,L′})|. Since |B| = (q + 1) + 2 + k, it follows that

|B|+ | odd(B)| ≥ (q + 1) + 2 + k + max(2q − 2k, 0) ≥ 2q + 3,

contradiction.

– If L,L′ intersect, let k = |B \ Bπ|. Since Bπ is a dual arc, no line in B \ Bπ can
intersect both L and L′. So, there are at least (2q − 1)− (k − 2) points of odd(B)
on L outside of π. So

|B|+ | odd(B)| ≥ (q + 1 + k) + (2q − 1− (k − 2)) = 3q + 2 > 2q + 2,

a contradiction.

This shows that there are no planes π such that Bπ is of type Example 5.3.1(d). Sim-
ilarly, assume that a plane π exists such that Bπ is of type 5.3.1(e). By Lemma 5.1.6,
since we have equality in the inequality there, every line in B \ Bπ must intersect π in
a point of odd(Bπ). Let L be such a line in B \ Bπ (L exists since B is not planar) and
let k be the number of such lines. Then there are at least q − (k − 1) points of odd(B)
on L outside of π. Hence, we have

|B|+ | odd(B)| ≥ (2q + k) + (q − (k − 1)) = 3q + 1 > 2q + 2,

again a contradiction. Consequently, there are no planes π such that Bπ is of type
Example 5.3.1(e).

So, Bπ is of type Example 5.3.1(a)-(c) for all planes π. In particular, this means that B
contains no line triangles, i.e. there are no lines L,L′, L′′ ∈ B which intersect in pairwise
different points. Since B is not planar, and since the assumption |B|+ | odd(B)| ≤ 2q+2
excludes the possibility that all lines of B are concurrent, there are L1, L2 ∈ B which
span a 3-dimensional subspace (and hence do not intersect). Let k be the number of
lines of B that intersect both L1 and L2, denote them by M1,M2, . . . ,Mk. Since there

5.3. THE PROJECTIVE CASE 91

are no line triangles, M1, . . . ,Mk intersect L1 and L2 both in k distinct points. Clearly,
we have k ≥ 2, since there are 2(q + 1 − k) points which are either odd or need a
line just to cover that point, which together with the 2 + k lines L1, L2,M1, . . . ,Mk

would already yield |B| + | odd(B)| ≥ 2(q + 1 − k) + 2 + k = 2q + 4 − k > 2q + 2 if
k ≤ 1. Now, similarly, let m be the number of lines that intersect both M1 and M2,
denote them by L1, L2, . . . , Lm. Since there are no line triangles, L1, . . . , Lm intersect
M1 and M2 both in m distinct points. Now, we already have m + k lines in B, and
there are all together 4(q+ 1)− 2(l+ k) points on L1, L2,M1,M2 which are either odd-
points, or which need another B-line through it that cannot contain any other point
of these 4(q + 1) − 2(l + k) points (again because there are no line triangles). Hence,
|B|+ | odd(B)| ≥ l + k + 4(q + 1)− 2(l + k) = 4(q + 1)− (l + k), where l, k ≤ q + 1 by
construction. Since we assumed that |B|+ | odd(B)| ≤ 2q+ 2, this implies l = k = q+ 1,
|B| = 2(q + 1) and | odd(B)| = 0, which means B must be Example 5.3.1(f).

This completes the classification.

92 CHAPTER 5. SMALL LINE SETS WITH FEW ODD-POINTS

Chapter 6

Geometries over finite chain rings

6.1 Motivation and preliminaries

6.1.1 Finite chain rings

We start by introducing the notations that will be used about finite chain rings.

Definition 6.1.1. An associative ring with identity is called a left (right) chain ring if the
lattice of its left (right) ideals is a chain. The following lemma essentially describes the
structure of a finite chain ring.

Lemma 6.1.2. For a finite ring R, the following conditions are equivalent:

1. R is a left chain ring;

2. R is a right chain ring;

3. the principal left ideals of R form a chain;

4. R is a local ring and RadR = Rθ for any θ ∈ RadR/(RadR)2.

If R satisfies the above conditions then every proper ideal of R has the form (RadR)i =
Rθi = θiR for some positive integer i.

Notation 6.1.3. By Ropp we denote the opposite ring of R, i.e. the ring by switching the
left and right multiplication rules. For a commutative ring, R = Ropp.

Let R be a finite chain ring. It is well known that |R| = qm for some q = ph with p prime
and h a positive integer; and that its radical RadR can be generated by a single element,
say θ. Moreover, it is known that there exists a set Γ = {γ0 = 0, γ1 = 1, γ2, . . . , γq−1} ⊆ R,
such that γi 6≡ γj (mod RadR) for i 6= j, and such that for each β ∈ R there exist unique
b0, b1, . . . , bm−1 ∈ Γ such that β =

∑m−1
i=0 biθ

i. Such a set Γ, together with the generator θ,

93

94 CHAPTER 6. GEOMETRIES OVER FINITE CHAIN RINGS

is called a basis for the finite chain ring R. Lastly, it can be shown that Γ, together with
the R-addition modulo RadR, and the R-multiplication modulo RadR, forms a finite field
(i.e. R/RadR ∼= Fq). For a more detailed study of finite chain rings we refer to [27, 102, 107].

Now, we will define a bijection ϕ : R → {0, 1, . . . , qm − 1}, which at the same time provides
a natural ordering of the elements of R (with respect to the given basis) and yields a simple
computer representation of the element as an integer in {0, 1, . . . , qm − 1}.

Definition 6.1.4. Let ϕ(0) = 0 and ϕ(1) = 1. For a2, a3, . . . , aq−1, we set ϕ(ai) = i. Now,
for an arbitrary β =

∑m−1
i=0 biθ

i, we let ϕ(β) =
∑m−1

i=0 ϕ(bi)q
i.

Corollary 6.1.5. Some properties of ϕ:

• β ∈ Γ⇔ ϕ(β) < q;

• for each i ∈ N, the equivalence β ∈ (RadR)i ⇔ ∃r ∈ R : β = rθi ⇔ ϕ(β)|qi holds;

• if qi|ϕ(β), then r = ϕ−1
(
ϕ(β)
qi

)
has β = rθi.

It can be shown that for every positive integer i and for every element α ∈ R with ϕ(α) <
qm−i, there is a unique element conji(α) ∈ R with ϕ(conji(α)) < qm−i such that αθi =
θi conji(α). This is called the i-conjugate of α.

In what follows, we consider a fixed finite chain ring R, a fixed basis for it, and a fixed function
ϕ. We would like to stress that Corollary 6.1.5 plays an important role in Section 6.2.

6.1.2 Modules and their Grassmannians

Modules are the ring analog of vector spaces. Note that given the computational nature of
my research on this topic, we only consider finite modules, which can always be represented
as a submodule of Rn, for some positive integer n. For the rest of this chapter, we will stick
to the notations from the previous section, i.e. |R| = qm and |R/RadR| = q.

Definition 6.1.6. A left (right) module M over a finite chain ring R is a subset of Rn (the
set of all n-tuples over R), which is closed under R-addition and left (right) multiplication
with an element of R.

Definition 6.1.7. A partition of length ` and maximum m of the positive integer N is a
multiset of integers λ = {λ1, λ2, . . . , λ`} with N = λ1 + λ2 + · · · + λ` and m ≥ λ1 ≥ λ2 ≥
· · · ≥ λ` ≥ 0. Its conjugate partition is λ′ = {λ′1, λ′2, . . . , λ′m}, where λ′j = |{i : λi ≥ j}|.

The following theorem describes the structure of an arbitrary (finite) R-module M up to
isomorphism.

Theorem 6.1.8. For every R-module M there is a unique partition λ = {λ1, λ2, . . . , λn} of
length n and maximum m such that

M ∼= R/(RadR)λ1 ⊕ · · · ⊕R/(RadR)λn .

Its conjugate partition λ′ = (λ′1, λ
′
2, . . . , λ

′
m) is given by λ′i = dimR/RadR(M [θ] ∩ θi−1M), the

Ulm-Kaplansky invariants.

6.1. MOTIVATION AND PRELIMINARIES 95

Definition 6.1.9. The partitions λ and λ′ are called the shape and conjugate shape, respec-
tively.

Theorem 6.1.10 ([63]). Let A be an n × n matrix over R. Then the left module generated
by the rows of A and the right module generated by the columns of A have the same shape.

Definition 6.1.11. Let λ be a partition of length n. The set of all modules of shape λ in
Rn is called the λ-Grassmannian and is denoted by G(λ). The set of all submodules of Rn is
called the Grassmannian, and is denoted by G.

Theorem 6.1.12 ([96]). Let M be a R-module of shape λ = (λ1, . . . , λn), and let µ =
(µ1, . . . , µn) be a partition with µi ≤ λi for all i. Then there are exactly[

λ

µ

]
q

:=
∞∏
i=1

qµ
′
i+1(λ′i−µ′i) ·

[
λ′i − µ′i+1

µ′i − µ′i+1

]
q

submodules of shape µ contained in M .

For a given positive integer n and a non-increasing sequence of non-negative integers κ =
(κ1, . . . , κn) we denote by G(n, κ) the set of all submodules of shape κ of RR

n. In what follows,
we denote the sequence (m, . . . ,m︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) by mk. For two sequences λ = (λ1, . . . , λn) and

µ = (µ1, . . . , µn), we write λ � µ iff λi ≤ µi for all i = 1, . . . , n.

By duality, Theorem 6.1.12 allows to find the number of shape λ submodules of RR
n contain-

ing a fixed submodule of shape µ. One has to apply Theorem 6.1.12 to the dual submodules
that have shapes mn − λ and mn − µ, respectively. So, this number equals

[
mn−µ
mn−λ

]
q
.

6.1.3 Hjelmslev geometries

The set of all modules of the Grassmannian G, together with the inclusion relation, defines
an incidence geometry which is commonly denoted by PHG(Rn). Its Grassmannian forms a
lattice and one can study the geometry of its subspaces just like one can study the projective
spaces PG(n, q) constructed over finite fields (and in fact, there are many similarities).

The (left) projective Hjelmslev geometries PHG(RR
n) are produced from the finite modules

RR
n in the same way one produces the classical projective geometries PG(n− 1, q) from the

vector spaces Fnq . The geometry PHG(RR
n) is defined as an incidence structure (P,L, I)

having as points the free rank 1 submodules of RR
n and as lines the free rank 2 submodules

of RR
n. Incidence is given by set-theoretical inclusion. The set of points contained in a

submodule RR
nRM ⊂ RR

n which is of shape λ is called a subspace of shape λ. The subspaces
defined by free submodules of RR

n are called Hjelmslev subspaces.

Two subspaces L and M of the same shape defined by the modules RR
nRL and RR

nRM ,
respectively, are called i-neighbors if RR

nRL = RR
nRM + θiRn. This fact is denoted by

L_̂ iM . It can be checked that i-neighborhood is an equivalence relation on the set of all

96 CHAPTER 6. GEOMETRIES OVER FINITE CHAIN RINGS

subspaces. The equivalence class of all subspaces that are i-neighbors to L is denoted by
[L](i). Set

P(i) = {[x](i) | x ∈ P},L(i) = {[L](i) | L ∈ L},

and
I(i) = {([x](i), [L](i)) | ∃x′ ∈ [x](i),∃L′ ∈ [L](i) : (x′, L′) ∈ I}.

Theorem 6.1.13. The incidence structure (P(i),L(i), I(i)) is isomorphic to the geometry

PHG
(
RR

nR/θiR(R/θiR)n
)
.

Let us note that R/θiR is again a chain ring of size qi, with residue field Fq. In particular,
for i = 1 we get (P(1),L(1), I(1)) ∼= PG(n− 1, q).

Another family of substructures PHG(RR
n) is given by the next theorem. Fix a (k − 1)-

dimensional Hjelmslev subspace M in PHG(RR
n), and an integer j with 0 < j < m. Denote

by Pj(M) and Lj(M) the set of all points/lines that have a j-th neighbour on M . Let
[x](m−j), x ∈ Pj(M), be the neighbour class of all (m− j)-th neighbors to x, and, similarly,
let [L](m−j), L ∈ Lj(M), be the neighbour class of all (m − j)-th neighbors to L, Define a
new point set

P = {L ∩ [L](m−j) | L ∈ Pj(M),L_̂ iM ,L ∩ [x](m−j) 6= ∅}.

and a new set of lines L as

L = {L ∩ [L](m−j) | L ∈ Lj(M),L_̂ iM ,L ∩ [L](m−j) 6= ∅}.

The incidence J ⊆ P× L is given by set-theoretical inclusion.

Theorem 6.1.14. The incidence structure (P,L, J) can be embedded isomorphically into
PHG(RR

nR/(RadR)m−j(R/(RadR)m−j)n). The missing part consists of the points of an
(n − k − 1)-dimensional Hjelmslev subspace H and all the subspaces which have commom
points with H.

Note that R/(RadR)i is again a chain ring with qi elements. In the special case when j = 1,
the structure (P,L, J) is a part of PHG(RR

nSSn) where S is a chain ring with qm−1 elements.
In this case, subspaces of shape σ = (σ1, . . . , σt) (we suppress trailing zeros) in [M] become
subspaces of shape (σ1 − 1, . . . , σt − 1) in (P,L, J).

If M is a point, the missing part is a hyperplane. Thus the j-th neighbour classes of points
carry the structure of an affine geometry over R/(RadR)j . For a more detailed introduction
into projective Hjelmslev geometries we refer to [64, 65].

Most of the work investigating PHG(Rn) is focused on the structure of the Grassmannian and
its substructures and properties up to isomorphism. However, if one wants to make specific
constructions and create new incidence matrices, e.g. to be used as an LDPC code, or just to
verify certain properties computationally, then an explicit form for the subspaces is required.
Hence, in this paper we will introduce the required methods and techniques to perform efficient
computations with arbitrary modules, without falling back on their isomorphism class.

6.2. STANDARD FORM REPRESENTATION OF MODULES 97

6.2 Standard form representation of modules

The first thing we need to handle modules computationally is to have a proper way to represent
them in a computer. The most obvious way to do this is the same way as subspaces of vector
spaces are usually represented: as matrices. While this idea and the techniques to do it are
old, and date back to [12], it is only recently in [38] that a well-defined unique standard form
for modules over arbitrary finite chain rings was formally introduced.

We will modify the standard form presented in [38] a little to suit our computational needs.
In particular, we will fix the number of zero rows to make the total matrix a square matrix.
This does not require extra storage space per module as the number of bits needed in a
compact-storage format is proportional to the logarithm of the number of possible contents
(and log(1) = 0), while in a fast compute-storage format, the rows should be readily there to
work on for algorithmic reasons. Next to that, we will also provide a different order on the
rows, as one will see that this provides clear benefits for the algorithms we describe, resulting
in much simpler and more human-readable methods, as well as speeding up the algorithms
by requiring less index lookups. The results in this section are joint work with I. Landjev.

Remark 6.2.1. From now on, we will consider left modules over R only. Of course, the
machinery can be copied mutatis mutandis for right modules.

Definition 6.2.2. A matrix A ∈ Rn×n is said to be standard or in standard form if and only
if each of the following conditions are met:

• each element Aii is Aii = θm−ti for some ti ∈ {0, . . . ,m};

• each element Aij , with j < i, is a left multiple of θm−ti+1 (i.e. Aij = aijθ
m−ti+1);

• each element Aij , with j > i, is a left multiple of θm−ti (i.e. Aij = aijθ
m−ti);

• each element Aji, with j 6= i, has ϕ(Aji) < ϕ(Aii) if Aii 6= 0.

Theorem 6.2.3. Every module M ≤ Rn has a unique standard matrix generating it. Simi-
larly, every matrix in standard form corresponds to a unique module M ≤ Rn.

Proof. Since our form differs only from the one in [38] in terms of the order of the rows and
the number of zero rows involved, its existence and uniqueness follow readily from the proofs
in [38].

From now on, we will represent all R-modules by their corresponding matrices. To compute
this standard form from a given set of generating vectors of the module, Algorithm 1 is used.

Theorem 6.2.4. Algorithm 1 works as described. Given R and given constant-time speed
for arithmetic operations in R and for ϕ and ϕ−1, Algorithm 1 works in O(mkn ·min(n, k))
time, where k is the size of the given generating set.

Proof. First, we have to show that the division on line 5 is well defined. Whenever the
algorithm reaches line 5, the vector r has an element that is not a multiple of θm−t+1. However,

98 CHAPTER 6. GEOMETRIES OVER FINITE CHAIN RINGS

Algorithm 1 Reduction to standard form

Input: any set S ⊆M with M = 〈S〉.
Output: a matrix A in standard form with row span 〈A〉 = M .

1: for t = m, . . . , 1 do
2: for r ∈ S do
3: if not all elements in r are multiples of θm−t+1 then
4: Let i be the smallest (=leftmost) position with si - θm−t+1.

5: Left-multiply all elements in r by
(
ϕ−1

(
ϕ(ri)
qm−t

))−1
.

6: for r′ ∈ (A ∪ S) \ {r} do

7: Let c = ϕ−1
(⌊

ϕ(r′i)
qm−t

⌋)
and replace r′ by r′ − c · r.

8: If r′ = 0̄ (can only occur for r′ ∈ S), remove it from S.
9: end for

10: Put r as the i-th row of A, and remove it from S.
11: end if
12: end for
13: end for
14: return A

it cannot have elements that are not a multiple of θm−t, otherwise it would have been removed
on line 10 during a previous iteration of the outer loop on t. Hence, ri = u · θm−t, where u
is a unit in R. Such a unit u is given by the expression on line 5, as explained in Corollary
6.1.5. Since it is a unit, it has a multiplicative inverse.

Now, we will show the correctness of the algorithm. Since we are only dividing by units and
subtracting scalar multiples of rows from other rows, the row space is invariant during the
process, which shows that 〈A〉 = 〈S〉. Therefore, it is sufficient to verify that the resulting
matrix A is in standard form. If a row of A is not declared during the algorithm, all of its
elements are 0 and hence the properties are trivially fulfilled. Otherwise, it gets added at line
10, in which case we can easily verify the defining properties of the standard form.

• Before line 5, ri = u · θm−t as explained above, hence dividing by u makes it indeed of
the form θm−t. Since r is added as the i-th row, this is indeed the element Aii of the
resulting matrix.

• Line 4 chooses the leftmost element that is not a multiple of θm−t+1. Hence, all Aij
with j < i must indeed be a multiple of θm−t+1.

• As explained in the first paragraph of this proof, all elements in the vector r must be
multiples of θm−t, hence this is indeed true for all Aij with j > i.

• For every other row r′, we can write its value r′i at position i uniquely as r′i = α+βθm−t,
where ϕ(α) < qm−t and ϕ(β) < qt. Line 7 computes c = β, and since ri = θm−t,
the result of the subtraction is r′i = (α + βθm−t) − βθm−t = α, which has indeed
ϕ(Aji) = ϕ(α) < qm−t = ϕ(Aii). So, at the time it is added, this property is fulfilled.
Moreover, it cannot be modified again later: all rows r′′ that would modify our row
r′ later, must have a multiple of θm−t at position i (otherwise they would have been

6.2. STANDARD FORM REPRESENTATION OF MODULES 99

processed in an earlier iteration of the t-loop), together with ϕ(r′′i) < qm−t this shows
that r′′i = 0 for all unprocessed rows r′′. Thus, after it has been added to A, the entries
at position i will no longer change and so the property will remain valid.

Finally, we will show that its execution speed is bounded as claimed. Lines 4, 5, 7 and 8
of the algorithm all clearly run in O(n) time, and cannot have a sharper bound. Line 10
runs O(1). Now, we count the number of times the statements inside the innermost loop are
executed. This number is clearly bounded by k(k − 1), which is O(k2). However, it is also
clear that when the inner loop has been executed n times, all remaining rows must be zero
rows, and hence this number is also bounded by O(kn). Together, the claimed upper bound
follows.

Remark 6.2.5. If no value is assigned to a row in A, it is assumed that this is a zero
row. It is not computationally necessary to store or initialize these rows, as they contribute
nothing to the span. However, considering the matrix as an n × n matrix with zero rows,
greatly simplifies the notations (compared to the more classical approach of removing them
completely) and speeds up the algorithms in the following sections by reducing the number
of required index lookups.

Remark 6.2.6. If A is the standard matrix of a module M , the shape of M can be found
directly as λ = {m− logq ϕ(Aii)}i=0,...,n−1 where logq ϕ(0) = m by definition.

While the shape is commonly used as the main invariant for modules, it is not so useful to
work with from a computational point of view. We will replace it by an ordered variant, that
is not invariant under isomorphism, but that turns out to be a useful thing to consider from
a computational point of view.

Definition 6.2.7. The type vector of M is the vector {logq ϕ(Aii)}i=0,...,n−1, where A is the
standard matrix of M . In other words: its ith entry is the type of the row Ai, and it is a
specific ordering on the shape multiset.

The Grassmannian over R is a lattice: every two modules have a unique least common upper
bound (their span) and a greatest common lower bound (their intersection). On the way of
describing an algorithmic way to compute these, we will also give an algorithmic method to
compute the dual lattice of a lattice.

Definition 6.2.8. Let M = 〈S〉 be a left module. Then the dual module is M⊥ = {m ∈
Rn|m · s = 0}; it is easily verified that M⊥ is a right module of Ropp.

Lemma 6.2.9. If the diagonal elements of a matrix are all 1, and everything below the
diagonal is a multiple of θ, then the matrix is invertible.

Proof. Apply the following elementary row operations to the matrix A.

1: for i = 0, . . . , n− 1 do
2: Ai = A−1

ii Ai
3: for j = 0, . . . , i− 1 do
4: Ai = Ai −AijAj

100 CHAPTER 6. GEOMETRIES OVER FINITE CHAIN RINGS

5: end for
6: end for

Since Aij is always a multiple of θ, Aii is still a unit whenever the inversion in line 2 is
called. Since we have only applied elementary row operations to A, we have not changed the
invertibility of A. Since we end up with a matrix with 1s on the diagonal and 0s below the
diagonal, which is invertible, it follows that the original matrix A was also invertible.

Lemma 6.2.10. Let A be the standard form matrix of a module M ≤ Rn. Then there exists
an invertible n×n matrix A′ such that A = CA′, where C has diagonal form and A′ only has
1s on its diagonal.

Proof. Let C be a diagonal matrix with diagonal entries Cii = Aii = θm−ti for some ti, define

the ith row of A′ to be (A′i)j = conjti

(
ϕ−1

(
ϕ(Aij)
ϕ(Aii)

))
for each j.

Now, consider the product CA′. Since C is diagonal,

(CA′)ij = CiiA
′
ij

= θm−ti conjm−ti

(
ϕ−1

(
ϕ(Aij)
ϕ(Aii)

))
= ϕ−1

(
ϕ(Aij)
ϕ(Aii)

)
θm−ti

= Aij

as claimed.

Finally, it follows from Lemma 6.2.9 that A′ is invertible, since A is in standard form so all

Aij with j < i have a higher power in θ than Aii and hence ϕ−1
(
ϕ(Aij)
ϕ(Aii)

)
cannot be a unit

for these entries.

Algorithm 2 Dualization of modules over finite chain rings

Input: The standard matrix A of a module M
Output: A generating matrix for the dual module M⊥

1: Initialize n× n matrices D,A′ as all-zero.
2: for i = 0, . . . , n− 1 do
3: if Aii = 0 then
4: A′ii = 1
5: else
6: Dii = ϕ−1

(
qm

ϕ(Aii)

)
7: ti = m− logq ϕ(Aii)
8: for j = 0, . . . , n− 1 do

9: A′ij = conjm−ti

(
ϕ−1

(
ϕ(Aij)
ϕ(Aii)

))
10: end for
11: end if
12: end for
13: return (A′−1 ·D)T // right inverse, so A ·A−1 = In

6.3. EXTENSION OF KANTOR’S THEOREM TO FINITE CHAIN RINGS 101

Theorem 6.2.11. Algorithm 2 works correctly.

Proof. Write the input matrix A as A = CA′ with notations as in Lemma 6.2.9. Since the
constructions of the matrix A′ in Lemma 6.2.9 and Algorithm 2 are identical, we can write A′

for both matrices without any problem. Let B be the matrix returned by Algorithm 2, then

A ·BT = (CA′)((A′−1D)T)T = (CA′)(A′−1D) = C(A′A′−1)D = CD = 0.

Hence, 〈B〉 ≤M⊥. On the other hand, the type of the dual module matches that of 〈B〉 (and
that of 〈D〉), and hence they must be equal.

Corollary 6.2.12. Thanks to Algorithm 1, one can compute the span of two modules. Thanks
to Algorithm 2, one can compute the intersection of two modules, as M1 ∩M2 = 〈M⊥1 ,M⊥2 〉⊥
for every two modules M1 and M2.

Testing whether a vector m is contained in a module M is equivalent to testing whether it
is orthogonal to all generating rows of M⊥. However, it can also be done more efficiently,
without the need to compute M⊥ at all; this is shown in Algorithm 3, which runs in O(kn)
time, with k ≤ n the number of nonzero rows in the standard form of M . Hereby we note
that the division in line 3 is exact, for otherwise the algorithm would have exited in a previous
iteration of the t-loop.

Algorithm 3 Membership test

Input: The standard matrix A for a module M ≤ Rn, and a vector m ∈ Rn

Output: Whether or not m ∈M
1: for t = m, . . . , 1 do
2: for all rows Mi of type t do

3: m = m− ϕ−1
(
mi·Mii
qm−t

)
·Mi

4: if m contains entries that are not multiples of θm−t+1 then
5: return false
6: end if
7: end for
8: end for
9: return true

Testing whether a given submodule is contained in another submodule, can be done by testing
inclusion for each of its generating vectors. Testing for equality can also be done that way,
although it is sufficient to test if their standard forms are equal.

6.3 Extension of Kantor’s theorem to finite chain rings

Let Ω = PHG(RR
n). Let τ = (τ1, . . . , τn) be an integer sequence satisfying m = τ1 ≥ τ2 ≥

· · · ≥ τn ≥ 0. We consider the incidence matrix of all shape ms = (m, . . . ,m︸ ︷︷ ︸
s

) versus all

shape τ subspaces of Ω with ms � τ � mn−s. We prove that the rank of Mms,τ (Ω) over

102 CHAPTER 6. GEOMETRIES OVER FINITE CHAIN RINGS

Q is equal to the number of shape σ subspaces. This is a partial analog of Kantor’s result
about the rank of the incidence matrix of all s-dimensional versus all t-dimensional subspaces
of PG(n, q), 0 ≤ s < t ≤ n− s− 1. While it may be tempting to claim that this result holds
for arbitrary shapes σ, τ , we construct an example for non-free shapes σ and τ for which the
rank of Mσ,τ (Ω) is not maximal. This section is joint work with I. Landjev and the results
obtained have been accepted for publication in Des. Codes Cryptogr. [88].

In this section we shall be confined to left modules; this is no restriction since every left
module can be considered as a right module over the opposite chain ring.

6.3.1 Incidence matrices and the main theorem

Let Ω = PHG(RR
n). Let further σ = (σ1, . . . , σn) and τ = (τ1, . . . , τn) be non-increasing

sequences of non-negative integers, i.e. m ≥ σ1 ≥ · · · ≥ σn ≥ 0, m ≥ τ1 ≥ · · · ≥ τn ≥ 0,
with σ � τ . We define a (0, 1)-matrix Mσ,τ in which the rows are indexed by the elements of
G(n, σ) and columns are indexed by the elements of G(n, τ). The element m(S, T) which is
in the row indexed by S ∈ G(n, σ) and the column indexed by T ∈ G(n, τ) is defined by

m(S, T) =

{
1 if S ⊂ T,
0 if S 6⊂ T.

We denote by ρ(S) the row of Mσ,τ (Ω) indexed by the shape σ subspace S. Our goal is to
prove the following theorem which is an analog of Kantor’s result [75] about the rank of the
incidence matrix of dimension s versus dimension t subspaces in PG(n, q). Since our proof
relies on Kantor’s theorem, we state it explicitly below.

Theorem 6.3.1. [75] Let 0 ≤ s < t ≤ n − s − 1 and let Ms,t be the incidence matrix of
all s-spaces by all t-spaces of PG(n, q) or AG(n, q). Then the rank of Ms,t is the number of
s-spaces in the geometry.

The goal of this paper is to prove the following analog of Kantor’s result.

Theorem 6.3.2. Let R be a finite chain ring with |R| = qm, R/RadR ∼= Fq, and let
Ω = PHG(RR

n) Let τ = (τ1, . . . , τn) be an integer sequence with

m = τ1 ≥ τ2 ≥ . . . ≥ τn ≥ 0

and with ms � τ � mn−s. Then the rank of Mms,τ (Ω) is equal to the number of shape
(s− 1)-dimensional Hjelmslev subspaces of Ω, i.e.

[
mn

ms

]
q
.

This theorem covers the case where the rows of Mσ,τ (Ω) are indexed by free submodules. In
the last subsection, we construct an example of an incidence matrix Mσ,τ (Ω) with σ 6= ms

(i.e. the subspaces of shape σ are not Hjelmslev subspaces) which is not of full rank over Q.

6.3.2 A special case

Before we start with the proof of Theorem 6.3.2, we mention briefly the case of incidence
matrices with rows indexed by the points and columns indexed by the subspaces of shape

6.3. EXTENSION OF KANTOR’S THEOREM TO FINITE CHAIN RINGS 103

τ . Not only does this have an elegant and elementary proof, I also believe the determinant
formula used to prove it can have its use as a standalone result.

Let τ = (τ1, . . . , τn) be a non-increasing sequence of non-negative integers, i.e.

m = τ1 ≥ · · · ≥ τn ≥ 0,

with τ � mn−1. Given a linear order on the points and on the subspaces of shape τ , we
define M(τ) = Mm1,τ = (mij).

The size of M(τ) is
[
mn

m1

]
q
×
[
mn

τ

]
q
. We shall fix a particular ordering on the points of

PHG(RR
n). First we order linearly the 1-neighbour classes of points, i.e. the elements of

P(1); further we order linearly the 2-neighbour classes of points within each 1-neighbour class.
We continue in the same way until we reach a linear order of the elements of P(m) (which are
single points) within each (m − 1)-neighbour class of points. If our indices start from 0, i.e.
our points are x0, x1, . . ., then the points xi and xj are k-th neighbours if and only if

b i

q(m−k)(n−1)
c = b j

q(m−k)(n−1)
c. (6.1)

Set

A := M(τ) ·M t(τ).

The matrix A = (aij) is a symmetric matrix of order
[
mn

m1

]
q

and has in position (i, j) the
number of shape τ subspaces containing the points xi and xj .

Let x and y be two points in PHG(RR
n) with x_̂ ky. Denote by Nk the number of subspaces

of PHG(RR
n) of shape τ = (τ1, . . . , τn) containing x and y. Since the module 〈x, y〉 has

shape (m,m − k), we have Nk = 0 if τ2 < m − k and Nk > 0 if τ2 ≥ m − k. So, if k
is the maximal integer for which (6.1) is satisfied, then aij = Nk. Note that Nm 6= 0 and
that Nm > Nm−1 > · · · > N0 > 0 or Nm > Nm−1 > · · · > Nk = . . . = N0 = 0 for some
k ∈ {0, . . . ,m−1}. The inequalities above are obtained using the remark after Theorem 6.1.13.

We need the following lemma which I proved in [86].

Lemma 6.3.3. Let n be a positive integer, let k0, k1, . . . , kn be positive integers with k0 = 1,
k1|k2, . . . , kn−1|kn. Let b0, b1, . . . , bn be arbitrary elements of a field F and let C be the kn×kn
matrix over F given by cij = b

min
{
t:
⌊
i
kt

⌋
=
⌊
j
kt

⌋}, where the rows and columns are labeled from

0 up to kn − 1. Then

det(C) =

n∏
i=0

 i∑
j=0

kj(bj − bj+1)

kn
ki
− kn
ki+1

,

where by convention an+1 = 0 and kn+1 = +∞.

Proof. Denote this determinant by D(n, k1, k2, . . . , kn, a0, a1, . . . , an). We will first derive a
recursive formula for D(n, ∗) in terms of D(n− 1, ∗) and then solve the recursion.

104 CHAPTER 6. GEOMETRIES OVER FINITE CHAIN RINGS

For each row i with 0 ≤ i < kn, we can find unique integers qi and ri with 0 ≤ ri < k1.
Similarly, for each column j with 0 ≤ j < kn, we can find unique integers q′j and r′j with 0 ≤
r′j < k1. Now, we apply the following row operations, which do not modify the determinant
of A. For each row i with ri 6= 0, we will substract row i − ri from it. The resulting matrix
B has the form

Bij =

a

min
{
t:
⌊
i
kt

⌋
=
⌊
j
kt

⌋} if ri = 0,

a0 − a1 if ri 6= 0 ∧ i = j,

a1 − a0 if ri 6= 0 ∧ r′j = 0 ∧ qi = q′j ,

0 otherwise.

Now, we apply the following set of column operations to B: we add all columns with r′j 6= 0
to column j − r′j . This still leaves the determinant invariant, and the resulting matrix C has
the form

Cij =

k1amin
{
t:
⌊
i
kt

⌋
=
⌊
j
kt

⌋} if ri = 0 ∧ r′j = 0 ∧ i 6= j,

a
min

{
t:
⌊
i
kt

⌋
=
⌊
j
kt

⌋} if ri = 0 ∧ r′j 6= 0,

(a0 − a1) + k1a1 if ri = 0 ∧ i = j,

a0 − a1 if ri 6= 0 ∧ i = j,

0 otherwise.

From this form, it can be seen that all rows i in C with ri 6= 0, have only one non-zero entry,
in column j with value a0 − a1. Hence, we can remove all rows and columns with indices not

0 modulo k1, at a cost of a factor (a0 − a1)
kn− knk1 in the determinant. The resulting matrix

has dimensions km
k1
× km

k1
and is of the same form as the original matrix A. This results in a

recursive formula for the determinant D:

D(n, k1, . . . , kn, a0, . . . , an)

= (a0 − a1)
kn− knk1 D

(
n− 1, k2k1 , . . . ,

kn
k1
, (a0 − a1) + k1a1, k1a2, . . . , k1an

)
.

Now, iteratively repeating the recursion formula for D yields in the following result:

D(n, k1, k2, . . . , kn, a0, a1, . . . , an)

= (a0 − a1)
kn− knk1 ·D

(
n− 1,

k2

k1
,
k3

k1
, . . . ,

kn
k1
, (a0 − a1) + k1a1, k1a2, k1a3, . . . , k1an

)
= (a0 − a1)

kn− knk1 ·
(
(a0 − a1) + k1(a1 − a2)

) kn
k1
− kn
k2

·D
(
n− 2,

k3

k2
,
k4

k2
, . . . ,

kn
k2
, (a0 − a1) + k1(a1 − a2) + k2a2, k2a3, . . . , k2an

)
= · · ·
= (a0 − a1)

kn− knk1 ·
(
(a0 − a1) + k1(a1 − a2)

) kn
k1
− kn
k2

· · ·
(
(a0 − a1) + k1(a1 − a2) + · · ·+ kn−1(an−1 − an)

)
·D(0, (a0 − a1) + k1(a1 − a2) + · · ·+ kn−1(an−1 − an) + knan)

=
n∏
i=0

 i∑
j=0

kj(aj − aj+1)

kn
ki
− kn
ki+1

6.3. EXTENSION OF KANTOR’S THEOREM TO FINITE CHAIN RINGS 105

since an+1 = 0. This concludes the proof.

Theorem 6.3.4. Let τ = (τ1, . . . , τn) be a non-increasing sequence of non-negative integer
with m1 � τ �mn−1. Then the matrix M(τ) is of full rank over Q.

Proof. For the matrix A = M(τ) ·M(τ)t one has ki = qi for i = 0, . . . ,m − 1, km =
[
mn

m1

]
q

and bi = Nm−i. Now by Lemma 6.3.3,

detA = det
(
M(τ)M t(τ)

)
6= 0.

This implies that A is of rank
[
mn

m1

]
q

which in turn gives that the rank of M(τ) is equal to

the number of its rows, i.e.
[
mn

m1

]
q
.

6.3.3 The proof of the main theorem

We start with the case when the modules that index the rows and the columns are indexed
by Hjelmslev subspaces, i.e. σ = ms and τ = mt.

Theorem 6.3.5. Let R be a chain ring with |R| = qm, R/RadR ∼= Fq, and let Ω =
PHG(RR

n). Let further s and t be integers with 1 ≤ s ≤ t ≤ n − s. Then the rank of
Mms,mt(Ω) is equal to the number of free Hjelmslev subspaces of Ω of dimension s − 1,

i.e. the rank is equal to
[
mn

ms

]
q
.

Proof. We use induction on m. The case m = 1 is Kantor’s Theorem, i.e. Theorem 6.3.1.
Let us assume that the result is proved for all incidence matrices Mms,mt(Ω′) where Ω′ is an
(n − 1)-dimensional projective Hjelmslev geometry over a chain ring of nilpotency index at
most m− 1.

Now let R be a chain ring with |R| = qm, q = ph, R/RadR ∼= Fq, and denote Ω = PHG(RR
n).

Consider two (m − 1)-neighbor classes of Hjelmslev subspaces of shape ms and mt, say
[S](m−1) = {S1, . . . , Su} and [T](m−1) = {T1, . . . , Tv}, respectively. If some subspace from
[S](m−1) contains a point which is not incident with a subspace from [T](m−1) then Si 6⊂ Tj for
any i ∈ {1, . . . , u} and any j ∈ {1, . . . , v}. Hence the u×v submatrix of Mms,mt(Ω) defined by
the rows indexed by S1, . . . , Su and the columns indexed by T1, . . . , Tv is the all-zero matrix.
Otherwise, each subspace of [S](m−1) is contained in the same number of subspaces from
[T](m−1) and each subspace from [T](m−1) contains the same number of subspaces from S(m−1).
Hence the submatrix of Mms,mt(Ω) with rows indexed by the subspaces from [S](m−1) and

the columns indexed by the subspaces from [T](m−1) is a (0, 1)-matrix, B say, with constant
row and column sums. For a suitable ordering of all Hjelmslev subspaces of dimension s− 1
and t− 1, the matrix Mms,mt(Ω) can be represented in the following block form:

Mms,mt(Ω) = (Ai,j),

where i = 1, . . . , x, j = 1, . . . , y. Here x and y are the numbers of the (m − 1)-st neighbor
classes of subspaces of dimension s− 1 and t− 1. By Theorem 6.1.13, we get

x = qs(n−s)(m−2)

[
n

s

]
q

, y = qt(n−t)(m−2)

[
n

t

]
q

.

106 CHAPTER 6. GEOMETRIES OVER FINITE CHAIN RINGS

If the i-th (m − 1)-neighbor class of (s − 1)-dimensional Hjelmslev subspaces is contained
in the j-th (m − 1)-neighbor class of (t − 1)-dimensional Hjelmslev subspaces in the factor
geometry then Ai,j is a u × v matrix of zeros and ones which has the form PBQ for some
suitable permutation matrices P and Q of orders u and v, respectively. Otherwise Ai,j is the
zero matrix. Moreover, the matrix A = (ai,j) of size x× y defined by

ai,j =

{
1 if Ai,j 6= 0u×v,
0 if Ai,j = 0u×v,

is equivalent to the incidence matrix of free (s − 1)-dimensional by free (t − 1)-dimensional
Hjelmslev suspaces in the factor geometry PHG(RR

nR/Rθ(R/Rθ)n). Since R/Rθ has nilpo-
tency index m − 1, the rank of A is equal to the number of its rows, by the induction
hypothesis.

Assume there exists a non-trivial linear combination of the rows of the matrix Mms,mt(Ω):∑
S

a(S)ρ(S) =
∑

[S](m−1)

∑
L∈[S](m−1)

a(L)ρ(L) = 0, (6.2)

where a(L) are rational numbers not all zero. Define

G = {I + Cθm−1 | C is an n× n matrix over Γ with 0’s on the main diagonal},

then G is a commutative group under matrix multiplication, and G fixes all (m− 1)-neighbor
classes of points setwise and acts transitively on the points within these classes. Hence the
orbits of G on the set of all Hjelmslev subspaces are the (m−1)-neighbor classes of Hjelmslev
spaces themselves. In particular, this is true for all (s− 1)-dimensional Hjelmslev subspaces.
Thus for every (s− 1)-dimensional Hjelmslev subspace S we have

|GS | · |SG| = |G|.

Since all orbits SG have the same size, the stabilizers GS have also the same size. For an
arbitrary g ∈ G, we get from (6.2):∑

[S](m−1)

∑
L∈[S](m−1)

a(L)ρ(Lg) = 0.

Let g run over all elements of G. This implies∑
g∈G

∑
[S](m−1)

∑
L∈[S](m−1)

a(L)ρ(Lg) =
∑

[S](m−1)

∑
L∈S

∑
g∈G

a(L)ρ(Lg) = 0.

If [L](m−1) = [M](m−1), the number of elements g ∈ G for which Lg = M is equal to the size
of the stabilizer of L, i.e. |GL| = |G|/|LG|, and hence is constant for all Hjelmslev subspaces
of the same dimension. Therefore, there exist coefficients b([S](m−1)) such that

∑
[S](m−1)

b([S](m−1))

 ∑
L∈[S](m−1)

ρ(L)

 = 0.

6.3. EXTENSION OF KANTOR’S THEOREM TO FINITE CHAIN RINGS 107

Let the rows of the incidence matrix of (s− 1)-dimensional by (t− 1)-dimensional subspaces
of PHG(RR

nR/Rθ(R/Rθ)n) be r1, . . . , rx. For a suitable ordering of the (s−1)-dimensional
Hjelmslev subspaces of Ω and of the (s−1)-dimensional subspaces of PG(RR

nR/Rθ(R/Rθ)n)
we get ∑

L∈[Si](m−1)

ρ(L) = k(ri ⊗ (1, . . . , 1︸ ︷︷ ︸
v

)).

Here k denotes the number of ones in any column of the block B defined above. This implies
that ∑

[S](m−1)

b([S](m−1))
∑

L∈[S](m−1)

ρ(L) =

x∑
i=1

bi · k(ri ⊗ (1, . . . , 1)︸ ︷︷ ︸
v

) = 0,

where bi = b([Si]
(m−1))k. Hence

x∑
i=0

biri = 0,

a contradiction since by the induction hypothesis the rows ri are linearly independent.

Now the proof of Theorem 6.3.2 is almost immediate.

Proof. (Theorem 6.3.2) Let t be the rank of the smallest free submodule of Rn that contains
a submodule of shape τ . By σ � τ �mn − σ, we get s ≤ t ≤ n− s. Now we have

Mms,mt = αMms,τMτ,mt ,

where α is the number of submodules U of shape τ with S ⊂ U ⊂ T , where S and T are
fixed free submodules of ranks s and t, respectively (hence α is a constant). Since Mms,mt is
of full rank (by Theorem 6.3.5) then Mms,τ is also of full rank by Sylvester’s inequality.

6.3.4 A counterexample and concluding remarks

It might be tempting to conjecture that the matrix Mσ,τ (Ω) is always of full rank, i.e. its
rank is the smaller of the numbers

[
mn

σ

]
q

and
[
mn

τ

]
q
. Below we construct an example which

demonstrates that this is not always true.

For the sake of simplicity we construct our example over the ring Z4, but it can be generalized
to any chain ring. Take R = Z4 and consider the 3-dimensional Hjelmslev geometry Ω =
PHG(RR

nRR4). Set σ = (2, 1, 0, 0) and τ = (2, 2, 0, 0). The shape σ subspaces are line
segments consisting of two points each; the shape τ subspaces are the lines of Ω. Using
Theorem 6.1.13 we find that the number of shape σ subspaces is 420 while the number of
shape τ subspaces is 560 (Theorem 6.1.13).

Let S be a subspace of shape σ in Ω and let T1, T2 be Hjelmslev subspaces of shape τ in Ω
with S ⊂ T1, S ⊂ T2. Clearly T1 and T2 are Hjelmslev subspaces of minimal rank containing
S. This implies that T1 and T2 are neighbors; otherwise the Hjelmslev subspace T1∩T2 would
contain S which is a contradiction to the minimality of T1 and T2. This implies that there
exists such ordering of the shape σ and shape τ subspaces that Mσ,τ has diagonal block form

108 CHAPTER 6. GEOMETRIES OVER FINITE CHAIN RINGS

with zero-blocks off the main diagonal. Each block has size 12 × 16 and there are 35 such
blocks that correspond to the 35 lines in the factor geometry which happens to be PG(3, 2).

Now the matrix Mσ,τ is of full rank if and only if each block is of full rank. Consider a single
block B. It corresponds to a neighbor class of lines in Ω. By Theorem 6.1.14, a block is
isomorphic to a part of the point by lines incidence matrix of PG(3, 2). The rows are indexed
by the twelve points not incident with a fixed line ` and the columns are indexed by the
16 lines skew to `. Let π0, π1, π2 be the planes through ` and let the points in πi off ` be

P
(i)
1 , . . . , P

(i)
4 , i = 0, 1, 2. Denote by ρ(P) the row in B indexed by the point P . Now it is

easily checked that

4∑
j=1

ρ(P
(0)
j) =

4∑
j=1

ρ(P
(1)
j) =

4∑
j=1

ρ(P
(2)
j) = (1, 1, . . . , 1︸ ︷︷ ︸

16

).

This means that B is not of full rank and hence Mσ,τ (Ω) is also not of full rank.

It is clear that the same shapes considered in a higher dimensional space over the same ring
will give again a matrix which is not of full rank.

By duality, Theorem 6.3.2 implies that in the case of shapes σ and τ with ms � σ �mn−s =
τ , the matrix Mσ,τ (Ω) is of full column rank. Presently there is no reasonable conjecture
about the shapes σ ≺ms � τ �mn−s, for which the rank of Mσ,τ (Ω) is maximal.

Chapter 7

Miscellaneous results

In this chapter, I collect three miscellaneous research papers which I have published or sub-
mitted for publication.

7.1 Generalizing AM-GM and Turkevich’s inequality

In this section, we establish a sharp homogeneous inequality, which extends both the classical
weighted AM-GM inequality and Turkevich’s inequality. This is joint work with Géza Kós
and Hojoo Lee [81]. While this is not directly related to finite geometry and coding theory, I
decided to put it in my thesis because it is a nice mathematical result. Moreover, it is published
in a general mathematics journal (Proceedings of the American Mathematical Society) [81],
which probably makes it my most read publication.

We originally came up with this generalization while creating a problem for the International
Mathematics Olympiad (IMO). The most well-known inequality in the olympiads, is AM-GM,
the inequality between the arithmetic mean and the geometric mean of nonnegative numbers:

Theorem 7.1.1 (AM-GM). Let n ≥ 2 and let a1, . . . , an ≥ 0. Then

a1 + a2 + · · ·+ an
n

≥ n
√
a1a2 · · · an.

Equality occurs if and only if a1 = a2 = · · · = an.

This is a strong and well-known inequality, of which we will present a new generalization in
this section, which at the same time generalizes Turkevich’s inequality [123].

Theorem 7.1.2 ([123]). Let a, b, c, d ≥ 0, then

a4 + b4 + c4 + d4 + 2abcd ≥ a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2

or, equivalently, (
a2 − b2

)2
+
(
c2 − d2

)2 ≥ (a2 + b2
) (
c2 + d2

)
− (ab+ cd)2 .

109

110 CHAPTER 7. MISCELLANEOUS RESULTS

Equality occurs if and only if either a = b = c = d or if three of a, b, c, d are equal and the
remaining one is zero.

Several generalizations of Turkevich’s inequality are known, for example Shleifer’s inequality
[123] says that, for a1, . . . , an ≥ 0,

(n− 1)
n∑
i=1

a4
i + n (a1 · · · an)

4
n ≥

(
n∑
i=1

a2
n

)2

.

The second equality case in Turkevich’s inequality makes it particularly surprising that a
simultaneous generalization of Turkevich’s inequality and AM-GM exists. In this section we
will present such an inequality, as well as prove its sharpness.

7.1.1 Introduction and main results

In the following, let n be a positive integer with n ≥ 2 and let ω1, . . . , ωn be positive real
numbers with ω1 + · · · + ωn = 1. Define ω = min{ω1, . . . , ωn} > 0 and denote λ = (1 −
ω)−

1−ω
ω > 1.

We now present our two main theorems, which will turn out to be equivalent.

Theorem 7.1.3. Let a1, . . . , an, b1, . . . , bn be non-negative real numbers (n ≥ 2) and let
ω1, . . . , ωn be positive weights with ω1 + · · ·+ ωn = 1. We have

λ

n∑
k=1

ωk(a
2
k − b2k)2 +

(
2

n∑
k=1

ωkakbk

)2

≥
(
a2

1 + b21
)2ω1 · · ·

(
a2
n + b2n

)2ωn
. (7.1)

Equality in (7.1) occurs if and only if we have either a1 = · · · = an = b1 = · · · = bn, or if we

have |a2
k − b2k| =

{
a if k = i0

0 if k 6= i0
and 2akbk =

{
0 if k = i0

b if k 6= i0
for some integer i0 ∈ {1, . . . , n}

with ωi0 = ω and for some a, b ≥ 0 for which λa2 = b2(1− ω).

The existence of the equality condition guarantees the minimality of the optimal coefficient
λ in inequality (7.1). Theorem 7.1.3 is an n-variable generalization of Turkevich’s inequality
[123]; the original inequality of Turkevich can be obtained by letting n = 2 and ω1 = ω2 = 1

2 ,
in which case λ = 2.

To establish Theorem 7.1.3, we will use the following theorem, which is a non-symmetric
equivalent to Theorem 7.1.3.

Theorem 7.1.4. Let a1, . . . , an, b1, . . . , bn be non-negative real numbers (n ≥ 2) and let
ω1, . . . , ωn be positive weights with ω1 + · · ·+ ωn = 1. Then we have

λ
n∑
k=1

ωka
2
k +

(
n∑
k=1

ωkbk

)2

≥
(
a2

1 + b21
)ω1 · · ·

(
a2
n + b2n

)ωn
. (7.2)

7.1. GENERALIZING AM-GM AND TURKEVICH’S INEQUALITY 111

Equality in (7.2) occurs if and only if we have either a1 = · · · = an = 0 and b1 = · · · = bn, or

if we have ak =

{
a if k = i0

0 if k 6= i0
and bk =

{
0 if k = i0

b if k 6= i0
for some integer i0 ∈ {1, . . . , n} with

ωi0 = ω and for some a, b ≥ 0 for which λa2 = b2(1− ω).

Inequality (7.2) is clearly a generalization of the weighted AM-GM inequality, as can be seen
by substituting a1 = · · · = an = 0. That it is a strict generalization, can be seen from the
additional equality conditions, where a1 = · · · = an = 0 does not necessarily hold.

Several specific estimations on the optimal coefficient λ in Theorems 7.1.3 and 7.1.4 can be
made. First, as the following proposition shows, both inequalities (7.1) and (7.2) still hold
when replacing λ with Euler’s constant e.

Proposition 7.1.5. Let n ≥ 2. We have e > λ for any positive weights ω1, . . . , ωn with
ω1 + · · ·+ ωn = 1.

Secondly, the following proposition indicates that the resulting inequalities are still sharp, in
the sense that e cannot be replaced by a smaller constant.

Proposition 7.1.6. Let n ≥ 2. Suppose that C is a positive real constant for which

C
n∑
k=1

ωka
2
k +

(
n∑
k=1

ωkbk

)2

≥
(
a2

1 + b21
)ω1 · · ·

(
a2
n + b2n

)ωn
(7.3)

holds for all positive weights ω1, . . . , ωn with ω1 + · · · + ωn = 1 and for all nonnegative real
numbers a1, . . . , an, b1, . . . , bn. Then C ≥ e.

If ω1 = · · · = ωn = 1
n , we have λ =

(
1 + 1

n−1

)n−1
. This gives our inequalities simple forms

for the uniform weight distribution ω1 = · · · = ωn = 1
n , and it is sharper than replacing

λ =
(

1 + 1
n−1

)n−1
by Euler’s constant e.

Theorems 7.1.3 and 7.1.4 are the main theorems of this section. In Section 7.1.2, we present
a proof of our main theorems, as well as a proof for the propositions above.

7.1.2 Proof of the main theorems and the propositions

In this section we give the proof of our main theorems. First we introduce a useful notation
and we present an observation on the minimal optimal coefficient λ. Given a proper subset I
of {1, . . . , n}, we denote

λI =

(∑
i/∈I

ωi

)−∑
i/∈I ωi∑
i∈I ωi

= f

(∑
i∈I

ωi

)
,

112 CHAPTER 7. MISCELLANEOUS RESULTS

where we define f(x) = (1− x)−
1−x
x . We then recall the definitions from the precious subsec-

tion:
ω = min{ω1, . . . , ωn} > 0 and λ = f(ω) = (1− ω)−

1−ω
ω > 1.

Since the function f is decreasing on]0, 1[, we have that λI ≤ λ for each proper subset
I ⊂ {1, . . . , n}. In particular, because the function f is decreasing,

λ = max{λI | I is a proper subset of {1, . . . , n}}

and this maximum is attained when
∑

i∈I ωi is minimal, i.e. when I = {i0}, where i0 is any
index for which ωi0 = ω. This maximality of the minimal optimal coefficient λ = f(ω) is
crucial to the proof of Theorem 7.1.4. We start by proving Theorem 7.1.4.

Proof of Theorem 7.1.4. Let pi =
√
a2
i + b2i for all integers i, with 1 ≤ i ≤ n. If there is any

integer i, with 1 ≤ i ≤ n, for which pi = 0, then the right hand side equals 0 and the inequality
holds trivially. In this case equality occurs if and only if a1 = · · · = an = b1 = · · · = bn = 0.

Hence we may assume that pi > 0 for all integers i, 1 ≤ i ≤ n. We can re-write the claimed
estimation as

λ
n∑
k=1

ωk(p
2
k − b2k) +

(
n∑
k=1

ωkbk

)2

≥ p2ω1
1 · · · p2ωn

n .

If we now fix the variables p1, . . . , pn, b1, . . . , bi−1 and bi+1, . . . , bn, for some integer i, with
1 ≤ i ≤ n, then we find that the right hand side is a constant, while the left hand side is
a quadratic function of bi with leading coefficient ωi(ωi − λ). Since λ > 1 > ωi > 0, this
leading coefficient is negative, thus the left hand side is a concave function in the variable bi.
Therefore, the smallest value of the left hand side is attained either when bi = 0 or bi = pi.
Since this holds for any integer i, with 1 ≤ i ≤ n, we may assume that bi ∈ {0, pi} for each
integer i, with 1 ≤ i ≤ n.

Let m be the number of integers i, with 1 ≤ i ≤ n, for which bi = 0. We may permute
the indices such that b1 = b2 = · · · = bm = 0 and bm+1 = pm+1 > 0, . . . , bn = pn > 0; we
denote this permutation by σ. With these observations, it is sufficient to prove the following
inequality, for arbitrary positive weights ω1, . . . , ωn with ω1 + · · · + ωn = 1 and arbitrary
positive reals p1, . . . , pn:

λ

m∑
k=1

ωkp
2
k +

(
n∑

k=m+1

ωkpk

)2

≥ p2ω1
1 · · · p2ωn

n . (7.4)

Now there are three cases: either m = 0, m = n, or 1 ≤ m ≤ n − 1. If m = 0, then
(7.4) is simply the AM-GM inequality for p1, . . . , pn. Equality hence occurs if and only if
p1 = · · · = pn, which in the original problem can be written as a1 = · · · = an = 0 and
b1 = · · · = bn.

If m = n, then

λ
n∑
k=1

ωkp
2
k >

n∑
k=1

ωkp
2
k ≥ p

2ω1
1 · · · p2ωn

n ,

7.1. GENERALIZING AM-GM AND TURKEVICH’S INEQUALITY 113

by the AM-GM inequality for p2
1, . . . , p

2
n. Equality cannot be attained in this case.

Hence, we are left with the case 1 ≤ m ≤ n− 1. Define

U = ω1 + · · ·+ ωm, V = ωm+1 + · · ·+ ωn,

A = (pω1
1 · · · p

ωm
m)1/U and B =

(
p
ωm+1

m+1 · · · p
ωn
n

)1/V
.

Applying the weighted AM-GM inequality twice to the left hand side then yields

λ
m∑
k=1

ωkp
2
k +

(
n∑

k=m+1

ωkpk

)2

≥ λ · UA2 + (V B)2.

On the other hand, using the same notations, the right hand side of (7.4) can be written as
p2ω1

1 · · · p2ωn
n = A2UB2V and hence we are left to prove that

λ · UA2 +
(
V B

)2 ≥ A2UB2V .

Now, let I = {σ−1(1), . . . , σ−1(m)} in the original definition of λI , then at this point in
the proof (after rearranging our indices) we have σ(I) = {1, 2, . . . ,m}. Hence, λσ(I) =

(1− U)−
1−U
U = f(U). Then, the maximality of λ = f(ω) implies

λ ≥ λσ(I) = (1− U)−
1−U
U =

(
1

V

)V
U

.

Finally, we can combine this with the weighted AM-GM inequality to deduce

λ · UA2 + (V B)2 ≥
(

1
V

)V/U · UA2 + (V B)2

= U ·
(

A2

V V/U

)
+ V · (V B2)

≥
(

A2

V V/U

)U
· (V B2)V

= A2UB2V

as claimed. This proves inequality (7.2).

Equality in the above occurs only if λ = λσ(I) =
(

1
V

)V
U and λA2 = V B2. Filling in the

definitions of U and V , we see that λ = λσ(I) implies that σ(I) = {i0} with ωi0 = ω. Hence,
this is exactly the claimed equality condition; this proves the ‘only if’ part. For the ‘if’ part,
let I = {i0} and let a, b be nonnegative real numbers satisfying the given conditions. Denoting
u =

∑
k∈I ωk = ω and v = 1− u =

∑
k/∈I ωk = 1−ω, we have λ = λI = v−v/u and we have to

show that v−v/uua2 + v2b2 = a2ub2v, which is equivalent to u
(

a2

vv/u

)
+ v(vb2) = a2ub2v. Since

we are given that λIa
2 = b2

∑
k/∈I ωk, we know that a2

vv/u
= b2v, yielding

u

(
a2

vv/u

)
+ v(vb2) = vb2 = (vb2)u · (vb2)v =

(
a2

vv/u

)u
· (vb2)v = a2ub2v.

Hence the statement about the equality condition follows.

114 CHAPTER 7. MISCELLANEOUS RESULTS

We have proven Theorem 7.1.4. Theorem 7.1.3 is a straightforward corollary now.

Proof of Theorem 7.1.3. For each integer i, with 1 ≤ i ≤ n, we substitute (ai, bi) by (|a2
i −

b2i |, 2aibi) in inequality (7.2). Then inequality (7.2) in Theorem 7.1.4 reduces to inequality
(7.1) in Theorem 7.1.3.

Now we prove the propositions from Section 7.1.1.

Proof of Proposition 7.1.5. We use the inequality et > 1 + t for t > 0 to deduce

λ = (1− ω)−
1−ω
ω =

(
1

1− ω

) 1−ω
ω

=

(
1 +

ω

1− ω

) 1−ω
ω

<
(
e

ω
1−ω
) 1−ω

ω
= e,

as claimed.

Proof of Proposition 7.1.6. Substituting ω1 = · · · = ωn = 1
n , b1 = a2 = · · · = an = 0,

a1 =
(
1− 1

n

)n
2 and b2 = · · · = bn = 1 in inequality (7.3), yields

C
(

1− 1

n

)n
+

(
n− 1

n

)2

≥ 1− 1

n
,

or equivalently,

C ≥
(

1 +
1

n− 1

)n−1

.

Taking the limit for n→ +∞, we meet the desired estimation C ≥ e.

7.2 Large weight code words for PG(n, q)

In this section, we will focus on the large weights of the linear codes and dual linear codes
arising from finite projective spaces. This subsection is joint work with Jira Limbupasiriporn
and Leo Storme, and the results were published in [94].

7.2.1 Introduction and preliminaries

For several applications, it can be useful to not only study the code words of smallest weight,
but also those of largest weight. It turns out that major differences between the results for q
even and for q odd arise.

• For q even, the study of large weight code words in Ck(n, q)
⊥ reduces to the theory

of minimal blocking sets with respect to the k-spaces of PG(n, q), odd-blocking the
k-spaces. This shows that the maximum weight is equal to qn + · · ·+ qn−k+1.

7.2. LARGE WEIGHT CODE WORDS FOR PG(N,Q) 115

• For q odd, in a lot of cases, the maximum weight of the code Ck(n, q)
⊥ is equal to

qn + · · · + q + 1, but some exceptions arise to this result. In particular, the maximum
weight of the code C1(n, 3)⊥ is equal to 3n + 3n−1. In general, the problem of whether
the maximum weight of the code Ck(n, 3)⊥ is equal to 3n + · · · + 3 + 1 reduces to the
problem of the existence of sets in PG(n, 3) intersecting every k-space in 2 (mod 3)
points. For k > n/2, such sets intersecting every k-space in 2 (mod 3) points trivially
exist as the union of two disjoint (n − k)-spaces intersects every k-space in 2 (mod 3)
points. For k = 1, such sets do not exist and for 2 ≤ k ≤ n/2, the existence of such sets
is an open problem.

Notation 7.2.1. We denote by PG(n, q) the n-dimensional projective space over the finite
field Fq. For n = 2, we call this a projective plane and write PG(2, q). The point set of
PG(n, q) is denoted by P.

Definition 7.2.2. A set S ⊆ P in PG(n, q) is called a blocking set with respect to the k-spaces
if every k-space contains at least one point of S. If it is clear from the context what k is, we
will simply call S a blocking set. If there is no s ∈ S such that S \ {s} is also a blocking set,
then S is called minimal. If every k-space contains an odd number of points of S, then we
say that S is odd-blocking the k-spaces.

Definition 7.2.3. An element of the vector space FPp , which consists of the mappings P → Fp,
can be seen as a vector of length |P| consisting of elements of Fp. For a given subset π ⊆ P,
let vπ be its characteristic function; this is a {0, 1} mapping which is 1 for points in π and
0 for points outside of π. This vector vπ is called the incidence vector of π. Often, we will
identify π with its incidence vector and write π instead of vπ. The support supp(c) of an
element c ∈ FPp is the set of points which is mapped to a nonzero element of Fp.

Notation 7.2.4. The code Ck(n, q), q = ph with p prime and h ≥ 1, is the linear code over
Fp generated by the incidence vectors of the k-dimensional subspaces of PG(n, q). Its dual,
the code Ck(n, q)

⊥, is then the set of vectors c ∈ FPp with c · vπ = 0 (over Fp) for each k-space

π, where · denotes the standard inner product. In other words, a vector c ∈ FPp belongs to

Ck(n, q)
⊥ if and only if

∑
r∈π cr = 0 for every k-space π of PG(n, q).

Definition 7.2.5. A t (mod p) set with respect to the k-spaces of PG(n, q), with q = ph

and p prime, is a set S which intersects every k-space of PG(n, q) in t (mod p) points. By
convention, we let 0 ≤ t ≤ p− 1.

7.2.2 The case q even

In this section, we will study the code words of large weight in Ck(n, q)
⊥, when q is even.

We are studying a binary code, hence a code word is uniquely identified by its support. In
particular, the support supp(c) of a code word c ∈ Ck(n, q)⊥ of large weight corresponds to
a large set of points, intersecting every k-space in an even number of points. Since every
k-space contains an odd number of points, the complement S of this set is a small set which
intersects every k-space in an odd number of points. In particular, S contains at least one
point of every k-space, hence it is a blocking set with respect to the k-spaces.

116 CHAPTER 7. MISCELLANEOUS RESULTS

Theorem 7.2.6. The maximum weight of Ck(n, q)
⊥, q even, is qn + · · · + qn−k+1, and all

the code words of this weight are the incidence vector of the complement of an (n− k)-space
of PG(n, q).

Proof. The incidence vector of the complement of any (n−k)-space π is a code word of weight
qn + · · ·+ qn−k+1 of Ck(n, q)

⊥: since each projective k-space intersects this (n− k)-space in
a nonempty projective subspace, this intersection contains 1 (mod q) points, and hence its
complement in π contains 0 (mod q) points. Therefore, the maximum weight of Ck(n, q)

⊥ is
at least qn + · · ·+ qn−k+1.

Since the complement S of the support of a code word of Ck(n, q)
⊥ is a blocking set with

respect to the k-spaces, we have |S| ≥ qn−k + · · · + q + 1 by the Bose-Burton theorem [19],
and if equality occurs, then S is an (n − k)-space. This shows that the bound is sharp, and
it characterizes the code words of weight qn + · · ·+ qn−k+1.

The Bose-Burton result on blocking sets is crucial in the proof of Theorem 7.2.6, and this
is not the only place where we will run into a connection with blocking sets. The following
theorem improves [130, Theorem 3.1] for p = 2, for the special case of odd-blocking sets.

Theorem 7.2.7. Let S be a set of projective points, odd-blocking the k-spaces of PG(n, q), q
even. If |S| ≤ 2(qn−k + qn−k−1 + · · ·+ q + 1), then S is a minimal blocking set.

Proof. Assume by contraposition that S is not minimal, i.e. there is a point p ∈ S such that
S \ {p} still blocks the k-spaces. Hence, every k-space through p is blocked by S in at least
2 points. But it is also blocked by an odd number of points of S, so every k-space through p
contains at least 3 points of S.

Now, there are two cases:

• either there exists a (k − 1)-space π through p which contains no other points of S.
Every k-space through π contains by assumption at least two other points of S, hence
each of the qn−k + qn−k−1 + · · · + q2 + q + 1 different k-spaces through π contains at
least 2 points of S outside of π. Since two such k-spaces only intersect in π, this means
that |S| ≥ 1 + 2(qn−k + qn−k−1 + · · ·+ q2 + q + 1), a contradiction.

• either every (k − 1)-space through p contains at least one other point of S. Let now
i be the largest integer (with necessarily i < k − 1) for which there exists an i-space
through p which contains no other points of S. Such an integer i must exist, since
i = 0 clearly has this property and i = k − 1 does not. Let now π be such an i-space
through p, containing no other points of S. Because of the maximality of i, each of the
qn−i−1 + qn−i−2 + · · ·+ q2 + q+ 1 different (i+ 1)-spaces through π must again contain
at least one other point of S. Since two such (i + 1)-spaces only intersect in π, this
means that |S| ≥ 1 + (qn−i−1 + qn−i−2 + · · · + q2 + q + 1). Since i ≤ k − 2 and q ≥ 2,

7.2. LARGE WEIGHT CODE WORDS FOR PG(N,Q) 117

this implies that

|S| ≥ 1 + (qn−i−1 + qn−i−2 + · · ·+ q2 + q + 1)
≥ 1 + (qn−k+1 + qn−k + · · ·+ q2 + q + 1)
≥ 1 + (2qn−k + 2qn−k−1 + · · ·+ 2q + 2 + 1)
> 2(qn−k + qn−k−1 + · · ·+ q + 1),

a contradiction.

Both cases lead to a contradiction and hence S must be minimal.

The preceding theorem implies that the study of the code words in Ck(n, q)
⊥, q even, of weight

larger than or equal to qn + · · ·+ qn−k+1 − qn−k − · · · − q − 1 is reduced to the study of the
minimal blocking sets with respect to the k-spaces of PG(n, q), odd-blocking the k-spaces.
Some important results on minimal blocking sets with respect to the k-spaces of PG(n, q)
were obtained by Szőnyi [132], Szőnyi and Weiner [130], and Sziklai [129].

Let S(q) be the set of possible sizes of minimal blocking sets in PG(2, q) with cardinality
smaller than 3

2(q + 1), then [129, Corollary 5.1 and 5.2] yield the following summarizing
theorem for q even.

Theorem 7.2.8. Let c be a code word of the code Ck(n, q)
⊥, q even, of weight larger than

qn + · · ·+ q+ 1−
√

2qn−k. Then the weight of c equals qn + · · ·+ q+ 1−x, with x ∈ S(qn−k).
Moreover, c is the incidence vector of the complement of a small minimal blocking set, odd-
blocking the k-spaces.

Regarding larger minimal blocking sets with respect to the k-spaces of PG(n, q), not many
results are known. Here, there are still many open problems, including results on the cardi-
nalities of these minimal blocking sets.

7.2.3 Large weight constructions

From now on, we will assume that q is odd. We consider the p-ary linear code of points and
k-spaces of PG(n, q), with q = ph and with p > 2 prime. A code word of the code Ck(n, q)

⊥

corresponds to a map ϕ from the set of projective points to Fp, such that for each k-space
Π we have

∑
p∈Π ϕ(p) = 0 as an element of Fp. The image of a point under ϕ is called the

coefficient of that point.

In this section, we try to determine when the maximum possible Hamming weight of this
code is attained, i.e. when there exist code words of weight qn + · · ·+ q+ 1. In case this does
not work, we provide constructions to attain sharp lower bounds on the maximum weight of
these codes. Surprisingly, we will again find several strong links with small minimal blocking
sets. We begin with a useful lemma.

Lemma 7.2.9. Let {Bi}i∈I be a family of 1 (mod p) sets with respect to the k-spaces of
PG(n, q), such that no point is contained in more than p−1 of these sets. Then the maximum

118 CHAPTER 7. MISCELLANEOUS RESULTS

weight of Ck(n, q)
⊥ is at least

qn + qn−1 + · · ·+ q + 1−

∣∣∣∣∣⋂
i∈I

Bi

∣∣∣∣∣ .
Proof. For each i ∈ I, define c(i) to be the incidence vector of the complement of Bi. Since Bi
intersects every k-space in 1 (mod p) points, and every k-space has 1 (mod p) points itself,
the complement of Bi intersects every k-space in 0 (mod p) points and hence c(i) is a code
word of Ck(n, q)

⊥.

Now, c :=
∑p−2

i=0 c
(i) is a code word of Ck(n, q)

⊥, of which we will now determine its weight.
The coefficient in c of each point consists of a sum of p − 1 elements, and each element is
either 0 or 1. Hence, a zero coefficient in the sum c cannot be obtained by summing up
ones. Therefore, if a point has zero coefficient in the sum c, it has to be zero in each c(i),
which means that it should lie in each of the sets Bi. Therefore, the weight of c is exactly
qn + qn−1 + · · ·+ q + 1−

∣∣⋂
i∈I Bi

∣∣, as claimed.

The easiest example of a small minimal blocking set with respect to the k-spaces, is an m-space
with m ≥ n− k. This yields us the following lower bounds on the maximum weight.

Theorem 7.2.10. The maximum weight of Ck(n, q)
⊥, q = ph, p prime, h ≥ 1, is

• exactly qn + qn−1 + · · ·+ q + 1 if (n+ 1)/k ≤ p− 1,

• at least qn + qn−1 + · · ·+ qn−k(p−1)+1 if (n+ 1)/k > p− 1.

Proof. Let m :=
⌈
n+1
k

⌉
. Define as follows subspaces H0, . . . ,Hm−1 of PG(n, q). For i =

0, 1, . . . ,m−2, let Hi be the (n−k)-space with equations Xik = Xik+1 = · · · = X(i+1)k−1 = 0.
Let Hm−1 be the k(m− 1)-space with equations Xk(m−1) = Xk(m−1)+1 = · · · = Xn = 0.

If (n + 1)/k ≤ p − 1, then S := {H0, . . . ,Hm−1} is a set of 1 (mod p) sets with respect to
the k-spaces. The intersection of all sets in S is trivial, because the coordinates (X0, . . . , Xn)
of any point in

⋂m−1
i=0 Hi must have X0 = · · · = Xk−1 = 0, Xk = · · · = X2k−1 = 0, . . .,

Xk(m−1) = Xk(m−1)+1 = · · · = Xn = 0 and hence it is the zero vector, which is not a point of
PG(n, q). Since there are only d(n + 1)/ke ≤ p− 1 sets in S, each point is indeed contained
in at most p− 1 sets of S. Lemma 7.2.9 yields the desired result.

If (n+1)/k > p−1, then S := {H0, . . . ,Hp−2} is a set of 1 (mod p) sets with respect to the k-
spaces. Since S only contains p−1 sets, each point is contained in at most p−1 sets of S. The
intersection of all sets in S consists of all points (X0, . . . , Xn) for which X0 = · · · = Xk−1 = 0,
Xk = · · · = X2k−1 = 0, . . ., Xk(p−2) = · · · = Xk(p−1)−1 = 0. This is a projective subspace of

dimension n − k(p − 1) in PG(n, q), which has qn−k(p−1) + qn−k(p−1)−1 + · · · + q + 1 points.
Lemma 7.2.9 yields the desired result.

If (n + 1)/k ≤ p − 1, then a maximum weight of qn + qn−1 + · · · + q + 1 is reached. If
(n + 1)/k > p − 1, the contrary is not necessarily true. For example, we have the following

7.2. LARGE WEIGHT CODE WORDS FOR PG(N,Q) 119

sufficient condition for the maximum weight qn + qn−1 + · · · + q + 1 to appear, based on t
(mod p) sets.

Theorem 7.2.11. If a t (mod p) set exists with respect to the k-spaces of PG(n, q), with
t 6≡ 0, 1 (mod p), then the maximum weight of Ck(n, q)

⊥ is qn + qn−1 + · · ·+ q + 1.

Proof. Let S be such a set and let T be its complement. Assign coefficient 1 to all points in
T and assign coefficient 1− t−1 to all points in S, where the inversion of t is done over Fp. We
will show that this defines a code word of Ck(n, q)

⊥. Since we are given that every k-space
intersects S in t (mod p) points and T in p+ 1− t (mod p) points, the sum of all coefficients
in every k-space is t · (1− t−1) + (p+ 1− t) · 1 ≡ 0 (mod p), so c is a code word of Ck(n, q)

⊥.
Since 1 and 1− t−1 are nonzero elements of Fp, c has full weight, as claimed.

Sometimes the existence of t (mod p) sets is trivial, for example when k ≥ n+1
2 .

Corollary 7.2.12. If k ≥ n+1
2 , two skew (n − k)-spaces exist in PG(n, q) and hence both

Theorem 7.2.10 and Theorem 7.2.11 show that a maximum weight of qn + qn−1 + · · ·+ q + 1
is attained for Ck(n, q)

⊥.

In other cases it is however not at all obvious. Even in the planar case (where n = 2 and
k = 1), this is not trivial. Since n+1

k = 3, the maximum weight is attained for p ≥ 5 by
Theorem 7.2.10, but for p = 3, no such easy construction is known.

Lemma 7.2.13. If q = 3h, where h > 1, then there exists a non-square element in Fq \ {x2−
x|x ∈ Fq}.

Proof. Let f be the mapping of Fq into itself defined by f(x) = x2 − x for all x ∈ Fq. Then
f(1 − x) = (1 − x)2 − (1 − x) = x2 − x for all x ∈ Fq, so we have f(x) = f(1 − x) for all
x ∈ Fq. Observe that for any x ∈ Fq, 1− x = x if and only if 2x = 1, i.e. if and only if x = 2.
Thus the cardinality of Im(f) is q−1

2 + 1 = q+1
2 .

We will show that there exists an element in Fq \ Im(f) which is non-square. Suppose, to
the contrary, that every non-square element of Fq belongs to Im(f). Then Im(f) is the set
of zero and all non-square elements of Fq. Let x ∈ Fq \ F3 and y = 2− x. Then

f(x)f(y) = (x2 − x)(y2 − y) = (xy)2 − xy(y + x) + xy
= (xy)2 − 2xy + xy = (xy)2 − xy
= f(xy).

Since both f(x) and f(y) are non-square, it follows that f(x) = ωi and f(y) = ωj for
some odd integers i and j, where ω is a primitive element for Fq. Hence, i + j is even and
f(xy) = f(x)f(y) = ωi+j is square, contradiction.

Lemma 7.2.14 ([59, Lemma 13.8]). In PG(2, q), where q = 3h, the set {(1, x, x3) | x ∈
Fq} ∪ {(0, x, x3) | x ∈ Fq \ {0}} is a minimal blocking set which intersects every line in 1
(mod 3) points.

120 CHAPTER 7. MISCELLANEOUS RESULTS

Theorem 7.2.15. If q = 3h, where h > 1, then PG(2, q) contains a 2 (mod 3) set of size
3q − 1.

Proof. By Lemma 7.2.13, there exists a non-square element b in Fq\{x2−x | x ∈ Fq}. Consider
the mapping ϕ : (x, y, z) 7→ (z, y + bx, x) from PG(2, q) into itself. This is a collineation of
PG(2, q).

Now let

S = {(1, x, x3) | x ∈ Fq} ∪ {(0, x, x3) | x ∈ Fq \ {0}}.

Clearly, all points in the first set are distinct and disjoint from the second set, hence this part
contains q points of S. For the second part, points may coincide since projective points are
only defined up to a nonzero scalar multiple. In particular, one has (0, x, x3) = (0, y, y3) if

and only if x3

x = y3

y , hence if and only if
(
x
y

)2
= 1. Therefore, each point appears twice in

this second set, making the total cardinality of S equal to q + q−1
2 .

By Theorem 7.2.14, S is a blocking set intersecting every line in 1 (mod 3) points, and hence,
so is T = ϕ(S). Note that

T = {(x3, x+ b, 1) | x ∈ Fq} ∪ {(x3, x, 0) | x ∈ Fq \ {0}}.

Now we look at the union of S and T . If S and T are disjoint, then the union of these sets

gives a 2 (mod 3) set of cardinality 2
(
q + q−1

2

)
= 3q − 1. We will show that S and T are

disjoint. Suppose by contradiction that there exists a point P in the intersection of S and T .
Clearly, this is impossible in all but the following cases.

• If P belongs to the first sets of S and T , i.e. P = (1, x, x3) = (y3, y + b, 1) for some
x, y ∈ Fq\{0}, then since (1, x, x3) = (y3, xy3, (xy)3), we obtain the equation xy3 = y+b
and (xy)3 = 1, and the latter implies that xy = 1, which gives y2 = y+ b or b = y2− y,
a contradiction.

• If P belongs to the second set of S and to the first set of T with zero element in Fq,
i.e. P = (0, x, x3) = (0, b, 1) for some x ∈ Fq \ {0}, then since (0, x, x3) = (0, x−2, 1), it
follows that b = x−2 which contradicts the fact that b is non-square.

Hence, S and T are disjoint, and the result follows.

So, the plane code C1(2, q)⊥, with q > 3 odd, indeed has maximum weight q2 + q + 1.

7.2.4 Upper bounds on the maximum weight

In this section, we will provide some upper bounds on the maximum weight. From the
preceding section, one might get the feeling that the study for q odd is not really interesting,
as one always attains the maximum weight, or gets at least very close to the maximum

7.2. LARGE WEIGHT CODE WORDS FOR PG(N,Q) 121

weight. However, this is not correct, as we will now reveal upper bounds which show quite a
gap relative to qn + qn−1 + · · ·+ q + 1.

First we show that if the characteristic of the field is 3, then the converse of Theorem 7.2.11
holds as well.

Theorem 7.2.16. If p = 3, the maximum weight qn + qn−1 + · · · + q + 1 is attained in
Ck(n, q)

⊥ if and only if there exists a 2 (mod 3) set with respect to the k-spaces of PG(n, q).

Proof. The ‘if’ part follows from Theorem 7.2.11. For the ‘only if’ part, let c be a code word
of weight qn + qn−1 + · · · + q + 1 in Ck(n, q)

⊥. Let S be the set of points with coefficient
1 in c and let T be its complement, i.e. the set of points with coefficient 2 in c. Now fix
an arbitrary k-space π. Let s and t be respectively the number of points of S and T in π.
Clearly, s + t ≡ 1 (mod p). Moreover, since c is a code word, s + 2t ≡ 0 (mod p). Solving
this, we get s ≡ t ≡ 2 (mod p), i.e., S and T are 2 (mod 3) sets with respect to the k-spaces
of PG(n, q).

For q = 3, this yields a negative result.

Lemma 7.2.17. The projective plane PG(2, 3) does not have a 2 (mod 3) set with respect to
the lines.

Proof. Let q = 3. Clearly, a 2 (mod 3) set S has two points on every line. In particular, let
r /∈ S, then each of the 4 lines through r contains two points of S, i.e. |S| = 8. However, the
complement T of S is also a 2 (mod 3) set, i.e. |T | = 8. But there are only 13 points in this
plane, a contradiction.

Corollary 7.2.18. The linear code C1(2, 3)⊥ does not have code words of weight q2 + q+ 1 =
13. Hence, the maximum weight of C1(2, 3)⊥ is q2 +q. In other words, the second bound from
Theorem 7.2.10 is sharp for q = 3, n = 2, k = 1.

Now we prove a reduction lemma. Again, it reveals a link with blocking sets and makes use of
the Bose-Burton Theorem [19]. It will greatly extend the gap between the actual maximum
weight and qn + qn−1 + · · ·+ q + 1 in some cases.

Lemma 7.2.19. If there exists an integer m with k ≤ m ≤ n, for which Ck(m, q)
⊥ does not

attain full weight, then Ck(n, q)
⊥ has maximum weight at most qn + · · ·+ qn−m+1.

Proof. Let c be a code word of maximum weight in Ck(n, q)
⊥. Let S be the set of points on

which c is zero, i.e. S is the complement of supp(c). If there exists an m-space Π disjoint from
S, then all points in Π correspond to nonzero positions in the code word. Since

∑
r∈π cr = 0

for every k-space π of PG(n, q), this also holds for all k-spaces π ⊆ Π. Since the positions
corresponding to points outside of Π are not relevant for these equations, they still hold
when replacing them by 0, hence the restriction of c to the positions in Π is a code word of
Ck(m, q)

⊥. But Ck(m, q)
⊥ does not attain full weight; this contradicts our assumption.

122 CHAPTER 7. MISCELLANEOUS RESULTS

Hence, each m-space contains at least one point of S, which means that S is a blocking set
with respect to the m-spaces of PG(n, q), and so, by the Bose-Burton Theorem [19], |S| has
at least the size of an (n − m)-space, i.e. |S| ≥ qn−m + · · · + q + 1. Hence, the maximum
weight of Ck(n, q)

⊥ is at most qn + · · ·+ qn−m+1.

Combining Corollary 7.2.18 and Lemma 7.2.19, with q = 3, m = 2 and k = 1, we get the
following result.

Theorem 7.2.20. The maximum weight in C1(n, 3)⊥ is 3n + 3n−1.

This is far below the expected value 3n+3n−1 + · · ·+3+1. The maximum weight of Ck(n, 3)⊥

is still an open problem for 1 < k < n+1
2 .

Remark 7.2.21. The preceding results show that the study of 2 (mod 3) sets in PG(n, q),
q = 3h, plays a crucial role for the investigation of the large weight code words of the code
Ck(n, q)

⊥. We therefore propose to investigate the existence problem of these 2 (mod 3) sets
in the cases not discussed in this section.

Another interesting problem is to determine the exact maximum weight of the codes Ck(n, q)
⊥,

q odd, not yet discussed in Theorem 7.2.10 and in the remaining theorems of this section. A
way to prove that the maximum weight of Ck(n, q)

⊥, q odd, is equal to qn + · · ·+ q + 1 is to
prove the existence of t (mod p) sets with respect to the k-spaces of PG(n, q), with t 6≡ 0, 1
(mod p), as indicated in Theorem 7.2.11. It is unknown whether one can ever obtain a larger
weight than with the construction in Lemma 7.2.9.

7.3 Blocking sets of the Hermitian unital

It is known that the classical unital arising from the Hermitian curve in PG(2, 9) does not
have a 2-coloring without monochromatic lines. In this section, we show that for q ≥ 4,
the Hermitian curve in PG(2, q2) does possess 2-colorings without monochromatic lines. We
present general constructions and also prove a lower bound on the size of blocking sets in the
classical unital. This section is joint work with A. Blokhuis, A.E. Brouwer, D. Jungnickel, V.
Krčadinac, S. Rottey, L. Storme and T. Szőnyi and is submitted to Finite Fields Appl. [16].

7.3.1 Introduction

In any point-line geometry (or, much more generally, any hypergraph) a blocking set is a
subset B of the point set that has nonempty intersection with each line (or each edge).

Blocking sets in the finite projective planes PG(2, q) have been investigated in great detail
[129, 132]. Since in a projective plane any two lines meet, every set containing a line is a
blocking set. A blocking set of a projective plane is called non-trivial or proper when it does
not contain a line. We shall also call blocking sets in other point-line geometries proper when
they do not contain a line. By definition the complement of a proper blocking set is again a

7.3. BLOCKING SETS OF THE HERMITIAN UNITAL 123

proper blocking set, and every 2-coloring (vertex coloring with two colors such that no line is
monochromatic) provides a complementary pair of proper blocking sets.

A blocking set is minimal when no proper subset is a blocking set. A blocking set in PG(2, q)
is small when its size is smaller than 3(q + 1)/2.

This latter definition was motivated by the important results of Sziklai and Szőnyi, who
proved a 1 (mod p) result for small minimal blocking sets B in PG(2, q).

Theorem 7.3.1 (Sziklai and Szőnyi [129, 132]). Let B be a small minimal blocking set in
PG(2, q), q = ph, p prime, h ≥ 1. Then B intersects every line in 1 (mod p) points.

If e is the largest integer such that B intersects every line in 1 (mod pe) points, then e is a
divisor of h, and every line of PG(2, q) that intersects B in exactly 1 + pe points intersects B
in a subline PG(1, pe).

In this section, we investigate blocking sets in the classical unital U arising from the Hermitian
curve H(2, q2) of PG(2, q2). The lines of the unital are the intersections with U of projective
lines that meet U in at least 2 (and then precisely q + 1) points.

This research is in part motivated by [2], where an exhaustive search for the unitals of order
3 containing proper blocking sets was performed. That search showed that there are 68806
distinct 2-(28, 4, 1) unital designs containing a proper blocking set. The classical unital, arising
from the Hermitian curve in PG(2, 9), does not contain a proper blocking set. This poses the
question of blocking sets in the Hermitian curves H(2, q2) of PG(2, q2) for general q.

A second motivation is given by the Shift-Blocking Set Problem discussed in Subsection 7.3.1
below.

We show that for q ≥ 4, the Hermitian curves H(2, q2) contain proper blocking sets. We
present general constructions of (proper) blocking sets and also prove a lower bound on the
size. The lower bound is obtained via the polynomial method, and makes use of a 1 (mod p)
result which arises from the applied techniques.

Green-black colorings

Let a proper green-black coloring of the plane PG(2, n) be a coloring of the points with the
colors green and black such that every point P is on a line L that is completely green, with
the possible exception of the point P itself. At least how many green points must there be, or,
equivalently, at most how many black points? This question is related to the Flat-Containing
and Shift-Blocking Set Problem [18].

By definition, every black point is on a tangent, that is, a line containing no further black
point. This immediately gives the upper bound n3/2 + 1 for the number of black points [67].

In order to find examples close to this bound, let n = q2, and let U be the set of points (of
size q3 + 1) of a classical unital in PG(2, n), and let B be a blocking set in U . Then we can
take U \ B as the set of black points, while the points of B, and all the points outside of U ,

124 CHAPTER 7. MISCELLANEOUS RESULTS

q ming(q) minb(q) minpb(q)

2 3 5 -
3 10 13 -
4 15 25 26

Table 7.1: the smallest sizes, for small q

are green. Indeed, for a point P of the unital, we can take for L the tangent to U at P . For
a point P outside of U , the line M = P⊥ meets U in a line of U that is blocked by B in a
(green) point Q, and we can take for L the (entirely green) tangent line at Q.

This motivates the search for small blocking sets in U . In fact what is needed here is something
slightly more general. Let us call a subset S of U green when U \ S can be taken as the set
of black points in a proper green-black coloring. Then blocking sets of the unital are green.
As we shall see, there are also other green sets.

Small q

Let ming(q), minb(q) and minpb(q) be the sizes of the smallest green set, blocking set and
proper blocking set, respectively, in the classical unital U of PG(2, q2). Clearly, ming(q) ≤
minb(q) ≤ minpb(q). For small q, these values can be found in Table 7.1.

That is, the classical unital does not have a proper blocking set for q = 2, 3, and for q = 4,
there are proper blocking sets, but the smallest blocking sets contain a line. A green set that
does not contain a (unital) line is a blocking set. The smallest green sets contain lines.

We describe the green examples. Note that a subset S of U is green precisely when for each
non-tangent line L disjoint from S, the nonisotropic point L⊥ lies on a non-tangent line M ,
where M ∩ U ⊆ S.

For q = 2, the unital is an affine plane AG(2, 3). Pick for S an affine line. The two parallel
lines have perps that lie on this line.

For q = 3, let P be a point of the unital, and let K,L,M be three unital lines on P without
transversal. Then S = K ∪ L ∪M has size 10 and is green.

For q = 4, let P,Q,R be an orthogonal basis: three mutually orthogonal nonisotropic points.
The three lines PQ, PR and QR meet U in 5 + 5 + 5 = 15 points, and one checks that this
15-set is green.

Let minip(q) be the size of the smallest blocking set of the Miquelian inversive plane of order
q (the S(3, q + 1, q2 + 1) formed by the points and circles on an elliptic quadric in PG(3, q)).
Below, in Subsection 7.3.3, we shall see that minb(q) ≤ q(minip(q)− 1) + 1. For small q, the
values of minip(q) can be found in Table 7.2.

7.3. BLOCKING SETS OF THE HERMITIAN UNITAL 125

q 2 3 4 5 7 8

minip(q) 3 5 8 10 17 20

Table 7.2: minip(q), for small q

7.3.2 A lower bound on the size of a blocking set of the Hermitian curve

Consider PG(2, q2). We denote the points by (x : y : z) and the lines by [t : u : v], where the
point (x : y : z) and the line [t : u : v] are incident when tx+ uy + vz = 0.

The map (x : y : z) 7→ [zq : yq : xq] defines a unitary polarity. Points of the associated unital
U are the points (x : y : z) satisfying (x : y : z)I[zq : yq : xq], so xzq + yq+1 + zxq = 0. The
tangents of U are the lines [t : u : v] satisfying the same equation, so tvq + uq+1 + vtq = 0.

The ‘infinite horizontal’ point ∞ := (1 : 0 : 0) belongs to U . Its pole ∞⊥, the tangent to U in
∞, is the line [0 : 0 : 1], i.e., the line ‘at infinity’ Z = 0.

We wish to block the lines of the unital, i.e., the subsets of size q + 1 of U that are of the
form ` ∩ U for some line ` of PG(2, q2). The main result of this section is a lower bound for
the size of a blocking set.

Theorem 7.3.2. Let S be a blocking set of a Hermitian unital U in PG(2, q2), then |S| ≥
(3q2 − 2q − 1)/2.

If a subset of U blocks all the projective lines, then also the tangents to U , and hence the
subset must be all of U (and have size q3 + 1). Also, U ∩∞⊥ = {∞}. Therefore our result
follows immediately from the following theorem.

Theorem 7.3.3. Let S be a minimal set of points of PG(2, q2) that blocks all projective
lines that are not tangent to U , but not all projective lines. If S ∩ ∞⊥ = {∞}, then |S| ≥
(3q2 − 2q − 1)/2.

For example, let L be a secant line to U containing ∞. Let P be a nonisotropic point of L.
One may take for S the set of all points of L except P , together with some point on each of
the q2 − q − 1 other secant lines on P . Now |S| = 2q2 − q − 1.

Proof: Since a unital point outside of S lies on q2 unital lines, |S| ≥ q2, and it is easy to see
that equality cannot hold. Put B := {(a, b) | (a : b : 1) ∈ S}, so that |S| = |B| + 1, and let
|B| = q2 − q + k.

Part 1: Polynomial reformulation.

The set S is a blocking set of U if and only if the polynomial H(U, V) defined by

H(U, V) = C(U, V)R(U, V) = (V q + V + U q+1)
∏

(a,b)∈B

(V + a+ bU)

126 CHAPTER 7. MISCELLANEOUS RESULTS

(with C(U, V) = V q + V + U q+1) vanishes identically in Fq2 × Fq2 .

Indeed, a line is non-horizontal (does not pass through ∞) precisely when it is of the form
[1 : u : v]. Such a line is a tangent to U when C(u, v) = 0 and passes through the point (a, b)
when a+ bu+ v = 0. So if S is a blocking set, then H(u, v) = 0 for all u, v ∈ Fq2 . Conversely,
if H(u, v) = 0 for all u, v ∈ Fq2 and [1 : u : v] is not a tangent, so that C(u, v) 6= 0, then
v + a+ bu = 0 for some (a, b) ∈ B, so that this line is blocked by B. We shall use later that
the number of points of S on the non-horizontal line [1 : u : v] (plus 1 if it is a tangent) equals
the multiplicity of v as a zero of H(u, V).

Since H(U, V) vanishes identically, it belongs to the ideal generated by U q
2 −U and V q2 −V ,

so
H(U, V) = C(U, V)R(U, V) = (V q2 − V)f(U, V) + (U q

2 − U)g(U, V).

We may suppose that |S| < 2q2 − q (the lower bound we are proving is smaller), so that H
has degree smaller than 2q2. All terms involving U q

2
in f can be moved over to g. Then

no cancellation occurs, and f and g have total degree at most k + 1. Since H has a term
U q+1V q2−q+k that must be from (V q2 − V)f , it follows that f has degree precisely k + 1.
Since degV H = q2 + k, it follows that degV f = k.

If f and g have a common factor r(U, V), then the polynomial H/r vanishes identically. If r
is linear, this means that we can delete a point from S and find a smaller blocking set. If r is
not linear, then it must equal C (up to a constant factor) since C is irreducible. This would
mean that S is a blocking set of the entire plane PG(2, q2), contrary to our hypothesis. So f
and g are coprime.

Part 2: Let u, v ∈ Fq2. If f(u, v) = 0, then also g(u, v) = 0.

For fixed u ∈ Fq2 ,

H(u, V) = C(u, V)R(u, V) = (V q2 − V)f(u, V),

since uq
2 − u = 0. It follows that v is (at least) a double root of H(u, V). Since C(u, V) =

V q + V + uq+1 has derivative 1, v is at most a single zero of C(u, V). For each factor r(U, V)
of H(U, V), if v is a zero of r(u, V), then u is a zero of r(U, v). It follows that u is (at least)
a double root of H(U, v) = C(U, v)R(U, v) = (U q

2 − U)g(U, v), and hence g(u, v) = 0.

Part 3:

Observe that the nonzero polynomial f(u, V) is fully reducible (factors into linear factors)
over Fq2 , for any u ∈ Fq2 . Indeed, (V q2 − V)f(u, V) = C(u, V)R(u, V) and both C(u, V) and
R(u, V) are fully reducible.

We apply the following lemma.

Lemma 7.3.4. ([17, p. 145]) Let h = h(X,Y) be a polynomial of total degree d over Fq
without nontrivial common factor with ∂Y h. Let M be the number of zeros of h in F2

q, where
each zero (x, y) is counted with the multiplicity that y has as zero of h(x, Y). Then the total
number of zeros of h (each counted once) is at least M − d(d− 1).

7.3. BLOCKING SETS OF THE HERMITIAN UNITAL 127

Let f = f0 · · · fm be the factorization of f into irreducible components. Let di = deg(fi) and
d′i = degV (fi). Then d′i ≤ di, d′0 + · · ·+ d′m = k and d0 + · · ·+ dm = k+ 1. Hence, d′i = di− 1
for a single component fi, and d′j = dj for j 6= i.

Suppose that f has an irreducible factor f0 with ∂V f0 6≡ 0. Put m := deg f0 so that 1 ≤ m ≤
deg f = k + 1, then degV (f0) = m− ε, with ε ∈ {0, 1}, and ε = 0 if m = 1.

Let N be the number of zeros of f0 in F2
q2 . On the one hand, since f and g have no common

factor, and all zeros of f are also zeros of g, Bézout’s theorem gives N ≤ deg f0 deg g ≤
m(k + 1). On the other hand, for any fixed u ∈ Fq2 the polynomial f0(u, V) of degree
degV f0 = m− ε has m− ε zeros, counted with multiplicity, altogether q2(m− ε).

Lemma 7.3.4 now yields the lower bound N ≥ q2(m − ε) −m(m − 1), and combining upper
and lower bound yields

q2(m− ε)−m(m− 1) ≤ m(k + 1).

If ε = 0, this gives k ≥ 1
2(q2 − 1). If ε = 1 and m > 2, this gives k ≥ 1

2(q2 − 3). If ε = 1
and m = 2, then no point was counted with multiplicity > 1, and q2(m− ε) ≤ m(k+ 1) gives
k ≥ 1

2(q2 − 2). Hence |S| = q2 − q + 1 + k ≥ 1
2(3q2 − 2q − 1) in these cases, as desired.

If ∂V fi = 0 for all i, then ∂V f = 0, so that f(u, V) is a p-th power, and the multiplicity of v
as a root of H(u, V) = (V q2 − V)f(u, V) is 1 (mod p). By an earlier remark, this means that
all non-horizontal lines intersect the set S in 1 (mod p) points if they are non-tangent, and
in 0 (mod p) points if they are tangent.

For each affine point P , let the horizontal line on P contain eP + 1 points of S (including∞).
Summing the contributions of all lines on P to |S|, we find from the tangents 0, and from the
(q2 − q − 1 or q2 − 1) non-horizontal secants −1, and from the horizontal secant eP + 1 (all
mod p), so that |S| ≡ eP (mod p) for all P . Summing the contributions of the horizontal lines
we see |S| ≡ 1 (mod p). It follows that eP ≡ 1 (mod p) and the point ∞ was not required to
block the horizontal lines.

7.3.3 Small blocking sets

In this section, we construct small blocking sets of Hermitian curves, not necessarily proper.
In the next section, proper examples will be constructed.

Fractional covers

For blocking sets in general we can apply a bound of Lovász relating the minimum size of
a blocking set (cover) τ with that of a fractional cover τ∗ of a hypergraph with maximum
degree D:

τ ≤ (1 + logD)τ∗

(see [46, Corollary 6.29]). For the unital U , taking every point with weight 1/(q + 1) gives
τ∗ = q2 − q + 1, D = q2, so τ ≤ (q2 − q + 1)(1 + 2 log q).

128 CHAPTER 7. MISCELLANEOUS RESULTS

Geometric construction

Let U be the classical unital in PG(2, q2), and consider a blocking set B of U that is the union
of a number of lines on a fixed point p of U . The line pencil Lp of the lines on p in PG(2, q2)
has the structure of a projective line with distinguished element L∞, the tangent to U at p.
For each unital line M not on p, the set Mp = {L ∈ Lp | L ∩M 6= ∅} is a Baer subline of Lp,
and each Baer subline of Lp not containing L∞ arises in this way for q pairwise disjoint lines
M . We find |B| = 1 + qm, where m is the size of a blocking set of the Baer sublines not on
L∞ of the line Lp.

The set Lp \ {L∞} carries the structure of an affine plane AG(2, q) of which the lines are the
Baer sublines of Lp on L∞. The remaining Baer sublines form a system of circles. Any three
noncollinear points determine a unique circle. Here we have q2(q − 1) circles, each of size
q + 1, in a set of size q2, and D = q2 − 1, so Lovász’ bound gives m < q(1 + 2 log q). We did
not lose anything (in the estimate) by taking B of special shape.

Consider a blocking set C of this collection of circles that is the union of a number of parallel
lines. Then |C| = qn, where n is the size of a blocking set for the collection of projections of
the circles on a fixed line. We have q(q − 1) projections, each of size more than q/2, in a set
of size q.

In order to block N subsets of a q-set, each of size larger than q/2, one needs not more than
1 + log2N points: if one picks the points of the blocking set greedily, each new point blocks
at least half of the sets that were not blocked yet. So, we find a blocking set of size less than
1 + 2 log2 q ∼ 2.89 log q and lost a factor 1.44 in the estimate.

7.3.4 Proper blocking sets of Hermitian curves

We now construct proper blocking sets of Hermitian curves.

Probabilistic constructions

Radhakrishnan and Srinivasan [115, Theorem 2.1] show using probabilistic methods that any
n-uniform hypergraph with at most 0.1

√
n/ log n 2n edges is 2-colorable, so contains a proper

blocking set. (Their constant 0.1 can be improved to 0.7 for sufficiently large n.) In our case
n = q+ 1 and the number of edges is q4− q3 + q2, so a unital has a proper blocking set when
q > 17.

An older bound by Erdős [35] gives the same conclusion when the number of edges is not
more than 2n−1, and this applies when q ≥ 16.

A result by Erdős and Lovász [36, Theorem 2] says that any n-uniform hypergraph in which
each point belongs to at most 2n−1/4n edges, is 2-colorable. In our case n = q + 1 and each
point belongs to q2 edges, so this suffices for q > 13.

7.3. BLOCKING SETS OF THE HERMITIAN UNITAL 129

If we choose points for our blocking set at random with probability p = 5(log q)/q, then the
expected number of monochromatic edges is roughly 1/q < 1/2, and now we can assume (just
using Chebyshev’s inequality) that in addition the size will be close to the expectation, so
5q2 log q.

We now present two different geometric constructions.

A geometric construction

In this section we construct a proper blocking set in the classical unital H(2, q2) in PG(2, q2)
for q ≥ 7 and for q = 4.

We use the model of the unital from [15], [39], and [121]. A detailed description of this
approach is also given in the survey paper [49].

Identify the points of the plane PG(2, q2) with the elements of the cyclic group G of order
q4 + q2 + 1, where the lines are given by D+ a, with D a planar difference set, chosen in such
a way that D is fixed by every multiplier.

Then G = A × B, where A is the unique subgroup of G of order q2 − q + 1 and where B is
the unique subgroup of order q2 + q+ 1. We may now write elements of G as pairs g ≡ (i, j),
0 ≤ g ≤ q4 + q2, 0 ≤ i ≤ q2 − q, 0 ≤ j ≤ q2 + q, i ≡ g (mod q2 − q + 1), and j ≡ g
(mod q2 +q+1). The subgroup A and its cosets are arcs, while the subgroup B and its cosets
are Baer subplanes. The map g 7→ µg, where µ = q3, maps the point (i, j) onto the point
(−i, j). The map g 7→ D−µg defines a Hermitian polarity, with absolute points given by the
Hermitian curve U = {a + β | a ∈ A, 2β ∈ B ∩ D}. So U is the union of q + 1 cosets of the
subgroup A.

We will show that if q is odd and q ≥ 7, then it is possible to partition this collection of q+ 1
cosets of A into two sets of size (q + 1)/2 such that the union of each is a (proper) blocking
set of the Hermitian unital U .

Let ` ⊂ G be a line of the plane PG(2, q2). Then ` intersects each coset of A in 0, 1, or 2
points, since cosets of A are (q2 − q+ 1)-arcs. The q2 − q+ 1 translates of ` by an element of
A all determine the same intersection pattern. The cosets of B form a partition of the plane
PG(2, q2) into Baer subplanes PG(2, q), and ` intersects exactly one of these Baer subplanes
in a Baer subline. By taking a suitable translate of `, we may assume that this Baer subplane
is B itself.

Since multiplication by µ sends the point (i, j) to the point (−i, j), this map fixes cosets
of A (setwise), and fixes B pointwise. It follows that also the line ` is fixed (setwise) by
multiplication by µ. Consequently, ` intersects the cosets of A containing a point of the
subline B ∩ ` in exactly one point, and the other cosets in 0 or 2 points.

The unital U is of the form U = A + 1
2(B ∩D), and if q is odd, then 1

2(B ∩D) is an oval in
the Baer subplane B [15, p. 65]. This means that the intersection pattern of ` with the q+ 1
cosets of A that partition the unital U (let us call them U-cosets of A) can be of three types.

130 CHAPTER 7. MISCELLANEOUS RESULTS

If `∩B is a tangent of the oval 1
2(B∩D), then ` is a tangent of the unital U as well, and so of

no interest from the blocking set point of view. If `∩B is a secant line of the oval 1
2(B ∩D),

then this means that ` intersects two U-cosets of A in a single point, and the remaining ones
in 0 or 2 points, where both possibilities happen precisely (q − 1)/2 times. Finally if ` ∩ B
is an external line of the oval 1

2(B ∩D), then ` intersects all U-cosets of A in 0 or 2 points,
and both possibilities happen precisely (q + 1)/2 times. There are (q2 − q)/2 external lines,
and hence (q2 − q)/2 partitions of the set of U-cosets of A into two sets of size (q+ 1)/2 that
do not lead to proper blocking sets of U . If 1

2

(q+1
(q+1)/2

)
> 1

2(q2 − q), then there is a partition

of U into two unions of (q + 1)/2 cosets of the subgroup A, that are both blocking sets. This
happens for q ≥ 7.

If q = 5, then the 10 external lines determine 10 distinct triples of U-cosets of A, no two
disjoint, so we find blocking sets (of size 63) but no proper blocking sets in this way.

If q is even, the situation is slightly different: in this case 2 is a multiplier that fixes both
B and D, and 1

2(B ∩ D) = B ∩ D is a line in B. Now for a line ` in the plane PG(2, q2),
such that ` ∩ B is a line in the Baer subplane B, we have three possibilities: either ` = D,
with intersection pattern 1q+1, or ` is a tangent of U , or ` has intersection pattern 11, 0q/2,
2q/2. We now want to partition the unital U into collections of q/2 and q/2 + 1 cosets of
A to construct proper blocking sets of U , and the only thing to avoid is to take a q/2-set
corresponding to the 0’s in the intersection pattern of a line `, so there are at most q2 − 1
such q/2-sets, but q2 − 1 <

(q+1
q/2

)
for q ≥ 8.

If q = 4, then multiplication by 2 has two orbits on the U-cosets of A, of sizes 2 and 3, and
their unions form a complementary pair of proper blocking sets (of sizes 26 and 39).

So far we constructed proper blocking sets for q > 3, q 6= 5. For q = 5 the above method fails,
but a random greedy computer search shows that H(2, 25) does contain disjoint blocking sets
of sizes 45 and 51, so that there exist proper blocking sets of all sizes from 45 to 81.

We summarize the above discussion in the main theorem of this section.

Theorem 7.3.5. The Hermitian curve H(2, q2) contains a proper blocking set if and only if
q > 3.

Remark 7.3.6. The above arguments can also be used to show the existence of smaller
proper blocking sets. We try to find a blocking set consisting of r cosets of A, with 2r ≤ q as
small as possible (the complement will then automatically also be a blocking set). We have
q2 intersection patterns, each with at most (q+ 1)/2 zero’s, implying that at most q2

(
(q+1)/2

r

)
r-tuples are bad, so if

(
q+1
r

)
> q2

(
(q+1)/2

r

)
then we are fine, and this is certainly the case if

2r ≥ q2. This yields proper blocking sets of size 2 log q
log 2 (q2 − q + 1), a little larger than the

blocking sets we got from Lovász’ bound.

Explicit examples

We now present a construction that yields explicit examples of proper blocking sets on the
Hermitian curve.

7.3. BLOCKING SETS OF THE HERMITIAN UNITAL 131

Theorem 7.3.7. Let r|(q−1), where r > 1 and 4r2+1 < q. Then, for some value k satisfying
1 ≤ k ≤ q2 − q + 1, the Hermitian curve U in PG(2, q2) contains a proper blocking set B of
size k + q(q − 1)2/r.

Remark 7.3.8. For r ∼ √q/2, this construction leads to proper blocking sets on the Her-
mitian curve U of PG(2, q2) of size approximately 2q2√q. One may compare this explicit
construction to the result obtained using the probabilistic method. As we saw, the proba-
bilistic method leads to blocking sets of cardinality Cq2 log q, for some small constant C(≤ 5).

The setting. The Hermitian curve is U : Xq +X + Y q+1 = 0 in the affine plane AG(2, q2).
This Hermitian curve intersects the line at infinity Z = 0 in the unique point (x : y : z) =
(1 : 0 : 0).

We first consider the case that q is odd. The case q even is similar, but slightly more
complicated. Fix r, where r|(q − 1). Let k be a fixed non-square in Fq. Let i2 = k, with
i ∈ Fq2 \Fq. Then iq = −i, and iq+1 = −k. We describe the elements x of Fq2 by x = x1 + ix2,
with x1, x2 ∈ Fq.

Step 1. First of all we construct a blocking set B of U , defined by

B = {(x, y) ∈ U | y = ur + iv, with u, v ∈ Fq} ∪ {(1 : 0 : 0)}.

So B contains the point (1 : 0 : 0) and the points of U on the horizontal lines Y = ur + iv,
u, v ∈ Fq. Afterwards in Step 2, a modification will be made to the blocking set B to make
it proper.

In order to prove that B is a blocking set, we have to show that it meets all non-horizontal
lines, since the horizontal lines are blocked by (1 : 0 : 0). Consider the intersection of a
non-horizontal line X = nY + c, where n = n1 + in2 and c = c1 + ic2 where n1, n2, c1, c2 ∈ Fq,
with B. Substituting X = nY + c = n(ur + iv) + c in the equation Xq +X + Y q+1 = 0 of U ,
and using iq = −i and iq+1 = −k, leads to the equation

2n1u
r + 2kn2v + 2c1 + u2r − kv2 = 0.

We make the equation homogeneous and denote the algebraic curve in PG(2, q) defined by
this equation by Γ : 2n1U

rW r + 2kn2VW
2r−1 + 2c1W

2r + U2r − kV 2W 2r−2 = 0.

Lemma 7.3.9. The point (0 : 1 : 0) is a point of multiplicity 2r − 2 of the algebraic curve Γ
and the algebraic curve Γ is absolutely irreducible of genus r − 1.

Proof: If we put V = 1, the minimal degree becomes 2r − 2, so (0 : 1 : 0) is a point of
multiplicity 2r − 2. Next, put W = 1. The equation of Γ becomes 2n1U

r + 2kn2V + 2c1 +
U2r − kV 2 = 0. This is the hyperelliptic curve k(V − n2)2 = U2r + 2n1U

r + 2c1 + kn2
2. The

only way for this curve to be reducible is that the right hand side is the square (U r + n1)2,
which implies n2

1 = 2c1 + kn2
2, but this means that the line X = nY + c with coordinates

[1 : −n : −c] satisfies −cq +nq+1− c = 0, and therefore is a tangent to the unital. So the right

132 CHAPTER 7. MISCELLANEOUS RESULTS

hand side factors as (U r − α)(U r − β) (in F2
q) where α and β are different. Since r|(q − 1),

it has no multiple roots, so we have a hyperelliptic curve of genus g = r − 1 (see for instance
[128, p. 113]).

Using the Hasse-Weil bound, we see that Γ contains between q + 1− (2r− 2)
√
q and q + 1 +

(2r − 2)
√
q points. For small r, the lower bound on the cardinality of Γ is larger than zero.

We need to convert these bounds on the cardinality of Γ into bounds on the number of
points of the set B on the non-horizontal line X = nY + c. We first determine the number
of points of Γ on the line U = 0. Since Γ is absolutely irreducible, we have apart from
(0 : 1 : 0) at most two other affine points since (0 : 1 : 0) is a point of multiplicity 2r − 2
of Γ. We decrease the lower bound on the cardinality of Γ by three, which gives the interval
q−2−(2r−2)

√
q ≤ |Γ\(U = 0)| ≤ q+1+(2r−2)

√
q. Now if (u, v) ∈ Γ, with u 6= 0, then also

every point (uξi, v), ξ a primitive r-th root of unity, i = 0, . . . , r − 1, belongs to Γ. But the
points (u, v) and (uξi, v), i = 0, . . . , r − 1, define the same affine points (x, y) = (x, ur + iv)
of the set B. Hence, a non-horizontal line X = nY + c contains z points of B, where
(q − 2− (2r − 2)

√
q)/r ≤ z ≤ (q + 1 + (2r − 2)

√
q)/r.

This then implies for small values of r that every non-horizontal line X = nY + c contains at
least one point of B, so that B is indeed a blocking set. Of course B contains some horizontal
blocks. To turn B into a proper blocking set we proceed as follows.

Step 2. Consider a cyclic (q2 − q + 1)-arc A, contained in U and passing through (1 : 0 : 0).
Then exactly q+ 1 lines of PG(2, q2) through (1 : 0 : 0) are tangent lines to the arc A. These
q+1 lines through (1 : 0 : 0) tangent to A form a dual Baer subline at (1 : 0 : 0) [39, Theorem
3.4]. One of these q+ 1 lines through (1 : 0 : 0) tangent to the arc A is the tangent line Z = 0
to U in (1 : 0 : 0), and the remaining q are secant lines to U .

We now delete from the blocking set B all points of the arc A ∩ B, different from (1 : 0 : 0),
and all points of B lying on these q lines through (1 : 0 : 0) secant to U and tangent to A,
but different from (1 : 0 : 0). We show that for small values of r, the set B̃ that remains
is a proper blocking set of U . Every horizontal line still is blocked by (1 : 0 : 0), but since
we delete a point of B on every horizontal line Y = ur + iv, no horizontal block of U is
contained in B̃. Every non-horizontal line X = nY + c contains at most two points of the arc
A. Similarly, every non-horizontal line X = nY + c contains at most two points of U on lines
of the dual Baer subline of tangents through (1 : 0 : 0) to A. For, suppose that such a line
contains at least three points of U on lines of this dual Baer subline. Since a Baer subline
is uniquely defined by three of its points, this would imply that the line X = nY + c shares
q + 1 points with U on the lines of this dual Baer subline. But this is impossible, since the
line Z = 0 is one of the lines of this dual Baer subline and this line Z = 0 is a tangent line
to U only intersecting U in (1 : 0 : 0). So we subtract four from the lower bound on the
intersection size of the non-horizontal line X = nY + c with B. This leads to the new lower
bound (q − 2− (2r − 2)

√
q)/r − 4.

Our assumption 4r2 + 1 < q guarantees that this lower bound is still positive, so that the
newly obtained set B̃ still blocks all the non-horizontal secant lines to U .

7.3. BLOCKING SETS OF THE HERMITIAN UNITAL 133

To be sure that the non-horizontal lines do not contain a block, we look at the upper bound
on the intersection sizes of these lines with the set B̃. This is (q + 1 + (2r − 2)

√
q)/r, which

is less than q + 1, so also the non-horizontal lines do not contain a block of U .

Cardinality. Now that we are sure that the constructed set B̃ is a proper blocking set, we
investigate its cardinality.

In the first step of the construction, B consists of the point (1 : 0 : 0) and of the points of U
on the horizontal lines Y = ur + iv, with u, v ∈ Fq. There are q+ (q− 1) · q/r such horizontal

lines, leading to |B| = 1 + q · (q + q2−q
r).

Now in the second step, the points of B, different from (1 : 0 : 0), lying on a cyclic (q2−q+1)-
arc A of U through (1 : 0 : 0) and on the q secants through (1 : 0 : 0) to U , tangent to A, are
deleted from B.

We first determine the maximal number of points that can be deleted from the blocking set
B in this way. The maximum can only occur when all q secants of U on (1 : 0 : 0) tangent to
A contain q points of B, different from (1 : 0 : 0). This leads to the loss of q · q = q2 points
of B. Then still q + (q − 1)q/r − q = (q − 1)q/r horizontal lines remain which still lose one
point on the cyclic (q2 − q + 1)-arc A. So the smallest size for the blocking set B̃, is

1 + q2 +
q3 − q2

r
− q2 − (q − 1)q

r
= 1 +

q3 − 2q2 + q

r
.

We now determine the minimal number of points that can be deleted from the blocking set
B in this way. The minimum can only occur when all q secants of U on (1 : 0 : 0) tangent to
A contain zero points of B, different from (1 : 0 : 0). Then the q+ (q− 1)q/r horizontal lines
Y = ur + iv still lose one point on the cyclic (q2 − q + 1)-arc A. So the largest possible size
for the blocking set B̃, is

1 + q2 +
q3 − q2

r
− q − (q − 1)q

r
= 1 + q2 − q +

q3 − 2q2 + q

r
.

Even q. The preceding results are also valid for q even, but the description of the algebraic
curve Γ is different. Namely, for q even, let k ∈ Fq with TrFq/F2

(k) = 1. Let i2 + i + k = 0,
then iq + i = 1, i2 = i + k, and iq+1 = k. Let U : Xq + X + Y q+1 = 0. Let r again be a
divisor of q − 1 and denote every non-horizontal line by X = nY + c, with n = n1 + in2 and
c = c1 + ic2, n1, n2, c1, c2 ∈ Fq. Then the corresponding algebraic curve Γ is

Γ : (n1 + n2)VW 2r−1 + n2U
rW r + c2W

2r + U2r + U rVW r−1 + kV 2W 2r−2 = 0.

By putting V = 1, it is again observed that the point (0 : 1 : 0) is a singular point of Γ with
multiplicity 2r − 2. Next we put W = 1 and obtain the (hyperelliptic) curve kV 2 + (U r +
n1 +n2)V +U2r +n2U

r + c2 = 0. As before we can show that this curve is irreducible unless
the line X = nY + c is a tangent. The genus of this curve is again g = r− 1 [4, p. 317]. This
implies that the arguments for q odd also are valid for q even.

This completes the proof of Theorem 7.3.7.

134 CHAPTER 7. MISCELLANEOUS RESULTS

Appendix A

Building a low-cost GPU based
supercomputer

A.1 The hardware

GPUs (Graphics Processing Units) are highly performant computing devices with a large
number of processing units, which are specifically optimized for heavy data-parallel comput-
ing. In their early years these were mainly used to execute the the graphical computations
in three-dimensional video games in real time, but nowadays these cards can be used for
general purpose programming in a format that can be embedded in all common programming
languages: Java, C/C++, Python...

This allows researchers to implement algorithms on these cards, which for particular algo-
rithms (namely those with a small computational kernel that can be executed in a fully
data-parallel way) enables speedups with over a factor 100 in comparison with classical pro-
cessing units (CPUs). Several of the algorithms used during my PhD research, belong to this
category. Moreover, due to their data-parallel architecture and high number of low-complexity
cores, these algorithms run not only faster but also consume orders of magnitude less power.
Additionally, GPUs are much cheaper than CPUs for the same computing power.

For example, a e265 Haswell i7-3771 CPU has roughly 100 GFLOPS (which is 1011 Floating
Point Operations Per Second) and consumes up to 84 watt, while a Radeon HD 7970 GPU
costed e360 about 1.5 years ago and has roughly 4000 GFLOPS theoretical computing power
on single precision and consumes up to 250 watt. This trend holds in general: for the same
computing power, GPU devices cost about 20 times less to purchase and consume about 10
times less power (which in turn reduces the cost needed for heat dissipation). Moreover,
certain functionalities such as interthread synchronization are inherently faster on GPU, as
they are provisioned in the hardware rather than in the software.

Unfortunately, not all algorithms can be executed in a data-parallel way. In the remainder
of this section, I will give a description of the hardware used in my GPU machine, how I
built the machine, and what difficulties I encountered in doing so, as well as how I resolved

135

136 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

them. In Section A.2, I will go more into detail on how parallel computing works and how to
understand what is data-parallelism. In Section A.3, I will explain how the LDPC decoding
algorithm works, and in Section A.4, I will explain how I implemented this in OpenCL.

My main goal of my setup was to put 8 distinct GPUs on one machine, to allow a maximum
number of computing power in a single machine (current motherboards are limited to 8
GPUs because of memory addressing reasons, making this choice obvious). After all, GPU
computing is at the time of writing still a rather small niche.

The first decision to make then, is what GPUs to use. There are two main players in the field
of GPU computing chips: AMD and nVidia. In general, AMD builds the best computing
hardware, while nVidia offers a more mature software suite to work. Since my research does
not use any floating-point computations, the large libraries nVidia’s CUDA suite has to offer
were of little interest to me, so I decided to go with AMD. The programming language used on
this card is OpenCL, an open computing language that is aimed at GPU computing but can
be run on virtually any computing devices (including CPUs). At the time I was looking into,
AMD was about to release their new Radeon HD 7000 series which offered a new architecture
(GCN) that was more specifically aimed at computing, and at the same time significantly
reduced power consumption and heat production by scaling down the production process
from 40nm to to 28nm. The fastest card in this series is the HD 7970, which is the GPU that
I have used in this machine.

Connecting these GPUs to a motherboard is the second big challenge. While there are
highly specialized motherboards on the market that have 8 ready PCI-express at sufficient
distance, they are really expensive due to the small number of people that want to buy
them. Mainstream motherboards however don’t have 8 PCI-express slots, except for one
that surprisingly did: the MSI Big Bang Marshall B3. Being the only motherboard with 8
PCI-express slots, this was also an obvious choice. A next challenge was that the slots only
had a single slot of space between them, while the cards are two slots high and it is advisable
(although not required with some card models) to have an extra slot of space for sufficient
air flow (else the cards get too hot).

The first option I considered was to replace the air cooling with water cooling. Water cooling
blocks are thinner and require no extra space for heat dissipation, so spacewise, this would
work. However, considering that these 8 GPUs could produce up to 2000 watt of heat, getting
them all in one cooling circuit could be dangerous, as it is not impossible that the water would
start boiling before it has passed all the cards. Afterall, these solutions are primarily made
for gamers, who only use up to four cards (the current limit supported for gaming), so this
hardware is untested for such an amount of heat. Since boiling would make the circuit break
and potentially destroy the computer by the resulting water leaks, I did not consider this a
feasible option. On top of that, it also turned out a lot more expensive than air cooling.

The deus ex machina that I needed here came from cablesaurus.com, a small webshop in the
United States who produces powered PCI-express extender cables. Using these cables, it is
possible to position the GPUs up to 15cm away from the PCI-express slot on the motherboard
that it’s attached to. This allows more flexibility in the positioning of the card, but alas the
construction can no longer fit in a regular computer case. This is the approach that I finally
took, and I made a custom steel frame to support the cards, a picture of which is shown in

A.1. THE HARDWARE 137

Figure A.1: Picture of the machine

138 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

Figure A.1. This way, all GPUs can be mounted in such a way that they have sufficient room
for air flow and heat dissipation.

Finally, the last challenge in the hardware configuration was to get sufficient power to the
cards. A single power supply (PSU) providing over 2000 watt with sufficient connections was
nonexistent at the time I built the machine, so I had to find another way. I ended up using
two 1200 watt PSUs, and make each of them provide power to 4 GPUs. However, in order
not to damage the power supplies by letting them indirectly feed all 8 cards at some point,
I had to link the PSUs so that they would be turned on an off together, even in rare events
like after a power outage. Conveniently, cablesaurus.com also sold cables for that, but the
instance I received turned out to be broken. Fortunately, I managed to work around it in an
even simpler way: I linked the two power-on wires with a simple paperclip, taped firmly in
place and surrounded with an isolation coating.

The rest of the hardware part was rather classical, so I will not discuss those parts here.
Instead, I will finish this section with a short guide to get the software part working, since
even though the end result is simple, it took me a lot of time to find the right steps to get
there. The worst thing that can go wrong, is that the operating system (in my case Ubuntu
Linux) suggests to automatically download and install the appropriate drivers. If one ever
says yes to that, the installation is unrepairably damaged: uninstalling the drivers is not
sufficient, a full reinstallation of the operating system was for me the only way to get out
after that. Instead, I downloaded an installed the latest version of the drivers from the AMD
website, and this worked flawlessly, but even after reboot, OpenCL only recognized one GPU.
I had to execute

aticonfig -f --initial --adapter=all

as root, and reboot again, to get all cards working in OpenCL.

A.2 Efficient parallel computing

A.2.1 Memory access and caching

Modern CPUs can process up to 16 floating point operations per cycle per core, resulting
in a processing capability of up to 48 · 109 floating points per second on a 3 GHz CPU.
However, in order to do meaningful computations with this, we need to be able to supply the
CPU with relevant work to perform. And here lies a problem: these numbers have become
so high, that access speeds to the computer’s RAM memory cannot follow. Not only does
it have insufficient bandwidth to feed this much work to the CPU (it could at most utilize
somewhere between 5% and 10% of that), it also has a latency of approximately 100 clock
cycles which would reduce the performance below 1% of the maximum if data was directly
read from and written to the computer’s RAM memory.

For this reason, caching was invented. A cache is a storage place on the CPU chip itself,
where recently accessed information from the RAM memory can be read from and written to,

A.2. EFFICIENT PARALLEL COMPUTING 139

removing the requirement to wait 100 cycles between read/write operations. Modern multi-
core CPUs typically have three levels of cache: a very small but very fast L1 cache (around
32KB, but only needing 4-6 cycles latency per read/write and sufficient bandwidth for full
peak) on each core, a slower but larger L2 cache on each core, and an even larger and slower
L3 cache which is shared among all CPU cores (but which is still faster and much smaller
than the RAM, typically several megabytes).

When a memory location needs to be read, the CPU first checks if it is cached in the L1
cache. If it is present there, it is read; otherwise we fall back to the L2 cache. If it is present
there we move it to the L1 cache and read it; otherwise we fall back to the L3 cache and
repeat the same there. If it is also missing there, we fall back to the RAM and repeat the
same there. For writing, similar mechanisms are in action to keep all levels consistent, but
discussing these is beyond the scope of this section.

This cache is structured as a number of cache lines, each consisting of a fixed length of e.g. 64
bytes. In the case of a 32KB L1 cache, this means 512 cache lines of 64 bytes each. In other
words: when we fetch something from any cache level, we fetch 64 bytes at a time, which
corresponds to 8 doubles, 8 longs, 16 floats, 16 ints, 32 shorts or 32 booleans.

One could rightfully wonder how having only 512 cache lines can ever cause consistent
speedups in large programs, especially given the fact that on this low level we cannot use
complex logic to determine which entries to store in the cache and which ones not to store,
so we are down to just storing the last accessed X entries (where, due to hardware imple-
mentation reasons and a phenomenon called cache thrashing, only a very small value of X is
mathematically assured, typically X = 8). The answer to this is that experimentally, most
inner loops of algorithms appear to feature some sort of locality:

• temporal locality: they use certain entries over and over again, and because they are so
frequently accessed, they never or almost never need to be fetched from a higher level
cache than L1;

• spatial locality: if a certain memory location is accessed, it is likely that the memory
locations around it will also be accessed, therefore we benefit from loading the entire
cache line at once.

Example A.2.1. Consider the following simple problem: given a 1024-element memory

D =
[
A0 A1 A2 · · · A1023

]
filled with integers, we want to compute the sum of these numbers. A simple way to do this
is as follows:

for i = 1, . . . , 1023 do
A0 = A0 +Ai

end for

Here A0 is accessed all the time, so it will be in the L1 cache the entire time, completely
removing the need for it to be loaded from higher level caches or RAM (except for maybe
the first time). This is an example of temporal locality. On the other hand, assuming 4-byte
integers, any cache line contains 16 of these integers, meaning that for every time we load

140 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

a cache line, we can read 16 numbers from it, meaning that thanks to this caching we only
need to access the higher caches or RAM only 1024

16 = 64 times instead of 1024 times. This is
an example of spatial locality.

Protocols are in place to keep the non-shared cache coherent when present in several CPU’s
L1 and L2 cache, such as the MESI protocol [111], but this falls beyond the scope of this
section. Also, it is clear that sharing the L3 cache can have both positive and negative
impact on performance: one core could fetch a cache line that another thread needs later
(hence speeding everything up), or it could read other cache lines which indirectly wipe out a
cache line that another thread reads later (called false sharing of cache). Further discussion
of this behavior is also beyond the scope of this section.

A.2.2 An essential shift: parallel computing

Over the past decades, we’ve been used to computers becoming faster and faster every year.
Since 1975, the number of transistors on integrated circuits has been doubling approximately
every two years. This is commonly referred to as “Moore’s Law”, named after Intel co-founder
Gordon E. Moore, who described the trend in his 1965 paper [103] (although it should be
noted that his original prediction was a yearly doubling, only updated to the current estimate
in 1975 [104]).

The actual computation speed of a single processing unit, has more or less grown linearly with
that number; until the dawn of the 21st century. With top-range CPUs clock speeds being
roughly at the same in 2013 as in 2003, this part of the fairytale seems to be permanently
over. Some improvements have still been made since then, e.g.:

• adding several pipelines which allow several instructions to be carried out simultaneously
if the compiler can assure that they don’t need the result of any unfinished instructions
to start;

• adding vector instructions which can perform addition, multiplication, etc. on several
numbers at the same time;

• out-of-order execution, register renaming, branch prediction, speculative execution and
other nifty hardware tricks;

but they are not comparable to the exponential growth that Moore’s law predicts. This
doesn’t mean that Moore’s law is over, though. Performance improvement keeps coming at
the same exponential rate, but all current improvements come from the ability of the chips
to process several workloads simultaneously (called concurrency or parallelism), rather than
executing the same instructions faster.

Therefore, to execute mathematical algorithms at high speed, it is no longer sufficient to only
use 20th century metrics such as the number of required operations. An equally important
metric has become: how many of those operations can be executed in parallel. At the time
of writing, desktop home computers have 2-8 independent CPU cores, gaming GPUs have

A.2. EFFICIENT PARALLEL COMPUTING 141

64-2048 shader cores, and high performance clusters (HPCs) have several tens of thousands
low-power CPUs at their disposal.

For previous performance improvements, no thorough redesign of mathematical algorithms
was needed: the same algorithms worked faster, and even if part of the algorithm needed to
be rewritten to make more efficient usage of new hardware (such as low-latency caches), doing
it in a sloppy way could at most negate part of the performance gain. With parallelization,
the mathematical correctness of the outcome itself is at stake when not dealing with concur-
rency issues properly. In Section A.2.3, we discuss concurrency issues and how even simple
algorithms like summing up an array need to be completely rewritten to make proper use of
multiple CPUs or other parallel hardware. In Section A.2.4 we discuss the difference between
task-parallelism and data-parallelism.

A.2.3 Principles of parallel computing

Allowing multiple cores to assist simultaneously in a computational process without endan-
gering the correctness of its outcome and without compromising the speed advantage, has
certain restrictions. To understand these restrictions, we need to consider the notion of a
thread.

Definition A.2.2. A thread is a pair (I,D) of an instruction stream and a data set, attached
to a physical computation unit, which executes the instructions from I one by one on the
data in D. Every computation unit can only execute one instruction from one thread at the
same time.

Clearly, all simple, non-parallel algorithms can be seen as consisting of a single thread: I are
just the steps to be executed in the algorithm and D is the RAM-memory of the computer
accessed by the algorithm.

Let T1, . . . , Tn be a collection of threads, where Ti = (Ii, Di) for all i. As long as Di ∩Dj = ∅
for all i 6= j, these threads can run in parallel on n different computing cores without any
correctness problems, hence utilizing the full parallel potential of the n processing units.
However, in most cases, the requirements that all the Dis are disjoint, is not a realistic one.

Example A.2.3. One could think to be smart and let 1023 threads T1, T2, . . . , T1023 execute
A0 := A0 + Ai on Ti. This way, we can execute all additions in parallel and hence complete
the job with only the time of one addition instead of 1023 additions. However, that’s not what
the hardware will do. If we execute T1, T2, . . . , T2013 simultaneously, instead the following will
happen:

1. All threads read A0 and Ai from D and store them into their local workspace.

2. All threads compute A0 +Ai (so T1 knows A0 +A1, T2 knows A0 +A2, and so on).

3. Some thread Ti writes A0+Ai back to the first entry ofD, another thread Tj immediately
overwrites it by A0 +Aj , and all other threads also overwrite eachother’s results in this
way.

142 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

The order in which the threads will (over)write is completely unpredictable, so the output of
this method is worthless.

To prevent this behavior, and to ensure mathematical correctness of our computations, we
impose the following two restrictions on any multi-threaded program:

• no two threads may write to the same memory location simultaneously;

• a given memory location may not be read from and written to simultaneously.

If any of these rules is not respected, the outcome of the algorithm becomes undefined. In
such case, we say that the algorithm is not thread-safe, or that it has concurrency issues.
This does not necessarily mean that the output will be incorrect. In fact, most concurrency
issues only cause occasional sporadic errors which makes them rather difficult to debug, and
which makes their impact only larger when occuring. The idiom “Think before you write!”
is hence even more important when it comes to parallel programming.

To realize these rules, we need to provide synchronization methods to threads: ways in which
they can communicate with eachother when a certain operation is done. For this purpose, all
modern programming environments allow at least two thread synchronization mechanisms:
atomic instructions and barriers.

Definition A.2.4. An atomic (instruction) in a thread is an instruction (or a series of
instructions) that this thread can perform undisturbedly: any other thread trying to access
the data this series of instructions acts upon, will be halted and has to wait for the atomic
instruction to complete before resuming their own work.

This causes no major slowdown if no other threads try to access the data being operated
on, but can completely undo the benefit of parallelization (and even cause large overhead
penalties compared to single-thread execution) if all threads have to wait for eachother all
the time because of this.

Definition A.2.5. A barrier for a collection T of threads is an instruction that halts any
thread that executes it, until all threads in T have reached this instruction.

An easy way to implement this is to have a variable starting at 0, do an atomic +1 in each
thread, and wait for the variable to be |T | to continue. In some hardware, and in particular in
all modern GPUs, this functionality is implemented in the hardware to improve its efficiency.
Some architectures can have barriers at no extra cost, because they have a shared instruction
stream and the clock cycles are inherently synchronized, so each thread can determine where in
the execution the other threads are. This is why we mention barriers as a separate mechanism.

With these two synchronization mechanisms, we can fix the problems that we had with
Example A.2.3. We will list three methods for it.

Method 1 (O(n) atomic ops, 0 barriers). A first possibility would be to keep the method
from Example A.2.3, but let each thread execute A0 := A0 + Ai as an atomic. This makes
the output mathematically correct, but because all threads are writing to A0, the atomicness

A.2. EFFICIENT PARALLEL COMPUTING 143

completely serializes the algorithm, requiring 2013 subsequent steps to compute the sum (i.e.
just as much as without any parallelism).

Method 2 (O(
√
n) ops, 1 barrier). A better option is as follows, utilizing 32 processing

units: we create threads T0, . . . , T31, and let thread Ti execute

A32i := A32i +A32i+1 + · · ·+A32i+31.

Then, after all threads have completed this (i.e. a barrier on 32 threads), we let T0 compute

A0 := A0 +A32 +A64 + · · ·+A992.

This way, A0 contains the desired sum, with only 2(
√

1024 − 1) = 62 addition steps and 1
barrier.

Method 3 (O(log n) ops, O(log n) barriers). When many processing units are available
and their barrier cost is very cheap, the fastest solution is as follows. Create a set of 1024
threads T = {T0, T1, . . . , T1023} on 1023 different processing units, and proceed as follows. In
thread Ti, we execute:

for k = 0, . . . , 9 do
if i ≡ 0 (mod 2k+1) then
Ai := Ai +Ai+2k

end if
barrier (=all Ti must finish this k-iteration before entering the next)

end for

This way, A0 contains the desired sum, with only log2(1024) = 10 addition steps and 9 barriers
(since the last barrier technically doesn’t need to be executed).

Method 4 (generalization). In the second method, we split our array as 1024 = 322 and
then performed 2 · (32 − 1) additions and 2 − 1 = 1 barrier. In the third method, we split
our array as 1024 = 210 and then performed 10 · (2 − 1) = 10 additions and 10 − 1 = 9
barriers. More generally, to process n elements, we can take any integer N ≥ n and write it
as N = n1 · n2 · · ·nm. Then we run the following algorithm in each thread Ti:

for k = 1, . . . ,m do
if i ≡ 0 (mod n1n2 · · ·nk) then

for j = 1, . . . , nk − 1 do
Ai := Ai +Ai+j·n1n2···nk−1

end for
end if
barrier

end for

This finishes the job in
∑m

k=1(nk − 1) additions and m − 1 barriers (since also here the last
barrier is unnecessary).

Remark A.2.6. While we used addition of elements in an array, it is clear that any commu-
tative and associative operator can be used instead.

144 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

Remark A.2.7. Which method is fastest depends on how long it takes for addition (or
whatever operation one is applying) versus the cost of a barrier. It also depends on the
number of processing elements available (e.g. if there are only 32 processing units available,
there is no point in using Method 3 as it will never be faster than Method 2).

A.2.4 Task-parallel vs Data-parallel computing

Let T be a collection of threads. Flynn’s Taxonomy [40] distinguishes three possible ways the
instruction streams and data sets of these threads can be connected (the paper contains four,
but the MISD architecture is rare and not relevant for us).

• SISD (single-input-single-data). Each processing unit involved necessarily operates the
same instruction, on the same data element(s). Obviously, this voids any use of multiple
processing elements, so here there is no parallelism.

• SIMD (single-input-multiple-data). Each processing unit involved necessarily operates
the same instruction, but on different data element(s). This is the structure used in
compute units of GPUs, and superscalar CPUs, and it is perfect to apply the same
operation to large arrays of elements.

• MIMD (multiple-input-multiple-data). Each processing unit involved can operate a
different instruction, on different data element(s). This is the case in multi-core CPUs,
or when involving several devices or machines in the computations: each CPU can
function completely independent of the others.

The increased flexibility for MIMD over SIMD (and SIMD over MIMD) comes at a price,
the main one being a greater complexity cost (and hence price, power consumption, etc.) in
building the hardware. For this reason, today’s SIMD hardware attains a much larger total
performance than equally complicated or costly MIMD hardware, and similarly, SISD hard-
ware delivers much greater single-core performance than equally complicated or costly SIMD
hardware. Therefore, it is important to use the right architecture for the right task: some
algorithms can be implemented in a way that they can potentially run orders of magnitude
faster on SIMD architectures such as GPU; others cannot be implemented efficiently in this
way, but can be parallelized on MIMD devices; others cannot be parallelized at all.

To maximize performance, hardware manufacturers perpetually try to embed parallelism
deeper into hardware (e.g. through vector processing or pipelining), blurring the distinc-
tion between SISD, SIMD and MIMD. Even single-core processors have some level of data-
parallelism (e.g. performing addition/multiplication/... on several numbers at the same time)
and task-parallelism (e.g. by having multiple pipelines which can process certain instructions
in parallel). Also, inherently data-parallel hardware like GPUs features multiple SIMD blocks
in each device, making them technically (as a device) MIMD. For this purpose, we will no
longer use SISD/SIMD/MIMD as a classification method for algorithms and devices, but
instead we use the following definitions.

Definition A.2.8. A program or algorithm is said to be

A.2. EFFICIENT PARALLEL COMPUTING 145

• data-parallel if it benefits from having several processing elements executing the pro-
gram, with the additional restriction that each processing unit executes the same line
of the program at the same time;

• task-parallel if it does not benefit from the above, but does benefit from it without the
additional restriction;

• non-parallel if it does not benefit from having several processing units executing the
program at all.

In the above terminology, we disregard parallelism within the same processing element, such
as pipelining and vector instructions. In general, we will execute non-parallel algorithms on
fast high-frequency CPUs, we will execute data-parallel algorithms on GPUs, and we will
execute task-parallel algorithms on large clusters of low-power consumption CPUs. In this
thesis, we will generally refer to SIMD, MIMD, SISD devices as the devices used to perform
data-parallel, task-parallel and non-parallel algorithms respectively.

We will provide some examples to demonstrate where which paradigms can be appropri-
ate. For this purpose, let A = [a0, a1, . . . , a1999] be an array of 2000 integers and let
f : Z × Z → Z be a function (taking some time to compute) whose exact functionality is
not known at the time you need to write the algorithm. Assume that you want to compute
f(a0, f(a1, f(a2, f(· · · f(a1998, a1999) · · ·)))), and you can use at most 16 processing units.

Example A.2.9. Assume that f is non-associative. Then there is no way to properly paral-
lelize this computation, because the evaluation of any f() requires the result of the evaluations
of the inner f() evaluations. Hence, the best way for this is to make a single thread and run
the following algorithm on it:

c = a1999

for i = 1998, 1997, . . . , 0 do
c = f(ai, c)

end for
return c

Example A.2.10. Assume that f is associative, has a constant runtime T and has only
a single execution path (all threads execute the same sequence of instructions). Then we
can use the methods described earlier in this section to parallelize this algorithm and run it
in parallel on 16 threads with Method 4 in the time of only 124 + 1 + 1 + 1 + 1 = 128
f -evaluations and 4 barriers (since 2000 = 125 · 16 = 125 · 24), hence running in time
128T . In particular, we create threads T0, . . . , T15 and we run the following algorithm on
each Ti.

for j = 1, . . . , 124 do
a125i = f(a125i, a125i+j)

end for
for k = 0, 1, 2, 3 do

if i ≡ 0 (mod 2k+1) then
a125i = f(a125i, a125(i+2k))

end if
end for

146 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

return a0

which the reader can verify is indeed equivalent to Method 4 with n5 = 125 and n1 =
n2 = n3 = n4 = 2, with the modification that the work of T125i, . . . , T125i+124 there, is now
executed by Ti here. Since f() follows a single execution path, this is a perfect data-parallel
implementation.

Example A.2.11. Assume now that f is still associative and has constant runtime, but it
no longer follows a single execution path. Instead, f is a piecewise function with 8 pieces,
implemented by an if-tree, and g0, . . . , g7 are functions that do follow a single execution path.
So, f looks as follows.

(determine x and γ0 < γ1 < · · · < γ6 based on input)
if x < γ3 then

if x < γ1 then
if x < γ0 then

return g0(x)
else

return g1(x)
end if

else
if x < γ2 then

return g2(x)
else

return g3(x)
end if

end if
else

if x < γ5 then
if x < γ4 then

return g4(x)
else

return g5(x)
end if

else
if x < γ6 then

return g6(x)
else

return g7(x)
end if

end if
end if

While horrible to read for humans, a CPU finds this very easy code: it only needs to evaluate
3 if-statements to find out which piece needs to be called. In general, a piecewise function
with n parts needs only dlog2(n)e if-statements. This is a very useful way to approximate
functions that would otherwise be complex to compute.

A.3. THE LDPC DECODING ALGORITHM 147

On a MIMD architecture, the execution time would still be 128T . On a SIMD architecture
however, part of the parallelization will be gone: we will suddenly need (at most) 8 · 128T =
1024T time to execute the program. The reason for this is as follows: if for at least one of the
threads, x < γ0, then the instructions for g0() are loaded on the instruction stream. Since all
threads share this instruction stream, the threads with x ≥ γ0 have to wait for the threads
with x < γ0 to finish g0() before the instructions for g1() can be loaded. In general, when
evaluating performance of conditional statements on SIMD architectures, one should keep
in mind that different branches cannot be executed simultaneously as they require different
instructions. As a rule of thumb, it can be said that the execution time of a function allowing
more than one execution path on a SIMD device, will have as its execution time that of the
union of all its execution paths. For this reason, algorithms that heavily rely on conditional
logic will usually be better off on a MIMD architecture.

A.3 The LDPC decoding algorithm

In this section, we will explain how the belief propagation/sum-product LDPC decoding
algorithm works.

Definition A.3.1 ([133]). Let H ∈ Fm×nq be any matrix. Let Vs be the set of columns of H
and let Vc be the set of rows of H. Then the Tanner graph of H is the bipartite graph on
Vs ∪ Vc with edge set E = {(i, j) ∈ Vs × Vc : Hji 6= 0}. Even though the graph is undirected,
we will consider edges as pairs in Vs × Vc for notational simplicity.

Usually, Tanner graphs are only considered of {0, 1}-matrices, making the condition Hji 6= 0
equivalent to Hji = 1.

1 1 0 1 0
0 1 1 0 1
0 0 1 1 1

⇒
Vs

Vc

When H is used as the parity check matrix of an LDPC code, then Vs can be interpreted as
the set of symbols of C, and Vc can be interpreted as the set of parity check equations that
a code word in C has to fulfill.

Notation A.3.2. The edge (i, j) will be denoted by e. Hence, whenever this section mentions
e ∈ E, this should be read as (i, j) ∈ E ⊆ Vs × Vc.

Definition A.3.3. To simplify the notations in the coming section, we introduce the following
additional symbols.

• We denote Vi = {j ∈ Vc|(i, j) ∈ E} and Vj = {i ∈ Vs|(i, j) ∈ E}.

• By Fi,j we denote the condition “∀j′ ∈ Vi \ {j} :
∑

i′∈Vj′
ci′ = 0”, i.e. the condition that

all check equations adjacent to i, with the exception of cj , are fulfilled.

148 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

The common model to study coding theory, is to assume that a certain corrupted word
w = (wi)i∈Vs is received and that the statistical distribution of the noise is known, so that we
can correctly determine the symbolwise probability distribution p. That is, for each symbol
i ∈ Vs and for each a ∈ A, the probability

pa,i = P (ci = a|w is received)

is assumed to be known. Obviously,
∑

a∈A pa,i = 1 for each i ∈ Vs. This matrix p = (pa,i)a∈A
i∈Vs

is the input of any decoder.

In a practical setting, one nearly always works in the AWGN model, i.e. the Additive Gaussian
White Noise model. Other channel models exist as well, but they fall beyond the scope of
this text. In the AWGN model, the two symbols of the binary alphabet are encoded as ±1,
and for each position one takes an independent (‘white’) sample from an N(0, σ2) distribution
(‘Gaussian’), which is then added to the ±1 (‘additive’).

Definition A.3.4. The performance of an AWGN decoder is the probability distribution
which maps σ to the probability that an arbitrary message c ∈ C can be retrieved successfully
by the decoder after adding this N(0, σ2) term to it.

Several upper bounds on the performance of a decoder exist, the most well-known one being
the Shannon limit. The most common way to measure the performance perf , given that we
are mainly interested in approximations of log(1 − perf) and only when the performance is
very high (perr > 0.99999), is to put noise on random code words and decode them, until
100 wrong decodings have been made. If N code words were required to get there, then the
estimated performance is 1− 100

N .

The key idea behind belief propagation is to farm out the computations to the symbol and
check nodes, rather than looking for a global solution (such as maximum likelihood decoding).
The symbol nodes and check nodes will iteratively exchange information over the network,
and all of the computations will happen in the symbol nodes and check nodes, using only
the information they have available at that point. In each iteration, each symbol node passes
information to each of its adjacent check nodes, after which each check node passes information
to each of its adjacent symbol nodes. Hence, the information is always passed along the edges
of the Tanner graph. First we will study how exactly this information is exchanged over the
network, and then we will take a look at which information has to be exchanged.

A naive method would be to make each symbol node i ∈ Vs pass all the information it has to
each j ∈ Vi; and after this, make each check node j ∈ Vc pass all the information it receives,
plus its own information, to each i ∈ Vj . Then, after t iterations, the information from node
i will have reached every vertex at graph distance at most 2t from i. However, the same
information will arrive at the same vertex multiple times, since every two adjacent vertices
will perpetually send their message back and forth over the same edge.

There is an easy remedy for this, allowing the same information to be transferred with less
overhead: instead of the naive approach above, we let each node pass all of the information it
received, to all of its adjacent nodes except for the node from which it received the information.
From an information theoretic point of view, this alternative is completely equivalent: each

A.3. THE LDPC DECODING ALGORITHM 149

node will get each piece of information for the first time in the same iteration as in the
naive approach; getting the same information again at a later point in time has no intrinsic
contribution anymore. However, the amount of required messages lowers significantly: the
amount of messages is multiplied by deg(v)−1 instead of deg(v) at vertex v ∈ V . Since LDPC
codes have a very sparse Tanner graph, the vertex degrees are usually very low, making this
a significant improvement.

Definition A.3.5. This way of transmitting information along the edges of a graph, sending
information to all adjacent nodes except for the one from which the information was received,
is called propagation.

It is easy to see that, after t iterations, a vertex v ∈ V has received the information from
v′ ∈ V if and only if there exists a propagation walk of length d(v, v′) ≤ t in the graph. We
will now have a look at which messages are being propagated. In a practical setting, a node
cannot pass all of the information that it received, so it will only propagate part of it. In
particular, the messages passed will be estimates of certain probabilities, computed in the
nodes. Hence, each node propagates its beliefs on certain probabilities over the network. This
justifies the name of the algorithm: what we do is indeed belief propagation. Another, less
common name for this algorithm, is the message passing algorithm (MPA).

Denote by Pa,i the current estimate by symbol node i of the probability

P

ci = a

∣∣∣∣∣∣w,∀j ∈ Vi :
∑
i′∈Vj

ci′ = 0

 ,

i.e. the probability that the ith symbol is a, given that all parity check equations are fulfilled
and the word w is received. The best estimate for the received code word is then the word
(arg maxa∈A Pa,i)i∈Vs . We will iterate this propagation from symbol nodes to check nodes
and back, until (

arg max
a∈A

Pa,i

)
i∈Vs
∈ C.

To prevent the algorithm from getting stuck in an infinite loop, we will also break the algo-
rithm when a certain maximum number of iterations is reached (in which case decoding fails
and no valid code word is returned).

Remark A.3.6. Note that in some rare cases, decoding a highly corrupted word may result
in a valid code word, different from the code word transmitted. However, the number of
errors caused in this way, is usually neglectable compared to the number of errors caused by
the algorithm not returning a code word (by reaching its maximum number of iterations).

Remark A.3.7. Sometimes, two (or more) elements a1, a2 ∈ A have

Pa1,i = Pa2,i = max
a∈A

Pa,i.

In such an event, arg max returns E, an erasure. On erasure channels, this is exactly the
definition of an erasure, and on non-erasure channels the probability of such a tie is zero
anyway; hence, this will cause no harm.

150 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

Initially, Pa,i = pa,i for each i ∈ Vs and each a ∈ A, since the condition ∀j ∈ Vi :
∑

i′∈Vj ci′ =
0 is meaningless if i has not yet received any information from any of the check nodes.
If (arg maxa∈A pa,i)i∈Vs ∈ C, then no decoding is necessary to reconstruct the transmitted
code word. If decoding is necessary, the symbol nodes i ∈ Vs and check nodes j ∈ Vc will
alternatingly propagate over e = (i, j) the message vector qe = (qa,e)a∈A with

qa,e = P̂ (ci = a|w,Fi,j)

from i to j, and re = (ra,e)a∈A with

ra,e = P̂

∑
i′∈Vj

ci′ = 0

∣∣∣∣∣∣(ci′ = a) a∈A
i′∈Vj

from j to i. We hereby remind that Fi,j was defined in Definition A.3.3 and that w stands
for the word that was received.

Unfortunately, correctly determining the best estimate for P̂ in qe turns out to be difficult,
perhaps even more difficult than the original maximum likelihood decoding problem that we
were trying to avoid. The way in which this is commonly done for LDPC codes, is to make an
independence assumption: since we assume the exclusion of the information received over an
edge e when determining the message to send back over e, the probabilities for each check node
j ∈ Vi to be satisfied, are statistically independent until the information has went through
an entire cycle of the graph. To simplify the computations, the decoding algorithm assumes
that the messages will be independent throughout the entire duration of the decoding.

While this is clearly incorrect, and voids the mathematical correctness of the probabilities
obtained, the loss of performance suffered in this way is experimentally observed to be rather
small. Since the Tanner graphs used for LDPC decoding usually have large girth, the assump-
tion is correct during the first few iterations; and even after that the amount of information
received in this non-independent way is only responsible for a small fraction of the total
amount of information received, causing only slight distortions. Therefore, even when the
graph does have cycles, this independence assumption turns out to be approximately correct,
probably due to the sparseness and high girth of the Tanner graph.

Theorem A.3.8. Under the independence assumption, the estimate sent by i ∈ Vs along edge
e = (i, j) is qe = (qa,e)a∈A with

qa,e =

pa,i ·
∏

j′∈Vi\{j}

ra,(i,j′)∑
a′∈A

pa′,i ·
∏

j′∈Vi\{j}

ra′,(i,j′)
.

In the first iteration, when no prior ra,e was received, this reduces to qa,e = pa,i.

Proof. By the general probability formula

P (A|B,C) =
P (A ∩B|C)

P (B|C)
= P (B|A,C)

P (A|C)

P (B|C)
,

A.3. THE LDPC DECODING ALGORITHM 151

one has

P (ci = a|w,Fi,j) = P (Fi,j |w, ci = a) · P (ci = a|w)

P (Fi,j |w)
.

Moreover, one has P (ci = a|w) = pa,i and, by the approximate independence assumption,

P (Fi,j |w, ci = a) =
∏

j′∈Vi\{j}

P

∑
i′∈Vj′

ci′ = 0

∣∣∣∣∣∣w, ci = a

 .

Hence,

qa,e =

pa,i ·
∏

j′∈Vi\{j}

P

∑
i′∈Vj′

ci′ = 0

∣∣∣∣∣∣w, ci = a

P (Fi,j |w)

=

pa,i ·
∏

j′∈Vi\{j}

ra,(i,j′)

P (Fi,j |w)
.

Since P (Fi,j |w) does not depend on a and since
∑

a∈A qa,e = 1 for each e ∈ E, we may
eliminate P (Fi,j |w) by dividing qa,e by

∑
a∈A qa,e = 1:

qa,e =
pa,i ·

∏
j′∈Vi\{j} ra,(i,j′)∑

a′∈A pa′,i ·
∏
j′∈Vi\{j} ra′,(i,j′)

.

This proves our claim.

The computation of re depends on the structure of the alphabet A. Since we only consider
codes over fields, we will assume that A ∼= Fhp , where Fp is the prime field of A.

Theorem A.3.9. Let A ∼= Fhp , where Fp is the prime field of A, and write each a ∈ A as

(a1, . . . , ah) ∈ Fhp . The estimate sent by j ∈ Vc along edge e = (i, j) is re = (ra,e)a∈A with

ra,e =

 ∏
i′∈Vj\{i}

(∑
a∈A

qa,(i′,j)t
a1
1 t

a2
2 · · · t

ah
h

) mod tp−1
1 − 1, . . . , tp−1

h − 1

t1=···=th=0

,

where f(t1, . . . , th)t1=···=th=0 denotes the evaluation of f(0, . . . , 0).

Proof. Let K be any index set and let (ck)k∈K ∈ AK ∼= (Fhp)K . Since two elements are
equal if and only if their Fp-components are equal, the generating function associated to the
probability distribution

P

(∑
k∈K

ck = (n1, . . . , nh)

∣∣∣∣∣(P (ck = a))a∈A
k∈K

)
,

is ∏
k∈K

∑
a∈A

P (ck = a) · ta11 t
a2
2 · · · t

ah
h ,

and the stated probability is given by the coefficient tn1
1 · · · t

nh
h in the generating function.

152 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

In this case, we are interested in the sum mod p. Hence, we will take all powers of t1, . . . , th
mod p, which is algebraically equivalent to reducing the polynomial mod tp − 1 for each
variable t ∈ {t1, . . . , th}. Moreover, the case a = 0 is given by the coefficient of t01t

0
2 · · · t0h,

which is easily obtained by substituting t1 = · · · = th = 0 in the result. Plugging in K = {i′ :
Vj \ i} yields the predicted message to send over e = (i, j).

Algorithm 4 The original probability-domain belief propagation algorithm

Input: the probability distribution p = (pa,i)a∈A
i∈Vs

and the maximum number of iterations M

Output: the retrieved code word (or FAIL)
1: (Pa,i)a∈A

i∈Vs
← (pa,i)a∈A

i∈Vs
2: if (arg maxa∈A pa,i)i∈Vs ∈ C then
3: return (arg maxa∈A pa,i)i∈Vs
4: end if
5: for e = (i, j) ∈ E do
6: qe = (pa,i)a∈A
7: end for
8: for m = 1, . . . ,M do
9: for e ∈ E do

10: for a ∈ A do
11: ra,e = the long expression from Theorem A.3.9 (or Theorem A.3.10 if A = F2)
12: end for
13: end for
14: for e ∈ E do
15: Se =

∑
a∈A

pa,i ·
∏

j′∈Vi\{j}

ra,(i,j′)

16: qe =
1

Se

pa,i ·
∏

j′∈Vi\{j}

ra,(i,j′)

a∈A

17: end for

18: if

(
arg max

a∈A

(
pa,i ·

∏
j∈Vi ra,e

))
i∈Vs
∈ C then

19: return

(
arg max

a∈A

(
pa,i ·

∏
j∈Vi ra,e

))
i∈Vs

20: end if
21: end for
22: return FAIL

The computation of Pa,i is completely similar to the computation of qa,e, except that no j ∈ Vi
is included. Hence, we put

Pa,i =

pa,i ·
∏
j∈Vi

ra,e∑
a′∈A

pa′,i ·
∏
j∈Vi

ra′,e
.

In practice, one can omit the denominator, since we’re only interested in arg maxa∈A Pa,i and
not in the actual values of Pa,i.

A.3. THE LDPC DECODING ALGORITHM 153

All together, this motivates Algorithm 4. In the binary case, this can be simplified further to
Algorithm 5, using the fact that q0,e + q1,e = 1 and r0,e + r1,e = 1 for each e ∈ E, and using
the following simplification of Theorem A.3.9.

Theorem A.3.10. In the binary case, the update rule for ra,e reduces to

ra,e =
1

2
+ (−1)a

1

2

∏
i′∈Vj\{i}

(
1− 2qa,(i′,j)

)
.

Proof. Denote by pk = P (ck = 1), then the generating function from Theorem A.3.9 simplifies
to ∏

k∈K
((1− pk) + pkt).

By induction, we now prove that the sum of the even-powered coefficients (which is the
evaluation at t = 0 after reducing modulo t2 − 1) equals 1

2 + 1
2

∏
k∈K(1− 2pk).

• For |K| = 0, this is clear, since an empty product equals the polynomial 1 = 1
2 + 1

2 .

• Assume the statement is true for all K with |K| = n − 1 for some positive integer n.
Let k ∈ K, then

∑
k′∈K\{k} ck′ = 1 is equivalent to:

(ck = 1 ∧
∑

k′∈K\{k}

ck′ = 1) ∨ (ck = 0 ∧
∑

k′∈K\{k}

ck′ = 0),

where both sides of the ∨ are mutually disjoint. Hence, the coefficient of t0 in

((1− pk) + pkt)
∏

k′∈K\{k}

((1− pk′) + pk′t) mod t2 − 1

equals (by the induction hypothesis)

pk

1

2
− 1

2

∏
k′∈K\{k}

(1− 2pk′)

+ (1− pk)

1

2
+

1

2

∏
k′∈K\{k}

(1− 2pk′)

 ,

which is
1

2
+

1

2

∏
k′∈K\{k}

(1− 2pk′)

as claimed.

Hence, plugging in K = {i′ : Vj \{i}} yields the predicted message to send over e = (i, j).

Remark A.3.11. Despite the way it is presented (which is optimized for readability), Algo-
rithm 4 runs in O(|E|) time and O(|E|) memory, for any fixed alphabet A. This is because
we can simplify the computations of

∏
i′∈Vj\{i} and

∏
j′∈Vi\{j} by first precomputing

∏
i∈Vj

and
∏
j∈Vi (which can be done in O(|E|) time since each edge appears in exactly one product

of each of both types), and then dividing out the factor for the edge to exclude.

154 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

Much effort has been put in finding ways to decrease the complexity of Algorithm 4. When
applying Algorithm 4 to binary codes, Theorem A.3.10 already takes away the computational
burden of working with polynomials instead of just real numbers, but further improvements
can be made. In particular, applying a simple transformation on the values that are passed
along the network, one can convert both products into sums, which not only decreases the
complexity, but also increases the numerical stability of the algorithm. In particular, we can
state the following result.

Theorem A.3.12. Algorithm 5 is equivalent to Algorithm 4 for binary codes.

Proof. Since r0,e + r1,e = 1 and q0,e + q1,e = 1, it is not necessary to transmit both. We will
replace r0,e and q0,e by 1 − r1,e and 1 − q1,e everywhere. Moreover, we will shorten q1,e and

r1,e to qe and re. Denote Lrij = ln
(

1−r1,e
r1,e

)
and Lqij = ln

(
1−q1,e
q1,e

)
for each e = (i, j) ∈ E.

Denote Lpi = ln
(
p0,i
p1,i

)
and LPi = ln

(
P0,i

P1,i

)
.

The update rule

re =
1

2
− 1

2

∏
i′∈Vj\{i}

(
1− 2q(i′,j)

)
can be rewritten as

1− 2re =
∏

i′∈Vj\{i}

(
1− 2q(i′,j)

)
.

Observe that 1− 2x = (1− x)− (x) = tanh
(

1
2 ln

(
1−x
x

))
, which rewrites the update rule as

tanh

(
1

2
Lrij

)
=

∏
i′∈Vj\{i}

tanh

(
1

2
Lqi′j

)
.

Now, split of the signs: denote αij =

{
−1 if LQij < 0,

1 if LQij > 0
and βij = |LQij |, such that LQij =

αijβij . Since tanh(−x) = − tanh(x) for all x ∈ R and tanh is invertible on]−1, 1[, this allows
the update rule to be rewritten as

Lrij =
∏

i′∈Vj\{i}

αi′j2 tanh−1
∏

i′∈Vj\{i}

tanh

(
1

2
βi′j

)
.

Since ∏
i′∈Vj\{i}

tanh

(
1

2
βi′j

)
= ln−1

∑
i′∈Vj\{i}

ln tanh

(
1

2
βi′j

)
,

the update rule can be rewritten further as

Lrij =
∏

i′∈Vj\{i}

αi′jφ
−1

 ∑
i′∈Vj\{i}

φ(βi′j)

A.3. THE LDPC DECODING ALGORITHM 155

Algorithm 5 The standard LLR-BP algorithm

Input: the probability distribution p = (pa,i)a∈F2
i∈Vs

and the maximum number of iterations M

Output: the retrieved code word (or FAIL)
1: for i ∈ Vs do

2: Lpi = ln
(
p0,i
p1,i

)
3: LPi = Lpi

4: ci ←

{
1 if LPi < 0,

0 if LPi > 0
5: end for
6: if (ci)i∈Vs ∈ C then
7: return (ci)i∈Vs
8: end if
9: for (i, j) ∈ E do

10: LQij ← LPi
11: end for
12: for m = 1, . . . ,M do
13: for (i, j) ∈ E do

14: αij ←

{
−1 if LQij < 0,

1 if LQij > 0

15: βij ← |LQij |
16: end for
17: for j ∈ Vc do

18: Bj ←
∑
i∈Vj

φ(βij)

19: Aj ←
∏
i∈Vj

αij

20: end for
21: for (i, j) ∈ E do
22: LRji ← Ajαij · φ (Bj − φ(βij))
23: end for
24: for i ∈ Vs do
25: LPi ← Lpi +

∑
j∼i

LRj′i

26: ci ←

{
1 if LPi < 0,

0 if LPi > 0
27: end for
28: if (ci)i∈Vs ∈ C then
29: return (ci)i∈Vs
30: end if
31: for (i, j) ∈ E do
32: LQij ← LPi − LRji
33: end for
34: end for

156 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0

F
ra

m
e

E
rr

o
r

R
at

e

sum-product
min-sum

piecewise linear

Figure A.2: Performance of the sum-product algorithm, its piecewise linear approximation,
and the min-sum algorithm over an AWGN channel, using the PG(2, 16) LDPC code

with φ : R+ → R+ : x 7→ − ln
(
tanh

(
x
2

))
(which is its own inverse). The other modifications

should be obvious, being merely log-transforming both sides of an equation, and precomputing
the sums (which used to be products) as in Remark A.3.11. Note that

∏
i′∈Vj\{i} αi′j is a XOR

of booleans, which is faster than summation and does not suffer from numerical instability;
this also explains why we write the more elegant Ajαij instead of

Aj
αij

.

It is clear that Algorithm 5 runs in O(|E|) time and O(|E|) RAM & ROM memory. In the
literature, Algorithm 5 is commonly referred to as the sum-product algorithm (SPA), belief
propagation or message passing algorithm (MPA). Occasionally MAP is also used.

Remark A.3.13. The main computational burden in Algorithm 5 is the computation of
φ. We present the two common low-complexity approximations below. Many hardware
simplifications have also been studied, but this falls beyond the scope of this text.

• The min-sum algorithm (occasional alternative names: sig-min algorithm or max-log-
MAP decoding or UMP BP-based decoding). Since limx→0+ φ(x) = +∞, the value of

A.4. AN OPENCL IMPLEMENTATION 157

0 1 2 3 4 5
0

1

2

3

4

5
ϕ(x) = − ln

(
tanh

(
x
2

))
piecewise linear

Figure A.3: ϕ versus its piecewise linear approximation

∑
x∈X φ(x) can be approximated by φ (minx∈X x). Hence, with this approximation, the

update rule reduces to

Lrij =
∏

i′∈Vj\{i}

αi′j min
i′∈Vj\{i}

βi′j .

Since this new approximation is always slightly larger (in absolute value) than the
original Lrij , one sometimes divides each Lrij by a correction factor α > 1.

• Piecewise linear approximation. Using only three if-statements, φ can be approximated
by eight line segments. This turns out to be a simple but effective remedy, which
manages to approximate ϕ quite well, as can be seen in Figure A.3. Similarly, ϕ can be
implemented via a lookup table (i.e. a piecewise constant function), which requires no
floating point computations.

A comparative chart, displaying the performance of these approximations and of the original
algorithm on the PG(2, 16) code over an AWGN channel (the most common model for modern
coding theory, where binary signals are modulated as {−1, 1} → R and the noise has a normal
distribution), is given in Figure A.2.

Another important issue is the memory complexity of Algorithm 5. The RAM memory
requirements are responsible for the majority of the physical size, power consumption and
production price of the decoder [3, 69, 68, 99], despite serious attempts the memory usage
and physical properties have been reduced by a constant factor only [28, 109, 117, 138, 151].

A.4 An OpenCL implementation

In this section I will explain how I implemented Algorithm 5 in OpenCL, as an example of how
to implement nontrivial algorithms on GPU. While I have implemented the entire algorithm
on GPU, as well as all the tools to generate random data, I will focus this section on the
inner loop starting at line 12, since this is the computationally relevant part. Meanwhile, I

158 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

will explain the relevant parts of how a GPU differs computationally from a CPU in terms of
latency, thread scheduling and vector computing.

What lines 18, 19 and 22 do is essentially computing

LRji =

 ∏
i′∈Vj\{i}

αi′j

 ∑
i′∈Vj\{i}

φ(βi′j)

 .

Of course, recomputing this partial sum for every index is a terrible waste of resources, so
therefore we first compute the total sum and product in lines 18 and 25, and then substract
the relevant term and factor in line 22. A similar trick is written in lines 25 and 32. While
in theory this works perfect, a straightforward implementation trashes the performance of
the decoding pretty quickly: once we are very sure about a certain position, the quantity
to ignore in the sum becomes very large, and gets rounded by the hardware to +∞. Then
substracting it again yields∞−∞ which is undetermined (‘NaN’ value in OpenCL, for ‘Not a
Number’). This NaN propagates over the Tanner graph (adding or substracting NaN to/from
any number yields again NaN) and the decoding process fails. Therefore, we will need to
modify the algorithm so that it not just sums up the numbers, but explicitly counts the
positive and negative infinities: we will represent every number as a∞+ b with a an integer
and b a floating point number, with the additional conventions that (a∞+b)+c = a∞+(b+c)
for c ∈ R, (a∞+ b) +∞ = (a+ 1)∞+ b and (a∞+ b)−∞) = (a− 1)∞+ b, where obviously
(a∞+b) > 0 holds if and only if either a > 0 or (a = 0 and b > 0). This representation is still
only an approximation (since b+ c may be so large that it is again rounded to infinity), but
then again, so is every numerical rounding. These are unavoidable in numerical computing,
and with this extra convention no NaN values are created and propagated.

Next, we need to decide what each thread should be executing. OpenCL is designed to
distribute a large amount of work (in this case: decoding a large number N of received
vectors) over a large number of small local workgroups within which synchronization methods
are available to optimally use an entire compute unit (64 cores) to complete this job as soon
as possible. Since different received words are unrelated, but every position of the code word
could potentially matter for every other position in the final decoded word, the natural choice
here is to choose a workgroup to cover exactly one received noisy code word. As is explained
in the previous section, the main idea behind belief propagation decoding is to farm out the
computational work to the vertices of the graph; hence, it is natural to give each vertex of
the graph its own logical core, and to somehow map these |Vs| + |Vc| logical cores to the 64
physical cores in a way that allows optimum parallelism. Since Vs and Vc are only active in
turns, one natural way to do this is to let core t (with t ∈ {0, . . . , 63}) do the computations

for node t
⌊
|Vs|
64

⌋
up to (t+ 1)

⌊
|Vs|
64

⌋
− 1, of course paying attention that these numbers don’t

go beyond |Vs|. Similar for Vc.

The if-condition in line 28 is done by computing for all j ∈ Vc the value of
(∑

i∈Vj LPi

)
mod 2. Unfortunately, there is no easy way to check in parallel if all elements in that array
are zero. Here, we need utilize a trick similar to the one in Example A.2.3 to sum up the
remainders modulo 2 and then have one single core return the output if that sum is zero.

To make optimal use of the computational capabilities of the GPU on 128-bit registers, one

A.4. AN OPENCL IMPLEMENTATION 159

needs to fill the entire register to perform the numerical computations. Using 64-bit double-
precision floats to represent numbers, this means we can do two φ()-evaluations at a time per
core, or two additions/multiplications/... which yields a factor 2 speedup compared to the
naive implementation. The most efficient way to do this is to just make groups of two code
words and let the local workgroup act on two code words at once. This way we fully utilize
the potential of the computing cores on the card.

To avoid branching as discussed at the end of Section A.2, we need to write the if-statements
in such a way that they do not require branching. For this purpose, OpenCL provides vector
functions that write the output of certain logical boolean operators (like whether a number
is finite or larger than another number) to an integer vector with values either 0 (which is
stored by all zeroes bitwise) or −1 (which is stored by all ones bitwise). This way, we can
avoid branching: for example, when adding the value of temp to sum only when they’re finite,
one could use

sum += as_double2(isfinite(temp) & as_long2(temp));

to replace the branching if-statement by a non-branching logical ‘and’.

Next to optimizing the kernel, it is also important to optimize the way the kernel is invoked.
The drivers manageing the GPU computations have a watchdog timer which monitors ap-
plications to see if they’re still responsive. If a single kernel is running for more than five
seconds, it will get interrupted and the application running it crashes. On the other hand,
stopping and launching a new kernel has very little overhead. Therefore, we will just let one
kernel execute one loop of the algorithm, and run the iteration loop in the host program.
To make sure the kernel runs about one second (which is more than enough to make kernel
execution overhead neglectable) we can flexibly adjust the number of code words processed in
one iteration of the kernel. Processing more code words in the same kernel has the additional
benefit that the scheduler can better utilize parallelism. On one hand GPU memory access
has a high latency and having many different code words to process per kernel helps the
scheduler to make the cores do computations for other code words while waiting for memory
access requests to resolve; on the other hand more code words make the distribution of the
work over the compute units (i.e. the different groups of 64 cores in the CPU) more evenly,
which also improves optimum usage of the available computing resources.

To finish, I give the reader the raw output of my OpenCL kernel on the next pages, to provide
an idea of how an implemented OpenCL kernel looks like. Feel free to copy and use, since at
this point there are no such general purpose OpenCL implementations of the LDPC decoding
algorithm publicly available.

160 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

inline double2 phi (double2 x) {

return -log(tanh(x/2));

}

__kernel void oneIteration(

__global const int *cumulRowDegree, //int[height+1]

__global const int *cumulColumnDegree, //int[length+1]

__global const int *edgeRow,

__global const int *edgeColumn,

__global const int *edgesInRow, //stores for each row the edge indices in it

__global const int *edgesInColumn, //stores for each column the edge indices in it

__global const int *positionsOfOnes,

const int length,

const int height,

const int numberOfOnes,

__global int2 *iter,

__global double2 *aij,

__global double2 *phibetaij,

__global double2 *Lqij,

__global double2 *Lrji,

__global double2 *Lci,

__global short2 *LQihard,

const double sigma,

const double p,

__global short2 *detectedErrorInWord,

__global int2 *hiddenErrorInWord,

__global const long2 *inputcw,

__global short2 *checkbits

){

int wordId = get_global_id(1);

if (detectedErrorInWord[wordId].x || detectedErrorInWord[wordId].y) {

int eOffset = get_global_id(1)*numberOfOnes;

int iOffset = get_global_id(1)*length;

int jOffset = get_global_id(1)*height;

//initialize the start and stop values for this work item

// when iterating over the edges or vertices

int eNumberPerThread = (int)ceil((double)numberOfOnes/(double)get_global_size(0));

int eStart = get_global_id(0)*eNumberPerThread;

int eStop = eStart + eNumberPerThread;

if (eStop>=numberOfOnes) eStop = numberOfOnes;

int iNumberPerThread = (int)ceil((double)length/(double)get_global_size(0));

int iStart = get_global_id(0)*iNumberPerThread;

int iStop = iStart + iNumberPerThread;

if (iStop>=length) iStop = length;

A.4. AN OPENCL IMPLEMENTATION 161

int jNumberPerThread = (int)ceil((double)height/(double)get_global_size(0));

int jStart = get_global_id(0)*jNumberPerThread;

int jStop = jStart + jNumberPerThread;

if (jStop>=height) jStop = height;

int threadID = get_global_id(1)*get_global_size(0)+get_global_id(0);

barrier(CLK_GLOBAL_MEM_FENCE);

//if we’re in the first iteration, initialize the edges

if (iter[wordId].x==0) {

for (int e = eStart; e<eStop; e++) {

Lqij[eOffset+e].x = Lci[iOffset+edgeColumn[e]].x;

}

barrier(CLK_GLOBAL_MEM_FENCE);

}

if (iter[wordId].y==0) {

for (int e = eStart; e<eStop; e++) {

Lqij[eOffset+e].y = Lci[iOffset+edgeColumn[e]].y;

}

barrier(CLK_GLOBAL_MEM_FENCE);

}

if (get_global_id(0)==0 && detectedErrorInWord[wordId].x) iter[wordId].x++;

if (get_global_id(0)==0 && detectedErrorInWord[wordId].y) iter[wordId].y++;

//compute the values of \alpha_{ij} and \phi(\beta_{ij})

for (int e = eStart; e<eStop; e++) {

long2 temp = signbit(Lqij[eOffset+e]);

aij[eOffset+e]=1+2*(double2)(temp.x,temp.y);

phibetaij[eOffset+e]=phi(fabs(Lqij[eOffset+e]));

}

barrier(CLK_GLOBAL_MEM_FENCE);

for (int j=jStart; j<jStop; j++) {

//compute A_j and B_j for this j

double2 sum = 0;

double2 prod = 1;

long2 inf = 0;

for (int idx = cumulRowDegree[j]; idx<cumulRowDegree[j+1]; idx++) {

int e = edgesInRow[idx];

double2 temp = phibetaij[eOffset+e];

sum+=as_double2(isfinite(temp) & as_long2(temp));

prod*=aij[eOffset+e];

inf -= isinf(temp);

}

//compute LR_{ji} for all i adjacent to j

for (int idx = cumulRowDegree[j]; idx<cumulRowDegree[j+1]; idx++) {

int e = edgesInRow[idx];

162 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

double2 temp = phibetaij[eOffset+e];

long2 localinf = inf + isinf(temp);

Lrji[eOffset+e] = phi(fabs(sum-as_double2(isfinite(temp)&as_long2(temp))));

if (localinf.x) Lrji[eOffset+e].x=0;

if (localinf.y) Lrji[eOffset+e].y=0;

double2 myprod = prod;

myprod *= aij[eOffset+e];

Lrji[eOffset+e]=myprod*Lrji[eOffset+e];

}

}

barrier(CLK_GLOBAL_MEM_FENCE);

for(int i=iStart; i<iStop; i++) {

//compute LP_i for this i

double2 sum = Lci[iOffset+i];

long2 inf = 0;

for (int idx = cumulColumnDegree[i]; idx<cumulColumnDegree[i+1]; idx++) {

int e = edgesInColumn[idx];

double2 temp = Lrji[eOffset+e];

sum += as_double2(isfinite(temp) & as_long2(temp));

inf += isinf(temp)*isgreater(temp,0);

inf -= isinf(temp)*isless(temp,0);

}

double2 LQi = sum;

if (inf.x>0) LQi.x = INFINITY;

if (inf.x<0) LQi.x = -INFINITY;

if (inf.y>0) LQi.y = INFINITY;

if (inf.y<0) LQi.y = -INFINITY;

//compute c_i

LQihard[iOffset+i].x=((LQi.x<0)!=(inputcw[i].x==1))

|| ((LQi.x>0)!=(inputcw[i].x!=1));

LQihard[iOffset+i].y=((LQi.y<0)!=(inputcw[i].y==1))

|| ((LQi.y>0)!=(inputcw[i].y!=1));

//compute LQ_{ij} for all j adjacent to i

for (int idx = cumulColumnDegree[i]; idx<cumulColumnDegree[i+1]; idx++) {

int e = edgesInColumn[idx];

double2 temp = Lrji[eOffset+e];

double2 sumpart = sum-as_double2(isfinite(temp)&as_long2(temp));

long2 infpart = inf-isinf(temp)*isgreater(temp,0)+isinf(temp)*isless(temp,0);

if (infpart.x>0) sumpart.x = INFINITY;

if (infpart.x<0) sumpart.x = -INFINITY;

if (infpart.y>0) sumpart.y = INFINITY;

if (infpart.y<0) sumpart.y = -INFINITY;

Lqij[eOffset+e] = sumpart;

}

A.4. AN OPENCL IMPLEMENTATION 163

}

barrier(CLK_GLOBAL_MEM_FENCE);

//check if (c_i)_{i\in V_s} \in C

for (int j=jStart; j<jStop; j++) {

short2 value = (short2)(1,1);

for (int idx=cumulRowDegree[j]; idx<cumulRowDegree[j+1]; idx++) {

int pos = positionsOfOnes[idx];

value *= (short2)(1,1)-(short2)(2,2)*LQihard[iOffset+pos];

}

checkbits[jOffset+j] = ((short2)(1,1)-value)/(short2)(2,2);

}

for (int step=1, div=1; step<length; step<<=1, div++) {

for (int i=iStart; i<iStop; i++) if (i<length-step && i==i>>div<<div) {

LQihard[iOffset+i]+=LQihard[iOffset+i+step];

}

barrier(CLK_GLOBAL_MEM_FENCE);

}

for (int step=1, div=1; step<height; step<<=1, div++) {

for (int j=jStart; j<jStop; j++) if (j<height-step && j==j>>div<<div) {

checkbits[jOffset+j]|=checkbits[jOffset+j+step];

}

barrier(CLK_GLOBAL_MEM_FENCE);

}

//prepare the output to be read

if (get_global_id(0)==0) {

hiddenErrorInWord[wordId].x=LQihard[iOffset+0].x;

hiddenErrorInWord[wordId].y=LQihard[iOffset+0].y;

if (checkbits[jOffset+0].x!=0) {

detectedErrorInWord[wordId].x=1;

} else {

detectedErrorInWord[wordId].x=0;

}

if (checkbits[jOffset+0].y!=0) {

detectedErrorInWord[wordId].y=1;

} else {

detectedErrorInWord[wordId].y=0;

}

}

}

}

164 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

Nederlandstalige samenvatting

In deze Nederlandstalige samenvatting geef ik een kort overzicht van de resultaten die in deze
Engelstalige doctoraatsthesis gepresenteerd worden.

Hoofdstuk 1 herhaalt de algemene notaties in eindige meetkunde en codeertheorie; dit hoofd-
stuk legt de notaties vast die doorheen de thesis gebruikt worden.

Hoofdstuk 2 handelt over (LDPC) codes die geconstrueerd worden uit eindige meetkundes.
In Sectie 2.1 bespreek ik de algemene motivering om dergelijke codes te bestuderen, evenzo
vermeld ik de basisresultaten over dit onderwerp.

In Sectie 2.2 bespreek ik de cyclische LDPC codes van affiene en projectieve meetkundes,
gezien dit de bekendste klasse LDPC codes zijn die uit eindige meetkundes geconstrueerd
worden. In deze sectie presenteer ik ook enkele resultaten die, hoewel ze er uitzien alsof ze al
decennia geleden bekend zouden moeten zijn, ik niet in de literatuur heb kunnen terugvinden
dus waarvan ik veronderstel dat ze toch nieuw zijn. In het bijzonder toon ik aan dat de orde
van deze code (als cyclische code) gelijk is aan de lengte van de code, en bekijk ik ook wat
er gebeurt als we op een canonische manier de vector (1, 1, . . . , 1) verwijderen uit de code.
Hierin blijkt een nieuwe toepassing te zitten van een resultaat uit mijn eerdere paper [94]
met J. Limbupasiriporn en L. Storme, die ik bespreek in Sectie 7.2. De resultaten in deze
sectie zijn (een klein) deel van gezamelijk onderzoek met Y. Fujiwara, en zijn ingediend bij
het tijdschrift IEEE Trans. Inform. Theory [45].

In Sectie 2.3 bespreek ik de LDPC codes van punten en rechten in lineaire representaties
T ∗2 (K). Mijn eerste resultaten op dit onderwerp dateren terug tot voor mijn onderzoek of-
ficieel startte, als een spin-off van mijn bachelorproject. Hierin toonde ik aan dat wanneer
K een boog is en de karakteristiek van het veld van de code verschillend is aan die van de
onderliggende meetkunde en er is nog een extra conditie voldaan, dan wordt de code volledig
voortgebracht door de codewoorden van het kleinste Hamminggewicht. Hierop steunend kon
ik ook een algemene dimensieformule voor de code bewijzen. Eerder werk door Pepe et
al. [113] toonde dit gedrag enkel tot een zeker klein gewicht, en had in een aantal gevallen ook
een tweede type codewoord nodig (waardoor dus uit mijn resultaat volgt dat een codewoord
van dit tweede type zelf een lineaire combinatie van codewoorden van het eerste type is).
Dit resultaat is gepubliceerd in het tijdschrift Des. Codes Cryptogr. [139]. Helaas bleef het
resultaat onbevredigend. De ‘extra conditie’ sloot het binaire veld uit, wat voor de praktijk
een sterke beperking was. In het speciale geval dat K een kegelsnede min één punt is, bewezen
P. Sin and Q. Xiang dezelfde dimensieformule voor binaire codes [124]. Later slaagde ik erin

165

166 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

mijn techniek te verbeteren en zo te tonen dat zodra de karakteristiek van de het veld van
de code verschilt van die van de meetkunde, de code voortgebracht is door de codewoorden
van kleinste gewicht, evenals dat de dimensieformule ook in deze algemenere setting geldig
blijft. Dit nieuwe resultaat verbetert alle voorgaande resultaten: het veralgemeent mijn eigen
resultaat uit [140], het bedt de dimensieformule uit [124] in in een grote oneindige klasse van
meetkundes en geeft een meetkundige verklaring voor die formule, én het breidt de eigen-
schap dat de codewoorden van kleinste gewicht de hele code voortbrengen (zoals in [113])
uit zonder restrictie op het gewicht; bovendien verscherpt het verschillende grensen op de
minimumafstand uit [113]. Deze resultaten zijn gepubliceerd in Adv. Math. Commun. [140].

In Sectie 2.4 bespreek ik LDPC codes van punten en generatoren in Hermitische variëteit
H(2n+ 1, q) met q voldoende groot. Deze klasse codes werden eerder al bestudeerd in [114],
waar voor n = 1 de codewoorden van klein gewicht tot ruwweg 1

2q
3/2 geclassificeerd werden als

lineaire combinatie van codewoorden van gewicht 2(q+ 1), en voor n = 2 werd er aangetoond
dat de enige codewoorden c met 0 < wt(c) ≤ 2(q3 + q2) gewicht 2(q3 + 1) of 2(q3 + q2) hebben
en hun support tot twee specifieke projectieve equivalentieklassen behoort. We breiden het
tweede resultaat uit tot willekeurige n en bewijzen een gelijkaardig classificatieresultaat: de
enige codewoorden c met 0 < wt(c) ≤ 4q2n−2(q − 1) behoren tot n verschillende projectieve
equivalentieklassen, de minimumafstand is in het algemeen 2q2n−4(q3 + 1) for n ≥ 2 en, voor
elke δ > 0, zijn de codewoorden tot gewicht δq2n−1 een lineaire combinatie van deze n kleinste
types, voor q voldoende groot t.o.v. δ. Deze resultaten zijn gezamelijk onderzoek met M. De
Boeck en zijn aanvaard voor publicatie bij Adv. Math. Commun. [30].

In Sectie 2.5 bespreek ik nog twee oneindige klasses LDPC codes, afgeleid uit de partiële
meetkundes S(K) en T ∗2 (K), met K een maximale boog. Voor de eerste constructie toon ik
aan dat omwisselen van punten en rechten een equivalente code geeft en breid ik een eerder
resultaat van [23] uit van hyperovalen naar algemene Denniston- en Mathonbogen. Voor de
tweede klasse poneer en bespreek ik een conjectuur die de minimumafstand van deze code
linkt aan het bestaan van (q + t, t)-bogen van type (0, 2, t), waaraan het volgende hoofdstuk
is gewijd. Ik geef een partieel bewijs voor het geval k = 4. Een ingekorte versie van deze
resultaten is verschenen in de proceedings van WCC 2011, maar een uiteindelijke publicatie
is er nog niet van gekomen.

Hoofdstuk 3 gaat over (q + t, t)-bogen type (0, 2, t), of kortweg KMq,t-bogen, in Desarguesi-
aanse projectieve vlakken van even orde. In Sectie 3.1 bespreek ik de motivering om deze
bogen te bestuderen, evenals de huidige state of the art. In sectie 3.2 bespreek ik een ele-
gante basis voor de code van dergelijke projectieve vlakken en poneer ik een gemotiveerde
conjectuur, ondersteund door computerresultaten, over hoe lineaire onafhankelijkheid tussen
incidentievectoren gerelateerd is aan het bestaan van zekere KM-bogen. In Sectie 3.3 bewijs
ik deze conjectuur voor k = q/2, evenals geef ik indirect een alternatief bewijs voor de classifi-
catie van de projective triads [122, 131]. In Sectie 3.4 formuleer en bewijs ik het hoofdresultaat
in dit hoofdstuk: hoewel ik de conjecturen uit het de vorige sectie niet kan bewijzen, heb ik
ze toch gebruikt als inspiratie om een nieuwe constructiemethode voor KMq,q/4-bogen te be-
denken en heb ik vervolgens deze constructie bewezen via andere technieken. Dit resulteert in
zowel een nieuwe oneindige klasse KM-bogen als een grote verhoging van de plausibiliteit van
de gemaakte conjectuur. Deze resultaten werden gepubliceerd in Finite Fields Appl. [141].

Hoofdstuk 4 gaat over optimaal blokkerende multiverzamelingen, i.e. blokkerende multiverza-

A.4. AN OPENCL IMPLEMENTATION 167

melingen die de hypervlakken in PG(t, q) m-voudig blokkeren met zo weinig mogelijk punten.
Naast deze intrinsieke meetkundige motivering legt Sectie 4.1 ook nog een tweede gekende
motivering uit, vanuit de codeertheorie, namelijk over hoog deelbare Griesmercodes. Sectie
4.2 bespreekt een geheel nieuwe motivering: wanneer we multisets schrijven als lineaire combi-
natie van hypervlakken, dan blijkt dat deze optimale parameters precies voorkomen wanneer
alle coefficienten in die lineaire combinatie niet-negatief zijn. Gewapend met deze nieuwe
observatie verbetert Sectie 4.3 zowat alle gekende resultaten over deze klasse multiverza-
melingen. Section 4.4 ten slotte toont nog een andere link aan met codeertheorie, namelijk
een lijk met de codes van de projectieve ruimte over de ring van gehele getallen modulo een
priemmacht. De resultaten in dit hoofdstuk zijn gezamelijk onderzoek met I. Landjev en zijn
gepubliceerd in J. Comb. Theory Ser. A [87].

Hoofdstuk 5 gaat over kleine verzamelingen rechten die weinig oneven punten hebben, i.e. wei-
nig punten die op een oneven aantal van deze rechten liggen. In het bijzonder zijn we
gëınteresseerd in de kleinste waardes voor |B| + | odd(B)|, met B die verzameling rechten
en odd(B) de verzameling van alle oneven punten van die verzameling rechten. In Sectie
5.1 worden verschillende motiveringen gegeven om deze verzamelingen te bestuderen. In
Sectie 5.2 wordt het affiene geval besproken; hier classificeer ik alle verzamelingen B met
|B| + | odd(B)| ≤ 2q as één van acht constructiemethodes óf één resterend geval dat ik niet
kon uitsluiten (maar waarvan ik vermoed dat het niet kan optreden). In Sectie 5.3 bespreek
ik het projectieve geval, hier kan ik een volledige classificatie voorleggen van alle B met
|B| + | odd(B)| ≤ 2q + 2 als één van zes constructiemethodes. Deze resultaten zijn gepub-
liceerd in Des. Codes Cryptogr. [142].

Hoofdstuk 6 gaat over meetkundes over eindige kettingringen R. Sectie 6.1 introduceert de
nodige begrippen hiervoor. In Sectie 6.2 presenteer ik een standaardvoorstelling voor deelmod-
ules over Rn en voorzie ik efficiënte methodes om de duale module en de span/doornede van
dergelijke modules te berekenen. In Sectie 6.3 veralgemeen ik Kantor’s stelling over de rang
van incidentiematrices van k-spaces bij t-spaces van PG(n, q), tot willekeurige modules bij
vrije modules. Het is verleidelijk te conjectureren dat dit resultaat algemeen zou gelden voor
willekeurige modules bij willekeurige modules, maar dat blijkt niet het geval: hiervoor geven
we een tegenvoorbeeld. Dit hoofdstuk is gezamelijk onderzoek met I. Landjev; de resultaten
van Sectie 6.3 zijn aanvaard voor publicatie inDes. Codes Cryptogr. [88].

In hoofdstuk 7 bespreek ik verscheidene andere resultaten die ik behaald heb en gepubliceerd
of ingestuurd heb bij A1-tijdschriften. In Sectie 7.1 presenteer ik een nieuwe ongelijkheid
die tegelijk de ongelijkheid tussen het rekenkundig gemiddelde én de ongelijkheid van Turke-
vich [123] veralgemeent. Dit resultaat is gezamelijk onderzoek met G. Kós en H. Lee en is
gepubliceerd in het algemeen wiskundig tijdschrift Proc. Amer. Math. Soc. [81].

In Sectie 7.2 bespreek ik de mogelijke gewichten van codewoorden van groot gewicht die
kunnen optreden in de klassieke projectieve ruimtecode. Voor q even reduceert deze studie tot
deze van de kleine blokkerende verzamelingen. Voor q oneven, als de orde van het priemveld
groot genoeg is, tonen we aan dat er codewoorden zijn van volle gewicht, maar voor kleinere
basispriemen is dat niet het geval. In het bijzonder linken we voor p = 3 het bestaan van
codewoorden van klein gewicht aan het bestaan van 2 mod 3 verzamelingen m.b.t. k-spaces;
of deze bestaan is nog steeds een open probleem voor de meeste gevallen. Deze resultaten
zijn gezamelijk onderzoek met J. Limbupasiriporn and L. Storme en zijn published in Linear

168 APPENDIX A. BUILDING A LOW-COST GPU BASED SUPERCOMPUTER

Algebra and its Applications [94].

In Sectie 7.3 bestudeer ik op de Hermitische unitaal het bestaan van blokkerende verzamelin-
gen waarvan het complement ook een blokkerende verzameling is. Ik toon aan dat deze voor
q ≥ 4 altijd bestaan op de Hermitische unitaal in PG(2, q2) en ik bespreek de mogelijke
groottes en gerelateerde resultaten. Deze resultaten zijn gezamelijk werk met A. Blokhuis,
A.E. Brouwer, D. Jungnickel, V. Krčadinac, S. Rottey, L. Storme and T. Szőnyi en zijn
ingestuurd naar Finite Fields Appl. [16].

Naast deze resultaten heb ik ook gewerkt op quantumcodeertheorie, samen met Yuichiro Fuji-
wara et al. In deze onderzoeken behaalden we resultaten over entanglement-assisted quantum
LDPC codes, deze zijn gepubliceerd in Phys. Rev. A [43]; over high-rate quantum LDPC
codes assisted by reliable qubits, deze zijn ingestuurd naar IEEE Trans. Inform. Theory [44];
en over quantum synchronizable codes afkomstig uit eindige meetkundes, deze zijn ingestu-
urd naar IEEE Trans. Inform. Theory [45]. Echter, de nodige machinerie introduceren om
deze quantumtheoretische resultaten op een wiskundig verantwoorde manier uit te leggen, zou
teveel tijd vergen, dus ik verwijs de gëınteresseerde lezer hiervoor naar de geciteerde papers.

Ook heb ik gewerkt op de toepassingen van mijn theoretisch onderzoek, om de kloof tussen
het theoretisch wiskundig onderzoek en toegepast ingenieursonderzoek te dichten. Ik heb een
(bijna afgewerkt) manuscript geschreven dat de eigenschap dat codewoorden van klein gewicht
voortgebracht zijn door een kleine verzameling codewoorden, gebruikt om gekende informatie
over de doorgestuurde gegevens om te zetten in een betere decodeerprestatie; daarnaast heb
ik ook een variant op het LDPC decodeeralgoritme ontworpen die een grootte-orde minder
geheugen gebruikt, ten koste van slechts een klein verlies in performantie. Deze resultaten
zijn echter nog niet ingediend voor publicatie en worden bijgevolg weggelaten uit de thesis,
om te vermijden dat deze thesis gerefereerd wordt in plaats van de papers die er potentieel
uit voortvloeien, maar wie gëınteresseerd is mag mij deze resultaten gerust vragen.

Ten slotte heb ik ook grote computationele bibliotheken aangelegd om efficiënt met verschei-
dene objecten uit codeertheorie en eindige meetkunde te werken, zoals vectorruimtes, lineaire
codes, Grassmannvariëteiten van projectieve deelruimten, operaties op deelruimten, groeps-
acties op deelruimten, matrixalgebra over eindige velden, eindige kettingringen, etc. Speciale
aandacht heb ik daarbij besteed aan het LDPC decoderingsalgoritme, dat ik in OpenCL
geschreven heb om het zo op GPU te kunnen uitvoeren, wat veel sneller en zuiniger is dan dit
op CPU uitrekenen. In 2012 kreeg onze vakgroep een krediet van 9000 euro van het FCWO om
GPU hardware te kopen, waarmee ik zelfstandig een GPU-rekencomputer gebouwd heb. In
Appendix A vermeld ik de uiteindelijke configuratie, de problemen die ik ermee tegengekomen
ben en hoe ik ze opgelost heb, en leg ik ook het volledige LDPC decoderingsalgoritme uit,
zowel theoretisch als hoe ik het in OpenCL gëımplementeerd heb.

Bibliography

[1] R. W. Ahrens and G. Szekeres, On a combinatorial generalization of 27 lines associated
with a cubic surface, J. Austral. Math. Soc. 10 (1969), 485–492.

[2] A. Al-Azemi, A. Betten and D. Betten, Unital Designs with Blocking Set. (Preprint).

[3] E. Amador, R. Pacalet and V. Rezard, Optimum LDPC decoder: a memory architecture
problem, Proceedings of the 46th ACM/IEEE Design Automation Conference (2009),
891–896.

[4] E. Artin, Algebraic numbers and algebraic functions, London: Gordon and Breach,
1967.

[5] E.F. Assmus, Jr. and J.D. Key, Designs and their codes. Cambridge University Press,
1992.

[6] E.F. Assmus Jr., J.D. Key, Handbook of Coding Theory, Vol. II (edited by V. S. Pless
and W. C. Huffman, North Holland, Amsterdam, 1998).

[7] B. Bagchi and S.P. Inamdar, Projective Geometric Codes, J. Combin. Theory, Ser. A
99 (2002), 128–142.

[8] P. Balister, B. Bollobás, Z. Füredi and J. Thompson, Minimal symmetric differences of
lines in projective planes, unpublished, available as arXiv:1303.4117 [math.CO].

[9] S. Ball, A. Blokhuis and F. Mazzocca, Maximal arcs in Desarguesian planes of odd
order do not exist, Combinatorica 17 (1997), 31–41.

[10] S. Ball, R. Hill, I. Landjev and H.N. Ward, On (q2 + q+ 2, q+ 2)-arcs in the projective
plane PG(2, q), Des. Codes Cryptogr. 24 (2001), 205–224.

[11] Th. Beth, D. Jungnickel and H. Lenz, Design theory, Second edition, Encyclopedia of
Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.

[12] G. Birkhoff, Subgroups of abelian groups, Proc. of The London Math. Society 38 (1934),
385–401.

[13] R.E. Blahut, Algebraic codes for Data Transmission, Cambridge Univ. Press (New York,
2003).

[14] A. Blokhuis, A.E. Brouwer and T. Szőnyi, The number of directions determined by a
function f on a finite field, J. Combin. Theory, Ser. A 70 (1995), 349–353.

169

170 BIBLIOGRAPHY

[15] A. Blokhuis, A.E. Brouwer and H.A. Wilbrink, Hermitian unitals are codewords. Dis-
crete Math. 97 (1991), 63–68.

[16] A. Blokhuis, A. Brouwer, D. Jungnickel, V. Krčadinac, S. Rottey, L. Storme, T. Szőnyi
and P. Vandendriessche, Blocking sets of the Hermitian unital, submitted to Finite Fields
Appl.

[17] A. Blokhuis, R. Pellikaan and T. Szőnyi, Blocking sets of almost Rédei type. J. Combin.
Theory, Ser. A 78 (1997), 141–150.

[18] A. Blokhuis and V. Lev, Flat-Containing and Shift-Blocking sets in Frq. Mosc. J. Comb.
Number Th., to appear.

[19] R.C. Bose and R.C. Burton, A characterization of flat spaces in a finite geometry and
the uniqueness of the Hamming and the McDonald codes. J. Combin. Theory 1 (1966),
96–104.

[20] K.A. Bush, Orthogonal arrays of index unity, Ann. Math. Stat. 23 (1952), 426–434.

[21] N.J. Calkin, J.D. Key and M.J. De Resmini, Minimum Weight and Dimension Formulas
for Some Geometric Codes, Designs, Codes and Cryptography 17 (1999), 105–120.

[22] P. J. Cameron and J. H. Van Lint, “Designs, Graphs, Codes and their Links,” Cambridge
University Press, 1991.

[23] C. Castleberry, K. Hunsberger and K.E. Mellinger, LDPC codes arising from hyperovals,
Bull. Inst. Comb. Appl. 58 (2010), 59–72.

[24] B. Chandler, P. Sin, Q. Xiang, The invariant factors of the incidence matrices of points
and subspaces in PG(n,q) and AG(n,q), Trans. Amer. Math. Soc. 358 (2006), 4935–
4957.

[25] D. Changyan, D. Proietti, I.E. Telatar, T.J. Richardson and R.L. Urbanke, Finite-length
analysis of low-density parity-check codes on the binary erasure channel, IEEE Trans.
Inform. Theory 48 (2002), 1570–1579.

[26] D.K. Chow, A geometric approach to coding theory with application to information
retrieval, Tech. Rep. Report R-368 (Coordinated Science Laboratory, University of Illi-
nois, 1967.

[27] W. E. Clark, D. A. Drake, Finite chain rings, Abh. Math. Sem. der Univ. Hamburg
39(1974), 147–153.

[28] Y. Dai, N. Chen and Z. Yan, Memory Efficient Decoder Architectures for Quasi-Cyclic
LDPC Codes, IEEE Trans. Circ. Syst. I 55 (2008), 2898–2911.

[29] F. De Clerck and H. Van Maldeghem, On linear representations of (α, β)-geometries,
European J. Combin. 15 (1994), 3–11.

[30] M. De Boeck and P. Vandendriessche, On the dual code of points and generators of the
Hermitian variety H(2n+ 1, q2), accepted at Adv. Math. Commun.

BIBLIOGRAPHY 171

[31] I. Debroey and J. A. Thas, Semi partial geometries in AG(2, q) and AG(3, q), Simon
Stevin 51 (1978), 195–209.

[32] R.H.F. Denniston, Some maximal arcs in finite projective planes, J. Combin. Theory 6
(1969), 317–319.

[33] I.B. Djordjevic and B.V. Vasic, Projective geometry LDPC codes for ultralong-haul
WDM high-speed transmission, IEEE Photonics Technology Letters 15 (2003), 784–
786.

[34] I.B. Djordjevic, S. Sankaranarayanan and B.V. Vasic, Projective-Plane Iteratively De-
codable Block Codes for WDM High-Speed Long-Haul Transmission Systems. J. Light-
wave Technol. 22 (2004), 695–702.

[35] P. Erdős, On a combinatorial problem. Nordisk Mat. Tidskr. 11 (1963), 5–10.

[36] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some re-
lated questions, pp. 609–627, in: Infinite and Finite Sets, Proc. Keszthely 1973, Colloq.
Math. Soc. János Bolyai 10, Budapest, 1975.

[37] S. Fan and W. Han, Character sums over Galois rings and primitive polynomials over
finite fields, Fin. Fields Appl. 10 (2004), 36–52.

[38] C. Feng, R.W. N’obrega, F.R. Kschischang and D. Silva, Communication over Finite-
Chain-Ring Matrix Channels, Submitted to IEEE Transactions on Information Theory.

[39] J.C. Fisher, J.W.P. Hirschfeld and J.A. Thas, Complete arcs in planes of square order.
Ann. Discrete Math. 30 (1986), 243–250.

[40] M.J. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Trans. Com-
put. C-21 (1972), 948–960.

[41] M. P. C. Fossorier, Quasicyclic low-density parity check codes from circulant permuta-
tion matrices, IEEE Trans. Inform. Theory 50 (2004), 1788–1793.

[42] A. Frumkin and A. Yakir, Rank of inclusion matrices and modular representation theory,
Israel J. Math. 71 (1990), 309–320.

[43] Y. Fujiwara, D. Clark, P. Vandendriessche, M. De Boeck and V.D. Tonchev. Entang-
lement-assisted quantum low-density parity-check codes. Phys. Rev. A 82 (2010), id
042338.

[44] Y. Fujiwara, A. Gruner and P. Vandendriessche, High-Rate Quantum Low-Density
Parity-Check Codes Assisted by Reliable Qubits, submitted to IEEE Trans. Inform.
Theory.

[45] Y. Fujiwara and P. Vandendriessche, Quantum Synchronizable Codes from Finite Ge-
ometries, submitted to IEEE Trans. Inform. Theory.

[46] Z. Füredi, Matchings and covers in hypergraphs. Graphs and Combinatorics 4 (1988),
115–206.

172 BIBLIOGRAPHY

[47] A. Gács and Zs. Weiner, On (q + t, t)-arcs of type (0, 2, t), Des. Codes Cryptogr. 29
(2003), 131–139.

[48] R.G. Gallager, Low density parity check codes, IRE Trans. Inform. Theory 8 (1962),
21–28.

[49] D. Ghinelli and D. Jungnickel, Some geometric aspects of finite abelian groups. Rend.
Mat., Ser. VII 26 (2006), 29–68.

[50] M. Grassl, Code Tables: Bounds on the parameters of various types of codes,
www.codetables.de

[51] J.H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop. 4 (1960),
532–542.

[52] M. Hall, Ovals in the Desarguesian plane of order 16, Ann. Mat. Pura Appl., 102 (1975),
159–176.

[53] N. Hamada, Characterization of minihypers in a finite projective geometry and its
applications to error-correcting codes, Bull. Osaka Women’s Univ. 24 (1987), 1–24.

[54] N. Hamada, On the p-rank of the incidence matrix of a balanced or partially balanced
incomplete block design and its applications to error-correcting codes, Hiroshima Math.
J. 3 (1973), 153–226.

[55] N. Hamada and T. Helleseth, Codes and minihypers. Optimal codes and related topics,
Proceedings of the EuroWorkshop on Optimal codes and related topics (Sunny Beach,
Bulgaria, June 10-16, 2001), 79–84.

[56] L. Hellerstein, G. Gibson, R. Karp, R. Katz and D. Patterson, Coding techniques for
handling failures in large disk arrays, Algorithmica 12 (1994), 18–208.

[57] P. Herdt, [n, k, d]q-Codes mit k ≥ 3, d = rqk−2 und n = dr/qe + r + rq + · · · + rqk−2,
r ∈ N, Msc. Thesis at Justus-Liebig-Universität Gießen, Germany (2008).

[58] R. Hill and H.N. Ward, A geometric approach to classifying Griesmer codes, Des. Codes
Cryptogr. 44 (2007), 169–196.

[59] J. W. P. Hirschfeld, “Projective Geometries over Finite Fields,” 2nd edition, Oxford
University Press, 1998.

[60] J.W.P. Hirschfeld and J.A. Thas. General Galois Geometries. Oxford Mathematical
Monographs, Oxford University Press, Oxford, 1991.

[61] J.W.P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and
finite projective spaces: update 2001, Developments in Mathematics Vol. 3, Kluwer
Academic Publishers, Finite Geometries, Proceedings of the Fourth Isle of Thorns Con-
ference (Chelwood Gate, July 16-21, 2000) (Eds. A. Blokhuis, J.W.P. Hirschfeld, D.
Jungnickel and J.A. Thas), 201–246.

[62] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions. Oxford: Oxford Uni-
versity Press 1985.

BIBLIOGRAPHY 173

[63] T. Honold, I. Landjev, Linearly representable codes over chain rings, Abh. Math. Sem.
der Univ. Hamburg, 69, 1999, 187–203.

[64] T. Honold, I. Landjev, Linear Codes over Finite Chain Rings and Projective Hjelmslev
Geometries, in: Codes over Rings (ed. P. Solé), World Scientific, 2009, 60–123.

[65] T. Honold and I. Landjev, Codes over rings and ring geometries, in: ’‘Current research
topics in Galois geometries” (eds. L.Storme and Jan De Beule) NOVA Publishers, 161–
186 (2012).

[66] X.-Y. Hu, M.P.C. Fossorier and E. Eleftheriou, On the computation of the minimum
distance of low-density parity-check codes, Proc. IEEE Intl. Conf. Commun. (2004),
767–771.

[67] T. Illés, T. Szőnyi and F. Wettl, Blocking sets and maximal strong representative sys-
tems in finite projective planes, Mitt. Math. Sem. Giessen 201 (1991), 97–107.

[68] J. Jin, C. Tsui, An Energy Efficient Layered Decoding Architecture for LDPC Decoder,
IEEE Trans. VLSI Syst. 18 (2010), 1185–1195.

[69] J. Jin, C. Tsui, A low power layered decoding architecture for LDPC decoder imple-
mentation for IEEE 802.11n LDPC codes, 2008 ACM/IEEE International Symposium
on Low Power Electronics and Design (2008), 253–258.

[70] S. J. Johnson and S. R. Weller, Construction of low-density parity-check codes from
combinatorial designs, in “Proceedings of the IEEE Information Theory Workshop,”
Cairns, (2001), 90–92.

[71] S. J. Johnson and S. R. Weller, Construction of low-density parity-check codes from
Kirkman triple systems, in “Proceedings of the IEEE Globecom Conference,” San An-
tonio, 2001.

[72] S. J. Johnson and S. R. Weller, Codes for iterative decoding from partial geometries, in
“Proceedings of the IEEE International Symposium on Information Theory,” Switzer-
land, 2002.

[73] S. J. Johnson and S. R. Weller,Regular low-density parity-check codes from oval designs,
Eur. Trans. Telecommun. 14 (2003), 399–409.

[74] S.J. Johnson and S.R. Weller, Codes for Iterative Decoding From Partial Geometries,
IEEE Trans. Commun. 52 (2004), 236–243.

[75] W.M. Kantor, On Incidence Matrices of Finite Projective and Affine Spaces, Math. Z.
124,315–318 (1972).

[76] J.D. Key, T.P. McDonough and V.C. Mavron, An upper bound for the minimum weight
of the dual codes of Desarguesian planes, European J. Combin. 30 (2009), 220–229.

[77] J. L. Kim, U. Peled, I. Perepelitsa, V. Pless and S. Friedland, Explicit construction
of families of LDPC codes with no 4-cycles, IEEE Trans. Inform. Theory 50 (2004),
2378–2388.

174 BIBLIOGRAPHY

[78] J.-L. Kim, K.E. Mellinger and L. Storme, Small weight code words in LDPC codes
defined by (dual) classical generalized quadrangles, Des. Codes Cryptogr. 42 (2007),
73–92.

[79] A. Klein, K. Metsch and L. Storme. Small maximal partial spreads in classical finite
polar spaces. Adv. Geom. 10 (2010), 379–402.

[80] G. Korchmáros and F. Mazzocca, On (q + t, t)-arcs of type (0, 2, t) in a Desarguesian
plane of order q, Math. Proc. Camb. Phil. Soc. 108 (1990), 445–459.

[81] G. Kós, H. Lee and P. Vandendriessche, Simultaneous extensions of Turkevich’s inequal-
ity and the weighted AM-GM inequality, Proc. Amer. Math. Soc. 140 (2012), 971–975.

[82] Y. Kou, S. Lin and M.P.C. Fossorier, Low-density parity-check codes based on finite
geometries: a rediscovery and new results, IEEE Trans. Inform. Theory 47 (2001),
2711–2736.

[83] K.M. Krishnan and P. Shankar, Computing the Stopping Distance of a Tanner Graph
Is NP-Hard, IEEE Trans. Inform. Theory 53 (2007), 2278–2280.

[84] I. Landjev and L. Storme, A study of (x(q+1), x; 2, q)-minihypers, Des. Codes Cryptogr.
54 (2010), 135–147.

[85] I. Landjev and L. Storme, Galois geometries and coding theory, in: Current Research
Topics in Galois Geometry (J. De Beule, L. Storme, eds.), Nova Science Publishers,
2011, 185–212.

[86] I. Landjev and P. Vandendriessche, On the Point-by-Subspace Incidence Matrices of
Projective Hjelmslev Spaces, Compt. Rend. Acad. Bulg. des Sci., 2014, to appear.

[87] I. Landjev and P. Vandendriessche, A study of (xvt, xvt−1)-minihypers in PG(t, q), J.
Comb. Theory Ser. A 119 (2012), 1123–1131.

[88] I. Landjev and P. Vandendriessche, On the Rank of Incidence Matrices in Projective
Hjelmslev Spaces, accepted at Des. Codes Cryptogr (after minor revisions).

[89] M. Lavrauw, L. Storme and G. Van de Voorde. Linear codes from projective spaces.
Error-Correcting Codes, Finite Geometries, and Cryptography. A.A. Bruen and D.L.
Wehlau, editors. AMS Contemporary Mathematics (CONM) book series 523 (2010),
185–202.

[90] M. Lavrauw, L. Storme and G. Van de Voorde, On the code generated by the incidence
matrix of points and hyperplanes in PG(n, q) and its dual. Des. Codes Cryptogr. 48
(2008), 231–245.

[91] X. Li, C. Zhang and J. Shen, Regular LDPC codes from semipartial geometries, Acta
Appl. Math. 102 (2008), 25–35.

[92] R. Lidl and H. Niederreiter, Finite Fields, 2nd edition (Cambridge Univ. Press, 1997).

[93] J. Limbupasiriporn, Partial Permutation Decoding for Codes from Designs and Finite
Geometries, PhD Thesis, Clemson University (2005).

BIBLIOGRAPHY 175

[94] J. Limbupasiriporn, L. Storme and P. Vandendriessche, Large weight code words in
projective space codes, Linear Algebra and its Applications 437 (2012), 809–816.

[95] Z. Liu and D.A. Pados, LDPC codes from generalized polygons, IEEE Trans. Inform.
Theory 51 (2005), 3890–3898.

[96] I. G. MacDonald, Symmetric Functions and Hall Polynomilas, Oxford University Press,
2nd edition, 1995.

[97] D. J. C. MacKay and M. C. Davey, Evaluation of Gallager codes for short block length
and high rate applications, in “Codes, Systems and Graphical Models” (eds. B. Marcus
and J. Rosenthal), Springer-Verlag, New York, (2000), 113–130.

[98] D.J.C. MacKay and R.M. Neal, Near Shannon limit performance of low density parity
check codes. Electron. Lett. 32 (1996), 1645–1646.

[99] M.M. Mansour and N.R. Shanbhag, High-Throughput LDPC Decoders, IEEE Trans.
VLSI Syst. 11 (2003), 976–996.

[100] G. A. Margulis, Explicit constructions of graphs without short cycles and low density
codes, Combinatorica 2 (1982), 71–78.

[101] R. Mathon, New maximal arcs in Desarguesian planes, J. Combin. Theory, Ser. A 97
(2002), 353–368.

[102] B. R. McDonald, Finite rings with Identity, Marcel Dekker, New York, 1974.

[103] G.E. Moore, Cramming more components onto integrated circuits, Electronics 38
(1965), 114–117.

[104] G.E. Moore, Progress in digital integrated electronics, International Electron Devices
Meeting 21 (1975), 11–13.

[105] G.E. Moorhouse, Bruck nets, codes, and characters of loops, Des. Codes Cryptogr. 1
(1991), 7–29.

[106] M. Müller and M. Jimbo, Erasure-resilient codes from affine spaces, Discrete Appl.
Math. 143 (2004), 292–297.

[107] A. A. Nechaev, Finite principal ideal rings, Russian Acad. of Sciences, Sbornik Mathe-
matics 209 (1973), 364–382.

[108] T.M.N. Ngatched, F. Takawira and M. Bossert, An improved decoding algorithm for
finite-geometry LDPC codes, IEEE Trans. Commun. 57 (2009), 302–306.

[109] D. Oh and K.K. Parhi, Low Complexity Decoder Architecture for Low-Density Parity-
Check Codes, Journal of Signal Processing Systems 56 (2006), 217–228.

[110] C. M. O’Keefe and T. Penttila, Hyperovals in PG(2, 16), European J. Combin., 12
(1991), 51–59.

[111] M.S. Papamarcos and J.H. Patel, A low-overhead coherence solution for multiprocessors
with private cache memories. Proceedings of the 11th annual International Symposium
on Computer Architecture (1984), 348–354.

176 BIBLIOGRAPHY

[112] T. Penttila and G. F. Royle, Classification of hyperovals in PG(2, 32), J. Geom. 50
(1994), 151–158.

[113] V. Pepe, L. Storme and G. Van de Voorde, Small weight code words in the LDPC codes
arising from linear representations of geometries, J. Combin. Des. 17 (2009), 1–24.

[114] V. Pepe, L. Storme and G. Van de Voorde. On codewords in the dual code of classical
generalised quadrangles and classical polar spaces. Discrete Math. 310 (2010), 3132–
3148.

[115] J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hypergraph
2-coloring. Random Structures Algorithms 16 (2000), no. 1,4–32.

[116] J. Rosenthal and P. O. Vontobel, Construction of LDPC codes using Ramanujan graphs
and ideas from Margulis, in “Proceedings of the 38th Allerton Conference on Commu-
nications, Control and Computing” (eds. P.G. Voulgaris and R. Srikant), Monticello,
(2000), 248–257.

[117] P. Saunders and A.D. Fagan, A Low Memory FPGA Based LDPC Decoder Architecture
for Quasi-Cyclic LDPC codes, 2006 Irish Signals and Systems Conference (2006), 223–
228.

[118] B. Segre, Sui k-archi nei piani finiti di caratteristica due (in Italian), Rev. Math. Pures
Appl. 2 (1957), 289–300.

[119] B. Segre, Ovals in a finite projective plane, Canad. J. Math. 7 (1955), 414–416.

[120] B. Segre, Curve razionali normali ek-archi negli spazi finite, Ann. Mat. Pura Appl. IV.
39 (1955), 357–379.

[121] M. Seib, Unitäre Polaritäten endlicher projectiver Ebenen. Arch. Math. 21 (1970), 103–
112.

[122] D. Senato, Blocking sets di indice tre, Rend. Accad. Sci. Fis. Mat. Napoli 19 (1982),
89–95.

[123] V. Senderov and E. Turkevich, Problem M506, Kvant 10 (1979), 35–35.

[124] P. Sin and Q. Xiang, On the dimension of certain LDPC codes based on q-regular
bipartite graphs, IEEE Trans. Inform. Theory 52 (2006), 3735–3737.

[125] M. Sipser and D. A. Spielman, Expander codes, IEEE Trans. Inform. Theory 42 (1996),
1710–1722.

[126] K.J.C. Smith, On the p-rank of the incidence matrix of points and hyperplanes in a
finite projective geometry, J. Combin. Theory 7 (1969), 122–129.

[127] G. Solomon and J.J. Stiffler, Algebraically punctured cyclic codes, Inform. and Control
8 (1965), 170–179.

[128] H. Stichtenoth, Algebraic Function Fields and Codes. Springer Verlag 1993.

BIBLIOGRAPHY 177

[129] P. Sziklai, On small blocking sets and their linearity. J. Combin. Theory, Ser. A 115
(2008), 1167–1182.

[130] T. Szőnyi and Zs. Weiner, Small blocking sets in higher dimensions. J. Combin. Theory,
Ser. A 95 (2001), 88–101.

[131] T. Szőnyi, Combinatorial Problems for Abelian Groups Arising from Geometry, Peri-
odica Polytechnica 19 (1991), 91–100.

[132] T. Szőnyi, Blocking sets in Desarguesian affine and projective planes. Finite Fields
Appl. 3 (1997), 187–202.

[133] R. M. Tanner, A recursive approach to low complexity codes, IEEE Trans. Inform.
Theory 27 (1981), 533–547.

[134] R. M. Tanner, Minimum distance bounds by graph analysis, IEEE Trans. Inform.
Theory 47 (2001), 808–821.

[135] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja and J. D. Costello Jr, LDPC
block codes and convolutional codes based on circulant matrices, IEEE Trans. Inform.
Theory 50 (2004), 2966–2984.

[136] J. A. Thas, Partial geometries in finite affine spaces, Math. Z. 158 (1978), 1–13.

[137] A. Tietäväinen, On the nonexistence of perfect codes over finite fields, SIAM J. Appl.
Math. 24 (1973), 88–96.

[138] Y.-L. Ueng, C.-J. Yang and C.-J. Chen, A shuffled message-passing decoding method
for memory-based LDPC decoders, 2009 IEEE International Symposium on Circuits
and Systems (2009), 892–895.

[139] P. Vandendriessche, Some low-density parity-check codes derived from finite geometries,
Des. Codes Cryptogr. 54 (2010), 287–297.

[140] P. Vandendriessche, LDPC codes associated with linear representations of geometries,
Adv. Math. Commun. 4 (2010), 405–417.

[141] P. Vandendriessche, Codes of Desarguesian projective planes of even order, projective
triads and (q + t, t)-arcs of type (0, 2, t), Finite Fields Appl. 17 (2011), 521–531.

[142] P. Vandendriessche, On small line sets with few odd-points, accepted at Des. Codes
Cryptogr., doi 10.1007/s10623-014-9920-1

[143] J.H. Van Lint, On the nonexistence of perfect 2- and 3-Hamming-error-correcting codes
over GF (q), Information and Control 16 (1970), 396–401.

[144] J.H. Van Lint, A survey of perfect codes, Rocky Mountain J. Math. 5 (1975), 199–224.

[145] J.H. Van Lint, Introduction to Coding Theory, Springer-Verlag, Berlin, 1982.

[146] A. Vardy, The intractability of computing the minimum distance of a code, IEEE Trans.
Inform. Theory 43 (1997), 1757–1766.

178 BIBLIOGRAPHY

[147] P. O. Vontobel and R. M. Tanner, Construction of codes based on finite generalized
quadrangles for iterative decoding, in “Proceedings of 2001 IEEE International Sympo-
sium Information Theory,” Washington, (2001), 233–233.

[148] H.N. Ward, Divisibility of codes meeting the Griesmer bound, J. Comb. Theory Ser. A
83 (1998), 79–93.

[149] H. Xiao and A. H. Banihashemi, Improved progressive-edge-growth (PEG) construction
of irregular LDPC codes, IEEE Commun. Lett. 8, 715–717.

[150] J. Zhang, J.S. Yedidia and M.P.C. Fossorier, Low-Latency Decoding of EG LDPC
Codes, Journal of Lightwave Technology 25 (2007), 2879–2886.

[151] X. Zhang and F. Cai, Reduced-Complexity Decoder Architecture for Non-Binary LDPC
Codes, IEEE Trans. Commun. 53 (2005), 1288–1299.

[152] A. Zinoviev and V.K. Leontiev, The nonexistence of perfect codes over Galois fields,
Problems of Control and Information 2 (1973), 123-132.

