11 research outputs found

    Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery

    Get PDF
    The Rowett Institute and SRUC are core funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government. The Roslin Institute forms part of the Royal (Dick) School of Veterinary Studies, University of Edinburgh. This project was supported by the Biotechnology and Biological Sciences Research Council (BBSRC; BB/N016742/1, BB/N01720X/1), including institute strategic programme and national capability awards to The Roslin Institute (BBSRC: BB/P013759/1, BB/P013732/1, BB/J004235/1, BB/J004243/1); and by the Scottish Government as part of the 2016–2021 commission.Peer reviewedPublisher PD

    Application of rapid sequencing for the detection and epidemiology of respiratory pathogens

    Get PDF
    Lower respiratory tract infections (LRTI) are a leading cause of morbidity and mortality globally, and the rise of Antimicrobial Resistance (AMR) complicates their treatment. To achieve the best patient outcomes and avoid contributing to the rise of AMR, timely and appropriate antimicrobial treatment needs to be prescribed. However, the current gold standard for aetiological investigation of LRTIs (microbiological culture) is too slow to guide initial therapy. Clinical metagenomics (CMg) has emerged as a potential solution to this problem; however, existing methods are too laborious. In this study, we optimise our previously published CMg pipeline to achieve a sensitive workflow with a 3.5 hour turnaround time. Evaluating the workflow, we show efficient depletion (>99.8%) of host DNA with our new 15 minute host depletion method. Sensitivity and specificity are 90.5% and 62.5%, respectively, rising to 96.6% and 100% when qPCR is used to investigate discordance. We also show that 30 minutes of sequencing is sufficient to make an accurate pathogen call. For pathogen surveillance, targeted sequencing approaches are more appropriate. Sequencing of SARS-CoV-2 for genomic epidemiology became a valuable tool during the ongoing COVID-19 pandemic. However, early on, methods were low-throughput and inflexible. We responded to this by developing a high-throughput library preparation method, CoronaHiT, which can be used for sequencing SARS-CoV-2 on Illumina or Oxford Nanopore Technologies platforms. The method was shown to be cheap and accurate, while also being more robust for samples with lower viral loads. CoronaHiT has subsequently been used to sequence hundreds of thousands of SARS-CoV-2 genomes in the UK. In conclusion, we have developed and optimised two different approaches for investigating respiratory infections (CMg and targeted) for two different applications, demonstrating the potential of rapid sequencing. Methods like these will continue to reshape diagnostics and public health in the future

    Accessible software frameworks for reproducible image analysis of host-pathogen interactions

    Get PDF
    Um die Mechanismen hinter lebensgefährlichen Krankheiten zu verstehen, müssen die zugrundeliegenden Interaktionen zwischen den Wirtszellen und krankheitserregenden Mikroorganismen bekannt sein. Die kontinuierlichen Verbesserungen in bildgebenden Verfahren und Computertechnologien ermöglichen die Anwendung von Methoden aus der bildbasierten Systembiologie, welche moderne Computeralgorithmen benutzt um das Verhalten von Zellen, Geweben oder ganzen Organen präzise zu messen. Um den Standards des digitalen Managements von Forschungsdaten zu genügen, müssen Algorithmen den FAIR-Prinzipien (Findability, Accessibility, Interoperability, and Reusability) entsprechen und zur Verbreitung ebenjener in der wissenschaftlichen Gemeinschaft beitragen. Dies ist insbesondere wichtig für interdisziplinäre Teams bestehend aus Experimentatoren und Informatikern, in denen Computerprogramme zur Verbesserung der Kommunikation und schnellerer Adaption von neuen Technologien beitragen können. In dieser Arbeit wurden daher Software-Frameworks entwickelt, welche dazu beitragen die FAIR-Prinzipien durch die Entwicklung von standardisierten, reproduzierbaren, hochperformanten, und leicht zugänglichen Softwarepaketen zur Quantifizierung von Interaktionen in biologischen System zu verbreiten. Zusammenfassend zeigt diese Arbeit wie Software-Frameworks zu der Charakterisierung von Interaktionen zwischen Wirtszellen und Pathogenen beitragen können, indem der Entwurf und die Anwendung von quantitativen und FAIR-kompatiblen Bildanalyseprogrammen vereinfacht werden. Diese Verbesserungen erleichtern zukünftige Kollaborationen mit Lebenswissenschaftlern und Medizinern, was nach dem Prinzip der bildbasierten Systembiologie zur Entwicklung von neuen Experimenten, Bildgebungsverfahren, Algorithmen, und Computermodellen führen wird

    The Identification of Alkaloid Pathway Genes from Non-Model Plant Species in the Amaryllidaceae

    Get PDF
    Secondary metabolites are often restricted in their distribution to different groups of organisms. For this reason, attempts to study these often useful and interesting products of metabolism require an ability to work in a diversity of non-model species. Methods for gene discovery with low investment and high efficiency are needed to effectively identify the biosynthetic genes in these diverse pathways. During this work, a workflow for efficiently identifying biosynthetic genes was developed and applied to Amaryllidaceae alkaloid biosynthesis. Genes discovered during this work include a norbelladine 4’-O-methyltransferase, a cytochrome P450 capable of phenol-phenol coupling 4’-O-methylnorbelladine to noroxomaritidine, and a short-chain dehydrogenase/reductase capable of forming norbelladine from tyramine and 3,4-dihydroxybenzaldehyde. These enzymatic discoveries support the future application of this workflow to other biosynthetic pathways and organisms

    Development of bioinformatics tools for the rapid and sensitive detection of known and unknown pathogens from next generation sequencing data

    Get PDF
    Infectious diseases still remain one of the main causes of death across the globe. Despite huge advances in clinical diagnostics, establishing a clear etiology remains impossible in a proportion of cases. Since the emergence of next generation sequencing (NGS), a multitude of new research fields based on this technology have evolved. Especially its application in metagenomics – denoting the research on genomic material taken directly from its environment – has led to a rapid development of new applications. Metagenomic NGS has proven to be a promising tool in the field of pathogen related research and diagnostics. In this thesis, I present different approaches for the detection of known and the discovery of unknown pathogens from NGS data. These contributions subdivide into three newly developed methods and one publication on a real-world use case of methodology we developed and data analysis based on it. First, I present LiveKraken, a real-time read classification tool based on the core algorithm of Kraken. LiveKraken uses streams of raw data from Illumina sequencers to classify reads taxonomically. This way, we are able to produce results identical to those of Kraken the moment the sequencer finishes. We are furthermore able to provide comparable results in early stages of a sequencing run, allowing saving up to a week of sequencing time. While the number of classified reads grows over time, false classifications appear in negligible numbers and proportions of identified taxa are only affected to a minor extent. In the second project, we designed and implemented PathoLive, a real-time diagnostics pipeline which allows the detection of pathogens from clinical samples before the sequencing procedure is finished. We adapted the core algorithm of HiLive, a real-time read mapper, and enhanced its accuracy for our use case. Furthermore, probably irrelevant sequences automatically marked. The results are visualized in an interactive taxonomic tree that provides an intuitive overview and detailed metrics regarding the relevance of each identified pathogen. Testing PathoLive on the sequencing of a real plasma sample spiked with viruses, we could prove that we ranked the results more accurately throughout the complete sequencing run than any other tested tool did at the end of the sequencing run. With PathoLive, we shift the focus of NGS-based diagnostics from read quantification towards a more meaningful assessment of results in unprecedented turnaround time. The third project aims at the detection of novel pathogens from NGS data. We developed RAMBO-K, a tool which allows rapid and sensitive removal of unwanted host sequences from NGS datasets. RAMBO-K is faster than any tool we tested, while showing a consistently high sensitivity and specificity across different datasets. RAMBO-K rapidly and reliably separates reads from different species. It is suitable as a straightforward standard solution for workflows dealing with mixed datasets. In the fourth project, we used RAMBO-K as well as several other data analyses to discover Berlin squirrelpox virus, a deviant new poxvirus establishing a new genus of poxviridae. Near Berlin, Germany, several juvenile red squirrels (Sciurus vulgaris) were found with moist, crusty skin lesions. Histology, electron microscopy, and cell culture isolation revealed an orthopoxvirus-like infection. After standard workflows yielded no significant results, poxviral reads were assigned using RAMBO-K, enabling the assembly of the genome of the novel virus. With these projects, we established three new application-related methods each of which closes different research gaps. Taken together, we enhance the available repertoire of NGS-based pathogen related research tools and alleviate and fasten a variety of research projects

    Detection and Evaluation of Clusters within Sequential Data

    Full text link
    Motivated by theoretical advancements in dimensionality reduction techniques we use a recent model, called Block Markov Chains, to conduct a practical study of clustering in real-world sequential data. Clustering algorithms for Block Markov Chains possess theoretical optimality guarantees and can be deployed in sparse data regimes. Despite these favorable theoretical properties, a thorough evaluation of these algorithms in realistic settings has been lacking. We address this issue and investigate the suitability of these clustering algorithms in exploratory data analysis of real-world sequential data. In particular, our sequential data is derived from human DNA, written text, animal movement data and financial markets. In order to evaluate the determined clusters, and the associated Block Markov Chain model, we further develop a set of evaluation tools. These tools include benchmarking, spectral noise analysis and statistical model selection tools. An efficient implementation of the clustering algorithm and the new evaluation tools is made available together with this paper. Practical challenges associated to real-world data are encountered and discussed. It is ultimately found that the Block Markov Chain model assumption, together with the tools developed here, can indeed produce meaningful insights in exploratory data analyses despite the complexity and sparsity of real-world data.Comment: 37 pages, 12 figure

    Teaching and Learning of Fluid Mechanics

    Get PDF
    This book contains research on the pedagogical aspects of fluid mechanics and includes case studies, lesson plans, articles on historical aspects of fluid mechanics, and novel and interesting experiments and theoretical calculations that convey complex ideas in creative ways. The current volume showcases the teaching practices of fluid dynamicists from different disciplines, ranging from mathematics, physics, mechanical engineering, and environmental engineering to chemical engineering. The suitability of these articles ranges from early undergraduate to graduate level courses and can be read by faculty and students alike. We hope this collection will encourage cross-disciplinary pedagogical practices and give students a glimpse of the wide range of applications of fluid dynamics

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 1

    Get PDF
    Papers from the technical sessions of the Technology 2001 Conference and Exposition are presented. The technical sessions featured discussions of advanced manufacturing, artificial intelligence, biotechnology, computer graphics and simulation, communications, data and information management, electronics, electro-optics, environmental technology, life sciences, materials science, medical advances, robotics, software engineering, and test and measurement
    corecore