21,866 research outputs found

    UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis

    Get PDF
    Small increases in ambient temperature can elicit striking effects on plant architecture, collectively termed thermomorphogenesis [1]. In Arabidopsis thaliana, these include marked stem elongation and leaf elevation, responses that have been predicted to enhance leaf cooling [ 2, 3, 4 and 5]. Thermomorphogenesis requires increased auxin biosynthesis, mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) [ 6, 7 and 8], and enhanced stability of the auxin co-receptor TIR1, involving HEAT SHOCK PROTEIN 90 (HSP90) [9]. High-temperature-mediated hypocotyl elongation additionally involves localized changes in auxin metabolism, mediated by the indole-3-acetic acid (IAA)-amido synthetase Gretchen Hagen 3 (GH3).17 [10]. Here we show that ultraviolet-B light (UV-B) perceived by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8) [11] strongly attenuates thermomorphogenesis via multiple mechanisms inhibiting PIF4 activity. Suppression of thermomorphogenesis involves UVR8 and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1)-mediated repression of PIF4 transcript accumulation, reducing PIF4 abundance. UV-B also stabilizes the bHLH protein LONG HYPOCOTYL IN FAR RED (HFR1), which can bind to and inhibit PIF4 function. Collectively, our results demonstrate complex crosstalk between UV-B and high-temperature signaling. As plants grown in sunlight would most likely experience concomitant elevations in UV-B and ambient temperature, elucidating how these pathways are integrated is of key importance to the understanding of plant development in natural environments

    The role of seasonality in reproduction of multiannual delayed gametophytes of <i>Saccharina latissima</i>

    Get PDF
    Delayed gametophytes are able to grow vegetatively for prolonged periods of time. As such, they are potentially very valuable for kelp aquaculture given their great promise in opening up novel opportunities for kelp breeding and farming. However, large-scale application would require more in-depth understanding of how to control reproduction in delayed gametophytes. For newly formed gametophytes, many environmental factors for reproduction have been identified, with key drivers being light intensity, temperature, and the initial gametophyte density. However, the question of whether delayed gametophytes react similarly to these life cycle controls remains open for exploration. In this study, we performed a full factorial experiment on the influences of light intensity, temperature, and density on the reproduction of multiannual delayed gametophytes of Saccharina latissima, during which the number of sporophytes formed was counted. We demonstrate that delayed gametophytes of S. latissima can reliably reproduce sexually after more than a year of vegetative growth, depending on the effects between light intensity and temperature. Under higher light intensities (≥29 µmol photons · m-2 · s-1 ), optimal reproduction was observed at lower temperatures (10.2°C), while at lower light intensities (≤15 µmol photons · m-2 · s-1 ), optimal reproduction was observed at higher temperatures (≥12.6°C). Given the seasonal lag between solar radiation and sea surface temperature in natural systems, these conditions resemble those found during spring (i.e., increasing light intensity with low temperatures) and autumn (i.e., decreasing light intensity with higher temperatures). Seasonality can be used as an aquaculture tool to better control the reproduction of delayed gametophytes

    The Development of Plant Ecophysiology Research Based Learning Materials on Photosynthesis Subject

    Full text link
    Research development of teaching materials photosynthesis on the subject Ecophysiology plant based research aims to: (1) for the type and ratio of organic matter to the soil mixture former bauxite mine is best to plant photosynthesis rubber clone PB 260. (2) Enriching teaching materials in the form of modules Ecophysiology plant based experimental research. Stage of research include; (1) Experiment with 3 treatment ratio (w / w): control, (1: 1), (1: 2) to design completely randomized design. Data analysis by ANOVA and Duncan's Multiple Range Test Test. (2) Development of teaching materials in the form of plant ecophysiology module using ADDIE development model (Dick and Carey). The results showed a mixture of organic matter to the soil manure former bauxite mine is better than chicken manure with a mixture ratio of 1: 2. Modules developed from the results of the experiment show valid with an average of 3.32. The module has a good practical in terms of ease of use, time used to study the module, the material is quite clear from the data presented research results in the form of drawings (graphs) and tables. Student learning outcomes everything including the excellent category with a range of values 81 - 85. The module is useful to increase knowledge of students in special ecophysiology plant and botany in general

    Principles of resilient coding for plant ecophysiologists

    Get PDF
    Plant ecophysiology is founded on a rich body of physical and chemical theory, but it is challenging to connect theory with data in unambiguous, analytically rigorous and reproducible ways. Custom scripts written in computer programming languages (coding) enable plant ecophysiologists to model plant processes and fit models to data reproducibly using advanced statistical techniques. Since many ecophysiologists lack formal programming education, we have yet to adopt a unified set of coding principles and standards that could make coding easier to learn, use and modify. We identify eight principles to help in plant ecophysiologists without much programming experience to write resilient code: (i) standardized nomenclature, (ii) consistency in style, (iii) increased modularity/extensibility for easier editing and understanding, (iv) code scalability for application to large data sets, (v) documented contingencies for code maintenance, (vi) documentation to facilitate user understanding; (vii) extensive tutorials and (viii) unit testing and benchmarking. We illustrate these principles using a new R package, {photosynthesis}, which provides a set of analytical and simulation tools for plant ecophysiology. Our goal with these principles is to advance scientific discovery in plant ecophysiology by making it easier to use code for simulation and data analysis, reproduce results and rapidly incorporate new biological understanding and analytical tools

    Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, M. D., Fox, M. D., Kelly, E. L. A., Zgliczynski, B. J., Sandin, S. A., & Smith, J. E. Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific. Plos One, 15(2), (2020): e0228448, doi:10.1371/journal.pone.0228448.Upwelling is an important source of inorganic nutrients in marine systems, yet little is known about how gradients in upwelling affect primary producers on coral reefs. The Southern Line Islands span a natural gradient of inorganic nutrient concentrations across the equatorial upwelling region in the central Pacific. We used this gradient to test the hypothesis that benthic autotroph ecophysiology is enhanced on nutrient-enriched reefs. We measured metabolism and photophysiology of common benthic taxa, including the algae Porolithon, Avrainvillea, and Halimeda, and the corals Pocillopora and Montipora. We found that temperature (27.2–28.7°C) was inversely related to dissolved inorganic nitrogen (0.46–4.63 μM) and surface chlorophyll a concentrations (0.108–0.147 mg m-3), which increased near the equator. Contrary to our prediction, ecophysiology did not consistently track these patterns in all taxa. Though metabolic rates were generally variable, Porolithon and Avrainvillea photosynthesis was highest at the most productive and equatorial island (northernmost). Porolithon photosynthetic rates also generally increased with proximity to the equator. Photophysiology (maximum quantum yield) increased near the equator and was highest at northern islands in all taxa. Photosynthetic pigments also were variable, but chlorophyll a and carotenoids in Avrainvillea and Montipora were highest at the northern islands. Phycobilin pigments of Porolithon responded most consistently across the upwelling gradient, with higher phycoerythrin concentrations closer to the equator. Our findings demonstrate that the effects of in situ nutrient enrichment on benthic autotrophs may be more complex than laboratory experiments indicate. While upwelling is an important feature in some reef ecosystems, ancillary factors may regulate the associated consequences of nutrient enrichment on benthic reef organisms.This work was supported by funding from the Moore Family Foundation, the Gordon and Betty Moore Foundation, the Scripps family, and anonymous donors. The funders had no role in study design, data collection and analysis, or preparation of the manuscript

    Ecophysiology of Grasslands: Dynamic Aspects of Forage Plant Populations in Grazed Swards

    Get PDF
    The aim of this paper is to review knowledge of the ecophysiological mechanisms influencing the dynamics of plant populations in grazed swards. Such an objective requires some definitions. Firstly, it is necessary to define “ecophysiology” as the study of the interactions between biological individuals (plants) with their own environment: how individuals perceive and react to any constraint and change of their environment, and how the functioning of plants as a population can modify their own environment. Such a definition implies a dynamic approach to pant population functioning as resulting from constant plant-plant interactions mediated by micro-environment modifications. In a grazed plant community, these plant to plant interactions are perturbed by spatially explicit defoliation events which have a direct effect on the functioning of defoliated plants and also an indirect effect via the modification of the micro-environment of the neighbour plants. Secondly, it is necessary to define more precisely what we mean by “dynamics of plant population”. Because this paper is restricted to “ecophysiology of grasslands” plant population dynamics are not entirely taken into account in the sense that invasion or recruitment processes of new plants through seed dispersion and seed banks in the soil are not explicitly included in our approach. So the dynamic aspects of plant population discussed in this paper are restricted to competition between individual plants, including ability for clonal reproduction, survival ability, and morphological adaptation to defoliation and neighbourhood interactions. These determine the dynamic evolution of both sward structure for a short term and botanical composition for a longer term in a sward subjected to a given management. The analysis will focus on three main concepts of ecophysiology: (i) the mechanisms of competition among individual plants within a plant community and their consequences to sward structure dynamics, (ii) the adaptive morphogenetic mechanisms of plants to defoliation and the consequence to plant morphology and sward structure dynamics, and (iii) the interactions between these two types of mechanism for an overall understanding of the vegetation dynamics of a grazed plant community and its consequence for sustainable pasture management

    Drivers of plant traits that allow survival in wetlands

    Get PDF
    Plants have developed a suite of traits to survive the anaerobic and anoxic soil conditions in wetlands. Previous studies on wetland plant adaptive traits have focused mainly on physiological aspects under experimental conditions, or compared the trait expression of the local species pool. Thus, a comprehensive analysis of potential factors driving wetland plant adaptive traits under natural environmental conditions is still missing.In this study, we analysed three important wetland adaptive traits, i.e. root porosity, root/shoot ratio and underwater photosynthetic rate, to explore driving factors using a newly compiled dataset of wetland plants. Based on 21 studies at 38 sites across different biomes, we found that root porosity was affected by an interaction of temperature and hydrological regime; root:shoot ratio was affected by temperature, precipitation and habitat type; and underwater photosynthetic rate was affected by precipitation and life form. This suggests that a variety of driving mechanisms affect the expression of different adaptive traits.The quantitative relationships we observed between the adaptive traits and their driving factors will be a useful reference for future global methane and denitrification modelling studies. Our results also stress that besides the traditionally emphasized hydrological driving factors, other factors at several spatial scales should also be taken into consideration in the context of future functional wetland ecology.Environmental Biolog
    corecore