4,150 research outputs found

    Spatial context-aware person-following for a domestic robot

    Get PDF
    Domestic robots are in the focus of research in terms of service providers in households and even as robotic companion that share the living space with humans. A major capability of mobile domestic robots that is joint exploration of space. One challenge to deal with this task is how could we let the robots move in space in reasonable, socially acceptable ways so that it will support interaction and communication as a part of the joint exploration. As a step towards this challenge, we have developed a context-aware following behav- ior considering these social aspects and applied these together with a multi-modal person-tracking method to switch between three basic following approaches, namely direction-following, path-following and parallel-following. These are derived from the observation of human-human following schemes and are activated depending on the current spatial context (e.g. free space) and the relative position of the interacting human. A combination of the elementary behaviors is performed in real time with our mobile robot in different environments. First experimental results are provided to demonstrate the practicability of the proposed approach

    Longitudinal control for person-following robots

    Get PDF
    Purpose: This paper aims to address the longitudinal control problem for person-following robots (PFRs) for the implementation of this technology. Design/methodology/approach: Nine representative car-following models are analyzed from PFRs application and the linear model and optimal velocity model/full velocity difference model are qualified and selected in the PFR control. Findings: A lab PFR with the bar-laser-perception device is developed and tested in the field, and the results indicate that the proposed models perform well in normal person-following scenarios. Originality/value: This study fills a gap in the research on PRFs longitudinal control and provides a useful and practical reference on PFRs longitudinal control for the related research

    Multi-Sensor Person Following in Low-Visibility Scenarios

    Get PDF
    Person following with mobile robots has traditionally been an important research topic. It has been solved, in most cases, by the use of machine vision or laser rangefinders. In some special circumstances, such as a smoky environment, the use of optical sensors is not a good solution. This paper proposes and compares alternative sensors and methods to perform a person following in low visibility conditions, such as smoky environments in firefighting scenarios. The use of laser rangefinder and sonar sensors is proposed in combination with a vision system that can determine the amount of smoke in the environment. The smoke detection algorithm provides the robot with the ability to use a different combination of sensors to perform robot navigation and person following depending on the visibility in the environment

    Mobile Robot Navigation for Person Following in Indoor Environments

    Get PDF
    Service robotics is a rapidly growing area of interest in robotics research. Service robots inhabit human-populated environments and carry out specific tasks. The goal of this dissertation is to develop a service robot capable of following a human leader around populated indoor environments. A classification system for person followers is proposed such that it clearly defines the expected interaction between the leader and the robotic follower. In populated environments, the robot needs to be able to detect and identify its leader and track the leader through occlusions, a common characteristic of populated spaces. An appearance-based person descriptor, which augments the Kinect skeletal tracker, is developed and its performance in detecting and overcoming short and long-term leader occlusions is demonstrated. While following its leader, the robot has to ensure that it does not collide with stationary and moving obstacles, including other humans, in the environment. This requirement necessitates the use of a systematic navigation algorithm. A modified version of navigation function path planning, called the predictive fields path planner, is developed. This path planner models the motion of obstacles, uses a simplified representation of practical workspaces, and generates bounded, stable control inputs which guide the robot to its desired position without collisions with obstacles. The predictive fields path planner is experimentally verified on a non-person follower system and then integrated into the robot navigation module of the person follower system. To navigate the robot, it is necessary to localize it within its environment. A mapping approach based on depth data from the Kinect RGB-D sensor is used in generating a local map of the environment. The map is generated by combining inter-frame rotation and translation estimates based on scan generation and dead reckoning respectively. Thus, a complete mobile robot navigation system for person following in indoor environments is presented

    Autonomous Robots in Dynamic Indoor Environments: Localization and Person-Following

    Get PDF
    Autonomous social robots have many tasks that they need to address such as localization, mapping, navigation, person following, place recognition, etc. In this thesis we focus on two key components required for the navigation of autonomous robots namely, person following behaviour and localization in dynamic human environments. We propose three novel approaches to address these components; two approaches for person following and one for indoor localization. A convolutional neural networks based approach and an Ada-boost based approach are developed for person following. We demonstrate the results by showing the tracking accuracy over time for this behaviour. For the localization task, we propose a novel approach which can act as a wrapper for traditional visual odometry based approaches to improve the localization accuracy in dynamic human environments. We evaluate this approach by showing how the performance varies with increasing number of dynamic agents present in the scene. This thesis provides qualitative and quantitative evaluations for each of the approaches proposed and show that we perform better than the current approaches

    Real-Time Online Human Tracking with a Stereo Camera for Person-Following Robots

    Get PDF
    Person-Following Robots have been studied for multiple decades now. Recently, person-following robots have relied on various sensors (e.g., radar, infrared, laser, ultrasonic, etc). However, these technologies lack the use of the most reliable information from visible colors (visible light cameras) for high-level perception; therefore, many of them are not stable when the robot is placed under complex environments (e.g., crowded scenes, occlusion, target disappearance, etc.). In this thesis, we are presenting three different approaches to track a human target for person-following robots in challenging situations (e.g., partial and full occlusions, appearance changes, pose changes, illumination changes, or distractor wearing the similar clothes, etc.) with a stereo depth camera. The newest tracker (SiamMDH, a Siamese convolutional neural network based tracker with temporary appearance model) implemented in this work achieves 98.92% accuracy with location error threshold 50 pixels and 92.94% success rate with IoU threshold 0.5 on our extensive person-following dataset
    • 

    corecore