62 research outputs found

    p

    Get PDF
    The problem of pth mean exponential stability and stabilizability of a class of stochastic nonlinear and bilinear hybrid systems with unstable and stable subsystems is considered. Sufficient conditions for the pth mean exponential stability and stabilizability under a feedback control and stabilizing switching rules are derived. A method for the construction of stabilizing switching rules based on the Lyapunov technique and the knowledge of regions of decreasing the Lyapunov functions for subsystems is given. Two cases, including single Lyapunov function and a a single Lyapunov-like function, are discussed. Obtained results are illustrated by examples

    Stabilization of markovian systems via probability rate synthesis and output feedback

    Get PDF
    This technical note is concerned with the stabilization problem of Markovian jump linear systems via designing switching probability rate matrices and static output-feedback gains. A novel necessary and sufficient condition is established to characterize the switching probability rate matrices that guarantee the mean square stability of Markovian jump linear systems. Based on this, a necessary and sufficient condition is provided for the existence of desired controller gains and probability rate matrices. Extensions to the polytopic uncertain case are also provided. All the conditions are formulated in terms of linear matrix inequalities with some equality constraints, which can be solved by two modified cone complementarity linearization algorithms. Examples are given to show the effectiveness of the proposed method. © 2010 IEEE.published_or_final_versio

    Contributions à la stabilisation des systèmes à commutation affine

    Get PDF
    Cette thèse porte sur la stabilisation des systèmes à commutation dont la commande, le signal de commutation, est échantillonné de manière périodique. Les difficultés liées à cette classe de systèmes non linéaires sont d'abord dues au fait que l'action de contrôle est effectuée aux instants de calcul en sélectionnant le mode de commutation à activer et, ensuite, au problème de fournir une caractérisation précise de l'ensemble vers lequel convergent les solutions du système, c'est-à-dire l'attracteur. Dans cette thèse, les contributions ont pour fil conducteur la réduction du conservatisme fait pendant la définition d'attracteurs, ce qui a mené à garantir la stabilisation du système à un cycle limite. Après une introduction générale où sont présentés le contexte et les principaux résultats de la littérature, le premier chapitre contributif introduit une nouvelle méthode basée sur une nouvelle classe de fonctions de Lyapunov contrôlées qui fournit une caractérisation plus précise des ensembles invariants pour les systèmes en boucle fermée. La contribution présentée comme un problème d'optimisation non convexe et faisant référence à une condition de Lyapunov-Metzler apparaît comme un résultat préliminaire et une étape clé pour les chapitres à suivre. La deuxième partie traite de la stabilisation des systèmes affines commutés vers des cycles limites. Après avoir présenté quelques préliminaires sur les cycles limites hybrides et les notions dérivées telles que les cycles au Chapitre 3, les lois de commutation stabilisantes sont introduites dans le Chapitre 4. Une approche par fonctions de Lyapunov contrôlées et une stratégie de min-switching sont utilisées pour garantir que les solutions du système nominal en boucle fermée convergent vers un cycle limite. Les conditions du théorème sont exprimées en termes d'Inégalités Matricielles Linéaires (dont l'abréviation anglaise est LMI) simples, dont les conditions nécessaires sous-jacentes relâchent les conditions habituelles dans cette littérature. Cette méthode est étendue au cas des systèmes incertains dans le Chapitre 5, pour lesquels la notion de cycles limites doit être adaptée. Enfin, le cas des systèmes dynamiques hybrides est exploré au Chapitre 6 et les attracteurs ne sont plus caractérisés par des régions éventuellement disjointes mais par des trajectoires fermées et isolées en temps continu. Tout au long de la thèse, les résultats théoriques sont évalués sur des exemples académiques et démontrent le potentiel de la méthode par rapport à la littérature récente sur le sujet.This thesis deals with the stabilization of switched affine systems with a periodic sampled-data switching control. The particularities of this class of nonlinear systems are first related to the fact that the control action is performed at the computation times by selecting the switching mode to be activated and, second, to the problem of providing an accurate characterization of the set where the solutions to the system converge to, i.e. the attractors. The contributions reported in this thesis have as common thread to reduce the conservatism made in the characterization of attractors, leading to guarantee the stabilization of the system at a limit cycle. After a brief introduction presenting the context and some main results, the first contributive chapter introduced a new method based on a new class of control Lyapunov functions that provides a more accurate characterization of the invariant set for a closed-loop system. The contribution presented as a nonconvex optimization problem and referring to a Lyapunov-Metzler condition appears to be a preliminary result and the milestone of the forthcoming chapters. The second part deals with the stabilization of switched affine systems to limit cycles. After presenting some preliminaries on hybrid limit cycles and derived notions such as cycles in Chapter 3, stabilizing switching control laws are developed in Chapter 4. A control Lyapunov approach and a min-switching strategy are used to guarantee that the solutions to a nominal closed-loop system converge to a limit cycle. The conditions of the theorem are expressed in terms of simple linear matrix inequalities (LMI), whose underlying necessary conditions relax the usual one in this literature. This method is then extended to the case of uncertain systems in Chapter 5, for which the notion of limit cycle needs to be adapted. Finally, the hybrid dynamical system framework is explored in Chapter 6 and the attractors are no longer characterized by possibly disjoint regions but as continuous-time closed and isolated trajectory. All along the dissertation, the theoretical results are evaluated on academic examples and demonstrate the potential of the method over the recent literature on this subject

    Estimation and control of non-linear and hybrid systems with applications to air-to-air guidance

    Get PDF
    Issued as Progress report, and Final report, Project no. E-21-67

    Distributed Kalman Filters over Wireless Sensor Networks: Data Fusion, Consensus, and Time-Varying Topologies

    Get PDF
    Kalman filtering is a widely used recursive algorithm for optimal state estimation of linear stochastic dynamic systems. The recent advances of wireless sensor networks (WSNs) provide the technology to monitor and control physical processes with a high degree of temporal and spatial granularity. Several important problems concerning Kalman filtering over WSNs are addressed in this dissertation. First we study data fusion Kalman filtering for discrete-time linear time-invariant (LTI) systems over WSNs, assuming the existence of a data fusion center that receives observations from distributed sensor nodes and estimates the state of the target system in the presence of data packet drops. We focus on the single sensor node case and show that the critical data arrival rate of the Bernoulli channel can be computed by solving a simple linear matrix inequality problem. Then a more general scenario is considered where multiple sensor nodes are employed. We derive the stationary Kalman filter that minimizes the average error variance under a TCP-like protocol. The stability margin is adopted to tackle the stability issue. Second we study distributed Kalman filtering for LTI systems over WSNs, where each sensor node is required to locally estimate the state in a collaborative manner with its neighbors in the presence of data packet drops. The stationary distributed Kalman filter (DKF) that minimizes the local average error variance is derived. Building on the stationary DKF, we propose Kalman consensus filter for the consensus of different local estimates. The upper bound for the consensus coefficient is computed to ensure the mean square stability of the error dynamics. Finally we focus on time-varying topology. The solution to state consensus control for discrete-time homogeneous multi-agent systems over deterministic time-varying feedback topology is provided, generalizing the existing results. Then we study distributed state estimation over WSNs with time-varying communication topology. Under the uniform observability, each sensor node can closely track the dynamic state by using only its own observation, plus information exchanged with its neighbors, and carrying out local computation

    Optimization-based Framework for Stability and Robustness of Bipedal Walking Robots

    Get PDF
    As robots become more sophisticated and move out of the laboratory, they need to be able to reliably traverse difficult and rugged environments. Legged robots -- as inspired by nature -- are most suitable for navigating through terrain too rough or irregular for wheels. However, control design and stability analysis is inherently difficult since their dynamics are highly nonlinear, hybrid (mixing continuous dynamics with discrete impact events), and the target motion is a limit cycle (or more complex trajectory), rather than an equilibrium. For such walkers, stability and robustness analysis of even stable walking on flat ground is difficult. This thesis proposes new theoretical methods to analyse the stability and robustness of periodic walking motions. The methods are implemented as a series of pointwise linear matrix inequalities (LMI), enabling the use of convex optimization tools such as sum-of-squares programming in verifying the stability and robustness of the walker. To ensure computational tractability of the resulting optimization program, construction of a novel reduced coordinate system is proposed and implemented. To validate theoretic and algorithmic developments in this thesis, a custom-built “Compass gait” walking robot is used to demonstrate the efficacy of the proposed methods. The hardware setup, system identification and walking controller are discussed. Using the proposed analysis tools, the stability property of the hardware walker was successfully verified, which corroborated with the computational results

    Model-based Fuel Flow Control for Fossil-fired Power Plants

    Get PDF

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area
    • …
    corecore