1,365 research outputs found

    Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae

    Get PDF
    Peroxisomes undergo rapid, selective autophagic degradation (pexophagy) when the metabolic pathways they contain are no longer required for cellular metabolism. Pex3 is central to the formation of peroxisomes and their segregation because it recruits factors specific for these functions. Here, we describe a novel Saccharomyces cerevisiae protein that interacts with Pex3 at the peroxisomal membrane. We name this protein Atg36 as its absence blocks pexophagy, and its overexpression induces pexophagy. We have isolated pex3 alleles blocked specifically in pexophagy that cannot recruit Atg36 to peroxisomes. Atg36 is recruited to mitochondria if Pex3 is redirected there, where it restores mitophagy in cells lacking the mitophagy receptor Atg32. Furthermore, Atg36 binds Atg8 and the adaptor Atg11 that links receptors for selective types of autophagy to the core autophagy machinery. Atg36 delivers peroxisomes to the preautophagosomal structure before being internalised into the vacuole with peroxisomes. We conclude that Pex3 recruits the pexophagy receptor Atg36. This reinforces the pivotal role played by Pex3 in coordinating the size of the peroxisome pool, and establishes its role in pexophagy in S. cerevisiae

    ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes

    Get PDF
    ATG genes encode proteins that are required for macroautophagy, the Cvt pathway and/or pexophagy. Using the published Atg protein sequences, we have screened protein and DNA databases to identify putative functional homologs (orthologs) in 21 fungal species (yeast and filamentous fungi) of which the genome sequences were available. For comparison with Atg proteins in higher eukaryotes, also an analysis of Arabidopsis thaliana and Homo sapiens databases was included. This analysis demonstrated that Atg proteins required for non-selective macroautophagy are conserved from yeast to man, stressing the importance of this process in cell survival and viability. The A. thaliana and human genomes encode multiple proteins highly similar to specific fungal Atg proteins (paralogs), possibly representing cell type-specific isoforms. The Atg proteins specifically involved in the Cvt pathway and/or pexophagy showed poor conservation, and were generally not present in A. thaliana and man. Furthermore, Atg19, the receptor of Cvt cargo, was only detected in Saccharomyces cerevisiae. Nevertheless, Atg11, a protein that links receptor-bound cargo (peroxisomes, the Cvt complex) to the autophagic machinery was identified in all yeast species and filamentous fungi under study. This suggests that in fungi an organism-specific form of selective autophagy may occur, for which specialized Atg proteins have evolved

    Peroxisome biogenesis and selective degradation converge at Pex14p

    Get PDF
    We have analyzed the function of Hansenula polymorpha Pex14p in selective peroxisome degradation. Previously, we showed that Pex14p was involved in peroxisome biogenesis and functions in peroxisome matrix protein import. Evidence for the additional function of HpPex14p in selective peroxisome degradation (pexophagy) came from cells defective in HpPex14p synthesis. The suggestion that the absence of HpPex14p interfered with pexophagy was further analyzed by mutational analysis. These studies indicated that deletions at the C terminus of up to 124 amino acids of HpPex14p did not affect peroxisome degradation. Conversely, short deletions of the N terminus (31 and 64 amino acids, respectively) of the protein fully impaired pexophagy. Peroxisomes present in these cells remained intact for at least 6 h of incubation in the presence of excess glucose, conditions that led to the rapid turnover of the organelles in wild-type control cells. We conclude that the N terminus of HpPex14p contains essential information to control pexophagy in H. polymorpha and thus, that organelle development and turnover converge at Pex14p

    Mitochondria Autophagy in Yeast

    Full text link
    The mitochondrion is an organelle that carries out a number of important metabolic processes such as fatty acid oxidation, the citric acid cycle, and oxidative phosphorylation. However, this multitasking organelle also generates reactive oxygen species (ROS), which can cause oxidative stress resulting in self-damage. This type of mitochondrial damage can lead to the further production of ROS and a resulting downward spiral with regard to mitochondrial capability. This is extremely problematic because the accumulation of dysfunctional mitochondria is related to aging, cancer, and neurodegenerative diseases. Accordingly, appropriate quality control of this organelle is important to maintain proper cellular homeostasis. It has been thought that selective mitochondria autophagy (mitophagy) contributes to the maintenance of mitochondrial quality by eliminating damaged or excess mitochondria, although little is known about the mechanism. Recent studies in yeast identified several mitophagy-related proteins, which have been characterized with regard to their function and regulation. In this article, we review recent advances in the physiology and molecular mechanism of mitophagy and discuss the similarities and differences of this degradation process between yeast and mammalian cells. Antioxid. Redox Signal. 14, 1989-2001.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90489/1/ars-2E2010-2E3762.pd

    Yeast Methylotrophy and Autophagy in a Methanol-Oscillating Environment on Growing Arabidopsis thaliana Leaves

    Get PDF
    The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these dynamically changing environmental conditions, yeast cells proliferated 3 to 4 times in 11 days. Among the C1-metabolic enzymes, enzymes in the methanol assimilation pathway, but not formaldehyde dissimilation or anti-oxidizing enzymes, were necessary for yeast proliferation at the phyllosphere. Furthermore, both peroxisome assembly and pexophagy, a selective autophagy pathway that degrades peroxisomes, were necessary for phyllospheric proliferation. Thus, the present study sheds light on the life cycle and physiology of yeast in the natural environment at both the molecular and cellular levels

    The life of the peroxisome: from birth to death

    Get PDF
    Peroxisomes are dynamic and metabolically plastic organelles. Their multiplicity of functions impacts on many aspects of plant development and survival. New functions for plant peroxisomes such as in the synthesis of biotin, ubiquinone and phylloquinone are being uncovered and their role in generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) as signalling hubs in defence and development is becoming appreciated. Understanding of the biogenesis of peroxisomes, mechanisms of import and turnover of their protein complement, and the wholesale destruction of the organelle by specific autophagic processes is giving new insight into the ways that plants can adjust peroxisome function in response to changing needs

    Pexophagy: The Selective Degradation of Peroxisomes

    Get PDF
    Peroxisomes are single-membrane-bounded organelles present in the majority of eukaryotic cells. Despite the existence of great diversity among different species, cell types, and under different environmental conditions, peroxisomes contain enzymes involved in β-oxidation of fatty acids and the generation, as well as detoxification, of hydrogen peroxide. The exigency of all eukaryotic cells to quickly adapt to different environmental factors requires the ability to precisely and efficiently control peroxisome number and functionality. Peroxisome homeostasis is achieved by the counterbalance between organelle biogenesis and degradation. The selective degradation of superfluous or damaged peroxisomes is facilitated by several tightly regulated pathways. The most prominent peroxisome degradation system uses components of the general autophagy core machinery and is therefore referred to as “pexophagy.” In this paper we focus on recent developments in pexophagy and provide an overview of current knowledge and future challenges in the field. We compare different modes of pexophagy and mention shared and distinct features of pexophagy in yeast model systems, mammalian cells, and other organisms

    Peroxisomes and Kidney Damage

    Get PDF
    corecore