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Abstract

Modern technological systems consist of many components with strong interactions be-
tween them. The functionality and performance of the overall system depends on the
performance of each component. A fault in a component may decrease the overall per-
formance of the system and it may even lead to an unacceptable loss of the system func-
tionality or instability. Therefore, it is important to design control systems that can au-
tomatically detect and diagnose occurred faults, maintain the overall functionality of the
system, and ensure an acceptable performance for the faulty system.

Most advanced technological systems, include subsystems with continuous behavior
and subsystems with discrete behaviors and interactions between them. Hybrid systems
are a useful class for modeling of these systems . A hybrid system is a dynamical system
with both continuous and discrete behaviors and non-trivial interactions between con-
tinuous evolutions and discrete transitions. Hybrid systems arises in many real world
applications such as manufacturing, chemical process, traffic control, robotics, etc.

This thesis develops methods for Fault Detection and Diagnosis (FDD) and Fault Tol-
erant Control (FTC) of hybrid systems. In the area of FDD, we propose two methods
for active diagnosis of hybrid systems. The first approach uses reach set computation to
find the shortest test signal that can diagnose a fault. The approach does not guarantee
the stability of the system. This is an important issue in active diagnosis, because we are
exciting the system and perturbing it from the operating point; moreover, because during
the diagnosis the system is controlled with the nominal controller which might not keep
the faulty system stable. Therefore, in the second method, we propose an optimization
based active diagnosis method that guarantees stability of the system. Stability of the
system is ensured by superimposing a model predictive controller on the active diagnoser
and by imposing the constraint that the state of the system after diagnosis should be in
the feasible set of the model predictive controller. Feasibility of this constraint means that
the systems is diagnosable and stabilizable. After diagnosing the fault, system reconfigu-
ration is performed by updating the model predictive controller constraints based on the
model of the faulty system. The generated test signal can be used for sanity check of the
system at the commissioning phase or for checking the system periodically during the
normal operation.

In the area of FTC, we propose a new method for passive FTC (PFTC) of PieceWise
Linear (PWL) systems. We use PieceWise Quadratic Lyapunov (PWQL) functions. The
approach provides an upper bound on the performance of the closed loop system which
can be minimized using an optimization problem with Linear Matrix Inequality (LMI)
constraints. This method uses PWL state feedback for controller design. But, states of
a system are not available usually. Therefore, we propose a method for PFTC of PWL
systems using output feedback. For output feedback the problem is formulated in terms of
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Bilinear Matrix Inequalities (BMIs) and an optimal upper bound on the performance can
be found using optimization with BMI constraints which is solved using the V-K iteration
algorithm.
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Synopsis

Moderne teknologiske systemer består af mange komponenter i tæt samarbejde. Funk-
tion og ydeevne af det samlede system afhænger af performance af hver komponent. En
fejl i en komponent kan nedsætte det samlede systems performance, og det kan føre til
et uacceptabelt tab af systemets funktionalitet eller ustabilitet. Derfor er det vigtigt at
designe reguleringssystemer, der automatisk kan opdage og diagnosticere fejl, bevare den
samlede funktionalitet af systemet, og sikre en acceptabel performance for det fejlbehæft-
ede system.

De fleste avancerede teknologiske systemer, omfatter delsystemer med kontinuert ad-
fæd og delsystemer med diskrete adfæd og et samspil mellem dem. Hybride systemer er
en nyttig klasse for modellering af disse systemer. Et hybrid system er et dynamisk system
med både kontinuert og diskret adfæd og et ikke-trivielt samspil mellem den kontinuerte
udviklingen og diskrete overgange. Hybrid systemer opstår i mange applikationer såsom
produktion, kemisk processer, trafik kontrol, robotteknologi, etc.

Denne afhandling omhandler metoder til fejlfinding og diagnosticering (FDD) og fe-
jltolerant regulering (FTC) af hybride systemer. Inden for FDD, foreslår vi to metoder til
aktiv diagnosticering af hybride systemer. Den første strategi benytter mængde bereg-
ninger for at finde det korteste test signal som kan diagnosticere en fejl. Den frem-
gangsmåde kan ikke garantere systemets stabilitet. Dette er et vigtigt spørgsmål i aktiv
diagnose, fordi vi påvirker systemet og flytter det fra driftspunktet. Endvidere er sys-
temet under diagnosen reguleret af den nominelle regulator, som måske ikke kan stabilis-
ere det fejlbehæftede system. Derfor foreslår vi en anden aktiv diagnose metode baseret
påoptimering, der sikrer stabilitet af systemet. Systemets stabilitet er sikret ved at over-
lejre en model prædiktiv regulator pådet aktive diagnosesystem og ved at pålægge den
begrænsning, at tilstanden af systemet efter diagnose skal være i det tilladelige mængde
for den model prædiktive regulator. Denne begrænsning indebærer, at systemerne er di-
agnosticerbare og stabiliserbare. Efter at have diagnosticere fejl, reconfigureres systemet
ved at opdatere den model prædiktive regulators begrænsninger baseret påmodellen af det
fejlbehæftede system. Det genererede test signal kan bruges til sanity check af systemet
ved indkøring eller for at kontrollere systemet jævnligt under normal drift.

Inden for FTC, foreslår vi endvidere en ny metode til Passiv FTC (PFTC) af stykkevis
lineære (PWL) systemer. Vi bruger stykkevis kvadratiske Lyapunov funktioner. Denne
fremgangsmåde giver en øvre grænse for performance af det tilbagekoblede system, der
kan minimeres ved at se pådet som et optimerings problem med linear matrix ulighed
(LMI) begrænsninger. Denne metode bruger PWL tilstandstilbagekobling til regulator de-
sign. Da tilstandstilbagekobling normalt ikke er direkte tilgængeligt foreslår vi en metode
til PFTC af PWL systemer, der anvender output tilbagekobling. Output tilbagekoblingsprob-
lemet formuleres i form af Bilinear matrix uligheder (BMI’er) og en optimal øvre grænse
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for performance kan findes ved hjælp af en optimering med BMI begrænsninger, der er
løst ved hjælp af V-K iteration algoritmen.
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1 Introduction

There is an increasing demand for reliability, safety, and performance of modern tech-
nological systems. Therefore Fault Detection and Diagnosis (FDD) and Fault Tolerant
Control (FTC) of them is very important. Most modern technological systems consist
of both discrete and continuous behaviors and interactions between them. Hybrid sys-
tems are a useful modeling class to capture behavior of these systems. In this thesis, we
investigate the problem of FDD and FTC for hybrid systems.

This chapter describes the motivation for studying the problem and provides basic
concepts of fault detection and diagnosis and fault tolerant control and gives an overview
of the state of art in this field.

1.1 Motivation

Every system is prone to fault. A change in a component of a system that changes its be-
havior from its nominal behavior is called a fault. A fault may decrease the performance
of the whole system. It might lead to an unacceptable performance or in serious cases it
might yield shut-down of the system or instability and damages. In modern technological
systems, there is a high demand on performance, safety, and reliability of systems. It is
desired that if a fault happens, the control system can automatically detect the fault and
moderate its effect on the system such that it can continue working while providing an
acceptable performance. If an acceptable performance is not possible, it should be able to
preserve the overall functionality and stability of the systems while allowing some degra-
dation in the performance of the system. In any case, it is important to avoid dangerous
areas to prevent damages to the system. Therefore, FDD and FTC are very important for
modern technological systems.

The initiative problem for the research in this thesis stems from the funding project
which is concerned with developing self-validating reconfigurable control systems. An
aim of the project is to develop a control system that can provide sanity checks at the
commissioning phase of the operation by methodically checking involved instrumentation
functionalities. In a large system there are many sensors, actuators and other components.
Every measurement from a sensor or output to an actuator should be assigned correctly
to its corresponding variable in the control algorithm. Yet, it happens that a technician
connects components of a system wrongly. Wrong sensor or actuator assignment poten-
tially results in malfunction of the overall system. Therefore, it is desirable to design a
controller which provides sanity check in the commissioning phase for verifying sensor
and actuator assignment by generating an appropriate test signal. A way to address this
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Introduction

problem is to use active diagnosis methods for generating a test signal to check the sanity
of components as well as sensor and actuator assignments during the commissioning. Al-
though the behavior of some systems during the normal operation can be approximated
by a linear system around the operating point, but most of the industrial systems present
a hybrid behavior during the commissioning phase.

Faults might also happen during the operation phase of the system. One way to tackle
the problem is to diagnose the fault, using active or passive diagnosis, and then re-design
the controller for the faulty system. Control re-design could be performed online or it
could be a switching between a bank of pre-designed controllers for a fault or a set of
faults. This method is called Active Fault Tolerant Control (AFTC). Another way to
address the problem is to design a fixed controller such that it can tolerate some faults
in the system. This is called Passive Fault Tolerant Control (PFTC). There is always
some delay associated with detection and diagnosis of a fault. During the time period in
which a fault occurs and is diagnosed, the system is working with the nominal controller.
The faulty system with the nominal controller might become unstable during this period.
For safety critical systems, the time window in which the system remains stable is too
small for accurate fault detection and diagnosis. In this cases a PFTC is preferable. In
practice, a combination of both methods are required. Some non-severe faults should be
handled with PFTC and severe faults with AFTC. Moreover, many times, AFTC consists
of switching between a bank of pre-designed controllers where each one is designed to
handle a set of faults. In this cases, each of these controllers is a PFTC which can tolerate
a set of faults.

In last three decades a lot of research has been carried out in the area of FDD and FTC.
Many methods for FDD and FTC of discrete event systems or continuous systems are pro-
posed. But many systems include both discrete and continuous behaviors. These systems
are called hybrid systems. Hybrid systems are systems which contain both continuous
behaviors and discrete behaviors such that there is non-trivial interactions between con-
tinuous evolutions and discrete transitions. Generally speaking, a hybrid system consists
of several modes. In each mode, the system has a continuous dynamic. Transition be-
tween these modes happens if the continuous state of the system satisfies some condi-
tions such as entering a region or hitting a guard or it could be based on time or based
on some conditions on the input or a combination of them. This transition is described
by a switching logic. This is illustrated in Fig. 1.1. Hybrid systems appear in many en-
gineering applications such as mechanical systems, circuits systems, chemical processes,
embedded systems, manufacturing, traffic control, etc. Hybrid systems have attracted a
lot of research in recent years. Many works have studied modeling, simulation, stabil-
ity analysis, verification, reachability analysis and control design of hybrid systems, see
[AK03] and references therein.

FDD and FTC of Hybrid systems have attracted some research in recent years. Clas-
sical methods on FDD and FTC can not be applied directly to hybrid systems because at
one hand, discrete event methods abstract the continuous behavior of a hybrid systems
to discrete events and ignore the continuous behavior of the system. On the other hand,
continuous systems methods do not deal with switching between modes and discrete be-
havior of a hybrid system. Therefore, It is necessary to develop methods that consider the
behavior of a hybrid systems in a proper way i.e. methods that consider its continuous
behavior, discrete behavior, and their interactions.

In this thesis, we investigate the problem of fault detection and diagnosis and fault
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2 Background and State of the Art 

 

 

Mode 1 

Mode 2  Mode 3 

Figure 1.1: A hybrid system

tolerant control of hybrid systems, focusing on active fault diagnosis and passive fault
tolerant control of this class of systems.

1.2 Background and State of the Art

1.2.1 Fault and System Behavior

Consider a dynamical system as depicted in Fig. 1.2. It has inputs and outputs, and the
relation between the input and the output of the systems is described by some dynamical
equations.

System 
 

     
     Model 

     
  Optimizer 

     
System 

Set‐Point 

ConstraintsObjective 

Predicted
outputs 

Predicted 
error 

Past inputs 
and outputs 

Future inputs

Outputs 

     
System 

Input 
 
u 

Output 
 
y 

Figure 1.2: A System

A pair which consists of the input and the output of the system at a time instant is
called the Input/Output (I/O) pair. For a given system, the set of all possible I/O pairs is
called the system behavior. If U denotes the set of all inputs of the system and Y the set
of all possible output of the system, then the behavior of the system is a set in U × Y .
This is shown in Fig. 1.3. The set B0 is the behavior of the systems and the point A is a
possible or consistent I/O pair, whereas the point B shows an impossible or inconsistent
I/O pair.

A fault, is defined as a change in the parameters or the structure of the systems. As it
is shown in Fig. 1.4, three different kinds of faults can be considered for a plant: sensor
faults, actuator, and internal faults.

The effect of the fault on the input-output behavior of the system is depicted in
Fig. 1.5. The set B0, represents the normal behavior of the system, and the set B1,
represents the system behavior subject to the fault f1. The point A is consistent with the
normal behavior of the systems and the point B is consistent with the faulty behavior of
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Figure 1.3: System behavior
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Figure 1.4: Different types of faults

the systems. The point C belongs to an area in which the faulty and the normal behavior
of the system overlap.

 
 

     

 

active fault diagnosis method for diagnosis of linear hybrid 
system in discrete time is proposed. The idea is based on 
reach set computation for faulty and normal system. For both 
systems, those states that the system could reach in 
forthcoming steps considering all possible excitations are 
considered. Reach set are computed as long as faulty system 
and normal system have the same reach sets. But as soon as 
they represent different sets the algorithm terminates and 
selects a point which uniquely belongs to one of the sets. 
Then the optimal input for reaching the selected point is 
calculated and injected to the system. If the system could 
reach to the selected point then it is in the corresponding 
mode, otherwise it is in the other mode. This paper is 
organized as follows: Outline of the approach and some 
preliminaries are given in Section 2. Section 3, describes the 
algorithm and explains it via three tank benchmark example. 
And finally conclusion and future investigation are discussed 
in section 5.  

2. OUTLINE OF THE METHOD 

Most of diagnostic methods follow the same principle. They 
observe a sequence of measured input and output of the 
system and decide whether the measured I/O pair is 
consistent with the model that describes the behaviour of the 
system (Blanke et al., 2006). If the consistency is not 
confirmed a fault can be detected but in order to diagnose a 
fault, model of the faulty behaviour of the system subject to 
the fault is also necessary.  

Suppose that the current observed I/O pair is the point A or 
B as depicted in Figure 1. Set 0B represents the normal 

behaviour of the system and set 1B  represents the faulty 

behaviour of the system subject to fault 1f . As long as these 

points belong uniquely to the sets 0B and 1B which are 
describing the normal and the faulty behaviour of the system 
respectively, then the diagnoser can decide whether the 
system is in its normal operation or subject to fault 1f . The 
ambiguity arises when the observed data is the point C , 
which belongs to the area where the normal behaviour and 
faulty behaviour of the system overlap. In this case, the 
diagnoser can not distinguish if the system is subject to the 
fault 1f  or in the normal operation. The main idea of the 
active fault diagnosis is to exert an input signal to the system 
to move the point C to a new point C′ which uniquely 
belongs either to the set 0B or 1B . Roughly speaking, the idea 
of this paper can be described as follows. Having the model 
of the faulty and normal system, we predict the behaviour of 
system considering possible uncertainties and possible inputs 
in next steps and find the first step that the faulty and normal 
system represents different behaviours. Then the diagnoser 
tries to find an optimal input to reach one of those points. 
Assume that it is chosen to reach a point which uniquely 
belongs to the future behaviour of the normal system 
considering all possible inputs. Then the optimal input is 
exerted to the system to reach that point. If the system could 

reach to the determined point then the system is in the normal 
mode otherwise it is faulty.  

 

Fig.1. The system behaviour 

The proposed algorithm is developed for active fault 
diagnosis of linear hybrid system.  

Definition1. A hybrid automaton H is a collection 
( , , , , , , , , , )H Q X U Y Init f Inv E G R= , where 

. Q is a set of finite discrete states 1 2{ , , ..., }
m

Q q q q= ; 

. X is a finite set of continuous state variables; 

.U is a finite collection of input variables. 

. Y is a finite collection of output variables.  

. : nf Q X U× × → is a vector field; 

. Init Q X⊂ × is a set of initial states. 

.Inv: 2X UQ ×→ assigns to each q Q∈ an invariant set 
( )inv q X U⊆ × ; 

. E Q Q⊂ × is a set of discrete transitions; 

: 2X UG E ×→ assigns to each ( , )e q q E′= ∈ a guard 
( )g e X U⊂ × ; 

. The jump function : 2XJ E X U× × → that assigns a jump 
set ( , , )J e x u X U⊆ × to each pair e E∈ and ( )x g e∈ ; 

In the case of linear hybrid system the vector field 
q

f is 
represented by a linear difference equation: 

( 1) ( ) ( )
q q q q q

x k A x k B u k+ = +  and the output is described by: 

( ) ( ) ( )
q q q q q

y k C x k D u k= + .  

For modelling of faults in hybrid systems two types of fault 
can be considered: discrete faults and continuous faults. 
Discrete faults can be considered as a new mode or location 
in hybrid system. Here continuous faults are also modelled as 
a new discrete mode as in [Mohammadi et al., 2007]. It is 
supposed that events that describe transitions from a normal 
location to a faulty location are unobservable events. The 
system can be in normal condition N or in faulty condition

i
F  

0B

1B  

●A 

●B 

●C 

U Y×  

Figure 1.5: System input-output behavior subject to fault

1.2.2 Fault Detection and Diagnosis

Fault diagnosis consists of detection, isolation and identification of the occurred fault. It is
a system that receives an I/O sequence from a system subject to faults and checks whether
it is consistent with the behaviors of the system. Diagnosis methods can be divided into
two main categories: model-free and model-based. A model-based diagnosis method
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2 Background and State of the Art

uses a given model of the system to check the consistency of the I/O sequence with the
behavior of the system.

From another perspective diagnosis methods can be divided into two classes: passive
and active. In Passive Fault Diagnosis (PFD), the system observes the input and output of
the system and based on the observation decides if a fault has occurred. In Active Fault
Diagnosis (AFD), the diagnoser changes the input to the system and observes the input
and output of the system to decide about the occurrence and type of the occurred fault.
The change in the input of the systems could be adding a signal to the control input or
changing the controller or some part of it which will result in changes in the input to the
system.

1.2.2.1 Passive Fault Diagnosis

Fig. 1.6 depicts the structure of a passive fault diagnoser. It is a system that observes the
input and output of the plant and based on the observations and by using the consistency
principle gives a fault candidate as its output.
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Figure 1.6: Structure of a passive fault diagnoser

PFD state of the art
In the last three decades, a lot of work has been done in the area of FDD, see books
[PFC89], [PFC00], [Ise06], [BKLS06]. An excellent review on FDD methods can be
found in the three-part review paper: [VRYK03], [VRK03], and [VRKY03]. In a broad
view, the FDD methods are divided into two parts: model-based and model-free. Model-
based methods use a given model of the system for detection and diagnosis of a fault. This
model might be a mathematical description of the systems, quantitative model-based, or
it could be a qualitative model of the system such as digraphs or fault trees, see [VRK03].
Model-free methods use a huge amount of data from the system and extract some features
from it. These features are later used as a priori knowledge for diagnosis. The feature ex-
traction could be either qualitative or quantitative. We will elaborate more on quantitative
model-based methods. For reviews of other methods we refer the interested reader to the
review papers [VRK03], [VRKY03], and books [Ise06], and [RCB00].

Quantitative model-based methods can be divided into three main categories :
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• state estimation methods

• parameter estimation methods

• parity space methods

State estimation methods use state observers or Kalman filters for state estimation.
Then based on the estimated states and system output, a residual signal is generated. The
generated residual signal should be insensitive to noise, disturbance and model uncertain-
ties, but sensitive to faults. This can be done by using further available knowledge about
the system or by using robust fault detection techniques [FD97], [PC97]. The residual
signal should be about zero when the model is fault-free and non-zero when the system is
faulty such that a decision can be made based on the value or the pattern of the residual
signal about the condition of the system.

The basic structure of an state estimation fault diagnosis is shown in Fig. 1.7. The
system input and output are denoted respectively by u and y. The disturbance is denoted
by d and ŷ is the estimated output of the system. The estimated output is compared with
the output of the system to generate the residual signal. A fault is detected when the
residual signal is not zero or close to zero. To isolate and identify faults, these methods
usually use a bank of state estimators where each one is sensitive to a fault or a set of faults
and insensitive to other faults. Therefore, when a fault occurs the corresponding residual
which is sensitive to this fault is non-zero i.e. ri(t) 6= 0, while other residuals which are
insensitive to this fault are close to zero. The bank of estimators should be designed such
that by analyzing the resulting residual signals a complete isolation of faults is possible.
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Figure 1.7: Fault diagnosis based on state estimation

Parameter estimation methods uses the input and the output of the system to estimate
parameters of the systems. Usually it is assumed that the structure of the system is known
a priori. Then, based on the I/O sequence parameters of the system are estimated. Faults
are defined as the deviations of the system parameters from their nominal values. The
estimated parameters are compared with the nominal values and based on the difference,
decisions about occurrence of faults are made [IF91], [Ise93] and [Ise05].

Parity based methods use a transformed version of the state space model to generate
parity equations. The value of the parity equation is then used for fault detection and
isolation. A parity equation in the fault-free case is zero or close to zero [GS90], [Ger97],
[CP99].
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Here we review PFD methods for hybrid systems. In a hybrid system two main types
of fault might occur: continuous faults: faults that affect the behavior of continuous sub-
systems, and discrete faults: faults that affect the switching or the transition between
continuous subsystems. Since a hybrid system consists of both discrete and continuous
systems, to tackle the FDD and FTC problems, researchers have used techniques from
continuous systems, discrete systems, or a combination of them.

Many works have used discrete event systems to abstract and analyze hybrid sys-
tems behavior [AHLP00]. Discrete event modeling methods used for diagnosis of hybrid
systems are finite state automata [Lun00], [FL01], [Lun08] , Petri-nets [ZKH+05], and
hybrid bond graphs [Nar02], [NB07].

[Lun00] proposes a discrete event model for diagnosis of quantized systems, i.e. con-
tinuous systems whose inputs and outputs are measured quantitatively. The approach
does not use temporal information of the events and propose a non-deterministic discrete
event model of the system which is suitable for diagnosis. The diagnoser uses consistency
principle to decide about occurrence of faults. In other words, it checks the consistency of
discrete I/O sequence with the un-timed discrete event model of the system. A necessary
and sufficient condition for the model to be suitable for fault diagnosis is given. In [FL01],
temporal informations about discrete events are used and therefore a timed discrete event
model of the system suitable for fault diagnosis is given. The diagnosis is done using
consistency-based diagnosis and a semi-Markov model of the quantized system.

[Lun08] considers the problem of fault diagnosis for a hybrid system which con-
sists of some continuous subsystems where switching between these modes are controlled
through a feedback controller. Based on the amount of the information used for abstrac-
tion, the paper proposes four models which can be used for diagnosis: embedded maps,
semi-Markov processes, timed automata and non-deterministic automata. It is shown that
if the obtained model is complete, then the diagnosis results are valid.

[ZKH+05] uses a timed discrete event abstraction of the systems for diagnosis. A
fault-symptom table is produced by simulating the hybrid automata of the system with
abrupt and incipient faults. A decision tree is built based on the fault-symptom table.
These steps are done offline. For online monitoring of the system a timed Petri net moni-
toring approach is used. Fault detection is based on the consistency of the observed events
with its estimation by Petri net. After detecting the fault, the decision tree is used for on-
line diagnosis. [Nar02], [NB07] deal with the problem of parametric faults in hybrid
systems using hybrid bond graphs. [DKB09] extend this result such that the diagnoser
can handle both parametric and discrete faults.

Other methods are based on continuous time diagnosis techniques. [CEMS04] pro-
poses a method using structured parity relations for both continuous and discrete faults. A
fault in a given mode is detected when a parity residual is not zero. They drive sufficient
conditions for discernibility of two modes. When all modes are discernible, detection of
discrete faults becomes possible.

Many works use state estimation of hybrid systems for FDD of hybrid systems. A
discrete fault is usually modeled as a new mode and hence diagnosis of a discrete fault
is equal to mode estimation for hybrid systems. [AC01] proposes a method based on
a bank of Luenberger observers. The method assumes that the discrete state is known.
[BBBSV02] proposes a hybrid observer which consists of a location observer and a con-
tinuous observer. The location observer is a finite state machine that observes the discrete
input and output of the system and estimate the current location of the system. The con-
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tinuous observer is a bank of Luenberger observers that receives the continuous input
output of the system and the estimate of the current location of the system and estimates
the continuous states of the system. A problem with using a bank of observers or filters
is the high computational burden.

[HW02], [HW04] consider the problem of mode estimation. By combining hidden
Markov models with continuous dynamics they propose a concurrent probabilistic au-
tomata framework for modeling of Hybrid systems. A set of possible modes are deter-
mined by a hidden Markov observer. A bank of Extended Kalman Filters (EKF) is used
for tracking of continuous states of the most likely modes. Since the approach needs
only tracking of most likely modes, it is more efficient than using an EKF for each mode.
Using a bank of EKF is computationally expensive.

An alternative to using a bank of KF is to use particle filtering approaches because one
can control the number of particles which are used for estimation. Moreover, in EKF it is
assumed that noise is Gaussian while in particle filters these assumption is not necessary.
In [KKZ03], particle filtering is used for state estimation. To improve robustness and
efficiency of the algorithm for mode estimation, guard conditions are changed. Boundary
of guards are increased by a small constant to prevent chattering in mode estimation.

Authors in [DC01] use particle filtering for fault detection of planetary rovers. The
problem with particle filtering for FDD of hybrid systems is what is called sample im-
poverishment. The probability of transitions to a faulty state is low, hence there is not
enough particle in a faulty mode to be considered as the most likely current mode. A
remedy to this problem is to increase the number of particles as in [KKZ02], but this is
to the cost of increasing computational complexity of the algorithm. A better solution is
to use importance sampling [DC01]. [FTMM02] proposes an estimation method based
on Mixed-Logical Dynamical (MLD) modeling framework using a moving horizon es-
timation technique. The problem is formulated as a mixed integer programming. The
approach is used for FDD in [BMM99] where faults are introduce as unknown binary
variables in the MLD model.

In [WLZL07] a method for state estimation and FDD of hybrid systems with unknown
mode transition functions, unknown disturbances and model uncertainties is given. Faults
are modeled as discrete modes. The approach consists of a continuous observer and a
mode observer where both are composed of a bank of Unknown Input EKF (UIEKF).
The UIEKFs of the mode observer run continuously to observe the mode. The contin-
uous observer is a switching system which switches to the UIEKF of the corresponding
mode detected by the mode observer. Only when a mode transition is detected, the mode
observer is activated again to detect the new mode.

1.2.2.2 Active Fault Diagnosis

An active diagnoser generates a sequence of inputs which excites the system and observes
the corresponding outputs. Then based on the observations decides whether a fault has
occurred or not and if possible decide, which one has occurred. The structure of an
active diagnoser is depicted in Fig. 1.8. It consists of an input generator and a passive
diagnoser. The generator generate an input sequence which is applied to the system.
Then the diagnoser diagnoses the system by observing the applied input sequence and the
corresponding output sequence.

The main advantage of active diagnosis is when different behaviors of the system
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Figure 1.8: Structure of an active fault diagnoser

overlap, e.g. the point C in Fig. 1.5. In these areas, it is impossible to detect the fault
by just observing the point. The active diagnoser moves the system from this area by
injecting and input signal to the system to an area which uniquely belongs to the faulty or
the normal system. ,

Applying the input to the system perturbs the system from its operating point. At one
hand, the input should be big enough to make the detection possible and on the other
hand it should not move the system from the operating point so much such that it leads to
instability or to an unacceptable performance area.

Active diagnosis can be used in the following circumstances: (i) to generate a test
signal in the commissioning phase for sanity check of the system. (ii) for faster detection
and isolation of faults during the normal operation. (iii) for detection of hidden fault,
where because of regulatory actions of the controller, the normal and the faulty behavior
of the system exhibit the same behavior.

AFD State of the Art
For AFD, there is a few works for hybrid systems. We first review the literature on linear
systems and then on hybrid systems. The problem of using a test signal is studied for a
long time is system identification,but generating a test signal for fault detection is recently
studied [CN04]. In [Nik98] a method for AFD of linear dynamical systems is introduced.
The test signal with a given horizon is designed offline and then applied to the system
online. Perturbations are assumed to be bounded in polyhedral sets. The problem of test
signal design is formulated as solving a large linear program. Then, it is discussed how
to construct a separating hyperplane as a filter for fault detection in real time. Conditions
under which separation of polyhedral sets and hence the fault isolation is guaranteed is
given.

In [NCD00] a robust method is proposed which is similar to the previous work but
the test signal and uncertainties are assumed to be energy bounded. A test signal with
minimum energy is designed such that it guarantees fault detection. It is assumed that
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the test signal is designed offline and is independent of the online measurements from the
system. [CHN02] solves the problem for multi-model identification using optimization
techniques with the assumption that there is no prior information on the state of the sys-
tem. It is shown that the method can handle a large number of faults but the answer might
not be optimal. But in many cases there is a priori information on the initial state of the
system. [NC06] proposes a method for cases when it is known that the initial state is in a
given region. This assumption can also be useful for modeling of some important classes
of fault such as bias or a jump in the states of the systems. Previous methods could not
deal with these faults.

Authors in [CDA+06], extend the result of [CN04] to nonlinear systems. The nonlin-
ear system is linearized and then based on the linearized model, a test signal is found using
methods for linear systems. In [ASC08], bounds on nonlinearities are found such that the
test signal obtained through linearization is proper for the nonlinear system. Another
method is to use direct optimization techniques [ASC08], [And08]. In many application,
a piecewise constants test signal is desirable. A method to find an optimal piecewise con-
stant test signal is given in [CCN09] where the problem is cast as a constrained nonlinear
optimization problem.

[CN04], [NC06], and [CHN02] model faults as an abrupt change in the system and
use a Multi-Model framework for fault detection. [NCD10] considers the case of incipient
faults where the fault is a drift in the parameters of the system.

The above approaches consider open-loop systems. In [Nie06], a setup for AFD is
introduced that can be used for both open-loop and closed-loop configurations. Fault
detection is performed by applying a periodic auxiliary input to the system. It is shown
that using the proposed setup, in the nominal case there is no track of the periodic input
signal in the residual signal, but in the faulty case a mark of the auxiliary input is present
in the residual signal which is used for fault detection. It is shown that the transfer matrix
from auxiliary input to the residual is equal to the dual Youla-Jabr-Bongiorno-Kucera
(YJKB) transfer function. The method is used in [PN07] and [PN08] to improve the
cumulative sum approach for stochastic change detection.

Authors in [SN10] propose two methods for AFD of linear systems by controller
reconfiguration without adding an auxiliary signal. The first method deals with additive
faults. It uses observer-based control such that the observer part switches periodically
between a set of observers. Each observer is designed to be sensitive to a fault or a
set of faults. Switching is performed such that the stability of the controlled system is
guaranteed. The second method deals with parametric faults. In this approach, a fault is
detected by temporarily destabilizing the system.

All of the aforementioned methods are for linear systems. There are few methods
proposed for hybrid systems. [BTMO09] proposes a method that abstracts continuous
dynamic of the system by discrete events and therefore the behavior of the hybrid system
can be described by a hybrid language. When the system is in an ambiguous state, the
algorithm looks for a configuration of the system in which the diagnosability properties
are satisfied. Then the diagnoser finds a controllable path from the ambiguous state to the
new configuration. This is formulated as a conditional planning problem. The diagnoser
considers also the safety requirements by avoiding dangerous states. A qualitative event-
based method is presented in [DB09]. While [BTMO09] just considers which controllable
events should be executed to achieve fault diagnosis, [DB09] considers which controllable
events should be blocked or executed.
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1.2.3 Fault Tolerant Control

A control system that can tolerate occurrence of faults while maintaining the stability
of the overall system and an acceptable degradation in the performance of the system is
called a Fault Tolerant Control (FTC) system. In the past two decades, the area of FTC
has attracted a significant amount of research, see review papers [BIZBL97], [Pat97],
[BFK+00], [BSW01], [Jia05] and books [Ise06] and [BKLS06].

FTC systems can be divided into two classes: Passive (PFTC) and active (AFTC).
In AFTC systems, a fault is detected and diagnosed by a fault detection and diagnosis
(FDD) scheme. Then the controller is redesigned or reconfigured in the case of severe
faults. Control reconfiguration considers the problem of changing the control law or the
controller structure by selecting a new set of inputs and outputs. After choosing the new
configuration, new control parameters should be found such that the new controller can
achieve the original system performance, if it is possible, or at least ensure a tolerable
performance degradation in the faulty process, see [BKLS06].

In a PFTC system, the controller does not react to the occurrence of a fault. The struc-
ture and the parameters of the controller are designed such that the system can tolerate a
set of faults without any change.

1.2.3.1 Active Fault Tolerant Control

A standard control problem can be stated as follows. We should choose a control law
among specific class of control laws such as state feedback or output feedback, such
that a control objective is met and the constraints on the system dynamics are satisfied
[BKLS06]. The control objective is the objective that is to be achieved, for example, it
could be the closed loop stability or a performance index which should be minimized.

An AFTC system consists of two main sections: fault detection and identification and
controller redesign. The structure of an AFTC system is depicted in Fig. 1.9. The fault
diagnosis block receives the input and output sequence from the system, and checks its
consistency with the behavior of the system. If the I/O sequence is consistent with the
normal behavior of the system, then the system is considered to be working in the normal
condition by the FDD block and it will continue working with the nominal controller. If
the I/O sequence is not consistent with the nominal behavior of the system, then the FDD
block detects occurrence of a fault. Next, the FDD block tries to find out which fault has
occurred by checking the consistency of the I/O sequence with the faulty behaviors of the
system. The result is a fault candidate fc. The controller re-design block is informed by
the FDD block that the fault fc has occurred. A new controller, should be designed online
or be selected among pre-designed controllers such that the faulty system, can achieve
the control objective. If such a controller exist, then the system is fault-tolerant with
respect to the fault fc and the control objective. But if the controller objective can not be
achieved, the system is not fault tolerant. In this case, a possible solution is to change the
control objective, e.g. by allowing some degradation in the performance of the system or
by just considering the stability of the closed loop system.

AFTC state of the art
AFTC methods can be divided into two classes. In the first class, a bank of control laws
is pre-computed and when a fault occurs based on a reconfiguration mechanism a control
law is used. Among methods that use this approach are multiple-model method, gain
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Figure 1.9: System behavior

scheduling and linear parameter varying methods, and general internal model control. In
the second class, controller re-design is performed automatically on-line. Pseudo inverse
methods, linear quadratic design, model matching, model predictive control are among
methods that use this approach [ZJ08]. For a detailed review and classification of these
method we refer the interested reader to [ZJ08] and [BKLS06]. Here, we review some
methods proposed for hybrid systems.

AFTC for hybrid systems using the MLD framework and optimization techniques is
proposed is [TMFTM01]. The problem of how to choose a redundant hardware for a
faulty system, is formulated as an MPC problem and solved using mixed integer opti-
mization techniques. [OMP08] proposed a method using MPC and MLD framework. It
is discussed how to use the information about faults from the FDD module implicitly, by
updating the internal model or dynamic constraints, or explicitly by introducing faults as
states of the system. The method is applied to a sewer network.

For switched hybrid systems, [RTS06] proposes a FTC method using static output
feedback against actuator faults. Assuming that the FDI provides an exact value of the
parameter of the faulty actuator, on-line controller re-design is done such that the stability
of the closed loop system with a LMI pole-placement is guaranteed. [YCJ08] proposes a
method using passivity. A global passivity concept for switched systems is proposed. A
FTC law should provide global passivity of the whole system and not necessarily of each
mode. An observer-based method for periodic switched nonlinear systems is proposed in
[YJC09].

In [NRZ09a] a method for fault detection, identification and reconfiguration of bi-
modal PWA systems is proposed. The authors consider actuator faults. Using a Luenberger-
observer, fault parameters are estimated and then using informations provided by an ob-
server, a fault tolerant state feedback controller is designed for the faulty system. The
input-to-state stability of the overall system is studied and sufficient conditions are de-
rived in terms of LMIs.

[RHvdWL08] develops a reconfigurable control method for PWA systems based on an
extension of the idea of virtual actuators and virtual sensors for linear systems. The aim of
the reconfiguration is to hide the fault from the controller and at the same time preserve the
stability of the reconfigured system. The main feature of this approach is that the nominal
controller is not changed but a reconfiguration block is inserted between the plant and
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the controller to achieve the fault-hiding goal. Sufficient conditions for existence of this
reconfigurable controller are provided in terms of LMIs. In [RHvdWL10] the approach is
extended such that it can also preserve tracking properties with regard to a constant input
reference in presence of a constant disturbance.

1.2.3.2 Passive Fault Tolerant Control

In PFTC, there is no FDD scheme and occurrence of a fault is not detected. The controller
is designed off-line and is fixed during the system operation. Therefore, it should be
designed such that it can tolerate occurrence of a set of possible faults.

Since a passive fault tolerant controller is a common solution, when too many faults
are considered, a solution may not exist or if it exists the performance of the controlled
system would be very low. Therefore a passive fault tolerant controller can usually handle
a few number of faults.

The advantage of the PFTC scheme can be explained as follows. When a fault occurs,
it takes some time for the FDD module to detect the fault and to isolate and identify the
fault. There may also be some delay due to the controller re-design. During this period,
the system is working with the nominal controller. Performance of the system in this
period is mainly dependent on the severity of the fault and the robustness of the nominal
controller. It is clear that the controlled system may become unstable in this period, see
[ZJ06]. For safety-critical systems, e.g. aircraft flight control or nuclear power plants,
when a fault occurs, the time window in which the system remains stabilizable is too
small to perform an accurate fault isolation and estimation. In these cases a PFTC system
is preferable because it does not need a FDD scheme.

PFTC state of the art
The area of PFTC or reliable control systems has attracted considerable attention in re-
cent years. [Vei95] presents a method for the design of a reliable linear quadratic state
feedback control such that it can tolerate actuator outages. The method also provides a
guaranteed upper bound on the performance index despite actuator outages. Reliable con-
trol using redundant controllers is addressed in [YYLW98]. [YWS01] considers a more
general type of faults. Sensor and actuator faults are modeled by scaling factors with up-
per and lower bounds with a disturbance. The method guarantees theH∞ performance of
the normal systems as well as the faulty system to be less than a bound. [YWSL03] inves-
tigate the problem for a class of uncertain linear systems with norm bounded uncertainty.
They consider actuator faults which are modeled by scaling factors. The approach pro-
vides an upper bound on the quadratic performance despite actuator faults. The problem
is solved using LMIs.

Reliable H∞ control for nonlinear systems using Hamilton-Jacobi inequality ap-
proach is presented in [YLW98]. In this paper, only actuator outage is considered. The
authors in [YWS00], also consider the partial degradation of actuators. This approach
provides an upper bound on the H2 performance in presence of faults.

Among different classes of hybrid systems, PFTC is mainly studied for switched sys-
tems and piecewise linear systems. [WLZ07] proposes a method for a class of switched
nonlinear systems. A sufficient condition for the controlled system with actuator failures
to be stable with aH∞ norm bound are derived in terms of partial differential inequalities
which are very hard to solve.

PFTC for PWL continuous time systems using state feedback is presented in [NRZ09b].
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The approach uses common Lyapunov functions. A common Lyapunov function may not
always exist.

Another approach to address the PFTC problem is to use robust control techniques.
In this case faults are modeled as uncertainties and a robust control is designed such
that it can tolerate uncertainties and provide a guaranteed upper bound on a performance
criterion. Robust control methods are also useful for AFTC. Because when a fault is
detected and diagnosed, usually the parameters of the faulty system are not known exactly
but are known with a bounded uncertainty.

[Fen02] studies robust control of uncertain PWL systems using state feedback and
continuous piecewise Lyapunov functions. It is shown that the controller can be designed
by solving a set of LMIs. [ZT08] propose a method for robust H∞ output feedback
control design for uncertain piecewise affine systems. The method uses Bilinear Matrix
Inequalities to solve the problem. In [ZT09], a guaranteed cost control method using
output feedback is proposed. The problem is reformulated as the feasibility of a set of
BMIs. The non-convex optimization problem is solved using a method that combines
genetic algorithms and semi definite programming. Both works, assume that switching of
the controller is based on the real state of the system and not based on the estimated state
of the system. In other words, the plant and the controller are always in the same region.
This is not a realistic assumption. All of the aforementioned works are in the continuous
time domain.

In the discrete time domain, the problem of robust stability of autonomous piecewise
affine systems is studied in [Kan97], but the case of controller design is not addressed.
[GLC08] propose a robust H∞ control approach for uncertain discrete time piecewise
affine systems. They consider time varying parameter uncertainties. The approach uses
state feedback and formulates the problem as LMIs.

1.3 Outline of the Thesis

The reminder of this thesis is organized as follows. In the next chapter, we describe the
methodology and preliminary definitions and theories. We will start with a definition of
hybrid systems and then different classes of hybrid system such as Hybrid automaton,
mixed logical dynamical systems and piecewise affine systems are described. In particu-
lar, some basic results on stability of PWA systems as well as model predictive methods
for MLD systems are described. A summary of contributions of this PhD thesis will be
given in Chapter 3. Finally, in chapter 4, conclusions and possible future works and re-
search are discussed. In the addendum, contributions of the thesis are added which are
listed in the following:

• Paper A[TRIZB09] In this paper a method for AFD of Hybrid system is presented.
The method is based on reach set computation for the normal and faulty system.
The method finds the shortest input sequence to detect the fault.

• Paper B[TIZBR09]: In this paper the method of [TRIZB09] is used for the problem
of automatic sensor assignment during the commissioning phase. The method is
tested on a supermarket refrigeration system.

• Paper C[TIZRB10]: In AFD we are perturbing the system from its operating point
and therefore it is important to make sure that the system remains stabilizable.
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In this paper a stabilizable AFD method for hybrid systems is presented. Using
the MLD framework, the problem is formulated as a mixed integer programming
problem. To ensure stabilizability of the system despite excitation, constraints are
imposed on the optimization problem to make sure that there exists a stabilizing
MPC for the normal and faulty models of the system.

• Paper D[TRIZB10]: This paper also deals with the problem of stability in AFD. In
this paper, distinguishable steady outputs are used for AFD. The diagnoser looks for
steady outputs of different models of the system such that they are distinguishable
from each other. Then the system is excited to reach this steady output. Fault
diagnosis is done by observing the steady outputs.

• Paper E[TIZBR10]: In this paper we deal with the problem of FTC for piecewise
affine systems. PFTC design for PWL system using PWQ Lyapunov function is
formulated in terms of LMIs. The method uses piecewise linear state feedback
and provides us with an upper bound on a given performance index. Optimal up-
per bound can be found by solving a convex optimization problem with LMI con-
straints.

• Paper F[TBIZ10]: Since in many applications states of a system are not available,
in this paper we extend the result of Paper E to output feedback control. This
time the problem is formulated in terms of BMIs and the optimal upper bound
on the performance cost is found by solving and optimization problem with BMI
constraints.
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2 Methodology

In this chapter, the fault diagnosis and fault tolerant control problem are formulated and
then an overview of different classes of hybrid systems and an equivalence result between
these classes are given.

2.1 Fault diagnosis

Consider a dynamical system described by:

G0 :

{
x(k + 1) = f(x(k), u(k)), x(0) = x0,
y(k) = h(x(k), u(k)),

(2.1)

where x ∈ Rn is the state, u ∈ Rm is the input and y ∈ Rp is the output of the system.
The pair (u(k), y(k)) which consists of the input and output of the system at time k is an
I/O pair. A fault f is a change in the parameters or the the structure of the f or g. We
assume the system is working in the nominal condition during the time period [0, kf [. At
time kf , the fault f occurs. The dynamic of the system subject to the fault f , is described
by:

Gf :

{
x(k + 1) = ff (x(k), u(k)), x(kf ) = xf ,
y(k) = hf (x(k), u(k)),

(2.2)

Input-output behavior of a system is the set of all possible input output of the system. We
show the behavior of the normal system with B0 and the behavior of the system subject
to faults f1, · · · , fn by B1, · · · ,Bn.

The aim of fault diagnosis is to detect if a fault has occurred and if it has occurred
to determine which fault is occurred. A fault diagnoser is a system that receives an I/O
sequence from a system and tests the consistency of it with the behaviors of the system.
The input and output sequence are respectively shown by: U = 〈u(0), . . . , u(Td)〉 and
Y = 〈y(0), . . . , y(Td)〉. The diagnosis problem is stated as:

Problem 2.1 (Diagnosis problem). : Given the set B = {B0, · · · ,B0} describing be-
havior of the system with no faults and subject to faults {f1, · · · , fn} , and the I/O
sequence(U, Y ), find a fault candidate fc.

What is stated above is the passive diagnosis problem where the fault is diagnosed by
observing the system. In active diagnosis the the diagnoser generates an input sequence
U , applies it to the system and then based on the output sequence, Y , makes a decision
about the condition of the system. The active diagnosis problem can be stated as follows:
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Problem 2.2 (Active diagnosis problem). Given the set B = {B0, . . . ,Bn} describing
behaviors of the system with no fault and subject to faults {f1, . . . , fn}, find a sequence
of inputs U such that (U, Y ) belongs only to a unique Bi.

2.2 Fault Tolerant Control

A standard control problem can be shown by the following triple:

〈O,G,K〉 (2.3)

A control law K among a given set K is chosen such that the control objective O is met
and the constraints on the system dynamics, G are satisfied [BKLS06].

In AFTC, a controller is designed for the nominal system by solving the control prob-
lem for the nominal system. The controller is changed when a fault is diagnosed. The
FDD block observes the input and output of the system to see if any fault has occurred.
The system works with the nominal controller as long as no fault is detected by the FDD
block. When the FDD block detects occurrence of a fault, it tries to find out a fault can-
didate, fc, for the fault that has occurred by checking the consistency of the I/O sequence
with the faulty behaviors of the system. The FDD block informs the controller re-design
block that the fault fc has occurred. A new controller Krf , should be designed online or
be selected among pre-designed controllers such that the faulty system, Gfc , can achieve
the control objective O. In other words, the following control problem should be solved:

〈O,Gfc ,Kf 〉 (2.4)

The system is fault-tolerant with respect to the fault fc and the control objective O, if
there exist a solution to the above problem. If the system is not fault-tolerant, a possible
solution is to change the control objective, e.g. by allowing some degradation in the
performance of the system or by just considering the stability of the closed loop system.

In PFTC, the controller is designed off-line such that it can tolerate occurrence of a
set of possible faults and is fixed during the system operation. In other words, a passive
fault tolerant controller, KPFTC is a common solution to the following control problems.

〈O,G0,K0〉
...

〈O,Gn,Kn〉
(2.5)

Since KPFTC is a common solution to more than one control problem, it can usually
handle a few number of faults. Because when too many faults are considered, a solution
may not exist or if it exists the performance of the controlled system would be very low.

The advantage of PFTC scheme can be explained as follows. Assume a fault has
occurred at kf . It takes some time for the FDD module to detect, isolate and identify the
fault. We assume that at kD the fault is detected isolated and identified. There is also
some delay due to controller re-design. Let krf be the time at which the new control
law is implemented. During the period [kf , krf ] the system is working with the nominal
controller. Performance of the system in this period depends on the severity of the fault
and the robustness of the nominal controller. If the time window in which the system
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remains stabilizable after occurrence of a fault is too small to isolate and estimate the
fault accurately, a PFTC is preferred because it does not need a FDD scheme. In practice,
usually both methods are used. Non-severe faults are handled with PFTC and severe
faults with AFTC.

2.3 Hybrid systems

In control and systems theory, systems are traditionally divided into two categories: con-
tinuous or discrete. A continuous system is a system whose states take values in Rn. A
discrete system is a system whose states take discrete values, for example from the set
of {ON,OFF}. These two classes of systems have been studied separately in control
and systems theory and computer science. But many systems contain both behaviors,
they contain states that take both continuous values and discrete values and evolution of
these states are not independent but there is a non-trivial interaction between rules that
govern evolutions of these states. Hybrid systems is a class of systems that is introduced
to capture behaviors of this types of systems. A hybrid system consists of several modes
as depicted in Fig. 2.1. The behavior of the system in each mode is described by a dif-
ferential equation or a difference equation. Transition between modes may happen if the
state of a system enter an area or pass a threshold or if a period of time is passed or by an
external input. Hybrid systems arise in many applications such as mechanical systems,
electrical circuits with switching components, chemical process, or embedded systems.

3

Figure 1.1. Hybrid systems have several modes of behavior 

Figure 1.2. Hybrid systems. Logic-based discrete dynamics and continuous dynamics interact through  
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Figure 2.1: A Hybrid systems with 3 modes of behavior

There are many different modeling frameworks proposed for modeling of hybrid sys-
tems and each one has its own advantages and drawbacks. Here we introduce Hybrid
automata, Mixed Logical Dynamical Systems (MLD), and PieceWise Affine (PWA) sys-
tems.

2.3.1 Hybrid Automaton

A Hybrid automaton can be briefly described as follows. It is a graph whose vertices rep-
resent discrete modes, qi, and in each mode the dynamic of the system is characterized
by a dynamical system with vector field f and the output map h. An edge between two
vertices represents a transition between the corresponding discrete modes. The discrete
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dynamic and continuous dynamic interact with each other through guards and transition
relations. Each discrete mode, q, has an invariant, Inv(q), which characterizes the con-
ditions that the continuous system must satisfy to stay in this mode. If a continuous state
hits a guard then based on the transition relation the system jumps to a new mode. The
continuous state in the new mode is determined bases on a jump function. We introduce
the following description of a hybrid automaton [LSVW96].

Definition 2.1 (Hybrid Automaton). A hybrid automaton,H is a collection
H = (Q,X,U, Y, Init, f, h, Inv,E,G, J) where,

• Q is a set of finite discrete modes, Q = {q1, q2, . . . , qm},

• X is a finite set of continuous state variables,

• U is a finite collection of input variables,

• Y is a finite collection of output variables,

• Init ⊂ Q×X is a set of initial states,

• f : Q×X × U → Rn is a vector field,

• h : Q×X × U → Y is an output map,

• Inv : Q→ 2X×U assigns to each q ∈ Q an invariant set Inv(q) ⊆ X × U ,

• E ⊂ Q×Q is a set of discrete transitions,

• G : E → 2X×U assigns to each e = (q, q′) ∈ E a guard g(e) ⊂ X × U ,

• J : E×X×U → 2X is a jump function that assigns a jump set J(e, x, u) ⊆ X×U
to each pair e ∈ E and x ∈ g(e).

The initial state, (q0, x0) of a hybrid automaton is in the set Init. The continuous state
of the systems evolves based on the relation f and the input u. x(k) stays in mode q0 as
long as it satisfies the conditions in Inv(q0). When the continuous state hits the guard
g(q0, q

′), the transition e = (q0, q
′) is enabled and the discrete state of the system switches

from q0 to q′ and the continuous state of the system jumps from x(k) to x(k + 1) =
J(e, x(k), u). From there, the continuous state evolves and the evolution of the discrete
mode has the same procedure as before.

In the case of linear hybrid systems the vector field fq is represented by a linear
difference equation: x(k+ 1) = Aq(k)x(k) +Bq(k)u(k) and and the output map is of the
form y(k) = Cq(k)x(k) +Dq(k)u(k).

The tuple (q, x, u, y) ∈ Q × X × U × Y is called a point of H, (q, x) ∈ Q × X is
called the state of H, u ∈ U is the input and y ∈ Y is the output of H. Also we refer to
(u, y) ∈ U × Y as an observation ofH.

Definition 2.2 (Execution). An execution of a hybrid automaton is a sequence
χ = (σ(0), . . . , σ(k), σ(k + 1), . . .) where σ(0) = (q0), x0, u(0), y(0)),
σ(k) = (q(k), x(k), u(k), y(k)) such that:

• Initial condition (q0, x0) ∈ Init,
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4 Mixed Logical Dynamical System

• Continuous evolution: for all k, q(k) = q(k+1), (x(k+1), u(k+1)) ∈ Inv(q(k)):

x(k + 1) = Aq(k)x(k) +Bq(k)u(k)

y(k + 1) = Cq(k)x(k) +Dq(k)u(k)

• Transition: for all i, e = (q(k), q(k + 1)) ∈ E, (x(k), u(k)) ∈ G(e) : x(k + 1) ∈
J(e, x(k), u(k)), (x(k + 1), u(k + 1)) ∈ Inv(q(k + 1))

A graphical representation of a hybrid automaton with four discrete modes is depicted
if Fig. 2.2.
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Figure 2.2: Graphical representation of a Hybrid automaton

2.4 Mixed Logical Dynamical System

Mixed Logical Dynamical (MLD) systems are proposed for modeling of systems that
contains interaction between ’physical laws and logical rules and operating constraints’,
[BM99]. Borrowing techniques from propositional calculus, the logical rules and operat-
ing constraints of the system are translated into linear inequalities with both continuous
and integer variables. MLD systems are capable of modeling many classes of systems
such as linear hybrid systems, piecewise affine systems, constrained linear systems, and
some classes of discrete event systems.

In the following the procedure for modeling a system in MLD framework is sketched
briefly. The main idea is to transform the logical rules of the systems into mixed-integer
inequalities such that the overall dynamic of the system can be described by a set of
difference or differential equations which contain real and binary states and input and a
set of mixed-integer inequalities.
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A boolean variable X in the logical rules of the system is associated with a binary
variable δ:

X = True⇔ δ = 1, (2.6)
X = False⇔ δ = 0.

(2.7)

Then basic logical propositions are transformed into linear integer inequalities. As an
example the boolean expression

X1 ∨X2,

is first represented by
[δ1 = 1] ∨ [δ2 = 1] ,

and is then transformed to the following integer equality:

δ1 + δ2 ≥ 1.

Or the relation X3 → (X1 ∧X2) is represented by [δ3 = 1]→ [δ1 = 1]∨ [δ2 = 1] which
is equal to the following integer inequalities: δ1 − δ3 ≥ 0

δ2 − δ3 ≥ 0
−δ1 − δ2 + δ3 ≥ 1

(2.8)

A detailed list for basic logical propositions is given in [Mig02]. The dynamics of con-
tinuous systems are expressed as before using difference equations.

There are some relations which contain both logical propositions, i.e. implication or
If-then-else rules, and continuous variables or dynamical relations. These relations are
translated to mixed integer inequalities. For example consider the relation:

IF X THEN z = f(X) ELSE z = 0,

which is equal to the logic proposition:

z = δf(x).

This is equivalent to the following set of mixed integer inequalities:
z ≥Mδ,
−z ≥ −mδ,

z ≥ f(x)−m(1− δ),
−z ≥ −f(x) +M(1 + δ),

(2.9)

where M and m are respectively the upper and lower bound of the function f on a
bounded set X :

M , max
x∈X

f(x) (2.10)

m , min
x∈X

f(x) (2.11)
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4 Mixed Logical Dynamical System

Using this technique we can describe continuous dynamics, logical rules, operating
constraint and interactions between them by a set of difference equations containing real
and integer states, real and integer inputs, and auxiliary real and integer variables and a set
of mixed-integer inequalities. The equations describing an MLD system are as follows:

x(t+ 1) = Ax(t) +B1u(t) +B2δ(t) +B3z(t) (2.12)
y(t) = Cx(t) +D1u(t) +D2δ(t) +D3z(t) (2.13)
E2δ(t) + E3z(t) ≤ E1u(t) + E4z(t) + E5 (2.14)

where x ∈ Rnc × {0, 1}nl are states, u ∈ Rmc × {0, 1}ml are the inputs, y ∈ Rpc ×
{0, 1}pl are the outputs. δ ∈ {0, 1}rl and z ∈ Rrc are auxiliary binary and continuous
variables.

A trajectory of MLD system, starting from initial state x(t0) = x0, when the input
sequence {u}t−1

t0 = {u(t0), u(t0 + 1), · · · , u(t − 1))} is applied to the system, is de-
noted by x(t, t0, x0, {u}t−1

t0 ). It is assumed that the system in (2.12)-(2.14) is completely
well posed, see [BM99], which means given an initial state x(t0) and an input sequence
{u}t−1

t0 , the trajectory x(t, t0, x0, {u}t−1
t0 ) is unique. This requires the inequalities (2.14)

to have a unique solution for δ(k) and z(k) for a given state and input x(k) and u(k).
An equilibrium state of an MLD system is defined as follows.

Definition 2.3 (Equilibrium state). xe ∈ Rnc × {0, 1}nl is an equilibrium state of the
MLD system (2.12)-(2.14) with input ue ∈ Rmc × {0, 1}ml if x(t, t0, xe, ue) = xe ∀t ≥
t0,∀t0 ∈ Z. The corresponding output ye is called the equilibrium output and the pair
(xe, ue) is called the equilibrium pair.

The MLD framework is capable of modeling various classes of hybrid systems such as
PieceWise Affine (PWA) systems, linear systems with piecewise linear output functions,
linear systems with discrete inputs or with qualitative outputs, bilinear systems, and finite
state machines in which an LTI system generates the events, see[BM99].

Equivalence of MLD systems with other classes of hybrid systems such as PWA sys-
tems, linear complementary (LC) systems, extended linear complementary (ELC) sys-
tems, and max-min-plus-scaling (MMPS) systems under some assumptions is shown in
[HSB01].

Using the MLD framework, different problems such as optimal control, state estima-
tion, etc. can be reformulated as mixed-integer programing problems and be solved using
mixed integer programming techniques. To translate a description of a hybrid system into
mixed integer equalities and inequalities (2.12)-(2.14) a modeling language called HYS-
DEL(HYbrid System DEscription Language) is proposed in [TB04]. HYSDEL receives
a textual description of the hybrid systems as input and then translates it automatically to
different classes of hybrid systems, in particular it returns a model of the system in PWA
and MLD form.

2.4.1 Model Predictive Control of MLD systems

Model Predictive Control (MPC) is an attractive control method because of its capability
to deal with constraints and to deal with multi-variable systems [MRRS00]. MPC consists
of solving an optimal control problem over a finite horizon repeatedly. At each time step,
given the current state of the system, an optimal control problem over a finite horizon is
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solved. The optimal input sequence is found and only the first element of the sequence
is applied to the system. At the next time step, based on the new measurements from the
system, a new optimal control problem is solved and the same procedure is repeated. The
structure of a MPC is depicted in Fig. 2.3.
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Figure 2.3: Structure of a Model Predictive Controller

The optimal control problem is computed over a short horizon and it can include
constraints on states, inputs, or outputs. At each time step, a constrained optimization
problem is solved. The type of the optimization problem depends on the class of the
given model, the performance function to be minimized, and the type of constraints. For
example, for a linear system with linear constraints on states and inputs, it is usual to
choose a linear or a quadratic performance function and therefore the resulting optimiza-
tion problem is a Linear Programming (LP) or a Quadratic Programming (QP) problem.
The length of the prediction horizon plays an important role in MPC. Because at one hand
the size of the optimization problem, and hence the computational complexity, depends
crucially on the prediction horizon length: the smaller the prediction horizon, the lower
the computational complexity. At the other hand, the performance of the controlled sys-
tem, specially the stability of the closed loop system, depends on it. A longer prediction
horizon results in a better performance and may be required to guarantee stability.

Here, we formulate the MPC for MLD systems. In this case the resulting optimization
problem is an MILP or MIQP. Consider the MLD system (2.12)-(2.14) with constraints
on input and states:

x(k) ∈ X× {0, 1}nl , (2.15)
u(k) ∈ U× {0, 1}ml , (2.16)

where X ⊆ Rnc and U ⊆ Rmc are compact polyhedral sets that contain the equilibrium
pair (xce , uce) in their interior.

Define x(k|t) , x(t + k, t, x(t), {u}k−1
t ) and let δ(k|t), z(k|t), y(k|t) be similarly

defined . The sequence generated from the initial state x(k|k) = x(k) by applying the
input sequence {u}k+T−1

k , {u(k + 1|k, · · · , u(k + T − 1|k))} is denoted by

xk(x(k), {u}k+T−1
k ) , {x(k + 1|k), · · · , x(k + T |k)} (2.17)
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4 Mixed Logical Dynamical System

Assuming the equilibrium pair (xe, ue) as the desired target point, then

UT (x(k)) ,

{(u) ∈ UT × {0, 1}Tml |xk(x(k), {u}k+T−1
k ) ∈ XT × {0, 1}Tnl , x(T |k) = xe}

(2.18)

is the class of admissible input sequences with respect to xe and x(k). The cost function
J(x(k),uk) is defined as:

J(x(k),uk) , ΣT−1
k=0 ‖Q1(y(k|t)− ye)‖p + ‖Q2(x(k|t)− xe)‖p+
‖Q3(u(k|t)− ue)‖p + ‖Q4(δ(k|t)− δe)‖p + ‖Q5(z(k|t)− ze)‖p,

(2.19)

where T is the prediction horizon, and ‖Qx‖p = xTQx for p = 2 and ‖Qx‖p = ‖Qx‖∞
for p =∞, and Q1, Q2, Q3, Q4, Q5 are symmetric positive definitive matrices for p = 2
and nonsingular matrices if p =∞.

At time instance t, for a given x(t), the optimal MPC minimizes, the objective func-
tion J subject to the dynamic constraints of the systems and input and state constraints:

x(T |t) = xe
x(t|t) = x(t)
x(k + 1|t) = Ax(k|t) +B1u(k) +B2δ(k|t) +B3z(k|t)
y(k|t) = Cx(k|t) +D1u(k) +D2δ(k|t) +D3z(k|t)
E2δ(k|t) + E3z(k|t) ≤ E1u(t) + E4z(k|t) + E5

x(k) ∈ X× {0, 1}nl
u(k) ∈ U× {0, 1}ml

(2.20)

It is assume that there exists an optimal sequence for this problem, which is denoted by:

u∗k , {u∗(k|k), · · · , u∗(k +N − 1|k))} (2.21)

The MPC control law is defined as the first element of this sequence:

uMPCx(k) , u∗(k|k) (2.22)

The input is applied to the system and the whole procedure is repeated at the next time
instance.

In (2.20), the constraint x(T |t) = xe is imposed to guarantee the stability of the
closed loop systems and is called the stability constraint. x(k) ∈ X × {0, 1}nl , u(k) ∈
U× {0, 1}ml are state and input constraints.

The set of states for which the constraints (2.20) are feasible is called the feasible set
which is defined as follows.

Definition 2.4 (Feasible set). The feasible set XF (T ) is defined as

XF (T ) = {x ∈ X× {0, 1}nl |UT (x) 6= ∅} (2.23)

The following theorem shows that in the MPC problem, feasibility is preserved over
time and that feasibility implies stability.
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Theorem 2.1. Assume that (xe, ue) is an equilibrium pair. Fix T ∈ Z≥1. If the optimiza-
tion problem (3.2) with constraints (2.20) is feasible for x(t) at time t, then it is feasible
at time t + 1 for state x(t + 1) which is evolving based on the MLD system equations in
(2.12)-(2.14) with input uMPCx(k). Moreover, the MPC law (2.22) stabilizes the system.

Proof. For the proof of the theorem we refer the interested reader to [BM99].

The optimization problem that should be solved at each time is a MILP for p = ∞
or a MIQP problem for p = 2. There are many efficient solvers available for solving
MILP or MIQP problems, but it should be pointed out that the worst-case computational
complexity of these problems grows exponentially as the number of integer variable in-
creases. Hence the application of this method is restricted to systems with small size or
system with slow dynamics. However, a suboptimal solution also guarantees the stability
of the system and therefore for a real time application we can stop the solver when a
suboptimal solution is available.

Available methods for solving a Mixed Integer Program (MIP) are:

• Cutting and plane method

• Decomposition methods

• Logic-based methods

• Branch and Bound methods

See [RH05] and references therein for a review of these methods. There are commercial
packages available such as CPLEX [Cpl03] as well as some noncommercial packages,
for a review see [LR05].

2.5 Piecewise Affine systems

Piecewise affine systems approximate nonlinear system efficiently, and they arise in any
practical system that contains PWA components such as dead-zones, saturation, hystere-
sis, relays, etc. In a PWA system the state space is partitioned into polyhedral regions
and in each region the dynamic of the system is described by a difference equation or a
differential equation. Switching between systems is based on crossing a guard.

x(k + 1) = Aix(k) +Biu(k) + fi for

[
x(k)
u(k)

]
∈ Xi (2.24)

y(k) = Cix(k) +Diu(k) + gi,

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input, and y(k) ∈ Rp is the out-
put. fi and gi are affine terms. When the affine terms are zero the system is a PieceWise
Linear (PWL) system. {Xi}si=1 ⊆ Rn denotes a partition of the state into a number of
polyhedral regions Xi, i ∈ I = {1, · · · , s}. Each polyhedral region is represented by:

Xi = {
[
x
u

]
|Hix+ Fiu ≤ hi}, (2.25)
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5 Piecewise Affine systems

We assume that there is a unique solution for the PWA system (2.24). Therefore the
partition of the input-state space should not have overlapping regions, i.e. Xi

⋂
Xj = 0

for i 6= j. It should be noted that when the PWA system is continuous over a facet, then
the regions who share this facet are both defined on the facet and still the solution of the
system is uniquely defined.

2.5.1 Stability and Stabilization of PWA systems

In this section we explain results on the stability of PWA systems and state-feedback
stabilization of discrete time PWA systems using Piecewise Quadratic (PWQ) Lyapunov
functions.

Checking stability of a PWA system is not an easy task. Results on the stability of
PWA systems usually consider a special class of PWA systems or give sufficient condi-
tions. Many approaches use PWQ Lyapunov functions to provide sufficient conditions
for stability of PWA or PWL systems which are formulated in terms of LMIs, see [JR98]
for continuous time and [MFTM00], and [CM01] for discrete time.

Definition 2.5. The origin x = 0 is stable for a system of the form x(k + 1) = f(x(k)),
if for any ε > 0 there exist a δ > 0, such that if ‖x(0)‖ < δ then for all k > 0 we have
‖x(k)‖ < ε. Moreover, the origin is asymptotically stable if limk→∞ ‖x(k)‖ = 0

Theorem 2.2. The origin x = 0 of the PWA system (2.24) is asymptotically stable if there
exist a positive definite function V (x(k)) such that V (x(k+1))−V (x(k)) < 0,∀x(k) ∈
Xi,∀i ∈ I.

2.5.1.1 Quadratic Lyapunov function

A quadratic Lyapunov function for a PWA function is defined as:

V (x(k)) = x(k)TPx(k), (2.26)

where P is a positive definite matrix of appropriate dimension. Note that by switching
of the system for Xi to Xj , the Lyapunov function remains the same. In other words it is
a common Lyapunov function between all regions. The condition for stability of a PWA
system is derived by requiring the difference of Lyapunov function along every trajectory
to be negative:

x(k + 1)TPx(k + 1)− x(k)TPx(k) < 0.

Assuming that fi = 0, then the following LMI conditions for asyptotic stability are de-
rived:

P > 0, (2.27)

ATi PAi − P < 0. ∀i ∈ I (2.28)

The problem of state feedback control that we consider is that of designing a piecewise
linear state feedback of the form:

u(k) = Kix(k) for x(k) ∈ Xi (2.29)
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such that the closed loop system

x(k + 1) = Aix(k), (2.30)

is stable where Ai = Ai + BiKi is exponentially stable. In this case the conditions for
the closed loop stability are:

P > 0 (2.31)
(Ai +BiKi)P (Ai +BiKi)− P < 0 ∀i ∈ I (2.32)

Since both P and Ki are unknown, the above inequality is nonlinear, but it can be trans-
formed to LMIs using Schur complement.

Lemma 2.1. The PWA system (2.24) with piecewise linear state feedback (2.29) is asymp-
totically stable if there exist X = XT > 0 and matrices Yi such that:[

X (AiX +BiYi)
(AiX +BiYi) X

]
< 0 ∀i ∈ I (2.33)

Then the piecewise linear state feedback gains are given by:

Ki = YiQ
−1. (2.34)

2.5.1.2 Piecewise Quadratic Lyapunov Function

A PWQ Lyapunov function is defined as:

V (x(k)) = x(k)TPix(k) if x(k) ∈ Xi (2.35)

In the case of discrete time systems, contrary to the continuous time case, the Lyapunov
function need not to be continuous across facets. To have stability we must have:

V (x(k))− V (x(k + 1)) < 0. (2.36)

The general case is when x(k) ∈ Xj and x(k + 1) ∈ Xi, then the conditions for stability
are:

Pi > 0 ∀i ∈ I (2.37)

ATj PiAj − Pj < 0 ∀(i, j) ∈ S, (2.38)

where S is the set of all possible switching from region Xi to Xj which is:

S = {(i, j)|∃k ∈ N0 such that x(k) ∈ Xi, x(k + 1) ∈ Xj} (2.39)

The set S can be computed using reachability analysis for MLD systems. But another
conservative alternative is to consider all switchings i.e. S = I × I. In this case the
number of LMIs to be satisfied increases quadratically with respect to the increase in the
number of polyhedral regions.

Using the same method as before we have the following lemma:
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Lemma 2.2. The PWA system (2.24) with piecewise linear state feedback (2.29) is asymp-
totically stable if there exist Xi = XT

i > 0 and matrices Yi such that:[
Xi (AjXj +BjYj)

(AjXj +BjYj) Xj

]
< 0 ∀(i, j) ∈ S. (2.40)

Then, the piecewise linear state feedback gains are given by:

Ki = YiQi
−1. (2.41)

2.6 Equivalence between different classes

In [HSB01], different model classes of hybrid systems are studied and it is shown that
under some assumptions they are equal. Under the assumption that the set of states, and
input are bounded and that PWA, MLD, LC, ELS, and MMPS models are well-posed,
then they are equivalent. Fig. 2.4 summarizes the equivalence between different classes
by means of a graph. IfA is connected by an edge toB, then the class A is a subset of the
class B. A star on an edge means that there are some restrictive conditions for inclusion
of A in B.
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Theorem. Let , ,� � �  be sets of states, inputs, and outputs respectively, and assume that 

,� �  are bounded. Then DHA, PWA, MLD, LC, ELC, and MMPS well-posed models 

are equivalent to each other on , ,� � � .

Figure 2.5. Graphical representation of the links between different classes of discrete time hybrid systems.  

                    An arrow going from class A to class B means that A is a subset of B. Arrows with a star (*)  

                    requires conditions to establish the indicated inclusion. 

2.8  Summary 

While there is no difference in modeling capability among the models, the same task 

can be solved substantially more efficiently by picking the proper model. Each modeling 

framework has its advantages. For instance, stability criteria were formulated for PWA 

systems [19], [20]. In [8] and [9] (linear) complementarity systems in continuous time 

have been studied. Applications include constrained  mechanical systems, electrical 

networks with ideal diodes or other dynamical systems with piecewise linear relations, 

variable structure systems, constrained optimal control problems, projected dynamical 

systems and so on [8]. Issues related to modeling, wellposedness (existence and 

uniqueness of solution trajectories), simulation and discretization have been of particular 

DHA

MLD

PWA

LC

MMPS

ELC

*

* *

*

*

*
* *

*

Figure 2.4: Equivalence between different classes of hybrid systems[HSB01]
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3 Summary of Contributions

The contributions of this thesis area in the form of several publications in the are of fault
diagnosis and fault tolerant control of hybrid systems. In this chapter, the contributions
are highlighted.

3.1 Active Fault Diagnosis of Hybrid systems

The first four papers A[TRIZB09], B[TIZBR09], C[TIZRB10], D[TRIZB10] deal with
the problem of AFD of hybrid systems. In Paper A, a method for AFD of hybrid systems
using reach set computation is developed. We have used the hybrid automaton modeling
framework. Discrete faults and continuous faults are modeled as discrete modes. The
system can be in a normal condition, N , or in a faulty condition, F , and the correspond-
ing models are respectively denoted by ΣN and ΣF . The aim of the diagnoser is to find
the condition of the system. It looks for two distinguishable trajectories χ1 and χ2 from
the normal model , ΣN , and the faulty model, ΣF , of the system. This is done by com-
puting the reach set of both models starting from the initial state and using all possible
inputs, denoted respectively by RNk ,RFk . If the corresponding outputs of these sets,
Y (RNk), Y (RFk) are equal, then the algorithm computes reach sets for future steps until
they become different, i.e. ∆k = (Y (RNk)∪Y (RFk))\(Y (RNk)∩Y (RFk)) 6= ∅. Then
the algorithm choose a target which uniquely belongs toRNk orRFk . The optimal input
to reach this target is computed and applied to the system. The condition of the system is
determined based on observing whether it reaches its target or not. The algorithm finds
the minimum length required for diagnosis. It is also explained how we can extend the
algorithm for more than one faulty mode. The method is tested on a two tank example for
sanity check as well as for periodic diagnosis during nominal operation.

In Paper B, the AFD method proposed in paper A is used for automatic sensor assign-
ment. For a system with n sensors, the problem of sensor assignment is to find among all
permutations, the one that conforms to the dynamic behavior of the system. There are n!
candidates for the sensor assignment and if wrong assignments be considered as faults,
then there are n! − 1 fault hypothesis. Applying the algorithm from Paper A directly, is
computationally very expensive. In this paper the algorithm is modified such that it needs
only one model of the system. The method is tested for sensor assignment of a super
market refrigeration system.

The method proposed in Paper A is based on finding distinguishable reach sets, but
we are interested in distinguishable trajectories. Therefore it is possible to miss some
solutions of the problem. Moreover, the problem is solved in an open loop manner. Since
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in AFD we are exciting the system with the aim of fault detection and not with the aim
of control, it is also possible that we drive the system to an area which is unstable. In
Paper C, the problem is formulated as an optimization problem which searches for dis-
tinguishable output trajectories and also guarantees stabilizability of the system. In this
paper we have used the MLD framework and the problem is formulated as a mixed integer
optimization problem.

The aim of diagnosis is to find a sequence of input such that the outputs of the normal
system and the faulty system are observably different:

|yi(Td))− yj(Td)| ≥ d ∀i, j ∈ {0, · · · , n}, i 6= j,

where yi denotes the output of the normal system when i = 0 and the output of the
system subject to fault fi when i 6= 0. Td is the length required for diagnosis and d is
a separation distance which is chosen based on the level of noise. This is formulated
as a mixed integer feasibility test by translating the above constraint into mixed integer
inequalities using techniques described in (2.4). The above constraint is equivalent to
fault isolation for every fault. Formulations for fault detection and fault isolation for a set
of fault are also given. Minimum length of the input sequence required for diagnosis is
found by finding an upper bound and a lower bound for it and then running the bisection
algorithm.

To guarantee the stability we use MPC. Assume that we want to make sure that the
system is stabilizable in T sampling times. It must be ensured that the final state of the
diagnosis for each system, xi(Td), is steerable to the equilibrium of the system, xier, in
T steps. Then, xi(Td) must be in the feasible set XiF (T ), which is the feasible set of
the MPC contoller designed for the system subject to fault i with a prediction horizon
T . In other words, for all xi(Td) there must exist a {ui}Td+T−1

Td
∈ UT × {0, 1}Tml

such that xiTd (xi(Td), {ui}Td+T−1
Td

) ∈ XT × {0, 1}Tnl , x(T |Td) = xier . This is added
as a stability constraint to the diagnosis optimization problem. The solution is applied
to the system and at t = Td the fault is diagnosed. After fault diagnosis, the system
reconfiguration is performed by updating the dynamic constraints of MPC to that of the
identified faulty system.

The method is tested on the two tank system. The simulation result shows that Td and
T is dependent on d: the bigger the d, the longer the length of input sequence.

Paper D addresses the stability issue in AFD but using another approach. To avoid
instability due to perturbation, the system is moved from its current state to another steady
state. The diagnoser looks for steady states from the normal and faulty systems such that
the corresponding steady inputs are equal but their steady outputs are different. If such
steady states exist, then the system is diagnosable by this method. Fault diagnosis is
then performed by applying the steady input and observing the steady output. Note that
distinguishable steady output might not exist or it might take a long time to reach them.
In this case the method proposed in Paper C is preferable.

3.2 Fault-Tolerant Control of Hybrid System

The last two papers are in the area of PFTC for Hybrid systems. We have used the
PWL modeling framework to formulate stability conditions despite faults in terms of
LMI inequality constraints.
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2 Fault-Tolerant Control of Hybrid System

In Paper E[TIZBR10], we consider the problem of PFTC for PWL systems against
actuator faults. A faults is modeled as a partial loss of the actuator gains:

uFj = (1− αj)uj , 0 ≤ αj ≤ αMj
, (3.1)

where uj is the j′th actuator and uFj is the j′th failed actuator. αj denotes the percentage
of failure in the j′th actuator, αMj

is the maximum loss in the j′th actuator. αj = 0
presents the case of no fault in the jth actuator, 0 < αj < 1 corresponds to the partial
loss of it, and αj = 1 corresponds to complete loss of it. The problem is to design a
piecewise linear state feedback control such that the closed loop system remains stable
despite the faults in actuators. We consider the following quadratic performance index:

J =

∞∑
k=0

xT (k)Qx(k) + uT (k)Ru(k). (3.2)

Using PWQ Lyapunov functions a PWL state feedback control is designed such that it
ensures the stability of the closed loop system and also provides an upper bound on the
performance index as:

J ≤ x(0)TPi0x(0), (3.3)

with x(0) ∈ Xi0 , i.e. i0 is the index of the initial region. The problem is cast as feasibility
of a set of LMIs. The upper bound on (3.2) is minimized independent of the initial
condition by considering x(0) as a random variable uniformly distributed on a bounded
region. This problem is solved as a convex optimization problem with LMI constraints.
In the simulation results it is discussed how one can perform a trade off between the
performance of the system and the degree of the system tolerance to the partial loss of
actuator gains.

In Paper F[TIZBR10], we have extended the previous results using output feedback
because states of a system are not always available. In this paper, we use the framework of
uncertain PWL systems. Faults can be modeled as uncertainties and then an output feed-
back control is designed that can stabilize the closed loop system and provide an upper
bound on the quadratic performance index. The following PWL system is considered:

x(k + 1) = (Ai + ∆Ai)x(k) + (Bi + ∆Bi)u(k) for x ∈ Xi (3.4)
y(k) = (Ci + ∆Ci)x(k),

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input, and y(k) ∈ Rp is the
output. {Xi}si=1 ⊆ Rn denotes a partition of the state into a number of polyhedral regions
Xi, i ∈ I = {1, · · · , s}. Each polyhedral region is represented by:

Xi = {x|Hix ≤ hi}, (3.5)

and ∆Ai,∆Bi,∆Ci are parameter uncertainties in the parameters of the subsystem i of
the following form: [

∆Ai, ∆Bi
]

= M1iH
[
NAi , NBi

]
, (3.6)

∆Ci = M2iHNCi , (3.7)
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where H is an uncertain matrix bounded by:

HHT ≤ I. (3.8)

and M1i ,M2i , NAi , NBi , NCi are known constant matrices of appropriate dimensions.
The problem is to design an output feedback of the form:

xc(k + 1) = Acixc(k) +Bciy(k) for xc ∈ Xi (3.9)
u(k) = Ccixc(k) +Dciy(k).

The novelty of the approach is that we do not make the common unrealistic assump-
tion that the switching of the controller is based on the state of the system, i.e. x(t), but
we assume that it is based on the estimated state xc(t). Here, the problem is formulated in
terms of BMIs. Using a similar procedure as before, the upper bound on the performance
is minimized by solving an optimization problem with BMI constraints. The optimization
problem is solved using the V-K iteration algorithm.
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4 Conclusions and Future Work

Due to the increasing safety, reliability, and performance requirements of modern techno-
logical systems, Fault Detection and Diagnosis and Fault Tolerant Control of them is very
important. Most of modern technological systems consist of both discrete and continuous
behaviors and interactions between them. Hybrid systems are a useful modeling class to
capture behavior of these systems. In this thesis, we investigated the problem of FDD and
FTC for hybrid systems. The accomplished results provide contributions to both areas of
fault diagnosis and fault-tolerant control of hybrid systems. Contributions of the thesis in
the area of fault diagnosis are:

• A new methods for active fault diagnosis of hybrid systems based on the reach
set computation. This method performs AFD in an open loop manner and instead
of searching for distinguishable trajectories it looks for distinguishable reach sets.
As a result, it might conclude that a fault is not diagnosable while it is indeed
diagnosable. However, this algorithm finds automatically the minimum length for
the input sequence required for active diagnosis.

• An extension of the above method for sensor assignment during the commissioning
phase with application to a supermarket refrigeration system.

• A stabilizable AFD method for hybrid systems which formulates the problem as an
optimization problem. This method guarantees stabilizability despite the excitation
signal that is used for fault diagnosis and it looks for distinguishable trajectories.
To find the minimum input sequence length for the diagnosis, a bisection algorithm
is used by finding upper and lower feasible bounds for the input sequence length.

• A method for AFD of hybrid systems using distinguishable steady outputs. This
method uses the steady state properties of the system. It looks for distinguishable
steady states from the normal and the faulty system such that the corresponding
outputs are distinguishable. Because the system is moved to a steady state, the
method preserves stability but distinguishable steady outputs does not always exist.

In the area of FTC of hybrid system, we consider the problem of passive fault-tolerant
control for PWL systems. Contribution of the thesis in this area are:

• A guaranteed cost method for PFTC of PWL systems against actuator faults. Piece-
wise state feedback is used to design a PFTC for PWL systems such that it can tol-
erate a partial loss of actuator gains. The problem is formulated in terms of LMIs.
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The optimal guaranteed cost is found by solving a convex optimization problem
with LMI constraints.

• A guaranteed cost method for output feedback control of uncertain PWL systems.
Because most of the time, states of a system are not measurable, the previous
method is extended to dynamic output feedback control. The problem is formulated
in the more general framework of uncertain PWL systems, hence sensor faults and
internal faults may also be considered. The output feedback problem is cast as the
feasibility of a set of BMIs and it is solved using the V-K iteration algorithm.

Some possible future directions for this research are listed in the following:

• The reach set computation based method can be extended by considering polyhe-
dron bounded disturbance and noise explicitly as well as assuming the initial state
to be given by a polyhedron. It is possible to extend the approach by using a mov-
ing horizon scheme such that at each time instant, the initial state is updated by
using set-based state estimation methods. A challenge here is that the set-based
estimation methods for hybrid systems are not well developed. An alternative is to
assume that states are estimated with a given upper bound on the estimation error.

• The output feedback method is formulated in terms of BMIs. BMI problems are in
general non-convex and NP-hard. The iterative algorithms used for solving them
provide a sub-optimal solution. It would be useful to formulated the problem in
terms of LMIs, though it is not clear how to do that for uncertain PWL systems.

• A PFTC cannot handle many faults, especially when severe faults might happen it
is either infeasible to design a controller that can handle all faults or the resulting
controller presents a very low performance. AFTC systems have this advantage
that they can switch among different controllers designed for each faulty situation,
but there is a risk of instability due to the delays associated with detection and
isolation of faults or due to the wrong decision by FDD system. A possibility for
future work is to combine AFTC with PFTC to design a reconfigurable controller
for PWL systems that guarantees stability of the closed loop system during the
delay associated with FDD. The idea is to find minimal recoverable configurations
and find a common solution to these configurations. Then, update the controllers
based on the new information from the FDD module. It is desirable to be able to
update the controllers such that the instability which might happen because of the
incorrect information from the FDD module is avoided.
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1 Introduction

Abstract

A method for active fault diagnosis of linear discrete time hybrid systems is pre-
sented. The algorithm generates appropriate test signals that can be used for sanity
check during system commissioning or later in the normal phase to detect faults which
are impossible to detect by means of passive diagnosis methods because of regula-
tory actions of the controller. The algorithm is illustrated on a two tank benchmark
example.

1 Introduction

In complex large control systems there are many components with strong interaction be-
tween them. Hence the overall system depends crucially on the individual performance
of the components. Therefore a fault in a single component may degrade the overall
performance of the system and may even leads to unacceptable loss of system function-
ality. Thus fault diagnosis is of crucial importance in automatic control of complex large
systems.

There are two main approaches to fault diagnosis: active and passive. In the passive
approach the diagnoser observes the input and output of the system and based on the
measured I/O decides whether a fault has occurred or not. Most of the available methods
for fault diagnosis are of this kind.

In active fault diagnosis the diagnoser generates a test signal which excites the system
to decide whether the system represents the normal behaviour or the faulty behaviour and
if possible decides which faulty behaviour occurs. The test signal should be designed
such that it affects the overall system as little as possible although enough to make fault
diagnosis possible. The advantage of the active approach is in the operating points where
the normal system and faulty system represents the same behaviour. Under such circum-
stances it is possible to detect faults faster by active diagnosis. Active fault diagnosis
can also be used to provide sanity check in the commissioning phase by generating an
appropriate test signal.

Modelling of complex systems are captured by hybrid system theory, which has been
subject of intensive research in recent years, for an overview see [1]. Generally speaking,
a hybrid system is a dynamical system with both continuous and discrete behaviours and
non-trivial interaction between continuous evolutions and discrete transitions.

Fault diagnosis of hybrid systems has been investigated recently, for a survey one
can look at [2], [3], [4]. A class of approaches for diagnosis of hybrid systems uses
discrete/temporal abstraction of the continuous dynamics [5]. In [2], the diagnoser uses a
discrete event abstraction of the system and the continuous dynamics information is used
when it becomes necessary. In [4], the authors use a Petri net abstraction for dealing with
continuous behaviour of hybrid systems. In [3] a model based diagnosis method based
on a hybrid bond graph modelling framework is proposed. Particle filtering methods are
another class of methods for diagnosis of hybrid systems; [6], [7].

All of the aforementioned approaches are in the area of passive diagnosis. In [8],
[9] the problem of active diagnosis for linear system using an auxillary signal for fault
detection is investigated. The results of [8] is extended for nonlinear systems in [10]
using linearization and also a direct optimization approach. In the field of discrete event
systems, some approaches have been proposed for active diagnosis. Active diagnosis of
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DES is studied in [11] and input sequence for diagnosis is computed. [12] studied the
active diagnosis problem of DES as a supervisory control problem.

To the knowledge of the authors there is no research considering directly active fault
diagnosis of hybrid systems. In this paper an active fault diagnosis method for diagnosis
of linear hybrid system in discrete time is proposed. The idea is based on reach set
computations for the faulty and the normal system. For both systems, those states that the
system can reach in forthcoming steps considering all possible excitations are considered.
Reach sets are computed as long as the faulty system and the normal system have the same
reach sets. But as soon as they represent different sets the algorithm terminates and selects
a point which uniquely belongs to one of the sets. Then the optimal input for reaching the
selected point is calculated and injected to the system. If the system reaches the selected
point then it is in the corresponding mode, otherwise it is in the other mode.

This paper is organized as follows. An outline of the approach and some preliminaries
are given in Section 2. Section 3 describes the algorithm. In Section 4 the proposed
algorithm is applied to the two tank benchmark example. Section 5 provides conclusions
and topics for future investigation.

2 Outline of the Method

Most model-based diagnostic methods follow the same principle [13]. They observe a
sequence of measured input and output of the system and decide whether the measured
I/O pair is consistent with the model that describes the behaviour of the system. If the
consistency is not confirmed a fault is detected.

Suppose that the current observed I/O pair is A or B as depicted in Fig. 5.1. The set
B0 represents the normal behaviour of the system and the set B1 represents the behaviour
of the system subject to the fault f1. As long as A or B belong uniquely to the sets B0 or
B1, the diagnoser can decide whether the system is in its normal operation or subject to
a fault. The ambiguity arises when the observed data is the I/O pair C, which belongs to
the area where the normal behaviour and the faulty behaviour of the system overlap. In
this case, the diagnoser can not distinguish if the system is subject to the fault f1 or in the
normal operation. The main idea of active fault diagnosis is to exert an input signal to the
system to move C to an area which belongs uniquely either to the set B0 or B1.

The active diagnosis algorithm in this paper assumes that we have a model of the nor-
mal and the faulty system. From current state, we predict the behaviour of the system at
future time steps considering all possible inputs and using both models. We then find the
first time step that the faulty and the normal system have different behaviours. Now con-
sider the set holding these different behaviours. We choose one of them, e.g. belonging
to future behaviour of the normal system. Then we find an optimal input sequence that
will drive the system to a state corresponding to the selected behaviour and apply it to
the system. If the output of the system reaches the corresponding output of the selected
behaviour, then the system is in the normal mode otherwise it is faulty.

In order to make this idea precise, we define following terms.

Definition 5.1 (Hybrid Automaton). A hybrid automaton,H is a collection
H = (Q,X,U, Y, Init, f, h, Inv,E,G, J) where,

• Q is a set of finite discrete modes, Q = {q1, q2, . . . , qm},
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Figure 5.1: System behaviour

• X is a finite set of continuous state variables,

• U is a finite collection of input variables,

• Y is a finite collection of output variables,

• Init ⊂ Q×X is a set of initial states,

• f : Q×X × U → Rn is a vector field,

• h : Q×X × U → Y is an output map,

• Inv : Q→ 2X×U assigns to each q ∈ Q an invariant set Inv(q) ⊆ X × U ,

• E ⊂ Q×Q is a set of discrete transitions,

• G : E → 2X×U assigns to each e = (q, q′) ∈ E a guard g(e) ⊂ X × U ,

• J : E×X×U → 2X is a jump function that assigns a jump set J(e, x, u) ⊆ X×U
to each pair e ∈ E and x ∈ g(e).

In the case of linear hybrid systems the vector field fq is represented by a linear
difference equation: xi+1 = Aqixi+Bqiui and and the output map is of the form yi+1 =
Cqixi +Dqiui.

The tuple (q, x, u, y) ∈ Q × X × U × Y is called a point of H, (q, x) ∈ Q × X is
called the state ofH, u ∈ U the input and y ∈ Y is called the output ofH. Also we refer
to (u, y) ∈ U × Y as an observation ofH.

Definition 5.2 (Execution). An execution of a hybrid automaton is a sequence χ =
(σ0, . . . ,
σi, σi+1, . . .) where σ0 = (q0, x0, u0, y0), σi = (qi, xi, ui, yi) and σi+1 =
(qi+1, xi+1, ui+1, yi+1) such that:

• Initial condition (q0, x0) ∈ Init,

• Continuous evolution: for all i, qi = qi+1, (xi+1, ui+1) ∈ Inv(qi):

xi+1 = Aqixi +Bqiui

yi+1 = Cqixi +Dqiui
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• Transition: for all i, e = (qi, qi+1) ∈ E, (xi, ui) ∈ G(e) :
xi+1 ∈ J(e, xi, ui), (xi+1, ui+1) ∈ Inv(qi+1)

For modelling of faults in hybrid systems two types of faults can be considered: dis-
crete faults and continuous faults. Discrete faults can be considered as a new mode or
location in a hybrid system. Here continuous faults are also modelled as a new mode
as in [2]. It is supposed that events that describe transitions from a normal location
to a faulty location are unobservable events. The system can be in a normal condi-
tion N or a faulty condition F where each condition is a subset of Q. A condition set
K = {N,F1, . . . , Fp}, p > 1 is a set of conditions that is a complete partition of the
mode set Q.

For every condition κ ∈ K, the corresponding dynamical system, Σκ, is denoted by:

Σκ = {κ,X,U, Y, Init, f, Inv,Eκ, G, J}

where Eκ = {e = (q, q′) |q ∈ κ, q′ ∈ κ} and Initκ ⊂ κ×X .

3 The proposed algorithm

The diagnoser is a system that gives us an estimate κ̂(k) of the current system condi-
tion κ(k). A passive diagnoser recieves a sequence of observations 〈(u(k − m), y(k −
m)), . . . , (u(k), y(k))〉 as input and generetes an estimate of the current condition κ̂(k)
as output. The excitation signal or the input comes from the controller.

In active diagnosis the diagnoser generates an input sequence 〈u(k + 1), . . . , u(k +
m′)〉, applies it to the system and observes the output sequence 〈y(k+1), . . . , y(k+m′)〉
to determine the system condition. The output of the diagnoser could be an estimate of
the current condition of the system κ̂(m′) or the condition of the system for some finite
transition into the past κ̂(m′ − k′). So, the active diagnosis problem can be defined as
follows:

Problem 5.1 (Active diagnosis problem). Given a hybrid automatonH , find a sequence
of input 〈u(0), . . . , u(m)〉 such that the condition κ(0) is determined by observing the
sequence 〈y(0), . . . , y(m)〉.

If the input sequence exists, then we can ask for the optimal one, where optimality
can be interpreted in different senses. The algorithm that is proposed in this paper looks
for the shortest sequence of the inputs that can diagnose the system.

Here, it is supposed that an observer-based passive diagnoser for the hybrid system
is designed which gives us the initial state of the system. For detailed description of
this diagnoser, the interested reader is referred to [14] and [2]. But briefly, the diagnoser
consists of a bank of observers, each one designed for a discrete mode qi of the hybrid
system. The inputs of the observers are a sequence of observations (u, y). Based on
the output of the observers, a residual vector ρ = {r1, . . . rm} is generated. A zero
residual ri shows that the corresponding mode, qi, is consistent with the input and output
sequence. If the current state of the system, (q(k), x(k)), is determined uniquely then
the condition is also determined . A problem arises when both the faulty mode and the
normal mode are recognized as consistent modes with the I/O sequence. This is because
these two modes have indistinguishable executions, where indistinguishable executions
are defined as follows.
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Definition 5.3 (Indistinguishability). Given a hybrid system H and δ ∈ N , modes q
and q′ are indistinguishable on the time interval [i, i + δ] if there exist executions χ =
(σi, . . . , σi+δ) and χ′ = (σ′i, . . . , σ

′
i+δ) , where the corresponding continuous outputs are

equal.

This problem may happen very often. Consider a simple hybrid system with two
discrete modes q1 an q2 and a switch between them (like an on/off valve) which forces
the system to switch between these two modes. If the switch is stuck in one position, say,
such that the mode q1 is active, then the faulty system has exactly the same properties
as the mode q1. Therefore, the faulty mode and q1 are indistinguishable. An advantage
of our method is that there is no need for modelling efforts to make these two modes
distinguishable.

3.1 The Algorithm for a system with one faulty mode

In this subsection, the proposed algorithm is described for a system with one faulty mode.
Therefore, the condition set is {N,F}. The possibility for expansion of the method for
more than one faulty mode is discussed in the next subsection.

The idea of the proposed method is to find two executions χ1 and χ2 respectively from
the system in normal conditon, ΣN , and the faulty system, ΣF , which are distinguishable.
This task is done by finding all possible outputs that both systems could reach in the future
time steps considering all admissible inputs and starting from the given initial state. As
soon as they represent different outputs then the required executions are found and the
algorithm terminates.

To find all possible outputs that a system could reach in the future, reach set of the
system and the corresponding output should be computed.

Definition 5.4 (Reach Set). Reach Set of a hybrid automata H at time k denoted by
Reachk(H,X (0),U) is the set of all states (q, x) ∈ Q×X that are reachable by a given
hybrid automataH at time step k, starting from any initial state x(0) ∈ X (0) and with all
possible inputs u ∈ U .

As described in Algorithm 1, the reach set of both the normal system, RNk , and the
faulty system, RFk , are calculated for time k. It is assumed that the area of tolerable
performance is given by the set T . The area of untolerable performance is excluded from
the reach sets. The corresponding outputs are denoted by Y (RNk) and Y (RFk). If the
set ∆k = (Y (RNk) ∪ Y (RFk))\(Y (RNk) ∩ Y (RFk)) is not empty then there exist dis-
tinguishable executions in the time interval [0, k]. The set ∆k is called the discriminating
set. Now, there are two possible ways to determine the condition of the system. Assume
that at time k = Kmax the discriminating set ∆Kmax 6= ∅. It can be assumed that the
system at time 0 is in the Normal condition. We choose a point which uniquely belongs
to the future behaviour of the normal system i.e ỹ(Kmax) ∈ (∆Kmax ∩ Y (RNKmax )).
After choosing the point, the optimal input to reach ỹ(Kmax) is computed and applied to
the system. If y(Kmax) = ỹ(Kmax) then system is in the normal condition otherwise it
is in the faulty condition. Since the termination of the algorithm is not guaranteed, Kmax

may not exist. For practical applications a bound β on Kmax is set. If the algorithm does
not terminate after β steps, it is recognized as indiagnosable by this method.
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Table 5.1: Active Fault Diagnosis

Algorithm 1
Given x0, β,ΣN ,ΣF , (ΣN 6= ΣF )
Find condition κ
k = 0, I = x0,RN0

= RF0
= x0

Repeat
RNk = Reach(ΣN ,RNk−1

, U)
RFk = Reach(ΣF ,RFk−1

, U)
RNk = RNk ∩ T
RFk = RFk ∩ T
I = Y (RNk)\Y (RFk)
k = k + 1

Until (I 6= ∅ ∨ k > β − 1)
Kmax = k
IF I = ∅

The fault F is undiagnosable
Else
Solve the optimization problem
minuKmaxJ(xKmax ,uKmax , yKmax)

s.t.
{

ΣN
xo = x0, yf ∈ Y (I)

Apply uKmax to the system
IF yKmax ∈ Y (I) Then κ = N Else κ = F

Another strategy is to assume that κ(0) = F and choose ỹ(Kmax) ∈ (∆Kmax ∩
Y (RFKmax )). If y(Kmax) = ỹ(Kmax) then the system is in faulty condition otherwise
it is the normal condition. In Algorithm 1, the first strategy is chosen.

In the case of linear systems, having the convex polyhedral of X (0),U , the reach set
can be computed as:

Reach(Σ,X (0),U) = AX (0)⊕BU , (5.1)

where ⊕ is the geometric or Minkowski sum. The first part considers the effect of the
autonomous part of the system, x(k + 1) = Aqx(k), which is computed as mapping of
the convex set X (0) through the matrix A. Because the mapping of a convex set by a
linear transformation yields a convex set, the resulting set is also convex. Similarly, in
the second part of (5.1) the effect of input is computed by mapping the set U by matrix B
which again results in a convex set. Finally, the reach set is computed as the Minkowski
sum of these two sets. For computational reasons, the representation used for the reach set
and input set consists of sets which are closed under linear transformation and Minkowski
sum such as polytopes, ellipsoids or zonotopes [15].

In the case of hybrid systems, as is shown in Algorithm 2 in Table. 5.2, enabled
transitions should also be considered and the corresponding jump functions should be
applied. Note that in general the reach set could be nonconvex and disconnected i.e. a
finite union of p disconnected convex polytopes. In this case it is enough to apply the
above algorithm to each polytope separately and at the end calculate the union of results.
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The cost function J(xk,uk, yk) is the same as the cost function for the controller,
which can have the following from:

ΣKmaxk=0 ‖y(t+ k)− r(k)‖+ ‖u(t+ k)− ur(k)‖+ ‖x(t+ k)− xf‖,

where r(k) is the output reference signal, ur(k) the input reference signal and xf is the
final desired state.

In the above formulation we have assumed that the system is in the normal condi-
tion and therefore the optimization problem is solved by constraining the variables to the
hybrid dynamic of the normal system ΣN . In the case which the system is in the faulty
condition and it is not possible to remain in the area of required performance, it is required
that the system will remain in a region of tolerable performance. Suppose that the area of
tolerable performance is described by the polytope T = {x ∈ Rn|Px ≤ M}.To ensure
that system states will still remain in the polytope of the tolerable performance, the fol-
lowing constraints should be added to the optimization problem: {Px(i) ≤M}k+Kmax

i=k+1 .
Since we have supposed that there exist an observer that gives us the current state at

each time, this new information can be used in the algorithm. Suppose that at time k − 1
the algorithm starts with xk−1. At time k, the information that the diagnoser is using for
predicting the behaviour of the system at time k+1 is the polytopeReachk(Σ, xk−1, U).
While the information from the observer for the current state is more exact. So based
on this information, the diagnoser can predict the future behaviour of the system more
precisely. Therefore, the overall algorithm can be described as follows. At each time
step the output of the observer is given as the input to the main algorithm as described
in Algorithm 1. When the optimal input sequence u(k), . . . , u(k +Kmax) is computed
only the first element,u(k), is applied to the system. The overall procedure repeats until
Kmax = 1, which means that only in one step it is possible to find the point that uniquely

Table 5.2: Reach Set Computation

Algorithm 2
GivenH,Rk,U ,
R = ∅,RG = ∅
QR = {q|(q, x) ∈ Rk }
For all q ∈ QR
X = {x|(q, x) ∈ Rk}
Xq = X ∩ Inv(q)
RX = AqXq ⊕BqU
Eq = {e|e = (q, q′) ∈ E}
For all e ∈ Eq
Ge = X ∩ g(e)
Getrans = execute transition(Ge)
RGe = Aq′Getrans ⊕Bq′U
RG = RG ∪RGe

End
R = R∪RG ∪RGe

End
Reachk+1(H,Rk,U) = R
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belongs to the normal predicted behaviour of the system. The diagnoser applies the opti-
mal input to the system and then the status of the system can be determined. The modified
version of the algorithm is more computationally demanding but it can diagnose the fault
faster because it also uses available information from the observer.

3.2 Extension for more than one faulty mode

The algorithm can be extended as follows when there is more than one faulty mode. At
first, the algorithm tries to choose a state that its corresponding output uniquely belongs
to one of the sets Y (RΣκk), κ ∈ K. Then the optimal input for driving the system to the
chosen state is applied to the system. If the system could reach the target state then it is in
the condition κ. Otherwise if the current output is consistent with just one of the modes
then the corresponding condition is the system condition. But if it is consistent with more
than one mode, then the same procedure should be repeated for these modes starting from
the new initial condition.

4 Example

The proposed method is tested on the two tank system depicted in Fig. 5.2. The system
consists of two cylindrical tanks with cross sectional area A. These two tanks are con-
nected together by two pipes at the bottom and at level hv . The flows through the pipes,
denoted by Q12V12 and Q12V1, are controlled using two on/off valves V12 and V1. There
is a flow Q1 through a pump to tank 1 which is a continuous input. Dynamical equations

Figure 5.2: Two-tank system

of the system is described as follows.

ḣ1 = 1
A (Q1 −Q12V12 −Q12V1 −QL), (5.2)

ḣ2 = 1
A (Q12V12 +Q12V1 −QN ), (5.3)

where h1 and h2 denote the levels of tanks 1 and 2 respectively. The flow Q12V12 is
described as:

Q12V12 = V12k12sign(h1 − h2)
√

2g |h1 − h2|,
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where g is the gravity constant and k12 is a constant. similarly QL = VLkL
√

2gh1 and
QN = VNkN

√
2gh2. The flow trough valve V1 is described by:

Q12V1 = V1k1sign(max{hv, h1} −max{hv, h2})√
|2g(max{hv, h1} −max{hv, h2})|

In order to apply the reach set computation algorithm to the above system, the dy-
namic of the system should be described as a discrete time linear hybrid system. This
task is done in three steps. First, four discrete modes corresponding to four combinations
of binary inputs are generated. In each of these modes the governing equations are ob-
tained by substituting the corresponding values of binary inputs. The system switches
between these four discrete modes based on the binary input vector V = [V12, V1]. Then,
the nonlinear relation

√
x is approximated by a straight line x. The resulting equations are

piecewise affine. Finally, differential equations 5.2, 5.3 are discretized in time by Euler
approximation ḣi(t) ≈ hi(t+1)−hi(t)

Ts , where Ts is sample time.
To computeRk fromRk−1, all possible binary and continuous inputs must be consid-

ered. Algorithms 2 considers all possible continuous inputs. To consider the effect of all
possible binary inputs, for every corresponding discrete mode, the reach set is computed
via algorithm 2 andRk is obtained by calculating the union of the results.

The proposed active fault diagnosis algorithm is used for sanity check of the valve V1.
A stuck ON fault is considered in V1 and the algorithm is used to generate the shortest
test signal sequence to diagnose this fault. Nine different scenarios as shown in Table. 5.3
are considered. In each scenario, a binary input is used or fixed during the diagnosis to 0
or 1.

Fig. 5.3 and 5.4 show the results for scenario 1 where both discrete inputs are used. In
order to make the difference between Y (RNk) and Y (RFk) observable, the discriminat-
ing set in algorithm 1 is changed to I = Y (RNk)\(Y (RFk)⊕B(0, d)), where B(0, d) is
a box defined as B(0, d) = {x ∈ R2|0 ≤ xi ≤ d}. The algorithm terminates after k = 5
steps. Y (RN5) and Y (RF5)⊕B(0, 0.01) are shown in Fig. 5.3. The set I consists of two
polytopes shown in Fig. 5.4. One of these polytopes(the grey one here) is considered as
the target set and then the input to reach the target set is computed and applied to the sys-
tem. The resulting output and the expected output of the system are depicted in Fig. 5.4.
As it can be seen the result of the diagnosis algorithm is that the system is faulty.

As it is shown in Table 5.3, scenarios 4, 5, 6 are not applicable. Because V1 is fixed as
1 and therefore the model of the normal system becomes exactly the same as the model
of the faulty system.Moreover, it shows that using a valve as a free input variable causes
more computational complexity than fixing it. The reason is that the main source for
the computational complexity of the algorithm is nonconvexity of the reach set which is
casued by either crossing a gaurd (hv here) or a switching input. It should be noted that
however using both valves is the most computationally demanding scenario but for this
scenario the algorithm will find the shortest input sequence for diagnosis while by fixing
valves it may not find the shortest sequence e.g. as it is the case in scenarios 2, 9.

Fig. 5.5 demonstrates the case where the faulty and the normal system exhibit same
dynamic behaviour. In this example a model predictive controller is designed for the two
tank system. Fig. 5.5 shows the simulation of the closed loop system. As one can see
the control variable V1 is manipulated such that the output of the system in the normal
condition and in the faulty one is exactly the same. In this situation if a stuck ON fault
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Figure 5.3: Top:Reach set of the normal system at k = 5:(RN5 ), Bottom:Reach set of the
faulty system at k = 5 added by B(0, 0.01):(RF5

⊕ B(0, 0.01)).

Figure 5.4: Top:Output of the system(solid), expected output of the system
(dashed) and discriminating set (target), Middle:continuous input Q1, Bottom:discrete
inputs:V1(dashed), V12(solid)

happens, no passive diagnoser would be able to diagnose it, while the active diagnoser
proposed here is capable of detecting this fault. Our active diagnoser was started at t =
200 sec. and the result is shown in Fig. 5.6.

5 Conclusion and future works

This paper presented an approach for active fault diagnosis of hybrid systems based on
reach sets computation of both the normal and the faulty modes. The proposed method
can be used for sanity check of the system at the commissioning phase and also periodi-
cally during normal operation for faster detection of faults or detection of faults when it
is impossible to detect them by a passive diagnoser.

During the diagnosis it is assumed that the system is in the normal mode of the op-
eration. To ensure that if the system is faulty, it will remain in the tolerable performance
region, the optimization problem is solved subject to constraints describing polytope of
the tolerable area. It might happen that the optimization become infeasible by these con-
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Figure 5.5: Top:output of the closed loop system for both faulty and normal
system:h1(solid) h2(dashed), Middle:continuous input Q1, Bottom:discrete inputs:
V1(dashed line), V12(solid line)

Figure 5.6: Top:Output of the system(solid), expected output of the system and target set,
Middle:continuous input Q1, Bottom:discrete inputs:V1(dashed line), V12(solid line)

straints. This issue is subject to future investigations.
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1 INTRODUCTION

Abstract

Wrong sensor assignment is a major source of faults in industrial systems during
the commissioning phase. In this paper a method for automatic sensor assignment
based on active diagnosis is proposed. The active diagnosis method is developed for
diagnosis of linear hybrid systems. It generates the appropriate test signal which can
be used for sanity check at the commissioning phase. It could also be used for faster
detection of faults during the normal phase of operation or for detection of faults
which are impossible to detect by passive methods because of regulatory actions of
the controller. The method is tested on a supermarket refrigeration system.

1 INTRODUCTION

In a large system there are many sensors, actuators and other components. Every mea-
surement from a sensor or output to an actuator should be assigned correctly to its cor-
responding variable in the control algorithm. Yest, it happens that a technician connects
components of a system wrongly. Wrong sensor or actuator assignment potentially re-
sults in malfunction of the overall system. Therefore, it is desirable to design a controller
which provides a sanity check in the commissioning phase for verifying sensor and actu-
ator assignment by generating an appropriate test signal.

A way to tackle this problem is to consider wrong connections as faults and use fault
diagnosis methods. Diagnosis methods can be divided into two main categories: active
and passive. In passive diagnosis the diagnoser observes the system and based on the
observation decides about the occurance of faults. In active fault diagnosis the diagnoser
generates a test signal which excites the system to decide whether the observed system
dynamics exhibits the normal behaviour or the faulty behaviour and if feasible decide
which faulty behaviour occurs.

Industrial systems typically include both discrete and continuous components and a
hybrid system formulation is therefore natural to adopt. Generally speaking, a hybrid
system is a dynamical system with both continuous and discrete behaviours and non-
trivial interaction between continuous evolutions and discrete transitions. Fault diagnosis
of hybrid systems has been investigated recently, for a survey see [1], [2], [3]. Most of
the available methods are in the area of passive diagnosis. [4] propose a method for active
diagnosis of linear systems using an auxiliary signal for fault detection. The results of [4]
are extended to nonlinear systems in [5] using linearization and also a direct optimization
approach. A setup for active diagnosis of linear system for parametric faults is proposed
by [6]. In [7] and [8] the problem for discrete event systems is investigated. In our
previous work [9], we proposed an active fault diagnosis method for diagnosis of linear
hybrid systems in discrete time. The method is based on prediction of the behaviour of the
system in the future by means of reach set computations based on a faulty and a normal
model of the system. If we apply the method directly to the sensor assignment problem, in
other words, if we consider all possible assignments as a fault, we need a model for each
possible assignments which yields a high computational effort. In this paper we extend
the active diagnosis algorithm to the sensor assignment problem such that only one model
of the system is necessary. To illustrate the method a supermarket refrigeration system is
considered.
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2 Preliminaries and Problem formulation

To make our ideas precise we first define the problem and give some preliminary defini-
tions.

2.1 Problem Formulation

Consider a system with n sensors i.e. [S1, · · · , Sn]. The sensor assignment problem is
to find among all permutations the one that conforms to the dynamic behaviour of the
undelying system. The problem is defined as follows.

Problem 6.1 (Sensor assignment problem). Given a set of measurements y = [y1, · · · , yn]
representing measurements from [S1, · · · , Sn] and a model of the system as x(k + 1) =
f(x(k),u(k)), [ŷ1(k), · · · , ŷn(k)]′ = h(x(k),u(k)). Find a permutation of y namely V
such that for a large N , for all i

ΣNk=1 |Vi(k)− ŷi(k)| < ΣNk=1 |Vj(k)− ŷi(k)| (6.1)

for all j ∈ 1, · · · , n, j 6= i.�

2.2 Preliminaries

Definition 6.1 (Hybrid Automaton). A hybrid automaton,H is a collection
H = (Q,X,U, Y, Init, f, h, Inv,E,G, J) where,

• Q is a set of finite discrete modes, Q = {q1, q2, . . . , qm},

• X is a finite set of continuous state variables,

• U is a finite collection of input variables,

• Y is a finite collection of output variables,

• Init ⊂ Q×X is a set of initial states,

• f : Q×X × U → Rn is a vector field,

• h : Q×X × U → Y is an output map,

• Inv : Q→ 2X×U assigns to each q ∈ Q an invariant set Inv(q) ⊆ X × U ,

• E ⊂ Q×Q is a set of discrete transitions,

• G : E → 2X×U assigns to each e = (q, q′) ∈ E a guard g(e) ⊂ X × U ,

• J : E×X×U → 2X is a jump function that assigns a jump set J(e, x, u) ⊆ X×U
to each pair e ∈ E and x ∈ g(e).�

In the case of discrete time linear hybrid systems the vector field fq is represented by
a linear difference equation: xi+1 = Aqixi + Bqiui and the output map is of the form
yi+1 = Cqixi +Dqiui. We refer to (u, y) ∈ U × Y as an observation ofH.
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An execution of a hybrid automaton is a sequence χ = (σ0, . . . , σi, σi+1, . . .) where
σ0 = (q0, x0, u0, y0), σi = (qi, xi, ui, yi) and σi+1 = (qi+1, xi+1, ui+1, yi+1) which
satisfies the discrete and continuous evolution constraints imposed by hybrid automata
and σ0 satisfies the initial condition [9].

Both discrete faults and continuous faults are modeled as a mode in hybrid automata
as in [1]. It is supposed that events that describe transitions from a normal mode to a faulty
mode are unobservable. The system can be in a normal condition N or a faulty condition
F where each condition is a subset of Q. A condition set K = {N,F1, . . . , Fp}, p ≥ 1
is a set of conditions that constitutes a complete partition of the mode set Q. For every
condition κ ∈ K, the corresponding dynamical system, Σκ, is denoted by:

Σκ = {κ,X,U, Y, Init, f, Inv,Eκ, G, J}

where Eκ = {e = (q, q′) |q ∈ κ, q′ ∈ κ} and Initκ ⊂ κ×X .

3 The proposed algorithm

In this section active fault diagnosis is described firstly and then it is explained that how
the sensor assignment problem can be solved by extending the proposed algorithm.

3.1 Active Diagnosis

We are going to solve Problem 1 by means of an active diagnoser which generates a
test signal in the commissioning phase for finding the true sensor assignment. A diag-
noser is a system that gives us an estimate κ̂(k) of the current system condition κ(k).
A passive diagnoser recieves a sequence of observations as input and generates an es-
timate of the current condition κ̂(k) as output. In active diagnosis an input sequence
〈u(k + 1), . . . , u(k + m)〉 is generated by the diagnoser and applied to the system. The
resulting output sequence 〈y(k + 1), . . . , y(k + m)〉 is observed by the diagnoser to de-
termine the system condition. The active diagnosis problem is defined as follows:

Problem 6.2 (Active diagnosis problem). Given a hybrid automatonH , Find a sequence
of inputs 〈u(0), . . . , u(m)〉 such that the condition κ(0) is determined by observing the
sequence 〈y(0), . . . , y(m)〉.

If the input sequence exists, i.e. if the system is diagnosable, we can look for the
optimal solution, where optimality can be interpreted in different senses. The proposed
algorithm looks for the shortest sequence of inputs that can diagnose the system.

A model-based passive diagnoser usually checks the consistency of the I/O pair with
the expected behaviour of system based on a given model. If the consistency is verified,
the system is in the normal mode otherwise it is faulty. Now consider Fig. 6.1. The set
B0 represents the normal behaviour of the system and the set B1 represents the behaviour
of the system subject to the fault f1. As long as the observed I/O pair is uniquely in the
set B0 or B1, such as point A or B, the diagnoser can detect whether the system is faulty
or not. But for a point such as C which belongs to the intersection of B0 and B1 it is
impossible to detect the mode of the system. The idea here is to exert an input signal to
the system to move C to an area which belongs uniquely either to the set B0 or B1.
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active fault diagnosis method for diagnosis of linear hybrid 
system in discrete time is proposed. The idea is based on 
reach set computation for faulty and normal system. For both 
systems, those states that the system could reach in 
forthcoming steps considering all possible excitations are 
considered. Reach set are computed as long as faulty system 
and normal system have the same reach sets. But as soon as 
they represent different sets the algorithm terminates and 
selects a point which uniquely belongs to one of the sets. 
Then the optimal input for reaching the selected point is 
calculated and injected to the system. If the system could 
reach to the selected point then it is in the corresponding 
mode, otherwise it is in the other mode. This paper is 
organized as follows: Outline of the approach and some 
preliminaries are given in Section 2. Section 3, describes the 
algorithm and explains it via three tank benchmark example. 
And finally conclusion and future investigation are discussed 
in section 5.  

2. OUTLINE OF THE METHOD 

Most of diagnostic methods follow the same principle. They 
observe a sequence of measured input and output of the 
system and decide whether the measured I/O pair is 
consistent with the model that describes the behaviour of the 
system (Blanke et al., 2006). If the consistency is not 
confirmed a fault can be detected but in order to diagnose a 
fault, model of the faulty behaviour of the system subject to 
the fault is also necessary.  

Suppose that the current observed I/O pair is the point A or 
B as depicted in Figure 1. Set 0B represents the normal 

behaviour of the system and set 1B  represents the faulty 

behaviour of the system subject to fault 1f . As long as these 

points belong uniquely to the sets 0B and 1B which are 
describing the normal and the faulty behaviour of the system 
respectively, then the diagnoser can decide whether the 
system is in its normal operation or subject to fault 1f . The 
ambiguity arises when the observed data is the point C , 
which belongs to the area where the normal behaviour and 
faulty behaviour of the system overlap. In this case, the 
diagnoser can not distinguish if the system is subject to the 
fault 1f  or in the normal operation. The main idea of the 
active fault diagnosis is to exert an input signal to the system 
to move the point C to a new point C′ which uniquely 
belongs either to the set 0B or 1B . Roughly speaking, the idea 
of this paper can be described as follows. Having the model 
of the faulty and normal system, we predict the behaviour of 
system considering possible uncertainties and possible inputs 
in next steps and find the first step that the faulty and normal 
system represents different behaviours. Then the diagnoser 
tries to find an optimal input to reach one of those points. 
Assume that it is chosen to reach a point which uniquely 
belongs to the future behaviour of the normal system 
considering all possible inputs. Then the optimal input is 
exerted to the system to reach that point. If the system could 

reach to the determined point then the system is in the normal 
mode otherwise it is faulty.  

 

Fig.1. The system behaviour 

The proposed algorithm is developed for active fault 
diagnosis of linear hybrid system.  

Definition1. A hybrid automaton H is a collection 
( , , , , , , , , , )H Q X U Y Init f Inv E G R= , where 

. Q is a set of finite discrete states 1 2{ , , ..., }
m

Q q q q= ; 

. X is a finite set of continuous state variables; 

.U is a finite collection of input variables. 

. Y is a finite collection of output variables.  

. : nf Q X U× × → is a vector field; 

. Init Q X⊂ × is a set of initial states. 

.Inv: 2X UQ ×→ assigns to each q Q∈ an invariant set 
( )inv q X U⊆ × ; 

. E Q Q⊂ × is a set of discrete transitions; 

: 2X UG E ×→ assigns to each ( , )e q q E′= ∈ a guard 
( )g e X U⊂ × ; 

. The jump function : 2XJ E X U× × → that assigns a jump 
set ( , , )J e x u X U⊆ × to each pair e E∈ and ( )x g e∈ ; 

In the case of linear hybrid system the vector field 
q

f is 
represented by a linear difference equation: 

( 1) ( ) ( )
q q q q q

x k A x k B u k+ = +  and the output is described by: 

( ) ( ) ( )
q q q q q

y k C x k D u k= + .  

For modelling of faults in hybrid systems two types of fault 
can be considered: discrete faults and continuous faults. 
Discrete faults can be considered as a new mode or location 
in hybrid system. Here continuous faults are also modelled as 
a new discrete mode as in [Mohammadi et al., 2007]. It is 
supposed that events that describe transitions from a normal 
location to a faulty location are unobservable events. The 
system can be in normal condition N or in faulty condition

i
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Figure 6.1: System behaviour

Given a model of the normal and the faulty system, from the current state we predict
all possible behaviour that each model of the system can present in the next step consid-
ering all possible inputs. This task is repeated as long as the predicted behaviour of the
fautly and the normal model are the same. As soon as they become different, we find
the set holding these different behaviours. We choose one of them, e.g. belonging to
the future behaviour of the normal system. Then we find an optimal input sequence that
will drive the system to a state corresponding to the selected behaviour and apply it to
the system. If the output of the system reaches the corresponding output of the selected
behaviour, then the system is in the normal mode otherwise it is faulty.

It is supposed that the initial state of the system is given by an observer-based pas-
sive diagnoser as proposed by [10]. The diagnoser consists of two parts: mode observer
and countinuous observer. If the current state of the system, (q(k), x(k)), is determined
uniquely then the condition is also determined. A problem arises when both the faulty
mode and the normal mode are recognized as consistent with the I/O sequence. A mode is
consistent with the I/O sequence when the corrresponding element in the residual vector
ρ = {r1, . . . rm} generated by the mode observer is zero. Consistency of two modes
with the I/O sequence means that they have indistinguishable executions. Two executions
are called indistinguishable in a time interval if their corresponding continuous output in
that time interval are identical.

3.2 The proposed algorithm

In this subsection the proposed algorithm for one faulty mode is described. In [9] it is
explained how to expand the algorithm to more than one faulty mode.

The algorithm looks for two distinguishable executions χ1 and χ2 respectively from
the system in normal condition, ΣN , and the faulty system, ΣF . In order to accomplish
this task, all possible outputs that both systems could reach in the future time steps con-
sidering all admissible inputs and starting from the given initial state is computed which
is equal to reach set computation.

Definition 6.2 (Reach Set). Reach Set of a hybrid automata H at time k denoted by
Reachk(H,X (0),U) is the set of all states (q, x) ∈ Q×X that are reachable by a given
hybrid automataH at time step k, starting from any initial state x(0) ∈ X (0) and with all
possible inputs u ∈ U .

As soon as the corresponding outputs of the reach sets of the system based on the
normal and the faulty model of the system becomes different the algorithm terminates.
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3 The proposed algorithm

Table 6.1: Active Fault Diagnosis

Algorithm 1
Given x0, β,ΣN ,ΣF , (ΣN 6= ΣF )
Find condition κ
k = 0, I = x0,RN0

= RF0
= x0

Repeat
RNk = Reach(ΣN ,RNk−1

, U)
RFk = Reach(ΣF ,RFk−1

, U)
RNk = RNk ∩ T
RFk = RFk ∩ T
I = Y (RNk)\Y (RFk)
k = k + 1

Until (I 6= ∅ ∨ k > β − 1)
Kmax = k
IF I = ∅

The fault F is undiagnosable
Else
Solve the optimization problem
minuKmaxJ(xKmax ,uKmax , yKmax)

s.t.
{

ΣN
xo = x0, yf ∈ Y (I)

Apply uKmax to the system
IF yKmax ∈ Y (I) Then κ = N Else κ = F

In Algorithm 1, reach sets of the normal system and the faulty system at time k are
respectively denoted by RNk and RFk and the area of tolerable perfomance is denoted
by the set T . The area of tolerable performance is defined by the minimum level of
control objectives and system constraints, which are required to maintain safe operation.
At each time step RNk and RFk are computed. To ensure that the solution found by
the algorithm does not include any intolerable performance, the area of intolerable per-
formance is excluded from the reach sets. The corresponding outputs are denoted by
Y (RNk) and Y (RFk). If these two sets are not exactly the same or in other words if the
set ∆k = (Y (RNk) ∪ Y (RFk))\(Y (RNk) ∩ Y (RFk)) is not empty then there exist dis-
tinguishable executions in the time interval [0, k]. The set ∆k is called the discriminating
set. As soon as the discriminating set becomes nonempty the algorithm proceeds to the
next step which is determining the system condition.

To determine the system condition we need to make a hypothesis about it at time 0.
If we assume that the system at time 0 is in the Normal condition, as it is assumed in
algorithm 1, to test this hypothesis, the algorithm chooses a point which uniquely belongs
to the future behaviour of the normal system i.e ỹ(Kmax) ∈ Y (RNKmax )\Y (RFKmax )
where k = Kmax shows the first time that the discriminating set becomes nonempty.
After choosing the point, the optimal input to reach ỹ(Kmax) is computed and applied
to the system. If y(Kmax) = ỹ(Kmax) then the hypothesis is verified and the system
is in the normal condition otherwise it is in the faulty condition. Fig. 6.2 illustrates the
algorithm.
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Since the termination of the algorithm is not guaranteed, for practical applications a
bound β onKmax is set. If the algorithm does not terminate after β steps, it is recognized
as indiagnosable by this method.

The above results are valid only if the reach set at time k is computed from the initial
state without any uncertainty. But suppose that the initial state is given in the set X (0),
then two different cases should be considered. In the first case, if all the states in the
obtained reach sets RNKmax and RFKmax are reachable from the initial set X (0) within
Kmax sampling time then the previous result is hold, in other words, ∆k = (Y (RNk) ∪
Y (RFk))\(Y (RNk)∩Y (RFk)). Checking the reachability condition for hybrid systems
is not simple. In the second case, if the reachability condition does not hold then the
conservative approach is to check when the two reach sets Y (RNK ) and Y (RFK ) are
totally distinct from each other i.e. Y (RNK ) ∩ Y (RFK ) = ∅. When this condition is
satisfied the algorithm must terminate and ∆k = Y (RNk) ∪ Y (RFk).

To find the optimal input, the following cost function is used:

J(xk,uk, yk) =

ΣKmaxk=0 ‖y(t+ k)− r(k)‖+ ‖u(t+ k)− ur(k)‖+ ‖x(t+ k)− xf‖,

where r(k) is the output reference signal, ur(k) the input reference signal and xf is the
final desired state.

Two groups of constraints are applied in the optimization. The first one is that the
state variables should evolve based on the dynamic of the system which is dependent
on our hypothesis. The second group ensures that the system remains in the area of
tolerable performance for the situation that our hypothesis was wrong and the system is
actually faulty. Suppose that the area of tolerable performance is given by the polytope
T = {x ∈ Rn|Px ≤ M}. To ensure that system states will remain in T , the following
constraints should be added to the optimization problem: {Px(i) ≤M}k+Kmax

i=k+1 .
For a linear systems the reach set can be computed as:

Reach(Σ,X (0),U) = AX (0)⊕BU , (6.2)

Figure 6.2: Active diagnosis method
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4 System Description

where X (0),U denote the convex polyhedra of the initial state and the input respictvely
and ⊕ is the geometric or Minkowski sum. For computational effciency the represen-
tation used for the reach set and input set consists of sets which are closed under linear
transformation and Minkowski sum such as polytopes, ellipsoids or zonotopes [11]. In
the case of linear hybrid systems enabled transitions and the corresponding jump func-
tions should be considered. The reach set computation is descibed with more details in
[9].

3.3 Sensor Assignment

Wrong assignment of sensors can be considered as a fault, and it can be modelled as a per-
mutation of the output vector. The problem is to find among all permutations the one that
is consistent with the dynamic behaviour of system. Consider a system with n sensors.
There are n! candidate assignments or in another words n! − 1 fault hypothesis. If we
use algorithm 1 directly, it will be computationally very expensive. The method proposed
here only needs one model of the system. It is supposed that the initial state of the system
is given such that the outputs are indistinguishable, i.e. yi = yj , i, j ∈ 1, · · · , n, i 6= j.
In order to simplify the explanation, the idea is described for a system with two sen-
sors. We assume that as long as |y1 − y2| < ε outputs can not be distinguished. If we
excite the system such that as its result y1 > y2 + ε or y2 > y1 + ε then they can
be distinguished. Therefore as before we compute future reach sets of the system. As
soon as the corresponding output set goes outside the region |ŷ1 − ŷ2| < ε the algo-
rithm terminates. A state correspondent to a point in Y (RKmax) ∩ (|ŷ1 − ŷ2| > ε) is
chosen. Any point in this set exibits an order between its elements i.e. ŷ1 > ŷ2 or
ŷ2 > ŷ1. A point in this set is chosen. We find the input for leading the system to
the chosen point and apply it to the system. By comparing the order in the elements
of the output vectors and the predicted orders between elements of [ŷ1, ŷ2] we can find
the correct assignment. For example, if a point in ŷ2 > ŷ1 is chosen and the observed
output presents the following order y1(Kmax) > y2(Kmax) then S1 should be assigned
to the variable ŷ2 and S2 to ŷ1. If there are more than two sensors the strategy is the
same. The algorithm looks for an area where the outputs present an order which is
Y (RKmax) ∩ (|yi − yj | > ε, 0 ≤ i, j ≤ n, i 6= j). The system is then driven to that
area. By comparing the predicted order and the obseved order the assignment is accom-
plished.

4 System Description

In a supermarket, for customer’s convenience, goods are usually placed in an open display
case in a refrigerator. Fig. 6.3 shows a supermarket refrigeration system with two display
cases. The system consists of five main parts, namely liquid manifold, display cases,
suction manifold, compressor and condenser. The refrigerant in the liquid manifold is
in the liquid phase. It is led into the evaporators inside the display cases through inlet
valves. The compressor keeps the evaporator temperature at a certain level by keeping the
pressure in the suction manifold at a constant pressure. The refrigerant removes heat from
goods while evaporating in the evaporators and transforming into low pressure gas. The
low pressure refrigerant is compressed in the compressor rack. The refrigerator circuit is
closed by feeding back the liquid refrigerant from the condenser to the liquid manifold.
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Figure 6.3: A Simplified Supermarket Refrigeration System

Fig. 6.4 shows an schematic illustration of the measurements and control instrumen-
tation in a typical display case used in a supermarket refrigeration system. An air flow
is circulating through the evaporator. The refrigerant is led into the evaporator through
an on/off inlet valve and evaporates while absorbing the heat from the surrounding. The
circulating air flow creates a cold air curtain at the front of the display case. Since the air
curtain is colder than the goods and the surroundings, it absorbs the heat from the goods
(Qgoods−air) and the surroundings (Qairload). The absorbed heat is transferred through
the evaporator wall to the evaporator (Qair−wall).

5 The Hybrid Model of the System

The hybrid model we use is based on the model proposed in [12].

5.1 Evaporator

The dynamic of the evaporator is obtained by writing energy balance equations:

 

v  

Controller 

Evaporator 

,air inT  

,air outT

 

sucP  
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wallT  
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compressor
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Figure 6.4: An evaporator and its instrumentation
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5 The Hybrid Model of the System

dTair,in
dt

=
Q̇goods−air + Q̇airload − Q̇air−wall

MairCpair
(6.3)

dTwall
dt

=
Q̇air−wall − Q̇e
MwallCpwall

(6.4)

dTgoods
dt

=
−Q̇goods−air
MgoodsCpgoods

(6.5)

Moreover,

Q̇air−wall = UAair−wall(Tair − Twall) (6.6)

Q̇e = UAwall−ref (Mref )(Twall − Te) (6.7)

Q̇goods−air = UAgoods−air(Tgoods − Tair) (6.8)

UAwall−ref = UAwall−ref,max
Mref

Mref,max
(6.9)

Tair,in − Tair,out =
Q̇air−wall
ṁairCpair

, (6.10)

where M denotes the mass, Cp the heat capacity and UA the overall heat transfer co-
efficient with the subcript denoting the media between which the heat is transferred. Te
shows the evaporation temperature which is a refrigerant dependant function of the evap-
oration pressure Pe. Here it is assumed that there is no pressure drop in the suction line
and therefore the suction pressure Psuc is equal to the evaporation pressure.

It is assumed that the evaporator will be filled or emptied abruptly as the valve is
opened or closed respectively. Consequently, the value of the mass of refrigerant ,Mref ,
switches between 0 and Mref,max.

5.2 The Suction Manifold

The dynamic of the suction pressure is described by

dPsuc
dt

=
ṁin−suc + ṁref−const − V̇comp.ρsuc

Vsuc
dρsuc
dPsuc

(6.11)

where Vsuc is the volume of the suction manifold, V̇comp is the volume flow from the suc-
tion manifold to the compressor and ṁin−suc is the total mass flow from the evaporator
to the suction manifold which is given by

ṁin−suc = Σni=1

Q̇e, i

∆hlg
, (6.12)

where n is the number of the display cases. ṁref−const is a constant disturbance repre-
senting mass flow from other unmodelled refrigerator entities. ρsuc represents the density
of the vapor in the suction manifold which is a nonlinear refrigerant-dependent function
of Psuc.
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5.3 The Compressor

A number of compressors working in parallel that can be switched on or off separately
constitute the entire compressor capacity. The entire volume flow out of the suction man-
ifold is described by V̇comp = Σqi=1V̇comp,i, where V̇comp,i is the volume flow created by
one compressor which is given by

V̇comp,i =
compi.ηvol.Vsl

100
i = 1, · · · , q, (6.13)

where compi denotes the capacity of the i’th compressor, q is the number of compressors,
ηvol is the constant volumetric efficiency and Vsl is the total displacement volume.

5.4 The Overall Model

Putting together the above subsystems we get the overall dynamical model of the system.
Each display case has three states, namely Tair,in, Tgoods, Twall and the suction manifold
has one state which is Psuc. Measured variables are Tair,in, Twall, Tair,out, Te. Inputs
of the system are the evaporator inlet valves and comppressors valves. These valves are
considered as on/off valves and therefore the overall model of the systems represents a
hybrid dynamic.

In order to apply our method to this system we need a linear hybrid dynamical model
of it. Therefore nonlinearities such as the dependency of Te and ρsuc on Psuc in equations
6.7, 6.11 are substituted by linear approximations of them.

6 Simulation Results

The sensor assignment algorithm is tested on the refrigeration system for assignment of
the wall and input air temperature sensors to [Tair,in, Twall]. Because we are consid-
ering the commissioning phase there is no goods inside the display case and therefore
Q̇goods−air = 0 and Tgoods is not a state. It is assumed that the initial states are in the
polytope {14 ≤ Tair,in ≤ 16, 14 ≤ Twall ≤ 16, 1 ≤ Psuc ≤ 3}. Also Q̇airload is con-
sidered as a disturbance and is assumed to vary between 1500 and 4500. We have used
Ts = 2 as sampling time for discretization and ε = 1.

To consider the effect of all possible binary inputs, for every corresponding discrete
mode the reach set is computed via algorithm 1 and Rk is obtained by calculating the
union of the results. Because of uncertainties due to the initial states given as a polytope
and Q̇airload considered as disturbance, as explained in section III, we should either check
the reachability condition or consider the conservative solution. Here the conservative
solution is considered. Consider the reach set at time k. Because of the switching effect
of the binary inputs it is a union of p polytopes Rk = ∪pi=1Pi. We can not say that
every state inRk is reachable but we know that a state in Pi is reachable by choosing the
corresponding sequence of binary inputs. Therefore, for termination of the algorithm it is
enough to check whether there exist a Pi inRk such that its intersection with |y1 − y2| <
ε is empty. It happens at k = 4 and the reach set is depicted in Fig. 6.5.

Fig. 6.6 shows the initial states, the target polytope and the observed and predicted
output. Comparing the expected order and the observed order the assignment is
(y2, Tair,in), (y1, Twall). The obtained input sequence for both valves is [1, 1, 1, 1] which

74



6 Simulation Results

8 9 10 11 12 13 14 15 16 17 18
6

8

10

12

14

16

18

20

Tair,in

T w
al

l

Figure 6.5: Reach set of the system at k = 4, Twall = Tair,in + 1, Twall = Tair,in − 1
and Twall = Tair,in
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Figure 6.6: Initial states, the target polytope, the observed output (dashed) and the pre-
dicted output (solid).

means that both valves should be opened, that is we should cool down the system as soon
as possible. It is shown in [9] that when there is both continuous and discrete inputs,
the main complexity of the algorithm is due to discrete inputs which cause switching and
therefore nonconvexity in the reach set. If the computational complexity is too high, it is
possible to fix some of discrete inputs and diagnose the system at the cost of losing the
optimal input. However, sensor assignment computations can be done offline.

A frequent fault in the refrigeration system is that the value of the pressure sensor is
fixed at its value when the fault happens. Fig.6.7 shows a simulation of the refrigeration
system controlled by a hysteresis controller for Tair,in, Psuc where the upper and the
lower values for Tair,in are 0, 4 and those of Psuc are 1, 1.5. If this fault happens, for
example at t = 300, no passive diagnosis method will be able to detect it until t = 1162.
This is because the normal system and the faulty system in this period exhibit the same
behaviour. Using the active diagnosis method helps us to diagnose the fault faster. We
have applied the algorithm and the input sequence is to open Vevap for 3 sampling times.
The reason for this can be easily seen if one looks at the behaviour of the system at
t = 1162 when the controller opens Vevap and as its result Psuc increases.
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Figure 6.7: Top: Tair,in(dashed), Twall(dotted), Psuc(solid), Bottom:
Vcomp(dotted)Vevap(solid).

7 Conclusion

In this paper an approach to the problem of sensor assignment based on active fault diag-
nosis is proposed and tested on a supermarket refrigeration system. The active diagnosis
approach could also be used for sanity check at the commissioning phase or for faster
detection of faults during the normal operation of the system.We extended the previous
result on active diagnois for sensor assignment such that we do not need reach set compu-
tation for every possible assignment, but reach set computation is itself a computationally
burdensome task. An algorithm that does not need reach set computation would be desir-
able. In our future work it will be investigated using a reformulation as an optimization
problem.
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1 Introduction

Abstract

In active diagnosis the system is excited by a signal that aims to uncover latent
errors. However, the diagnosis signal may destabilize the system, in particular in an
open-loop structure, but also in a closed-loop structure, because the nominal con-
troller is designed to stabilize the nominal system. This paper presents a method for
active diagnosis of MLD systems where instability is avoided: The diagnoser looks
for steady states of both the normal and faulty system which are reachable by the
same input such that the corresponding outputs are distinguishable from each other.
The input is applied to the system and the condition of the system is determined based
on the output. Thus this excitation preserves stability. The method can be useful in a
design phase to find a sensor allocation which guarantees diagnosability. The method
is tested on the two tank benchmark example.

1 Introduction

In a complex control system there are many components with strong interaction between
them. Hence the overall system performance depends on the individual performance of
components. A fault in a single component may, therefore, degrade the overall perfor-
mance of the system and may even lead to unacceptable loss of system functionality.
Thus fault diagnosis is of crucial importance in automatic control of complex systems.

There are two main categories of diagnosis methods : passive and active. In passive
diagnosis, the the input and output of the system is observed by the diagnoser. Based on
the observation the diagnoser decides whether a fault has occurred or not. The input is
generated by an external input or by the controller.

In Active Fault Diagnosis (AFD) the diagnoser generates an input, which excites the
system, to decide whether the output represents a normal or a faulty behavior and if pos-
sible decide which fault occurred. The generated input must perturb the system from the
operation point but at the same time not lead the system to instability or to an unacceptable
performance.

The area of active diagnosis has attracted a lot of attentions in recent years. See
papers [1], [2], [3], [4], [5], [6], [7], [8], and books [9], [10]. Most of the available
methods are in open-loop configuration and for linear systems. In [11] a method for
active diagnosis of hybrid system based on reachabilty anaysis is proposed and extended
for automatic sensor assignment in [12]. [13] proposes a model predictive method for
active diagnosis of hybrid system using Mixed Logical Dynamical (MLD) framework.
A qualitative event-based approach for active diagnosis of hybrid systems is presented in
[14] where diagnosis is improved by executing or blocking controlable events. [6] and [7]
present a method for active diagnosis of parametric faults in closed loop systems based
on YJKB parameterization.

Stability is an important issue in the fault tolerant control systems. When a fault
occurs, it takes time for the fault detection module to detect the fault and even when it is
detected it needs some time to isolate and identify the fault. During this period the system
is working in a faulty condition. For a closed-loop system, because the controller is
designed for the nominal system the performance of the closed loop system in this period
is dependent on the severity of the fault and the robustness of the nominal controller. The
controlled system may become unstable in this period [15]. The faulty system may not
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be stabilizable with the nominal controller and the time window for an unstable system ,
e.g. double inverted pendulum, may be too small to detect and isolate the fault and then
reconfigure the loop. [16].

For active diagnosis the stability issue is more critical because we are exciting the
system with the aim of detecting the fault. When the AFD starts the diagnosis it is not
known whether the system is in the normal or the faulty condition. A stability guaran-
teeing method for diagnosis of additive, parametric and multiplicative faults for linear
systems based on observer parameterization is proposed in [17].

In [13] a model predictive method is proposed for active diagnosis of MLD system.
The problem is reformulated as a mixed integer programming problem. The objective
function of the optimization problem is to make an observable difference between pre-
dicted outputs of the normal system and the faulty systems fulfilling constraints imposed
by required performance during fault detection. While the computed input sequence di-
agnoses the fault, it may destabilize the system.

In this work a different approach is used. The system is moved from its current states
to other steady states. These steady states belong to either the normal system or a faulty
system which are reachable by the same input and the corresponding steady outputs are
distinguishable. The fault is diagnosed based on the output measurement. Because the
system is moving to steady state, regardless of its condition, injected input does not desta-
bilize the system. When it is not possible to find a diagnosis signal that separates the the
output of the normal system from that of a faulty system, the diagnosis using separating
output may not be possible. In this case this approach could be used as a pre-analysis for
deciding which outputs must be measured to have the capability of diagnosis using steady
outputs.

The structure of the paper is as follows. In Section 2 preliminaries and problem formu-
lation are explained. Section 3 explains the proposed algorithm. In section 4, the method
is tested on the two tank example. And finally conclusions and future investigation are
discussed in Section 5.

2 Preliminaries and Problem formulation

In this section we first introduce the MLD framework and then the active diagnosis prob-
lem is formulated.

2.1 Mixed Logical Dynamical Systems

For modeling of hybrid systems, the mixed logical dynamical (MLD) framework pro-
posed in [18] is used. The equations describing an MLD system are as follows:

x(t+ 1) = Ax(t) +B1u(t) +B2δ(t) +B3z(t) (7.1)
y(t) = Cx(t) +D1u(t) +D2δ(t) +D3z(t) (7.2)
E2δ(t) + E3z(t) ≤ E1u(t) + E4z(t) + E5 (7.3)

where x ∈ Rnc × {0, 1}nl are states, u ∈ Rmc × {0, 1}ml are the inputs, y ∈ Rpc ×
{0, 1}pl are the outputs. δ ∈ {0, 1}rl and z ∈ Rrc are auxiliary binary and continuous
variables.
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The MLD framework has the capability of modeling various classes of hybrid systems
such as PieceWise Affine (PWA) systems, linear systems with piecewise linear output
functions, linear systems with discrete inputs or with qualitative outputs, bilinear systems,
and finite state machines in which a linear time invariant system generates the events [18].

Equivalence of MLD systems with other classes of hybrid systems such as PWA sys-
tems, linear complementary (LC) systems, extended linear complementary (ELC) sys-
tems, and max-min-plus-scaling (MMPS) systems under some assumptions is shown in
[19].

Using the MLD framework different problems such as optimal control, state estima-
tion, etc. can be reformulated as a mixed-integer programming problem and then can be
solved using mixed integer programming techniques.

2.2 Problem Formulation

In model-based passive diagnosis, the diagnoser receives a sequence of input/output mea-
surements. A model of the normal system B0 and different models of the system subject
to different faults, namely B1, . . . ,Bn. are given. Then, the diagnoser checks the consis-
tency of the measured I/O sequence with given model. As explained in [20], the output of
the diagnoser is a fault candidate index f ∈ 1, . . . , n such that the observed I/O sequence
is consistent with the corresponding behavior Bf [20]. In this case the input is given by
an external system.

The structure of an active diagnoser in depicted in Fig. 7.1. It consists of a generator
and a diagnoser. The generator generates an input sequenceU = 〈u(0), . . . , u(m)〉which
is applied to the system and then index f is determined by the diagnoser through the ob-
servation of the applied input sequence and the output sequence Y = 〈y(0), . . . , y(m)〉.

 

Plant 
y u

Input 
Generator 

if  
Diagnoser 

Figure 7.1: Structure of an Active fault diagnoser system

The active diagnosis problem can be stated as follows:

Problem 7.1 (Active diagnosis problem). Given the set B = {B0, . . . ,Bn} describing
behaviors of the system with no fault and subject to faults {f1, . . . , fn}, find a sequence
of inputs U and i ∈ {0, . . . , n} such that (U, Y ) belongs only to Bi.

If the input sequence exists, i.e. if the system is diagnosable then we can look for the
optimal solution, where optimality can be interpreted in different senses.
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The main advantage of active diagnosis is when different behaviors of the system
overlap, see Fig. 7.2. The faultless behavior and the behavior of the system subject to the
fault f1 are in the sets B0 and B1 repectively. As long as the observed I/O pair uniquely
belongs to the set B0 or B1, such as point A or B, it can be decided whether the system
is faulty or not. But if the observed pair belongs to the intersection of B0 and B1, like
C, it is impossible to diagnose the fault. The main idea of the proposed algorithm is to
generate an input signal to move the system from C to an area which belongs uniquely
either to the set B0 or B1.

 
 

     

 

active fault diagnosis method for diagnosis of linear hybrid 
system in discrete time is proposed. The idea is based on 
reach set computation for faulty and normal system. For both 
systems, those states that the system could reach in 
forthcoming steps considering all possible excitations are 
considered. Reach set are computed as long as faulty system 
and normal system have the same reach sets. But as soon as 
they represent different sets the algorithm terminates and 
selects a point which uniquely belongs to one of the sets. 
Then the optimal input for reaching the selected point is 
calculated and injected to the system. If the system could 
reach to the selected point then it is in the corresponding 
mode, otherwise it is in the other mode. This paper is 
organized as follows: Outline of the approach and some 
preliminaries are given in Section 2. Section 3, describes the 
algorithm and explains it via three tank benchmark example. 
And finally conclusion and future investigation are discussed 
in section 5.  

2. OUTLINE OF THE METHOD 

Most of diagnostic methods follow the same principle. They 
observe a sequence of measured input and output of the 
system and decide whether the measured I/O pair is 
consistent with the model that describes the behaviour of the 
system (Blanke et al., 2006). If the consistency is not 
confirmed a fault can be detected but in order to diagnose a 
fault, model of the faulty behaviour of the system subject to 
the fault is also necessary.  

Suppose that the current observed I/O pair is the point A or 
B as depicted in Figure 1. Set 0B represents the normal 

behaviour of the system and set 1B  represents the faulty 

behaviour of the system subject to fault 1f . As long as these 

points belong uniquely to the sets 0B and 1B which are 
describing the normal and the faulty behaviour of the system 
respectively, then the diagnoser can decide whether the 
system is in its normal operation or subject to fault 1f . The 
ambiguity arises when the observed data is the point C , 
which belongs to the area where the normal behaviour and 
faulty behaviour of the system overlap. In this case, the 
diagnoser can not distinguish if the system is subject to the 
fault 1f  or in the normal operation. The main idea of the 
active fault diagnosis is to exert an input signal to the system 
to move the point C to a new point C′ which uniquely 
belongs either to the set 0B or 1B . Roughly speaking, the idea 
of this paper can be described as follows. Having the model 
of the faulty and normal system, we predict the behaviour of 
system considering possible uncertainties and possible inputs 
in next steps and find the first step that the faulty and normal 
system represents different behaviours. Then the diagnoser 
tries to find an optimal input to reach one of those points. 
Assume that it is chosen to reach a point which uniquely 
belongs to the future behaviour of the normal system 
considering all possible inputs. Then the optimal input is 
exerted to the system to reach that point. If the system could 

reach to the determined point then the system is in the normal 
mode otherwise it is faulty.  

 

Fig.1. The system behaviour 

The proposed algorithm is developed for active fault 
diagnosis of linear hybrid system.  

Definition1. A hybrid automaton H is a collection 
( , , , , , , , , , )H Q X U Y Init f Inv E G R= , where 

. Q is a set of finite discrete states 1 2{ , , ..., }
m

Q q q q= ; 

. X is a finite set of continuous state variables; 

.U is a finite collection of input variables. 

. Y is a finite collection of output variables.  

. : nf Q X U× × → is a vector field; 

. Init Q X⊂ × is a set of initial states. 

.Inv: 2X UQ ×→ assigns to each q Q∈ an invariant set 
( )inv q X U⊆ × ; 

. E Q Q⊂ × is a set of discrete transitions; 

: 2X UG E ×→ assigns to each ( , )e q q E′= ∈ a guard 
( )g e X U⊂ × ; 

. The jump function : 2XJ E X U× × → that assigns a jump 
set ( , , )J e x u X U⊆ × to each pair e E∈ and ( )x g e∈ ; 

In the case of linear hybrid system the vector field 
q

f is 
represented by a linear difference equation: 

( 1) ( ) ( )
q q q q q

x k A x k B u k+ = +  and the output is described by: 

( ) ( ) ( )
q q q q q

y k C x k D u k= + .  

For modelling of faults in hybrid systems two types of fault 
can be considered: discrete faults and continuous faults. 
Discrete faults can be considered as a new mode or location 
in hybrid system. Here continuous faults are also modelled as 
a new discrete mode as in [Mohammadi et al., 2007]. It is 
supposed that events that describe transitions from a normal 
location to a faulty location are unobservable events. The 
system can be in normal condition N or in faulty condition
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Figure 7.2: Input-Output Space

3 The Proposed Algorithm

It is assumed that the initial states of the system are in the area in which the faulty behavior
and the normal behavior overlap. If this is not the case the fault could be diagnosed by
means of a passive diagnoser. It is assumed that the model of the faulty system and the
normal system is given in MLD form as in (7.1)-(7.3) with subscript 0 indicating the
normal system and i indicating the system equation for the system subject to fault fi.

The diagnosis aims at finding a sequence of inputs such that the outputs based on the
different dynamics becomes distinguishable from each other. In another words:

Yi 6= Yj , ∀ i, j ∈ {0, . . . , n}, i 6= j (7.4)

This difference between yi(k) and yj(k) should be observable which means:

|yi(T )− yj(T )| ≥ d for all i, j ∈ {0, . . . , n}, i 6= j (7.5)

or if a relative separation is used: |yi(T )− yj(T )| ≥ d · |yi(T )|, where T is the length of
the sequence and d is a separation distance that is dependent on the level of noise.

Satisfaction of the above constraints, (7.4) and (7.5), is actually isolation for every
single fault. Isolation for every single fault is very demanding and may not be necessary.
One can consider the following scenarios which are less demanding:

• Fault detection: In this case, the aim is to find if the system is working normally
or it is faulty. We are not interested to detect which fault has occurred. Therefore
(7.4) can be relaxed as:

|y0(T )− yi(T )| ≥ d, ∀ i ∈ {1, . . . , n}, (7.6)
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3 The Proposed Algorithm

• Fault isolation for a set of faults: It is possible that a set of faults have the same
impact on the functionality of the system and also require the same fault accom-
modation or control reconfiguration actions. Therefore it is not required to isolate
these faults. Moreover it could be the case that these faults cannot be isolated easily
and therefore we just aim at isolation of the set. It is assumed that indices for these
faults is given by the set F , then (7.4) becomes:

|yi(T )− yj(T )| ≥ d ∀ i ∈ F , j /∈ F , (7.7)

Note that a practical approach is to first detect the fault. Then isolate a set and then
isolate a fault in this set.

Due to rich behavior of a MLD system it may have different steady states. We use this
property. In this work, we are looking for steady states from systems i, j ∈ {0, · · · , n}
namely, xsi , such that the corresponding output are distinguishable i.e. :∣∣ysi − ysj ∣∣ ≥ d, ∀ i, j ∈ {0, . . . , n}, i 6= j (7.8)

If these steady outputs exist then the fault is diagnosable.
A steady state value for an MLD system can be obtained by solving a mixed integer

problem of the following form:

min
xs,us,δs,zs

‖Q1(ys − yr)‖p + ‖Q2(xs − xr)‖p+

‖Q3(us − ur)‖p + ‖Q4(δs − δr)‖p+
‖Q1(zs − zr)‖p (7.9)

s.t.

 xs = Axs +B1us +B2δs +B3zs
ys = Cxs +D1us +D2δs +D3zs
E2δs + E3zs ≤ E1us + E4xs + E5

(7.10)

,where ‖.‖p is p norm, Qi are positive definite weighting matrices. yr, xr, ur, dr, zr are
given offset vectors.

It is possible that the resulting steady state (xs, us, δs, zs) is not reachable. It is also
possible that a steady state does not exist but cycling-steady states exist [21]. Here we
assume that the steady state is reachable and that we do not have cycling-steady state
behavior.

Distinguishable steady outputs, if they exist, can be found by solving the the following
problem:

min
xsi ,us,δsi ,zsi

Σni=0‖Q1i(ysi − yr)‖p + ‖Q2i(xsi − xr)‖p

‖Q3i(us − ur)‖p + ‖Q4i(δsi − δr)‖p+
‖Q5i(zsi − zr)‖p (7.11)

s.t.


xsi = Axsi +B1ius +B2iδsi +B3izsi
ysi = Cixsi +D1ius +D2iδsi +D3izsi
E2iδsi + E3izsi ≤ E1iusi + E4ixsi + E5i∣∣ysi − ysj ∣∣ ≥ d for all i, j ∈ {0, . . . , n}, i 6= j

(7.12)
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, where yr, xr, ur, δr, zr, is a reference vector. Selection of this reference vector is
based on the phase in which we are doing the diagnosis. If we are in the operating phase,
then they are chosen equal to the current operating values. In other words, we want to
find those steady states which are the closest to the current operating point and at the
same time are distinguishable. If we are in the commissioning phase, they are equal to
the reference signals. In other words, we are looking for those steady states which are
closest to the reference signals and are distinguishable. Note that additional constraint
on states and outputs could be easily handled in this formulation by adding them to the
optimization constraints.

In (7.11), the distinguishability constraint
∣∣ysi − ysj ∣∣ ≥ d should be written in the

appropriate form. To do that, the following auxiliary binary variables are introduced:

[sij1 = 1]↔ [ysi − ysj ≤ d]

[sij2 = 1]↔ [ysj − ysi ≤ d]

sij = sij1 ∧ sij2, i, j ∈ {0, . . . , n}, i 6= j

S = ∨ni=0sij (7.13)

The constraints
∣∣ysi − ysj ∣∣ ≥ d for all i, j ∈ {0, . . . , n}, i 6= j can be transformed

into the equality constraint S = 0 and a set of mixed integer linear inequalities obtained
from transforming logical propositions in (7.13) to equivalent mixed integer inequalities
using the technique introduced in [18].

The auxiliary binary variable S as it is formulated in (7.13) aims at isolation of every
single fault. For other scenarios S is constructed as follows:

• Fault detection:
S = ∨ni=1s0i (7.14)

• Fault isolation for a set of faults:

S = ∨sij , ∀ i ∈ F , j /∈ F (7.15)

Using the introduced auxiliary variable, the problem can be rewritten as:

min
xsi ,us,δsi ,zsi

Σni=0‖Q1i(ysi − yr)‖p + ‖Q2i(xsi − xr)‖p

‖Q3i(us − ur)‖p + ‖Q4i(δsi − δr)‖p+
‖Q5i(zsi − zr)‖p (7.16)

s.t.


xsi = Axsi +B1ius +B2iδsi +B3izsi
ysi = Cixsi +D1ius +D2iδsi +D3izsi
E2iδsi + E3izsi ≤ E1ius + E4ixsi + E5i

S = 0

(7.17)

If the above optimization problem is feasible then there are xsi for i = 0, · · · , n
such that the corresponding outputs ysi are distinguishable. Otherwise if the optimization
problem in (7.16), (7.17) is infeasible, then the system is not diagnosable by this method.
Having the steady state values, we can apply the steady inputs us to the system and based
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4 Example

on the steady outputs decide about its condition. Assume that the actual output of the
system at steady state is ys. Then the fault candidate is fc such that:

c = argmin
i∈{0,...,n}

|ys − ysi | (7.18)

Note that in this method there is no need to estimate the states of the system and diagnosis
can be done just by measuring outputs. It is possible to maximize the difference d which
is used for distinguishability by adding the term −α · d to the cost function in (7.16):

min
xsi ,us,δsi ,zsi ,d

Σni=0‖Q1i(ysi − yr)‖p + ‖Q2i(xsi − xr)‖p

‖Q3i(us − ur)‖p + ‖Q4i(δsi − δr)‖p+
‖Q5i(zsi − zr)‖p − α · d (7.19)

, where α is a weighting parameter.
The proposed method could be used in the design phase to decide about sensor lo-

cations to guarantee diagnosability in the steady states. Different output candidates can
be considered. Then the optimization problem is solved. Feasibility of the optimization
problem with the output candidate means diagnosability of the system with this method.

4 Example

In this section, the proposed method is tested on the two tank system. The two tank system
is shown in Fig. 7.3. The system consists of two cylindrical tanks with cross sectional area
A which are connected by two pipes at the bottom and at level hv . The flows through the
pipes, denoted by Q12V12 and Q12V1, are controlled using two on/off valves V12 and V1.
There is a flow Q1 through a pump to tank 1 which is a continuous input.

Figure 7.3: Two-tank system

Dynamical equations of the system are as follows.

ḣ1 = 1
A (Q1 −Q12V12 −Q12V1 −QL), (7.20)

ḣ2 = 1
A (Q12V12 +Q12V1 −QN ), (7.21)
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where h1 and h2 denote the levels of tanks 1 and 2 respectively. The flow Q12V12 is
described by:

Q12V12 = V12k12sign(h1 − h2)
√

2g |h1 − h2|, (7.22)

where g is the gravity constant and k12 is a valve specific constant. Similarly QL =
VLkL

√
2gh1 and QN = VNkN

√
2gh2. The flow through valve V1 is given by:

Q12V1 = V1k1sign(max{hv, h1} −max{hv, h2})√
|2g(max{hv, h1} −max{hv, h2})| (7.23)

The MLD model of the system is derived as follows (For details see [21].). The
nonlinear relation

√
x is approximated by a straight line x, thus (7.22) becomes:

Q12V12 = V12k12(h1 − h2) (7.24)

The auxiliary continuous variable z12 = V12(h1−h2) is introduced to transform the above
nonlinear equation to the linear equation Q12V12 = k12z12 with a set of mixed integer
linear inequalities. For QN and QL, using the same method, we will have QN = kNzN
and QL = kNzL where zN = VNh2 and zL = VLh2.

In order to transform (7.23) to a linear equation in the MLD framework, first we
introduce the following binary variables indicating whether the level in each tank has
reached hv:

[δ01(t) = 1]↔ [h1(t) ≥ hv] (7.25)
[δ02(t) = 1]↔ [h2(t) ≥ hv] (7.26)

and then the term max{hv, h1} −max{hv, h2} is transformed into a linear equation as
Q12V1 = k1z1, where

z1 = V1(z01 − z02) (7.27)
z01 = δ01(h1 − hv) (7.28)
z02 = δ02(h2 − hv) (7.29)

are introduced auxiliary continuous variables.
Finally, differential equations (7.20), (7.21) are discretized in time by Euler approxi-

mation ḣi(t) ≈ hi(t+1)−hi(t)
Ts , where Ts is the sample time. The final MLD model of the

system consists of two continuous states: h1, h2, 2 binary inputs: V1, V12, 1 continuous
input: Q1 and two continuous outputs: h1, h2, 2 auxialiary binary variables: δ0, δ1 and 5
auxiliary continuous variables: z01, z02, z1, zN , zL.

5 Simulation Results

The proposed active diagnosis method is used for sanity check of the upper valve V1. It is
assumed that the valve is stuck in the ON position. It is also assumed that at the beginning
both tanks are empty i.e. h1 = h2 = 0. The proposed predictive method is applied to
check whether the valve is faulty or normal. The variable d is assumed as 0.02 and the
sample time is 10 seconds. It is assumed that the valve VL is always closed and VN is
always open.
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5 Simulation Results

To obtain an MLD model of the two tanks system we use HYSDEL (hybrid system
description language)[22], which is a modeling language for Discrete Hybrid Automata
(DHA). Given a description of the system, HYSDEL translates it into different computa-
tional models like MLD or PWA.

We also assume that at the commissioning phase we want to fill the tanks to yr =
[0.3 0.2]′ and also we want to do the sanity check for V1. Therefore we look for the
closest steady states to yr such that the outputs are distinguishable. The results of the
optimization problem (7.16) are:

ys0 = [0.3 0.235]′, ys1 = [0.2668 0.235]′

Qs = 0.1196, V1 = 0, V2 = 1

(7.30)

After finding the steady values a model predictive control is designed such that the
normal system output tracks ys0 with the initial states [0 0]. Figure 7.4 shows the result.
As it can be seen by comparing the actual steady outputs with the expected values of the
normal system it can be determined that the system is faulty.

Figure 7.4: Top:Actual versus expected output of the system:h1’-’, h2’.’, ĥ1’- -’, ĥ2’.-’,
Middle: Continuous input Q1, Bottom:Binary inputs: V1 dashes and V12 solid

As we said in the introduction, another application of the method is when the faulty
system and the normal system have the same behaviors. This situation for the two tank
example is demonstrated in Fig. 7.5. In this example a model predictive controller is
designed for the two tank system to drive the system from [0 0] to the equilibrium point
[0.2664 0.2349]. This is a steady state for both the normal system and the faulty system.

Fig. 7.5 shows the simulation of the closed loop system. As one can see, the control
variable V1 is manipulated such that the output of the system in the normal condition and
in the faulty one is exactly the same. In this situation if a stuck ON fault happens, no
passive diagnoser would be able to diagnose it. In order to detect the fault by our method
we look for separating steady state points close to the current steady state. The resulting
steady values are:
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ys0 = [0.2667 0.2089]′, ys1 = [0.2372 0.2089]′

Qs = 0.1063, V1 = 0, V2 = 1

(7.31)

Figure 7.5: Top:Actual versus expected output of the system, Middle:continuous input
Q1, Bottom:discrete inputs: V1(dashed line), V12(solid line)

The steady inputs are applied to the system and the result is shown in figure 7.6. As it
can be seen the condition of the system is detectable by steady values of the output.

Figure 7.6: Top:Actual versus expected output of the system:h1’-’, h2’.’, ĥ1’- -’, ĥ2’.-’,
Middle:continuous input Q1, Bottom:discrete inputs: V1(dashed line), V12(solid line)

As one can see the steady value for h2 are always the same for the faulty system and
the normal system. Because the system is in the steady state, the input flow is equal to
the output flow: Q1 = QN . Q1 is the same in both conditions. Since QN = kn

√
2gh2, it

is obvious that in the steady state h20
= h21

. Therefore if we do not have measurements
from h1, it is not possible to diagnose the fault by using steady values. This analysis can
be used in the design phase of the system to decide where we should put sensors to be
able to diagnose the fault using steady values. As it is shown in [13], it is possible to
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6 Conclusion

diagnose the fault while it is being perturbed from the steady values, but the problem of
that method was that it may lead to instability. This method excludes the possibility of
diagnosis using transient but preserves stability. A drawback of the method is that it takes
a long time to reach the steady state values and therefore while it does not destabilize the
system it needs a long time for diagnosis.

6 Conclusion

In this paper a method for active diagnosis of MLD system based on analysis of steady
state values of the system in normal and faulty modes is presented. The excitation ob-
tained by this method does not destabilize the system because it moves the system to
a steady state, but it is possible that there are not enough distinguishable steady output
values and therefore the fault is not diagnosable using steady state values. However, this
analysis method can be used in a design phase to decide about the location of sensors
to guarantee diagnosability. While the method guarantee the stability during diagnosis
because we should wait till the system reaches steady values the approach need a long
period for diagnosis.
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1 Introduction

Abstract

A method for active diagnosis of hybrid systems is proposed. The diagnosis is
done by predicting the future output of both normal and fault affected models of the
system. Then an optimization problem is solved with the objective of making an ob-
servable difference between the predicted normal and faulty outputs. To ensure that
the system remains stable with this excitation, a model predictive controller is super-
imposed on the active diagnoser. Stabilizability of the system to an equilibrium state
is guaranteed by imposing constraints on the diagnosis optimization which requires
the final state of the system to be in the feasible set of a model predictive controller.
If the optimization is feasible, the fault is diagnosable and reconfigurable. Once the
fault is isolated, the MPC constraints are updated and the system is reconfigured.

It is demonstrated how the excitation signal generated by the active diagnoser can
be used as a test signal in a sanity check in the commissioning of a system for detec-
tion of faults hidden by regulatory actions of the controller. The method is demon-
strated on the two tank benchmark example.

1 Introduction

In a complex control system there are many components with strong interaction between
them. Hence the overall system performance depends on the individual performance of
components. A fault in a single component may, therefore, degrade the overall perfor-
mance of the system and may even lead to unacceptable loss of system functionality.
Thus fault diagnosis is of crucial importance in automatic control of complex systems.

Diagnosis methods can be divided into two main categories: active and passive. In
passive diagnosis, the diagnoser observes the input and output of the system and based
on the observation decides whether a fault has occurred or not. The input is generated
by an external input or by the controller. In active fault diagnosis the diagnoser generates
an input, which excites the system, to decide whether the output represents a normal or a
faulty behaviour and if possible decide which faulty behaviour occurred. The generated
input moves the system from the operation point, but at the same time it should not lead
the system to instability or to an unacceptable performance area.

Active diagnosis (AD)is useful in the following circumstances: (i) for generation of
the test signal in the commissioning phase for sanity check of the system, (ii) for faster
detection of faults during normal operation, and (iii) for detection of hidden faults where,
because of regulatory actions of the controller, the normal and the faulty system exhibit
the same behaviour.

Typical industrial systems include both continuous and discrete components. For a
precise modeling of them a hybrid system formulation is useful. Generally speaking, a
hybrid system is a dynamical system with both continuous and discrete behaviours and
non-trivial interaction between continuous evolutions and discrete transitions. Hybrid
systems have been subject of intensive research in recent years, for an overview see [1].
Fault diagnosis of hybrid systems has been investigated recently, for a survey see [2], [3]
and [4].

Most of results are in the area of passive diagnosis.
The area of active diagnosis has attracted a considerable attentions in recent years,

see papers [5], [6], [7], [8], [9], [10], [11], [12], and books [13], [14]. Most of the
available methods are in open-loop configuration and for linear systems. A qualitative
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event-based approach for active diagnosis of hybrid systems is presented in [15], where
diagnosis is improved by executing or blocking controllable events. [10] and [11] present
a method for active diagnosis of parametric faults in closed loop systems based on YJKB
parameterization.

In previous work [16], we proposed an active fault diagnosis method for linear hybrid
systems in discrete time based on reach set computation for faulty and normal systems.
The results are extended to automatic sensor assignment in [17]. Because of computa-
tional complexity of reach set computation, the problem is reformulated in [18] as a mixed
integer optimization problem for active diagnosis of hybrid system using the Mixed Log-
ical Dynamical framework.

Stability is an important issue in fault tolerant control systems. When a fault occurs, it
takes time for the fault detection module to detect the fault and even when it is detected it
needs some time to isolate and identify the fault. During this period the system is working
in a faulty condition. For a closed-loop system, because the controller is designed for the
nominal system the performance of the system in this period is mainly dependent on
the severity of the fault and the robustness of the nominal controller. It is clear that the
controlled system may become unstable in this period, see [19].

For active diagnosis the stability issue is more critical, because we are exciting the
system with the aim of detecting the fault. When the AD starts the diagnosis, it is not
known whether the system is in the normal or the faulty condition. A stability preserving
method for diagnosis of additive, parametric and multiplicative faults for linear systems
based on observer parameterization is proposed in [20]. In [21], a method using distin-
guishable steady states for diagnosis of MLD systems is presented which preserves the
stability. But if there are no distinguishable steady states, the method cannot use the infor-
mation during the transient. In this work the diagnosis is done by perturbing the system
from the operating point. It is guaranteed that this perturbation does not destabilize the
system. It is guaranteed that the diagnosed system can be stabilized by a model predictive
control with constraints updated based on the information provided by diagnosis. This is
done by imposing some constraints on the diagnosis optimization problem which requires
the final state of the system, in whatever condition the system is, to be in the feasible set
of a predictive controller which stabilizes the system to an equilibrium point.

For modeling of hybrid system we use the Mixed Logical Dynamical (MLD) frame-
work of [22], [23] which covers important classes of hybrid system. By using the MLD
framework, the optimization problem used for fault diagnosis will be transformed to a
mixed integer linear or quadratic problem for which there are many efficient solvers. The
method is tested on the two-tank benchmark example.

The structure of the paper is as follows: In Section 1 we introduce mixed logical
dynamical systems; then model predictive control in introduced briefly and the problem
of active diagnosis is formulated. Section 2 gives the proposed active diagnosis algorithm.
Section 4 describes the two tank benchmark example and simulation results are presented
in Section 5. The paper concludes in Section 6.

2 Preliminaries and Problem formulation

We first introduce the MLD framework and then the model predictive control of MLD
systems is explained and finally the active diagnosis problem is formulated.
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2 Preliminaries and Problem formulation

2.1 Mixed Logical Dynamical Systems

For modeling of hybrid systems, the mixed logical dynamical (MLD) framework pro-
posed in [22] is used. The equations describing an MLD system are as follows:

x(t+ 1) = Ax(t) +B1u(t) +B2δ(t) +B3z(t) (8.1)
y(t) = Cx(t) +D1u(t) +D2δ(t) +D3z(t) (8.2)
E2δ(t) + E3z(t) ≤ E1u(t) + E4z(t) + E5 (8.3)

where x ∈ Rnc × {0, 1}nl are states, u ∈ Rmc × {0, 1}ml are the inputs, y ∈ Rpc ×
{0, 1}pl are the outputs. δ ∈ {0, 1}rl and z ∈ Rrc are auxiliary binary and continuous
variables. A trajectory of MLD system, starting from initial state x(t0) = x0, when the
input sequence {u}t−1

t0 = {u(t0), u(t0 + 1), · · · , u(t − 1))} is applied to the system, is
denoted by x(t, t0, x0, {u}t−1

t0 ).

Definition 8.1 (Equilibrium state:). xe ∈ Rnc × {0, 1}nl is an equilibrium state of the
MLD system (8.1)-(8.3) with input ue ∈ Rmc × {0, 1}ml if x(t, t0, xe, ue) = xe ∀t ≥
t0,∀t0 ∈ Z. The corresponding output ye is called the equilibrium output and the pair
(xe, ue) is called the equilibrium pair.

The MLD framework has the capability of modeling various classes of hybrid systems
such as PieceWise Affine (PWA) systems, linear systems with piecewise linear output
functions, linear systems with discrete inputs or with qualitative outputs, bilinear systems,
and finite state machines in which an LTI system generates the events, see[22].

Equivalence of MLD systems with other classes of hybrid systems such as PWA sys-
tems, linear complementary (LC) systems, extended linear complementary (ELC) sys-
tems, and max-min-plus-scaling (MMPS) systems under some assumptions is shown in
[24].

Using the MLD framework, different problems such as optimal control, state estima-
tion, etc. can be reformulated as mixed-integer programing problems and be solved using
mixed integer programming techniques.

2.2 Model Predictive Control

Consider the MLD system (8.1)-(8.3) with constraints on input and states i.e. x(k) ∈
X × {0, 1}nl and u(k) ∈ U × {0, 1}ml , where X ⊆ Rnc and U ⊆ Rmc are compact
polyhedral sets that contain the equilibrium pair (xce , uce) in their interior.

Define x(k|t) , x(t + k, t, x(t), {u}k−1
t ) and let δ(k|t), z(k|t), y(k|t) similarly de-

fined . Let xk(x(k), {u}k+T−1
k ) , {x(k + 1|k), · · · , x(k + T |k)} be the sequence gen-

erated from the initial state x(k|k) = x(k) by applying the input sequence {u}k+T−1
k ,

{u(k+1|k, · · · , u(k+T −1|k))}. Assuming the equilibrium pair (xe, ue) as the desired
target point, then

UT (x(k)) ,

{(u) ∈ UT × {0, 1}Tml |xk(x(k), {u}k+T−1
k ) ∈ XT × {0, 1}Tnl , x(T |k) = xe} (8.4)
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is the class of admissible input sequences with respect to xe and x(k). The cost function
J(x(k),uk) is defined as:

J(x(k),uk) ,‖Q1(y(k|t)− ye)‖p + ‖Q2(x(k|t)− xe)‖p + ‖Q3(u(k|t)− ue)‖p+
‖Q4(δ(k|t)− δe)‖p + ‖Q5(z(k|t)− ze)‖p (8.5)

,where Q1, Q2, Q3, Q4, Q5 are symmetric positive definitive matrices.
Given x(t), the optimal MPC minimizes, at each time t ∈ Z, the objective function J

subject to constrainsts:

x(T |t) = xe
x(t|t) = x(t)
x(k + 1|t) = Ax(k|t) +B1u(k) +B2δ(k|t) +B3z(k|t)
y(k|t) = Cx(k|t) +D1u(k) +D2δ(k|t) +D3z(k|t)
E2δ(k|t) + E3z(k|t) ≤ E1u(t) + E4z(k|t) + E5

x(k) ∈ X× {0, 1}nl
u(k) ∈ U× {0, 1}ml

(8.6)

We assume that there exists an optimal sequence u∗k , {u∗(k|k), · · · , u∗(k+N−1|k))}
for this problem. The MPC control law is defined as the first element of this sequence:

uMPCx(k) , u∗(k|k) (8.7)

The input is applied to the system and the whole procedure is repeated at the next time
instance.

In (8.6), the constraint x(T |t) = xe is the stability constraint and x(k) ∈ X ×
{0, 1}nl , u(k) ∈ U× {0, 1}ml are state and input constraints.

The set of states for which the constraints (8.6) are feasible is called as feasible set.

Definition 8.2 (Feasible set). The feasible set XF (T ) is defined as

XF (T ) = {x ∈ X× {0, 1}nl |UT (x) 6= ∅} (8.8)

The Following theorem shows that in the MPC problem, feasibility is preserved over
time and that feasibility implies stability.

Theorem 8.1. Assume that (xe, ue) is an equilibrium pair. Fix T ∈ Z≥1. If the optimiza-
tion problem (8.5) with constraints (8.6) is feasible for x(t) at time t, then it is feasible at
time t+1 for state x(t+1) which is evolving based on MLD system equation in (8.1)-(8.3)
with input uMPCx(k). Moreover the MPC law (8.7) stabilizes the system.

Proof. see [22].

2.3 Active Diagnosis Problem

A passive model-based diagnoser, as depicted in Fig. 8.1-a, is a system which receives a
sequence of input/output measurements and checks the consistency of the measured I/O
sequence with a given model of the normal system B0 and models of the system subject
to different faults , namely B1, . . . ,Bn. The output of the diagnoser is a candidate index
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active fault diagnosis method for diagnosis of linear hybrid 
system in discrete time is proposed. The idea is based on 
reach set computation for faulty and normal system. For both 
systems, those states that the system could reach in 
forthcoming steps considering all possible excitations are 
considered. Reach set are computed as long as faulty system 
and normal system have the same reach sets. But as soon as 
they represent different sets the algorithm terminates and 
selects a point which uniquely belongs to one of the sets. 
Then the optimal input for reaching the selected point is 
calculated and injected to the system. If the system could 
reach to the selected point then it is in the corresponding 
mode, otherwise it is in the other mode. This paper is 
organized as follows: Outline of the approach and some 
preliminaries are given in Section 2. Section 3, describes the 
algorithm and explains it via three tank benchmark example. 
And finally conclusion and future investigation are discussed 
in section 5.  

2. OUTLINE OF THE METHOD 

Most of diagnostic methods follow the same principle. They 
observe a sequence of measured input and output of the 
system and decide whether the measured I/O pair is 
consistent with the model that describes the behaviour of the 
system (Blanke et al., 2006). If the consistency is not 
confirmed a fault can be detected but in order to diagnose a 
fault, model of the faulty behaviour of the system subject to 
the fault is also necessary.  

Suppose that the current observed I/O pair is the point A or 
B as depicted in Figure 1. Set 0B represents the normal 

behaviour of the system and set 1B  represents the faulty 

behaviour of the system subject to fault 1f . As long as these 

points belong uniquely to the sets 0B and 1B which are 
describing the normal and the faulty behaviour of the system 
respectively, then the diagnoser can decide whether the 
system is in its normal operation or subject to fault 1f . The 
ambiguity arises when the observed data is the point C , 
which belongs to the area where the normal behaviour and 
faulty behaviour of the system overlap. In this case, the 
diagnoser can not distinguish if the system is subject to the 
fault 1f  or in the normal operation. The main idea of the 
active fault diagnosis is to exert an input signal to the system 
to move the point C to a new point C′ which uniquely 
belongs either to the set 0B or 1B . Roughly speaking, the idea 
of this paper can be described as follows. Having the model 
of the faulty and normal system, we predict the behaviour of 
system considering possible uncertainties and possible inputs 
in next steps and find the first step that the faulty and normal 
system represents different behaviours. Then the diagnoser 
tries to find an optimal input to reach one of those points. 
Assume that it is chosen to reach a point which uniquely 
belongs to the future behaviour of the normal system 
considering all possible inputs. Then the optimal input is 
exerted to the system to reach that point. If the system could 

reach to the determined point then the system is in the normal 
mode otherwise it is faulty.  

 

Fig.1. The system behaviour 

The proposed algorithm is developed for active fault 
diagnosis of linear hybrid system.  

Definition1. A hybrid automaton H is a collection 
( , , , , , , , , , )H Q X U Y Init f Inv E G R= , where 

. Q is a set of finite discrete states 1 2{ , , ..., }
m

Q q q q= ; 

. X is a finite set of continuous state variables; 

.U is a finite collection of input variables. 

. Y is a finite collection of output variables.  

. : nf Q X U× × → is a vector field; 

. Init Q X⊂ × is a set of initial states. 

.Inv: 2X UQ ×→ assigns to each q Q∈ an invariant set 
( )inv q X U⊆ × ; 

. E Q Q⊂ × is a set of discrete transitions; 

: 2X UG E ×→ assigns to each ( , )e q q E′= ∈ a guard 
( )g e X U⊂ × ; 

. The jump function : 2XJ E X U× × → that assigns a jump 
set ( , , )J e x u X U⊆ × to each pair e E∈ and ( )x g e∈ ; 

In the case of linear hybrid system the vector field 
q

f is 
represented by a linear difference equation: 

( 1) ( ) ( )
q q q q q

x k A x k B u k+ = +  and the output is described by: 

( ) ( ) ( )
q q q q q

y k C x k D u k= + .  

For modelling of faults in hybrid systems two types of fault 
can be considered: discrete faults and continuous faults. 
Discrete faults can be considered as a new mode or location 
in hybrid system. Here continuous faults are also modelled as 
a new discrete mode as in [Mohammadi et al., 2007]. It is 
supposed that events that describe transitions from a normal 
location to a faulty location are unobservable events. The 
system can be in normal condition N or in faulty condition

i
F  

0B

1B  

●A 

●B 

●C 

U Y×  

Figure 8.2: System behaviour

f ∈ 0, . . . , n such that the observed I/O sequence is consistent with the corresponding
behaviour Bf , [25].

The structure of an active diagnoser in depicted in Fig. 8.1-b. It consists of a generator
and a diagnoser. The generator generates an input sequenceU = 〈u(0), . . . , u(m)〉which
is applied to the system and then occurrence of fault f is determined by the diagnoser by
observing the applied input sequence and the output sequence Y = 〈y(0), . . . , y(m)〉.

The active diagnosis problem can be stated as follows:

Problem 8.1 (Active diagnosis problem:). Given the set B = {B0, . . . ,Bn} describing
behaviors of the system with no fault and subject to faults {f1, . . . , fn}, find a sequence
of inputs U such that (U, Y ) belongs only to a unique Bi.

If such an input sequence exists, i.e. if the system is diagnosable then we can look for
the optimal solution, where optimality can be interpreted in different senses. In this work
we propose an algorithm which looks for a sequence with minimum length.

The main advantage of active diagnosis is when different behaviours of the system
overlap, see Fig. 8.2. The faultless behaviour and the behaviour of the system subject to
the fault f1 are displayed by the sets B0 and B1 respectively. As long as the observed
I/O pair uniquely belongs to the set B0 or B1, such as points A or B, it can be decided
whether the system is faulty or not. But if the observed pair belongs to the intersection of
B0 and B1, like C , it is impossible to diagnose the fault. The main idea of the proposed
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algorithm is to generate an input signal to move the system from C to an area which
belongs uniquely either to the set B0 or B1.

3 The Proposed Algorithm

It is assumed that the states of the system are available or estimated by means of an
observer. The observer could be of the kind proposed in [26] or the MLD estimator
proposed in [23]. Using the latter yields a more unified framework. It is supposed that
the initial state is in the area where the faulty behaviour and the normal behaviour overlap
because otherwise the fault could be diagnosed by means of a passive diagnoser.

We assume that the model of the faulty system and the normal system is given in MLD
form as in (8.1)-(8.3) with subscript 0 indicating the normal system and i indicating the
system equation for the system subject to fault fi. The aim of the diagnosis is to find
a minimum sequence of inputs such that the outputs based on the different dynamics
becomes observably different:

|yi(Td)− yj(Td)| ≥ d ∀ i, j ∈ {0, . . . , n}, i 6= j (8.9)

or if a relative separation is used: |yi(T )− yj(T )| ≥ d · |yi(T )|, where T is the length of
the sequence and d is a separation distance that is dependent on the level of noise.

The equation (8.9) aims for achieving isolability for every single fault and are very
demanding. Also, one can consider the following scenarios which are less demanding:

• Fault detection: In fault detection, we are just interested to detect if the system is
working normally or is subject to any fault. In this case (8.9) becomes:

|y0(Td)− yi(Td)| ≥ d ∀ i ∈ {1, . . . , n}, (8.10)

• Fault isolation for a set of faults: In such a scenario, we look for a set of faults
that have the same impact on the functionality of the system and also require the
same fault accommodation or control reconfiguration actions. Therefore we just
aim at isolation of the set. Assuming that indices for these faults is given by the set
F , then (8.9) becomes:

|yi(Td)− yj(Td)| ≥ d ∀ i ∈ F , j /∈ F , (8.11)

In the sequel we address the fault isolation problem. Later it will be explained how it
can be reformulated for fault detection or fault isolation for a set of faults.

We are looking for the minimum T such that the condition (8.9) is satisfied. This can
be formulated as an optimization problem in the following form:

min
T,{u,δi,zi}T0

1 (8.12)

s.t.



xi(t|t) = xi(t)
xi(k + 1|t) = Aixi(k|t) +B1iu(t) +B2iδi(k|t) +B3izi(k|t)
yi(k|t) = Cixi(k|t) +D1iu(k) +D2iδ(k|t) +D3iz(k|t)
E2iδi(k|t) + E3izi(k|t) ≤ E1iui(t) + E4izi(k|t) + E5i

i = 0, · · · , n
|yi(Td)− yj(Td)| ≥ d, i, j ∈ {0, . . . , n}, i 6= j
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Since minimum of a constant is that constant, the above optimization problem is a
constraint satisfaction problem. The optimization problem (8.12) can be transformed
to a Mixed Integer Linear Programming (MILP) problem by introducing the following
auxiliary binary variables.

[sij1(t) = 1]↔ [yi(t)− yj(t) ≤ d]

[sij2(t) = 1]↔ [yj(t)− yi(t) ≤ d]

sij(t) = sij1(t) ∧ sij2(t), i, j ∈ {0, . . . , n}, i 6= j

S(t) = ∨ni=0sij(t) (8.13)

The introduced variable S(t) is for isolation of every single fault. For other scenarios
S(t) should be constructed as follows:

• Fault detection:
S(t) = ∨ni=1s0i(t) (8.14)

• Fault isolation for a set of faults:

S(t) = ∨sij(t), ∀ i ∈ F , j /∈ F (8.15)

Using the introduced auxiliary variable, the optimization problem (8.12) can be rewrit-
ten as:

min
T,{u,δi,zi}T0

1 (8.16)

s.t.



xi(t|t) = xi(t)
xi(k + 1|t) = Aixi(k|t) +B1iu(t) +B2iδi(k|t) +B3izi(k|t)
yi(k|t) = Cixi(k|t) +D1iu(k) +D2iδ(k|t) +D3iz(k|t)
E2iδi(k|t) + E3izi(k|t) ≤ E1iui(t) + E4izi(k|t) + E5i

i = 0, · · · , n
S(Td) = 1

where the constraints |yi(Td) − yj(Td)| ≥ d, i, j ∈ {0, . . . , n}, i 6= j are replaced with
the corresponding mixed integer linear inequalities obtained from transforming logical
propositions in (8.13) to equivalent mixed integer inequalities using the technique intro-
duced in [22].

The optimization problem is similar to a minimum time optimal control problem.
Given a normal model and faulty models of the system subject to the faults {f1, . . . , fn},
an initial state, and a target set, we want to find the minimum Td and an input sequence
u(t), t = 1, . . . , Td such that y(Td) belongs to the target set.

For a fixed Td, it is actually a Mixed Integer Feasibility Test (MIFT). To solve it, we
find a lower bound, Tl, and an upper bound, Tu, for Td such that it is infeasible for Tl and
feasible for Tu. Then we find the minimum feasible Td namely T ∗d by running a bisection
algorithm. When the minimum time for diagnosis is found, the corresponding input se-
quence is applied to the system. At the end of period, the output y(Td) is compared with
the expected outputs yi(Td) and the fault candidate fc is chosen as the following.

fc = fi, i = argmin
i∈{0,...,n}

|y(Td)− yi(Td)| (8.17)
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It is also possible to have a fixed feasible Td, and then find an input sequence which
separates the outputs and tries to keep the distance between them by solving the following
optimization problem:

min
{u,δi,zi}

Td
0

t+Td∑
k=t

S(k) (8.18)

s.t.


xi(t|t) = xi(t)
xi(k + 1|t) = Aixi(k|t) +B1iu(t) +B2iδi(k|t) +B3izi(k|t)
yi(k|t) = Cixi(k|t) +D1iu(k) +D2iδ(k|t) +D3iz(k|t)
E2iδi(k|t) + E3izi(k|t) ≤ E1iui(t) + E4izi(k|t) + E5i

S(t) = ∨ni=1si(t)i = 0, · · · , n

3.1 Stabilizable Active Diagnosis

The minimum input sequence diagnose the fault; but it may destabilize the system. In
order to avoid instability we mount an MPC controller on the top of diagnoser. The aim
of the MPC controller is to steer the state of the diagnosed system to an equilibrium point.
For the equilibrium point we consider two cases dependent on the aim of diagnosis. First,
assume we are in the commissioning phase. We want to steer the system states to an
equilibrium state xr but at the same time we want to perform a sanity check. It might
happen that xr is not an equilibrium state for the system subject to fault fc. Therefore
another equilibrium state close to xr must be found for the faulty system namely xer.
And then the system will be steered to a new steady state xer. A steady state value for an
MLD system can be obtained by solving a mixed integer problem of the following form:

min
xs,us,δs,zs

‖Q1(ys − yr)‖p + ‖Q2(xs − xr)‖p + ‖Q3(us − ur)‖p+

‖Q4(δs − δr)‖p + ‖Q5(zs − zr)‖p (8.19)

s.t.

 xs = Axs +B1us +B2δs +B3zs
ys = Cxs +D1us +D2δs +D3zs
E2δs + E3zs ≤ E1us + E4xs + E5

In the second case, diagnosis is done in the operation phase and the fault is hidden. After
revealing the fault, the aim might be fault hiding. In any case we denote the equilibrium
goal of the system subject to fault fi by xier

In order to make sure that the final state of diagnosis xi(Td) is steerable to the corre-
sponding equilibrium point, it should be in the feasible set of XiF (T ) for the system sub-
ject to fi. In other words, for all xi(Td) there must exist a {ui}Td+T−1

Td
∈ UT×{0, 1}Tml

such that xiTd (xi(Td), {ui}Td+T−1
Td

) ∈ XT × {0, 1}Tnl , x(T |Td) = xier . Therefore the
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whole optimization problem is a MIFT as follows:

xi(t|t) = xi(t)
xi(k + 1|t) = Aixi(k|t) +B1iu(t) +B2iδi(k|t) +B3izi(k|t)
yi(k|t) = Cixi(k|t) +D1iu(k) +D2iδ(k|t) +D3iz(k|t)
E2iδi(k|t) + E3izi(k|t) ≤ E1iui(t) + E4izi(k|t) + E5i

i = 0, · · · , n
S(Td) = 1
xi(Td|Td) = xi(Td)
xi(k + 1|Td) = Aixi(k|Td) +B1iui(k) +B2iδi(k|Td) +B3izi(k|Td)
yi(k|Td) = Cixi(k|Td) +D1iui(k) +D2iδi(k|Td) +D3izi(k|Td)
E2iδi(k|Td) + E3izi(k|Td) ≤ E1iui(k) + E4izi(k|Td) + E5i

xi(T |Td) = xier
xi(k) ∈ X× {0, 1}nl
ui(k) ∈ U× {0, 1}ml

(8.20)

The output of this programming is a sequence of inputs:{u}t+Td−1
t which diagnose

the fault and n sequences {ui}Td+T−1
Td

which guarantee that regardless of the condition
of the system there is a sequence of input for each of them, which steers their final state,
xi(Td), to the equilibrium point. This is shown in Fig. 8.3 for a system with 2 faults.

3.2 Reconfiguration

The sequence {u}t+Td−1
t will be applied to the system. At t = Td the fault is diagnosed

and then the model predictive controller is reconfigured for the faulty system simply by
changing the constraints to reflect the identified fault. The cost function (8.5) is solved
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subject to constraints of the faulty system and the corresponding stability and input and
state constraints:

min J(xc(k), {uc}k) ,‖Q1(yc(k|t)− ycer )‖p + ‖Q2(xc(k|t)− xcer )‖p
+‖Q3(uc(k|t)− ucer )‖p + ‖Q4(δc(k|t)− δcer)‖p+
‖Q5(zc(k|t)− zcer )‖p (8.21)

s.t.



xc(k + 1|Td) = Acxc(k|Td) +B1iuc(k) +B2cδc(k|Td) +B3czi(k|Td)
yi(k|Td) = Ccxc(k|Td) +D1cuc(k) +D2iδc(k|Td) +D3czc(k|Td)
E2cδi(k|Td) + E3czi(k|Td) ≤ E1cuc(k) + E4czi(k|Td) + E5c

xc(T |Td) = xcer
xc(k) ∈ X× {0, 1}nl
uc(k) ∈ U× {0, 1}ml

This problem has a feasible solution which is the sequence {uc}Td+T−1
Td

found in
(8.20), therefore the MPC law stabilizes the system.

4 Example

The proposed method is tested on the two tank system shown in Fig. 8.4. The system
consists of two cylindrical tanks with cross sectional area A. These two tanks are con-
nected by two pipes at the bottom and at level hv . The flows through the pipes, denoted
by Q12V12 and Q12V1, are controlled using two on/off valves V12 and V1. There is a flow
Q1 through a pump to tank 1 which is a continuous input.

Figure 8.4: Two-tank system

Dynamical equations of the system are as follows:

ḣ1 = 1
A (Q1 −Q12V12 −Q12V1 −QL), (8.22)

ḣ2 = 1
A (Q12V12 +Q12V1 −QN ), (8.23)

where h1 and h2 denote the levels of tanks 1 and 2 respectively. The flow Q12V12 is
described by:

Q12V12 = V12k12sign(h1 − h2)
√

2g |h1 − h2|, (8.24)
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where g is the gravity constant and k12 is a valve specific constant. Similarly QL =
VLkL

√
2gh1 and QN = VNkN

√
2gh2. The flow through valve V1 is given by:

Q12V1 = V1k1sign(max{hv, h1} −max{hv, h2})√
|2g(max{hv, h1} −max{hv, h2})| (8.25)

The MLD model of the system is derived as follows (For details see [27].). The
nonlinear relation

√
x is approximated by a straight line x, thus (8.24) becomes:

Q12V12 = V12k12(h1 − h2) (8.26)

The auxiliary continuous variable z12 = V12(h1−h2) is introduced to transform the above
nonlinear equation to the linear equation Q12V12 = k12z12 with a set of mixed integer
linear inequalities. For QN and QL, using the same method, we will have QN = kNzN
and QL = kNzL where zN = VNh2 and zL = VLh2.

In order to transform (8.25) to a linear equation in the MLD framework, first we
introduce the following binary variables indicating whether the level in each tank has
reached hv:

[δ01(t) = 1]↔ [h1(t) ≥ hv] (8.27)
[δ02(t) = 1]↔ [h2(t) ≥ hv] (8.28)

and then the term max{hv, h1} −max{hv, h2} is transformed into a linear equation as
Q12V1 = k1z1, where

z1 = V1(z01 − z02) (8.29)
z01 = δ01(h1 − hv) (8.30)
z02 = δ02(h2 − hv) (8.31)

are introduced auxiliary continuous variables.
Finally, differential equations (8.22), (8.23) are discretized in time by Euler approxi-

mation ḣi(t) ≈ hi(t+1)−hi(t)
Ts , where Ts is the sample time. The final MLD model of the

system consists of two continuous states: h1, h2, 2 binary inputs: V1, V12, 1 continuous
input: Q1 and two continuous outputs: h1, h2, 2 auxiliary binary variables: δ0, δ1 and 5
auxiliary continuous variables: z01, z02, z1, zN , zL.

5 Simulation Results

In this section, the proposed active diagnosis method is used for sanity check of the upper
valve V1. We assume that the upper valve is stuck in the ON position. It is assumed that
the valve VL is always closed and VN is always open and a sample time of 10 seconds is
considered. To obtain an MLD model of the two tanks system we use HYSDEL (hybrid
system description language), [28], which is a modeling language for Discrete Hybrid
Automata (DHA). Given a description of the system, HYSDEL translates it into different
computational models like MLD or PWA.

First we consider the case of commissioning. We assumed that at the beginning both
tanks are empty i.e. h1 = h2 = 0. The proposed method is applied to check whether the
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valve is faulty or normal. We first test the minimum time active diagnosis method. The
minimum length of diagnosis depends on d, which is the separation distance required in
the output for successful diagnosis. The variable d is assumed as 0.01 and we require
h2 and h2f to be separated. The minimum length for diagnosis is 5 sampling time. The
result is depicted in Fig. 8.5. As it was expected the diagnosis strategy is to close both
valves V1, V12 and open Q1 to the maximum, such that level in tank 1 will reach hv as
soon as possible. Then for the faulty system, V1 is always open. Therefore there would
be a flow to tank 2 and h2 will increase. But if the system is normal this flow is zero and
h2 will be zero.

As d grows the minimum length and the size of optimization problem and therefore
the computational time will increase. For d = 0.04, the minimum lengths is 7. The result
is shown in Fig. 8.6. We assume that the control aim is to keep h2 = 0.2. When the fault
is diagnosed, the system must be reconfigured and controlled. To find the corresponding
steady states for h2 = 0.2, we solve (8.19) and (8.20) for the normal and faulty system
with h2r = 0.2. The corresponding values are h1 = 0.255 for the normal system and
h1f = 0.227 for the faulty system. The condition of the system is determined at t =
8. Then the MPC constraints are updated based on the condition of the system and the
system is controlled toward the equilibrium point by the MPC controller. The result for
both conditions is depicted in Fig. 8.7. As one can see, the system states are steered to
the equilibrium states.

Figure 8.5: Actual versus expected output of the system, Middle: Binary inputs: V1

dashes and V12 solid, Bottom: Continuous input Q1

As mentioned in the introduction, another application of the method is when the faulty
system and the normal system have the same behaviours. Assume that the system is con-
trolled with the reference h2 = 0.2 as in Fig. 8.8. As one can see, because the equilibrium
value for V1 is 1, the output of the system in the normal and the faulty condition is exactly
the same. In this situation if a stuck ON fault happens, no passive diagnoser would be
able to diagnose it, while the active diagnoser proposed here is capable of detecting this
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Figure 8.6: Actual versus expected output of the system, Middle: Binary inputs: V1

dashes and V12 solid, Bottom: Continuous input Q1

Figure 8.7: Reconfiguration of the system, Middle: Binary inputs, Bottom: Continuous
input Q1

fault by exciting the system. In this case the method can be used periodically to detect
the fault.

We apply the method t = 200 sec. d is considered as 0.04 and the system is diagnosed
in 4 sample times. Then it is reconfigured in the case of fault or controlled if it is normal
with the MPC. The result for both normal and faulty condition is shown in Fig. 8.9.

6 Conclusion

In this paper a new method for active diagnosis of hybrid systems is presented. The active
diagnosis problem is reformulated as a mixed integer optimization problem using the
MLD framework. The method guarantees that the excitation signal does not destabilize
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Figure 8.8: Top:h1 and h2, Middle:discrete inputs: V1(dashed),
V12(solid)Bottom:continuous input Q1

Figure 8.9: Active fault diagnosis and reconfiguration of the system. Top: output of the
system: normal and faulty, Bottom: (left) Diagnosis inputs, (middle) Control input for
the normal system, (right): reconfiguration input for the faulty system

the system. It guarantees that the system is reconfigurable, with the aim of fault hiding
or set point redesign, if it is faulty. When the fault is diagnosed, it is reconfigured by
updating the MPC constraints.
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1 Introduction

Abstract

In this paper, we propose a new method for passive fault-tolerant control of dis-
crete time piecewise linear systems. Actuator faults are considered. A reliable piece-
wise linear quadratic regulator (LQR) state feedback is designed such that it can toler-
ate actuator faults. A sufficient condition for the existence of a passive fault-tolerant
controller is derived and formulated as the feasibility of a set of linear matrix inequal-
ities (LMIs). The upper bound on the performance cost can be minimized using a
convex optimization problem with LMI constraints which can be solved efficiently.
Our result can also be used for passive fault tolerant control of discrete time switched
linear systems with arbitrary switching. The approach is illustrated on a numerical
example.

1 Introduction

The complexity of modern control systems is increasing. In such systems, there are many
components. The functionality of the overall system depends crucially on the perfor-
mance of each component. A fault in an actuator, a sensor or other components may
degrade the overall performance of the system and may even lead to unacceptable loss of
the system functionality. Due to increasing demand for safety and reliability, it is desir-
able to design control systems that can tolerate potential faults; control systems that can
preserve the stability of the overall system and ensure a tolerable performance degrada-
tion in the faulty process (graceful degradation). A control system with these properties
is called a Fault Tolerant Control (FTC) system. The area of fault tolerant control has
attracted a lot of attentions is the past 15 years, see review papers [1], [2], [3], [4], [5] and
books [6] and [7].

FTC systems are either passive (PFTC) or active (AFTC). In AFTC systems, a fault is
detected and diagnosed by a fault detection and diagnosis (FDD) scheme. Then the con-
troller is redesigned or reconfigured in the case of severe faults. Control reconfiguration
considers the problem of changing the control law or the controller structure by select-
ing a new set of inputs and outputs. After choosing the new configuration, new control
parameters should be found such that the new controller can achieve the original system
performance, if it is possible, or at least ensure a tolerable performance degradation in the
faulty process, see [7].

In a PFTC system, the controller does not react to the occurrence of a fault. The
structure and the parameter of the controller are fixed and designed such that the system
can tolerate a set of faults without any change. The advantage of PFTC scheme can be
explained as follows. When a fault occurs, it takes some time for the FDD module to
detect the fault and to isolate and identify the fault. During this period, the system is
working with the controller that is designed for the normal system. The performance of
the system in this period is mainly dependent on the severity of the fault and the robustness
of the nominal controller. It is clear that the controlled system may become unstable in
this period, see [8]. For safety-critical systems, e.g. aircraft flight control or nuclear power
plants, when a fault occurs, the time window in which the system remains stabilizable is
too small to perform an accurate fault isolation and estimation. In these systems a PFTC
system or a reliable control is useful because it does not need a FDD scheme.
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The area of PFTC or reliable control systems has attracted considerable attention in
recent years. [9] presents a method for the design of a reliable linear quadratic state
feedback control such that it can tolerate actuator outages. The method also provides
a guaranteed upper bound on the performance index despite actuator outages. Reliable
control using redundant controllers is addressed in [10]. In [11], sensor and actuator
faults are modeled by a scaling factors and a disturbance. The proposed reliable method
provides a guaranteed H∞ performance.

Reliable H∞ control for nonlinear systems is presented in [12] where only actua-
tor outage are considered. The authors in [13], also consider the partial degradation of
actuators.

In recent years there has been a growing interest in hybrid systems. Generally speak-
ing, a hybrid system is a dynamical system with both continuous and discrete behav-
iors and non-trivial interaction between continuous evolutions and discrete transitions.
Among different classes of hybrid systems, PFTC is mainly studied for switched systems
and piecewise linear systems. In [14], a sufficient condition for a class of switched non-
linear systems is derived such that the controlled system with actuator failures is stable
with a H∞ norm bound. For uncertain nonlinear switched systems with delay, a reliable
L∞ method is proposed in [15].

PieceWise Linear (PWL) systems, are a class of hybrid system which can approxi-
mate nonlinear system efficiently. They also arise in any practical system that contains
PWL components such as dead-zones, saturation, hysteresis, etc. PFTC for PWL contin-
uous time systems using state feedback is presented in [16]. The approach uses common
Lyapunov functions. A common Lyapunov function may not always exist. In [17], a guar-
anteed cost control for uncertain PWL continuous time systems using output feedback is
proposed. The problem is reformulated as the feasibility of a set of Bilinear Matrix In-
equalities (BMIs), which are NP-hard and computationally expensive to solve globally.
The non-convex optimization problem is solved using a method that combines genetic
algorithm and semi definite programming. The paper, assumes that the plant and the con-
troller always switch from the same region to the same region at the same time. In other
words, the controller does not switch based on the estimated states but based on the real
state of the system which are not available. This is not a realistic assumption.

Recent control systems are mainly implemented through computers. To implement a
continuous time controller in a computer, one needs to emulate the designed continuous
time controller as a discrete time controller. This is not a trivial step and is a subject
of research. Moreover, stability analysis and control synthesis of discrete time systems
have two major differences with that of continuous time systems, see [18]. Firstly, in the
continuous time, only continuous Lyapunov function are allowed, while in the discrete
time they can be discontinuous. Secondly, in the discrete time, a transition between non-
adjacent regions may occur. [19], studies the problem of robust stability of autonomous
discrete time piecewise affine systems, but the case of controller design is not addressed.
In this paper, we consider the problem of PFTC for PWL discrete time systems. We use
piecewise quadratic Lyapunov functions to derive a sufficient condition for the existence
of a piecewise linear state feedback controller that stabilizes the system asymptotically
and can tolerate loss of efficiency in actuators. A Quadratic cost function is considered as
a performance index for the closed loop system. The approach provides an upper bound
on a given performance index. This is cast as the feasibility of a set of LMIs which can be
solved numerically using available software like YALMIP, see [20]. The optimal upper
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bound can be obtained by solving a convex optimization problem with LMI constraints
if the initial condition is given or if it is considered as a random variable distributed in a
bounded region.

2 Piecewise linear systems and actuator fault models

2.1 Piecewise Linear Systems

We consider a piecewise linear discrete time system of the following form:

x(k + 1) = Aix(k) +Biu(k) for x ∈ Xi, (9.1)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the control input. {Xi}si=1 ⊆ Rn denotes
a partition of the state into a number of polyhedral regions Xi, i ∈ I = {1, · · · , s}. Each
polyhedral region is represented by:

Xi = {x|Hix ≤ hi} (9.2)

All possible switchings from region Xi to Xj are represented by the set S:

S := {(i, j)|x(k) ∈ Xi, x(k + 1) ∈ Xj} (9.3)

The set S can be computed using reachability analysis for MLD systems, see [21].

2.2 Fault Model

In this work, we consider actuator faults. Let uj denote the j′th actuator and uFj the
failed j′th actuator. We model a loss of gain in an actuator as:

uFj = (1− αj)uj , 0 ≤ αj ≤ αMj
, (9.4)

where αj is the percentage of failure in the j′th actuator, αMj is the maximum loss in
the j′th actuator. αj = 0 presents the case of no fault in the jth actuator, 0 < αj < 1
corresponds to the partial loss of it, and αj = 1 corresponds to complete loss of it.

We define α as
α = diag{α1, α2, . . . , αm}. (9.5)

Then
uF = Γu, (9.6)

where Γ = (I − α). The PWL model of the system with the loss of gain in actuators can
be describes by:

x(k + 1) = Aix(k) +BiΓiu(k) for x ∈ Xi, (9.7)

3 State Feedback Design for PWL systems

3.1 Piecewise Quadratic Stability
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The problem of piecewise linear state feedback design is to design a state feedback of
the form:

u(k) = Kix(k) for x(k) ∈ Xi (9.8)

such that the closed loop piecewise linear system

x(k + 1) = Aix(k), (9.9)

where Ai = Ai +BiKi, is exponentially stable.

Theorem 9.1. ([21]) The system in (9.9) is exponentially stable if there exist matrices
Pi = PTi > 0, ∀i ∈ I, such that the positive definite function V (x(k)) = xT (k)Pix(k),
∀x ∈ Xi satisfies V (x(k + 1))− V (x(k)) < 0.

The piecewise quadratic Lyapunov function in Theorem 9.1 can be computed by solv-
ing the following LMIs:

AiPjAi − Pi < 0, ∀(i, j) ∈ S (9.10)

Pi = PTi > 0, ∀i ∈ I (9.11)

3.2 PWL Quadratic Regulator (PWLQR)

The quadratic cost function associated with the system is:

J =

∞∑
k=0

xT (k)Qx(k) + uT (k)Ru(k), (9.12)

where Q ≥ 0 and R ≥ 0 are given weighting matrices of appropriate dimensions.

Lemma 9.1. Upper bound on the performance cost: The system in (9.1) with the con-
troller in (9.8) satisfies the following upper bound on the performance cost

J ≤ x(0)TPi0x(0) (9.13)

with x(0) ∈ Xi0 , i.e. i0 is the index of the initial region, if there exist matrices Pi =
PTi > 0, ∀i ∈ I such that

(Aj +BjKj)
TPi(Aj +BjKj)− Pj +Q+KT

j RKj < 0, ∀(i, j) ∈ S (9.14)

Proof. Pre and post-multiplying (9.14) by xT (k) and x(k) we have:

xT (k)(Aj +BjKj)
TPi(Aj +BjKj)x(k)− (9.15)

xT (k)Pjx(k) + xT (k)Qx(k) + xT (k)KT
j RKjx(k) < 0

as x(k + 1) = (Aj +BjKj)x(k), it implies:

V (x(k + 1))− V (x(k)) + xT (k)Qx(k) + uT (k)Ru(k) < 0 (9.16)

Summing up the above equation from k = 0 to k =∞ we have:

V (x(∞))− V (x(0)) + Σ∞0 (xT (k)Qx(k) + uT (k)Ru(k)) < 0 (9.17)
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As V (x(∞)) = 0 and V (x(0)) = x(0)TPi0x(0) therefore we have:

∞∑
k=0

(xT (k)Qx(k) + uT (k)Ru(k)) < xT (0)Pi0x(0).

The inequality (9.14) is a nonlinear matrix inequality and difficult to solve. In the
following, an LMI equivalent of it is presented.

Lemma 9.2. ([22]) Let Zj = ZTj > 0 and Gj be invertible for all j ∈ I. Then (9.14) is
equivalent to the following LMI:

Gj +GTj − Zj GTj Y Tj (AjGj +BjYj)
T

Gj Q−1 0 0
Yj 0 R−1 0

(AjGj +BjYj) 0 0 Zi

 > 0 (9.18)

The feedback gains are given by Kj = YjG
−1
j .

Before presenting the main result of this paper in the next section, the following
lemma is introduced.

Lemma 9.3. ([23]) Let M,N,H be real matrices. If HTH ≤ I , then for every scalar
ε > 0 the following inequality holds:

MHN +NTHTMT ≤ εMMT + ε−1NTN. (9.19)

3.3 Passive fault-tolerant Control

Definition 9.1. A piecewise linear control law of the form (9.8) is a passive fault-tolerant
guaranteed cost control for the system (9.1) and the performance function (9.12) if the
following matrix inequality is satisfied:

(Aj+BjΓjKj)
TPi(Aj+BjΓjKj)−Pj+Q+KT

j ΓTj RΓjKj < 0, ∀(i, j) ∈ S. (9.20)

The PWL system with the law obtained from solving (9.20) is quadratically stable
and for every admissible α, the performance function satisfies:

J ≤ xT (0)Pi0x(0).

Note that the inequality (9.20) is not linear in terms of variables Pi and Ki. In the follow-
ing theorem, two equivalent LMI formulations are provided as sufficient conditions for
(9.20).

Theorem 9.2. There exist a passive-fault tolerant control law for the PWL system (9.1)
with the performance function (9.12) if there exist symmetric matrices Zj = ZTj > 0, and
invertible matrices Gj , and matrices Yj and positive scalars εj > 0, j ∈ I such that the
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following LMI is satisfied:
−εjI αjYj 0 0 0
Y Tj αj Zj −Gj −GTj GTj Y Tj (AjGj +BjYj)

T

0 Gj Q−1 0 0
0 Yj 0 R−1 + εjI εjB

T
j

0 (AjGj +BjYj) 0 εjBj Zi + εjB
T
j Bj

 < 0, ∀(i, j) ∈ S

(9.21)

or if there exist symmetric matrices Xj = XT
j > 0 and matrices Yj and positive scalars

εj > 0, j ∈ I such that
−Xi + εjB

T
j Bj εjBj (AjXj +BjYj) 0 0

εjB
T
j −R−1 + εjI Yj 0 0

(AjXj +BjYj)
T Y Tj −Xj Xj εjY

T
j

0 0 Xj −Q−1 0
0 0 εjYj 0 −εjI

 < 0, ∀(i, j) ∈ S

(9.22)
Then the piecewise linear feedback gains are given by:

Ki = YiG
−1
i (9.23)

with Yi and Gi from solving (9.21) or

Ki = YiX
−1
i (9.24)

with Yi andXi from solving (9.22) and the performance function of the closed loop system
(9.9) satisfies:

J ≤ xT (0)Z−1
i0
x(0) (9.25)

or
J ≤ xT (0)X−1

i0
x(0). (9.26)

Proof. Using Schur complement, inequality (9.20) is equivalent to:
−Pj I KT

j ΓTj (Aj +BjΓjKj)
T

I Q−1 0 0
ΓjKj 0 R−1 0

(Aj +BjΓjKj) 0 0 P−1
i

 < 0 (9.27)

Substituting Γj = I − αj , implies that the left side of (9.27) is equal to:
−Pj I KT

j (Aj +BjKj)
T

I Q−1 0 0
Kj 0 R−1 0

(Aj +BjKj) 0 0 P−1
i

−


0
0
I
Bj

 [αjKj 0 0 0
]
−


KT
j αj
0
0
0

 [0 0 I BTj
]

(9.28)
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Using Lemma 9.3 with H = −I , it follows that:

(9.28) ≤ (∗) + εj


0
0
I
Bj

 [0 0 I BTj
]

+ ε−1
j


KT
j αj
0
0
0


[
αjKj 0 0 0

]
, (9.29)

where (∗) is the first matrix in (9.28). We have αj ≤ αMj
, therefore it holds that:

(9.29) ≤


−Pj + ε−1

j KT
j αMj

αMj
Kj I KT

j (Aj +BjKj)
T

I Q−1 0 0
Kj 0 R−1 + εjI εjB

T
j

(Aj +BjKj) 0 εjBj P−1
i + εjB

T
j Bj

 (9.30)

Pre- and post multiplying the right side of (9.30) by diag{GTj , I, I, I} and diag{Gj , I, I, I}
and using Schur complement we get:

−εjI αjKjGj 0 0 0
GTj K

T
j αj −GTj PjGj GTj GTj K

T
j (AjGj +BjKjGj)

T

0 Gj Q−1 0 0
0 KjGj 0 R−1 + εjI εjB

T
j

0 (AjGj +BjKjGj) 0 εjBj P−1
i + εjB

T
j Bj


(9.31)

Using the fact that GTj PjGj ≥ Gj + GTj − P
−1
j , and replacing Yj = KjGj we derive

the LMI in (9.21) as a sufficient condition for (9.20).
To show (9.22), a very similar procedure is used. Using Schur complement, inequality

(9.20) is equivalent to: −P−1
i 0 (Aj +BjΓjKj)

0 −R−1 ΓjKj

(Aj +BjΓjKj)
T KT

j Γj Qj − Pj

 < 0 (9.32)

Γj = I − αj , therefore the right hand of the above inequality is equal to: −P−1
i 0 (Aj +BjKj)

0 −R−1 Kj

(Aj +BjKj)
T KT

j Qj − Pj


−

BjI
0

 [0 0 αjKj

]
−

 0
0

KT
j αj

 [BTj I 0
]

(9.33)

Using Lemma 9.3, implies:

(9.33) ≤

 −P−1
i 0 (Aj +BjKj)

0 −R−1 Kj

(Aj +BjKj)
T KT

j Qj − Pj


+εj

BjI
0

 [BTj I 0
]

+ ε−1
j

 0
0

KT
j αj

 [0 0 αjKj

]
(9.34)
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We have αj ≤ αMj , therefore it holds that:

(9.34) ≤

−P−1
i + εjBjB

T
j εjBj (Aj +BjKj)

εjB
T
j −R−1 + εjI Kj

(Aj +BjKj)
T KT

j Q− Pj + ε−1
j KT

j αMj
αMj

Kj


(9.35)

We pre- and post-multiply the right hand of the above inequality by diag{I, I, P−1
j } and

its transpose. Then, we get: −P−1
i + εjBjB

T
j εjBj (AjP

−1
j + BjKjP

−1
j )

εjB
T
j −R−1 + εjI KjP

−1
j

(AjP
−1
j + BjKjP

−1
j )T P−1

j KT
j P−1

j QP−1
j − P−1

j + ε−1
j P−1

j KT
j αMjαMjKjP

−1
j

 (9.36)

as a sufficient condition for (9.20). Define Xj = P−1
j , Yj = KjP

−1
j . By applying the

Schur complement to (9.36), we conclude the LMI (9.22).

Remark 1: By considering the set of all possible switching as S = I × I, the result can be used
to design passive fault tolerant controllers for discrete time switched linear systems with arbitrary
switching.

The upper bound of (9.12), could be minimized by the following constrained opti-
mization problem:

min
Zi,Yi,Gi,εi,t

t (9.37)

s.t.

 (21)[
−t x(0)T

x(0) −Zi0

]
< 0

Using Schur complement, the new LMI constraint is equivalent to−t+xT (0)Z−1
i0
x(0)

< 0. Therefore, (9.37) is equal tomin xT (0)Pi0x(0) with the remaining constraints. The
problem with the above formulation is that the upper bound is dependent on the initial
state x(0). To remove the dependency on the initial state, using a similar procedure to
that of [17], the initial condition is considered as a random variable with uniform distri-
bution in a bounded region X . Then, it is tried to minimize the expected value of the cost
function. We have:

E(J) ≤ E(tr(Pi0x(0)xT (0))) ≤
∑
i∈I

σitr(PiLi), (9.38)

where Li = E(x(0)xT (0)) is the expectation of x(0)xT (0) corresponding to x(0) ∈
Xi, i ∈ I , tr(·) is the trace operator and σi is the probability of x(0) ∈ Xi. Then, the
optimization problem is:

min
Zi,Yi,Gi

∑
i∈I

σitr(Z
−1
i Li) (9.39)

s.t.

{
(21)
Zi = ZTi > 0
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or

min
Xi,Yi

∑
i∈I

σitr(X
−1
i Li) (9.40)

s.t.

{
(22)
Xi = XT

i > 0

Both optimization problems in (9.39) and (9.40) are non-convex because (9.39) in-
cludes Zi and its inverse and similarly (9.40) includes Xi and its inverse. To convert
them to a convex optimization problem , we introduce new variables Vi, i ∈ I, which
satisfies: [

Vi I
I Zi

]
≥ 0. (9.41)

Using Schur complement, the above constraint is equivalent to Z−1
i ≤ Vi. Therefore,

the objective function in (9.39), which is nonlinear in term of Zi, can be converted to∑
i∈I σitr(ViLi). Consequently, the optimization problem (9.39) can be transformed to

the following optimization problem in terms of variables Zi, Yi, Gi, εi and the introduced
variables Vi:

min
Zi,Yi,Gi,Vi,εi

∑
i∈I

σitr(ViLi) (9.42)

s.t.


(21)[
Vi I
I Zi

]
≥ 0, i ∈ I

Zi = ZTi > 0, i ∈ I
Vi = V Ti > 0, i ∈ I

Similarly, (9.40) can be transformed to the following convex optimization problem:

min
Xi,Yi,Vi,εi

∑
i∈I

σitr(ViLi) (9.43)

s.t.


(22)[
Vi I
I Xi

]
≥ 0, i ∈ I

Xi = XT
i > 0, i ∈ I

Vi = V Ti > 0, i ∈ I

Both of the above optimization problems are convex optimization problems with LMI
constraints and can be solved efficiently using available softwares like YALMIP/SeDuMi
or YALMIP/LMILAB, see [20].

3.4 Example

To illustrate our approach we consider the following open-loop unstable PWL system
from [24]:
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x(k + 1) =

−0.2523 0.4856 0.6467
0.5290 −0.2616 0.3128
−0.4415 −0.2713 −0.6967

x(k) +

0.5656
0.5460
0.9389

u(k) for x ∈ X1

x(k + 1) =

 0.0647 0.1729 −0.6542
−0.3131 −0.6691 −0.6516
−0.3085 0.0613 0.0099

x(k) +

 0.6543
0.5266
−0.0558

u(k) for x ∈ X2

x(k + 1) =

 0.6402 −0.5409 −0.5629
−0.6693 −0.6874 0.1748
−0.2812 0.4898 −0.3526

x(k) +

 0.7580
−0.8050
−0.4059

u(k) for x ∈ X3

x(k + 1) =

−0.3501 0.2590 0.6695
−0.4808 0.1905 0.3865
−0.1217 0.2631 −0.0013

x(k) +

 0.6961
−0.7619
0.2590

u(k) for x ∈ X4

and the state space partition, {Xi}5i=1, is given by Xi = {x|Hix > 0}: for i = 1, 3, and
Xi = {x|Hix ≥ 0} for 2, 4, where the Hi matrices are:

H1 = −H3 =

0 0 0
0 1 0
0 0 1

 H2 = −H4 =

0 0 0
0 1 0
0 0 −1

 (9.44)

The weighting matrices of the performance index (9.12) areQ = 0.02I andR = 0.01.
We use the optimization problem formulation in (9.43) to design a passive fault-tolerant
controller. The system can tolerate maximum of 90% loss of the actuator (αM = 0.9).
For losses greater than 90%, the optimization problem becomes infeasible. We assume
the initial state to be a random variable which is uniformly distributed on X̄ = [−5, 5]3.
The upper bound on the expected value of the cost fucntion is 4.47. The resulting PWL
controller is:

K1 =
[
0.0635 0.0979 0.0549

]
K2 =

[
0.0559 0.0939 0.7037

]
K3 =

[
−0.7791 0.1537 0.2302

]
K4 =

[
−0.0741 0.0587 −0.1366

]
and the piecewise Lyapunov function with matrices:

P1 =

 0.1156 −0.0505 0.0024
−0.0505 0.1661 0.1511
0.0024 0.1511 0.2667

 P2 =

0.1070 0.0679 0.0313
0.0679 0.1332 0.0468
0.0313 0.0468 0.1920


P3 =

 0.2913 −0.0466 −0.0755
−0.0466 0.2060 0.0670
−0.0755 0.0670 0.1550

 P4 =

 0.1162 −0.0603 −0.0928
−0.0603 0.0781 0.0601
−0.0928 0.0601 0.1722

 .
It is worthwhile to point out that the feasibility of the optimization problem depends

on the choice of weighting matrices. For example, for Q = 0.1I,R = 0.1, the optimiza-
tion problem becomes infeasible for α > 0.5.
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Figure 9.1: Simulation results with a controller designed to tolerate 90% loss of the actu-
ation with the real system with α = 0, i.e. actuator operates normally.
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Figure 9.2: Simulation results with a controller designed to tolerate 90% loss of the actu-
ation with the real system with α = 0.8

Figure 9.1, 9.2, 9.3 show respectively the simulation result for the controlled system
with 0%, 80% and 90% loss of actuator gains with a controller designed to tolerate αM =
0.9, with the initial condition x0 = [5 −5 −5]T . As it can be seen, the performance of the
system is similar for 0 ≤ α ≤ 0.8, but it decreases considerably for α = 0.9. Figure 9.4,
shows how the optimal upper bound on the expected value of the cost function, E∗(J),
grows by increasing the maximum partial loss of the actuator, namely αM , which is to
be tolerated. As one can see, however it is possible to design a controller which tolerates
up to 90% partial loss of the actuators, but the cost increases sharply for αM >= 0.8.
Therefore, αM = 0.8 could be considered as a trade off between the cost to be paid and
the degree of the tolerance to faults.
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Figure 9.3: Simulation results with a controller designed to tolerate 90% loss of the actu-
ation with the real system with α = 0.90
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Figure 9.4: optimal expected value of cost function vs. maximum partial loss of the
actuators.

4 Conclusion

We proposed an approach to passive fault-tolerant control of PWL discrete time systems.
Using piecewise quadratic Lyapunov functions, a piecewise linear state feedback is de-
signed for the closed loop system such that it can tolerate partial loss of actuator gains.
The existence of the controller is reformulated as the feasibility of a set of LMIs. Two
equivalent forms of the LMI condition are derived. The approach provides an upper bound
on the performance cost which can be minimized using a convex minimization problem
with LMI constraints. The result is illustrated on a numerical example and it is explained
how one can choose a trade of between the performance of the system and the degree of
the system tolerance to the partial loss of actuator gains.
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1 Introduction

Abstract

This paper proposes a new approach for output feedback control of uncertain dis-
crete time piecewise linear systems. The output feedback controller is designed using
piecewise quadratic Lyapunov functions. We do not make the common restrictive
assumption that the controller switches to one region based on the state of the system
and therefore both the controller and the system are always in the same region, but it
is assumed that the controller switching is based on the estimated state. A sufficient
condition for the existence of an output feedback controller is derived and formulated
as the feasibility of a set of bilinear matrix inequalities (BMIs). The upper bound
on the optimal cost of the controller is minimized solving an optimization problem
with BMI constraints. The optimization problem is solved using the V-K iteration
algorithm. The approach is illustrated on a numerical example.

1 Introduction

In recent years there has been a growing interest in hybrid systems. In general, a hybrid
system is a dynamical system with both continuous and discrete behaviors and non-trivial
interactions between continuous evolutions and discrete transitions. PieceWise Linear
(PWL) systems, are an attractive class of hybrid systems as they can approximate non-
linear systems efficiently. They also arise in any practical system that contains PWL
components such as dead-zones, saturation, hysteresis, etc.

The problem of controller design and stability analysis for PWL systems has attracted
a lot of attention in recent years, e.g see [1], [2], [3], [4]. These approaches use state
feedback for controller design of PWL systems. But, the states of a system are not usually
available. Therefore, it is important to have an output feedback controller. The output
feedback could be static or dynamic. [5], [6] investigate the problem of dynamic output
feedback control for continuous time PWL systems. It is shown that the problem can be
formulated as a Bilinear Matrix Inequality (BMI) problem which is solved using iterative
algorithms. In their work, the observer switches based on the estimated states and not
based on the measured output.

Due to modeling error or external disturbance or faults, piecewise linear systems are
subject to uncertainties. [7] studies robust control of uncertain PWL systems using state
feedback and continuous piecewise Lyapunov functions. In [8], a method for robust H∞
output feedback control design for uncertain piecewise affine systems is proposed by
solving a set of Bilinear Matrix Inequalities. In [9], a guaranteed cost control method
using output feedback is proposed. The problem is reformulated as the feasibility of a set
of BMIs. The non-convex optimization problem is solved using a method that combines
genetic algorithms and semi definite programming. Both works, assume that switching of
the controller is based on the real state of the system and not based on the estimated state
of the system. In other words, the plant and the controller are always in the same region.
This is not a realistic assumption. All of the aforementioned works are in the continuous
time domain.

Recent control systems are mainly implemented through computers. To implement a
continuous time controller in a computer, one needs to emulate the designed continuous
time controller as a discrete time controller. This is not a trivial step and is a subject
of research. Moreover, stability analysis and control synthesis of discrete time systems
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have two major differences with that of continuous time systems, see [10]. Firstly, in the
continuous time, only continuous Lyapunov functions are allowed, while in the discrete
time they can be discontinuous. Secondly, in the discrete time, a transition between non-
adjacent regions may occur. In the discrete time domain, [11] proposes a dynamic output
feedback method for PWL systems. This work assumes that the partitioning is on the
output space and not on the state space. Therefore, the switching is based on the measured
output and the controller and the system are always in the same region. The problem of
static output feedback control for switched systems is addressed in [12] and for PWL
systems is addressed in [13]. They formulated existence of a stabilizing static output
feedback controller as the feasibility of a set of Linear matrix inequalities (LMIs). An
extension of the method to incorporate H∞ performance is also given.

The problem of robust stability of autonomous discrete time piecewise affine systems
is studies in [14], but the case of controller design is not addressed. [15] proposes a robust
H∞ control approach for uncertain discrete time piecewise affine systems. They consider
time varying parameter uncertainties. The approach uses state feedback and formulates
the problem as linear matrix inequalities.

In this paper, we consider the problem of dynamic output feedback control for PWL
discrete time systems. We consider norm bounded uncertainties. In our approach, we
do not make the assumption that the switching of the controller is based on the system’s
state but it is assumed to be based on the estimated state, i.e. the general case that the
controller might be at one region while the system is at another region is considered. We
use piecewise quadratic Lyapunov functions to derive a sufficient condition for the exis-
tence of a dynamic output feedback controller. A Quadratic cost function is considered as
a performance index for the closed loop system. The approach provides an upper bound
on the performance cost. This is cast as the feasibility of a set of BMIs. The optimal
upper bound can be obtained by solving an optimization problem with BMI constraints.
To solve the optimization problem we use the V-K iteration algorithm provided by [16].

The paper is organized as follows. In section 2, the uncertain PWL model with
bounded uncertainties is presented. Section 3, explains the design of a guaranteed cost
piecewise LQR state feedback control for an uncertain PWL system . In section 4, the
output feedback controller design is investigated and it is explained how the upper bound
on the cost function can be minimized. The method is tested on a numerical example in
Section 5. Conclusions are given in Section 6.

2 Uncertain Piecewise linear systems

We consider an uncertain piecewise linear discrete time system of the following form:

x(t+ 1) = (Ai + ∆Ai)x(t) + (Bi + ∆Bi)u(t) for x ∈ Xi (10.1)
y(t) = (Ci + ∆Ci)x(t),

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, and y(t) ∈ Rp is the
output. {Xi}si=1 ⊆ Rn denotes a partition of the state into a number of polyhedral regions
Xi, i ∈ I = {1, · · · , s}. Each polyhedral region is represented by:

Xi = {x|Hix ≤ hi}, (10.2)
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and ∆Ai,∆Bi,∆Ci are parameter uncertainties in the parameters of the subsystem i of
the following form: [

∆Ai, ∆Bi
]

= M1iH
[
NAi , NBi

]
, (10.3)

∆Ci = M2iHNCi , (10.4)

where H is an uncertain matrix bounded by:

HHT ≤ I. (10.5)

and M1i ,M2i , NAi , NBi , NCi are known constant matrices of appropriate dimensions.
All possible switchings from region Xi to Xj are represented by the set S:

S := {(i, j)|x(t) ∈ Xi, x(t+ 1) ∈ Xj} (10.6)

3 State Feedback Design for uncertain PWL systems

3.1 Piecewise Quadratic Stability

The problem of piecewise linear state feedback design is to design a state feedback of
the form:

u(t) = Kix(t) for x(t) ∈ Xi (10.7)

such that the closed loop piecewise linear system

x(t+ 1) = Aix(t), (10.8)

where Ai = Ai + ∆Ai + (Bi + ∆Bi)Ki, is exponentially stable.

Theorem 10.1. ([4]) The system in (10.8) is exponentially stable if there exist matrices
Pi = PTi > 0, ∀i ∈ I, such that the positive definite function V (x(t)) = xT (t)Pix(t),
∀x ∈ Xi satisfies V (x(t+ 1))− V (x(t)) < 0.

The piecewise quadratic Lyapunov function in Theorem 10.1 can be computed by
solving the following matrix inequalities:

AiPjAi − Pi < 0 ∀(i, j) ∈ S (10.9)

Pi = PTi > 0 ∀i ∈ I (10.10)

3.2 PWL Quadratic Regulator (PWLQR)

The quadratic cost function associated with the system is:

J =

∞∑
k=0

xT (t)Qix(t) + uT (t)Riu(t), (10.11)

where Qi ≥ 0 and Ri ≥ 0 are given weighting matrices of appropriate dimensions.
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Lemma 10.1. Upper bound on the performance cost: The system in (10.1) with the
controller in (10.7) satisfies the following upper bound on the performance cost

J ≤ x(0)TPi0x(0) (10.12)

with x(0) ∈ Xi0 and Pi0 , if there exist matrices Pi = PTi > 0, ∀i ∈ I such that

(Ai + ∆Ai + (Bi + ∆Bi)Ki)
TPj(Ai + ∆Ai + (Bi + ∆Bi)Ki)

−Pi +Qi +KT
i RKi < 0 ∀(i, j) ∈ S (10.13)

Proof. Pre and post-multiplying (10.13) by xT (t) and x(t) we have:

xT (t)(Ai + ∆Ai + (Bi + ∆Bi)Ki)
TPj(Ai + ∆Ai + (Bi + ∆Bi)Ki)x(t)− (10.14)

xT (t)Pix(t) + xT (t)Qix(t) + xT (t)KT
i RiKix(t) < 0

which implies:

V (x(t+ 1))− V (x(t)) + xT (t)Qix(t) + uT (t)Riu(t) < 0 (10.15)

Summing up the above equation from k = 0 to k =∞ we have:

V (x(∞))− V (x(0)) + Σ∞0 (xT (t)Qix(t) + uT (t)Riu(t)) < 0 (10.16)

As V (x(∞)) = 0 and V (x(0)) = x(0)TPi0x(0) therefore we have:

∞∑
k=0

(xT (t)Qix(t) + uT (t)Riu(t)) < xT (0)Pi0x(0)

The inequality (10.13) is a nonlinear matrix inequality and difficult to solve. In the
following, an LMI equivalent of it is presented.

Before presenting the main result of this paper in the next section, the following
lemma is introduced.

Lemma 10.2. ([17]) Let M,N,H be real matrices. If HTH ≤ I , then for every scalar
ε > 0 the following inequality holds:

MHN +NTHTMT ≤ εMMT + ε−1NTN (10.17)

Definition 10.1. A piecewise linear control law of the form (10.7) is a guaranteed cost
control for the uncertain system (10.1) and the performance function (10.11) if the fol-
lowing matrix inequality is satisfied:

(Ai + ∆Ai + (Bj + ∆Bi)Kj)
TPj(Ai + ∆Ai + (Bi + ∆Bi)Ki)

−Pi +Qi +KT
i RiKi < 0, ∀(i, j) ∈ S. (10.18)

Then, the PWL system with the law obtained from solving (10.18) is quadratically
stable and for the performance function satisfies:

J ≤ xT (0)Pi0x(0).
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Theorem 10.2. There exists a state feedback control law for the uncertain PWL system
(10.1) with the performance function (10.11) if there exist symmetric matrices Xi =
XT
i > 0 and matrices Yi and positive scalars εi > 0, i ∈ I such that the following LMI

is satisfied:
Xj + 2εiM1iM

T
1i (AiXi +BiYi) 0 0 0 0

(AiXi +BiYi)
T −Xi Y Ti Xi NT

Ai
Y Ti N

T
Bi

0 Yi −R−1 0 0 0
0 Xi 0 −Q−1

i 0 0
0 NAi 0 0 −ε1i 0
0 NBiYi 0 0 0 −ε1i

 < 0

∀(i, j) ∈ S. (10.19)

Then the piecewise linear feedback gains are given by:

Ki = YiX
−1
i , (10.20)

with Yi and Xi from solving (10.19) and the performance function of the closed loop
system satisfies:

J ≤ xT (0)X−1
i0
x(0). (10.21)

Proof. Using Schur complement (10.18) is equivalent to: −P−1
j (Ai + ∆Ai + (Bi + ∆Bi)Ki) 0

(Ai + ∆Ai + (Bi + ∆Bi)Ki)
T −Pi +Qi KT

i

0 Ki −R−1
i

 < 0,

(10.22)
which implies:

φ+ ψ < 0, (10.23)

where

φ =

 −P−1
j (Ai +BiKi) 0

(Ai +BiKi)
T −Pi +Qi KT

i

0 Ki −R−1

 , (10.24)

ψ =

 0 (∆Ai + ∆BiKi) 0
(∆Ai + ∆BiKi)

T 0 0
0 0 0

 (10.25)

From (10.3), (10.4), we have:

ψ = R1 +R2, (10.26)

with

R1 =
[
MT

1i 0 0
]T
H
[
0 NAi 0

]
+
[
0 NAi 0

]T
HT

[
MT

1i 0 0
]
, (10.27)

and

R2 =
[
MT

1i 0 0
]T
H
[
0 NBiKi 0

]
+
[
0 NBiKi 0

]T
HT

[
MT

1i 0 0
]
.

(10.28)
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Using Lemma 10.2, for any εi we have:

R1 ≤ εi

M1i

0
0

 [MT
1i 0 0

]
+ ε−1

i

 0
NT
Ai
0

 [0 NAi 0
]

(10.29)

and

R2 ≤ εi

M1i

0
0

 [MT
1i 0 0

]
+ ε−1

1i

 0
KT
i N

T
Bi

0

 [0 NBiKi 0
]
. (10.30)

Therefore, we have:

φ+ψ ≤

−P−1
j + 2εiM1iM

T
1i (Ai +BiKi) 0

(Ai +BiKi)
T −Pi +Qi + ε−1

i NT
Ai
NAi + ε−1

i KT
i N

T
Bi
NBi KT

i

0 Ki R−1
i


(10.31)

We pre- and post-multiply the right hand side of the above inequality by diag{I, P−1
i , I}

and its transpose. Then we get:−P−1
j + 2εjMiM

T
1i (Ai +BiKi)P

−1
i 0

P−1
i (Ai +BiKi)

T X22 P−1
i KT

i

0 KiP
−1
i R−1

i

 , (10.32)

where

X22 = −P−1
i + P−1

i QiP
−1
i + ε−1

i P−1
i NT

AiNAiP
−1
i + ε−1

i P−1
i KT

i N
T
BiNBiKiP

−1
i

(10.33)
Define Xi = P−1

i and Yi = KiP
−1
i . Applying Schur complement to the above equation

we get the LMI condition (10.19) as a sufficient condition for (10.18).

The upper bound in (10.11), could be minimized by the following constrained opti-
mization problem:

min
Xi,Yi,εi,ρ

ρ (10.34)

s.t.

 (19)[
−ρ x(0)T

x(0) −Xi0

]
< 0

Using Schur complement, the new LMI constraint is equivalent to−ρ+xT (0)X−1
i0
x(0)

< 0. Therefore, (10.34) is equal to min xT (0)Pi0x(0) with the remaining constraints.
The problem with the above formulation is that the upper bound is dependent on the ini-
tial state x(0). To remove this dependency, the initial condition is considered as a random
variable with uniform distribution in a bounded region X . Then, it is tried to minimize
the expected value of the cost function. We have:

E(J) ≤ E(tr(Pi0x(0)xT (0))) ≤
∑
i∈I

σitr(PiLi), (10.35)
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where Li = E(x(0)xT (0)) is the expectation of x(0)xT (0) corresponding to x(0) ∈
Xi, i ∈ I , tr(·) is the trace operator and σi is the probability of x(0) ∈ Xi. Then, the
optimization problem is:

min
Xi,Yi

∑
i∈I

σitr(X
−1
i Li) (10.36)

s.t.

{
(19)
Xi = XT

i > 0

The optimization problems in (10.36) is non-convex because it includes Xi and its
inverse. To convert it to a convex optimization problem , we introduce new variables
Vi, i ∈ I, which satisfies: [

Vi I
I Xi

]
≥ 0. (10.37)

Using Schur complement, the above constraint is equivalent to X−1
i ≤ Vi. Therefore,

the objective function in (10.36), which is nonlinear in term of Xi, can be converted to∑
i∈I σitr(ViLi). Consequently, the optimization problem (10.36) can be transformed

to the following optimization problem in terms of variables Xi, Yi, εi and the introduced
variables Vi:

min
Xi,Yi,Vi,εi

∑
i∈I

σitr(ViLi) (10.38)

s.t.


(22)[
Vi I
I Xi

]
≥ 0, i ∈ I

Xi = XT
i > 0, i ∈ I

Vi = V Ti > 0, i ∈ I

The above optimization problems is a convex optimization problems with LMI con-
straints and can be solved efficiently using available softwares like YALMIP/SeDuMi
or YALMIP/LMILAB, see [18].

4 Output Feedback Control

In this section, we consider dynamic output feedback control for uncertain piecewise
affine systems of the following form:

xc(t+ 1) = Acixc(t) +Bciy(t) for xc ∈ Xi (10.39)
u(t) = Ccixc(t) +Dciy(t)

We define the set of all possible transitions for the controller state from region Xk to Xl
as:

Ŝ := {(t, l)|xc(t) ∈ Xk, xc(t+ 1) ∈ Xl} (10.40)

Considering the general case that the system is in mode i, (x(t) ∈ Xi), and the
controller is in the mode j, (xc(t) ∈ Xj), the dynamic of the closed loop system is:

x(t+ 1) = (Ai + ∆Ai)x(t) + (Bi + ∆Bi)
[
Ccjxc(t) +Dcj (Ci + ∆Ci)x(t)

]
(10.41)
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and the dynamic of the augmented system is:[
x(t+ 1)
xc(t+ 1)

]
=

[
Ai + ∆Ai + (Bi + ∆Bi)Dcj (Ci + ∆Ci) (Bi + ∆Bi)Ccj

Bcj (Ci + ∆Ci) Acj

] [
x(t)
xc(t)

]
(10.42)

The quadratic cost function associated with the system is:

J =
∞∑
t=0

xT (t)Qix(t) + uT (t)Riu(t), (10.43)

where Qi ≥ 0 and Ri ≥ 0 are given weighting matrices of appropriate dimensions.
We define the augmented state as x̃ =

[
xT (t) xTc (t)

]T
and the following notations for

convenience:

Ãi =

[
Ai 0
0 0

]
, B̃i =

[
Bi 0
0 I

]
, C̃i =

[
Ci 0
0 I

]
(10.44)

M̃1i =

[
M1i

0

]
, M̃2i =

[
M2i

0

]
, (10.45)

ÑAi =
[
NAi 0

]
, ÑBi =

[
NBi 0

]
, ÑCi =

[
NCi 0

]
, (10.46)

Ki =

[
Dci Cci
Bci Aci

]
, Q̃i =

[
Qi 0
0 0

]
, R̃i =

[
Ri 0
0 0

]
. (10.47)

Using the above notations, the uncertainty matrices are rewritten as:[
∆Ãi ∆B̃i

]
= M̃1iH

[
ÑAi ÑBi

]
, ∆C̃i = M̃2iHÑCi (10.48)

Then, the dynamic of the augmented system in terms of new variables is:

x̃(t+ 1) =
[
Ãi + ∆Ãi + (B̃i + ∆B̃i)(Kj)(C̃i + ∆C̃i)

]
x̃(t) (10.49)

and the associated cost function can be rewritten as:

J =

∞∑
t=0

x̃T (t)
[
Q̃i + (C̃i + ∆C̃i)

TKjR̃iKj(C̃i + ∆C̃i)
]
x̃(t) (10.50)

The following theorem gives us a sufficient condition in terms of BMIs to ensure
closed loop stability of the uncertain PWL system and provides us with an upper bound
on the performance cost.

Theorem 10.3. Consider the uncertain piecewise linear system in (10.1) with the dy-
namic output feedback controller in (10.43), if for given ε3i , ε4i > 0 there exist positive
constants ε1i , ε2i , ε5i and symmetric matrices Xik = XT

ik > 0, such that the following
BMIs are satisfied:
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Ξ ÃclikXik B̃iKkM̃2i 0 0 0

∗ −Xik 0 Xik(ÑBiKkC̃i)
T Xik(R̃

1/2
i KkC̃i)

T XikÑAi
∗ 0 −ε3iI 0 0 0
0 ∗ 0 −ε2iI 0 0
0 ∗ 0 0 −I 0
0 ∗ 0 0 0 −ε1iI
0 ∗ 0 0 0 0
0 0 0 0 0 0
0 ∗ 0 0 0 0

0 0 0

XikÑCi 0 XikQ̃
1/2
i

0 0 0
0 0 0

0 R̃
1/2
i M̃2i 0

0 0 0
−1/3ε−1

3i
I 0 0

0 −ε3iI 0
0 0 −I


< 0, (10.51)


−ε−1

4i
I 0 0 ÑT

Bi

0 −ε4iI KkM̃2i 0
0 ∗ −ε3i 0
∗ 0 0 −ε1iI

 < 0, (10.52)

for all (i, k) ∈ S and (j, l) ∈ Ŝ, where:

Ξ = −Xjl + 2ε1iM̃1iM̃
T
1i + ε2iM̃2iM̃

T
2i , (10.53)

Ãclik = Ãi + B̃iKkC̃i, (10.54)

then the closed loop system is globally exponentially stable, and the upper bound on the
performance function satisfies:

E(J) ≤
∑

i,k∈I×I

σiktr(X
−1
ik Lik). (10.55)

Proof. We consider a piecewise quadratic Lyapunov function candidate as:

V (x̃(t)) = x̃T (t)Pij x̃(t). (10.56)

with Pij = PTij > 0.
For the closed loop augmented system to be stable and the cost function (10.43) to be

guaranteed, the following inequality must hold:

V (x̃(t+1))−V (x̃(t))+x̃T (t)[Q̃i+(C̃i+∆C̃i)
TKT

k R̃iKk(C̃i+∆C̃i)]x̃(t) < 0 (10.57)

Therefore for all for all (i, j) ∈ S and (k, l) ∈ Ŝ we must have:

x̃T (t+ 1)Pjlx̃(t+ 1)− x̃T (t)Pikx̃(t)

+x̃T (t)[Q̃i + (C̃i + ∆C̃i)
TKT

k RiKk(C̃i + ∆C̃i)]x̃(t) < 0. (10.58)
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In the above equation, it is assumed that at time t the system is in the mode i and the
controller is in the mode k and at time t + 1, the system switches to the mode j and the
controller to the mode l. Then, it implies:

[Ãclik ]TPjl[Ãclik ]− Pik+

[Q̃i + (C̃i + ∆C̃i)
TKT

k RiKk(C̃i + ∆C̃i)] < 0, (10.59)

where

Ãclik = Ãi + ∆Ãi + (B̃i + ∆B̃i)(Kk)(C̃i + ∆C̃i) (10.60)

Equation (10.59)which can be rewritten as:[
−P−1

jl Ãclik
ÃTclik −Pik + Q̃i + (C̃i + ∆C̃i)

TKkR̃iKk(C̃i + ∆C̃i)

]
< 0, (10.61)

The above equation can be written as:

Φ0 + Φ1 ≤ 0, (10.62)

where

Φ0 =

[
−P−1

jl (Ãi + B̃iKkC̃i)

(Ãi + B̃iKkC̃i)
T −Pik + Q̃i + (C̃i + ∆C̃i)

TKT
k RiKk(C̃i + ∆C̃i)

]
(10.63)

and

Φ1 =

[
0 ∆Ãi + B̃iKk∆C̃i + ∆B̃iKkC̃i + ∆B̃iKk∆C̃i
∗ 0

]
. (10.64)

Φ1 can be rewritten as:

Φ1 = ψ1 + ψ2 + ψ3 + ψ4, (10.65)

with

ψ1 =

[
M̃1i

0

]
H
[
0 ÑAi

]
+

[
0

ÑT
Ai

]
H
[
M̃T

1i 0
]
, (10.66)

ψ2 =

[
M̃1i

0

]
H
[
0 ÑBiKkC̃i

]
+

[
0

C̃Ti K
T
k Ñ

T
Bi

]
H
[
M̃T

1i 0
]
, (10.67)

ψ3 =

[
B̃iKkM̃2i

0

]
H
[
0 ÑCi

]
+

[
0

ÑT
Ci

]
H
[
M̃T

2iK
T
k B̃

T
i

]
, (10.68)

ψ4 =

[
∆B̃i

0

] [
0 Kk∆C̃k

]
+

[
0

∆C̃Ti K
T
k

] [
∆B̃Ti 0

]
. (10.69)
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Using Lemma 10.2 we have:

ψ1 ≤ ε1i
[
M̃1i

0

] [
M̃T

1i 0
]

+ ε−1
1i

[
0

ÑT
Ai

] [
0 ÑAi

]
, (10.70)

ψ2 ≤ ε2i
[
M̃2i

0

] [
M̃T

2i 0
]

+ ε−1
2i

[
0

C̃Ti K
T
k Ñ

T
Bi

] [
0 ÑBiKkC̃i

]
, (10.71)

ψ3 ≤ ε−1
3i

[
B̃iKkM̃2i

0

] [
M̃T

2iK
T
k B̃

T
i 0

]
+ ε3i

[
0

ÑT
Ci

] [
ÑCi0

]
, (10.72)

ψ4 ≤ ε4i
[
∆B̃i

0

] [
∆B̃Ti

]
+ ε−1

4i

[
0

∆C̃Tj K
T
k

] [
Kk∆C̃i

]
. (10.73)

Therefore:

Φ0 + Φ1 ≤
[
−P−1

jl + ξ1 (Ãi + B̃iKkC̃i)

∗ −Pik + Q̃i + (C̃i + ∆C̃i)
TKT

k R̃iKk(C̃i + ∆C̃i) + ξ2

]
,

(10.74)
where

ξ1 = ε1iM̃1iM̃
T
1i + ε2iM̃2iM̃

T
2i + ε−1

3i
B̃iKkM̃2iM̃

T
2iB̃

T
i K

T
k + ε4i∆B̃i∆B̃

T
i , (10.75)

ξ2 = ε−1
1i
ÑT
AiÑAi + ε−1

2i
C̃Ti K

T
k Ñ

T
BiÑBiKkC̃i + ε3iÑ

T
CiÑCi + ε−1

4i
∆C̃Ti K

T
k Kk∆C̃i.

(10.76)

Applying Schur complement, see [19], we have:

Φ0 + Φ1 ≤ Ω =

Ω11 Ãclik B̃iKkM̃2i
0 ∆B̃i 0 0 0 0

∗ −Pik + Q̃i 0 (ÑBiKkC̃i)
T 0 (Ki∆C̃i)

T Ω26 ÑAi ÑCi
∗ 0 −ε3iI 0 0 0 0 0 0
0 0 0 −ε2iI 0 0 0 0 0

∗ 0 0 0 −ε−1
4i
I 0 0 0 0

0 ∗ 0 0 0 −ε4iI 0 0 0
0 ∗ 0 0 0 0 −I 0 0
0 ∗ 0 0 0 0 0 −ε1iI 0

0 ∗ 0 0 0 0 0 0 −ε−1
3i
I


(10.77)

with

Ω11 = −P−1
jl + ε1iM̃1iM̃

T
1i + ε2iM̃2iM̃

T
2i , (10.78)

Ω26 = (R̃
1/2
i Kk(C̃i + ∆C̃i))

T . (10.79)

This can be written as:

Ω = Ω0 + L1 + L2 + L3, (10.80)
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where

L1 =

[
M̃1i

08×1

]
H
[
01×6 ÑBi 01×2

]
+

06×1

ÑT
Bi

02×1

H [M̃T
1i 01×8

]
, (10.81)

L2 =

 0

ÑT
Ci

07×1

H [01×7 M̃T
2iK

T
k 0

]
+

 07×1

KkM̃2i

0

 [0 ÑCi 07×1

]
, (10.82)

L3 =

 0

ÑT
Ci

07×1

H [01×8 M̃T
2iK

T
k R̃

1/2
i

]
+

 08×1

R̃
1/2
i KkM̃2i

0

 [0 ÑCi 07×1

]
. (10.83)

Applying Lemma 10.2, we have:

L1 ≤ ε1i
[
M̃1i

08×1

] [
M̃T

1i 01×8

]
+ ε−1

1i

06×1

ÑT
Bi

02×1

 [01×6 ÑBi 01×2

]
, (10.84)

L2 ≤ ε3i

 0

ÑT
Ci

07×1

 [0 ÑCi 01×7

]
+ ε−1

3i

 07×1

KkM̃2i

0

 [01×7 M̃T
2iK

T
k 0

]
, (10.85)

L3 ≤ ε3i

 0

ÑT
Ci

07×1

 [0 ÑCi 07×1

]
+ ε−1

3i

[
08×1

R̃
1/2
i KkM̃2i

] [
01×8 M̃T

2iK
T
k R̃

1/2
i

]
,

(10.86)

which implies:

Ω ≤

Ξ Ãclik B̃iKkM̃2i
0 0 0 0 0 0

∗ −Pik + Q̃i 0 (ÑBiKkC̃i)
T 0 0 (R̃

1
2
i KkC̃i)

T ÑAi ÑCi
∗ 0 −ε3iI 0 0 0 0 0 0
0 ∗ 0 −ε2iI 0 0 0 0 0
0 0 0 0 γ1 0 0 0 0
0 0 0 0 0 γ2 0 0 0
0 ∗ 0 0 0 0 γ3 0 0
0 ∗ 0 0 0 0 0 −ε1iI 0

0 ∗ 0 0 0 0 0 0 −1/3ε−1
3i
I


,

(10.87)

with

γ1 = −ε−1
4i
I + ε−1

1i
ÑBiÑ

T
Bi , (10.88)

γ2 = −ε4iI + ε−1
3i
KkM̃2iM̃

T
2iK

T
k , (10.89)

γ3 = −I + ε−1
3i
R̃

1
2
i KkM̃2iM̃

T
2iK

T
k R̃

1/2
i . (10.90)

Using Schur complement we can see the following inequalities are sufficient conditions
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for the above inequality:



Ξ Ãclik B̃iKkM̃2i
0 0 0 0 0

∗ −Pik + Q̃i 0 (ÑBiKkC̃i)
T (R̃

1
2
i KkC̃i)

T ÑAi ÑCi 0
∗ 0 −ε3iI 0 0 0 0 0
0 ∗ 0 −ε2iI 0 0 0 0

0 ∗ 0 0 −I 0 0 R̃
1
2
i M̃2i

0 ∗ 0 0 0 −ε1iI 0 0

0 ∗ 0 0 0 0 − 1
3 ε
−1
3i
I 0

0 0 0 0 ∗ 0 0 −ε3iI


< 0

(10.91)−ε
−1
4i
I 0 0 ÑT

Bi

0 −ε4iI KkM̃2i 0
0 ∗ −ε3i 0
∗ 0 0 −ε1iI

 < 0. (10.92)

We pre- and post-multiply the right hand side of (10.91) by diag{I, P−1
ik , I, I, I, I, I, I, I}

and its transpose. Using Schur complement again and defining Xik = P−1
ik , we conclude

BMIs (10.51) and (10.52) as sufficient conditions for (10.57).

To optimize the upper bound on the performance function we use a similar approach
as before. The upper bound can be minimized using the following minimization problem
with BMI constraints:

min
Xik,Vik,Kk,ε1i ,ε2i

∑
i,k∈I×I

σiktr(VikLik) (10.93)

s.t.



(48)
(49)[
Vik I
I Xik

]
≥ 0

Xik = XT
ik > 0

Vik = V Tik > 0

This is a non-convex optimization problem with BMI constraints. To solve that we use
the V-K iteration approach by [16] which provides us with a suboptimal solution. The
V-K iteration approach consists of iterations over two steps: The V and the K step. The
parameters of the BMI are divided into two sets, namely V and K, such that assuming
each set to be constants, the BMI is converted to an LMI. In the V step, the parameters in
V are fixed and an optimization problem with LMI constraints is solved. The optimization
results are the parameters in K. In the K step, the parameters in K are fixed and unknown
parameters in V are found. The algorithm is iterated until a stopping criterion, e.g no
improvement in the cost or no change in variables, is met.

The V-K iteration to solve the problem (10.93) can now be summarized as :

141



Paper F

• V-Step: Fix Kk, solve:

min
Xik,Vik,ε1i ,ε2i

∑
i,k∈I×I

σiktr(VikLik) (10.94)

s.t.



(48)
(49)[
Vik I
I Xik

]
≥ 0

Xik = XT
ik > 0

Vik = V Tik > 0

• K-step: Fix Xik. Solve:

min
Vik,Ki,ε1i ,ε2i

∑
i,k∈I×I

σiktr(VikLik) (10.95)

s.t.


(48)
(49)[
Vik I
I Xik

]
≥ 0

Vik = V Tik > 0

The V-K algorithm provides us with a suboptimal solution because it searches only in
restricted directions.

5 Example

We consider the following unstable uncertain PWL system:

A1 =

0.2834 0.7041 0.1071
0.1201 0.6523 0.6348
0.5288 0.9332 0.0955

 A2 =

0.4376 0.9832 0.6901
0.1151 0.7553 0.3026
0.7585 0.9580 0.4180


A3 =

0.8174 0.4479 0.5661
0.5195 0.4814 0.2914
0.2078 0.1988 0.6211


B1 =

0.7258
0.1044
0.4182

 B2 =

0.3151
0.7683
0.9588

 B3 =

0.3093
0.0365
0.8125


C1 = C2 = C3 =

[
1 1 1
1 1 1

]
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and parameter uncertainties of:

M1i =

0.2 0 0
0 0.2 0
0 0 0.2

 , M2i =

[
0.2 0.2 0.2
0.2 0.2 0.2

]

NAi =

0.4 0 0
0 0.4 0
0 0 0.4

 , NBi =

0.8
0.8
0.8

 , NC1
=

0.4 0 0
0 0.4 0
0 0 0.4


H =

1 0 0
0 1 0
0 0 1


The state partition of the system is given byX1 = {x|x1 < 0},X2 = {x|x1 ≥ 0, x2 ≥ 0}
, andX2 = {x1 ≥ 0, x2 < 0}. The weighting matrices areQi = 0.01I,Ri = 0.01. Then,
the controller gains are given by:

K1 =


−0.4715 −0.4715 0.0741 −0.3386 −0.1112
0.1016 0.1016 0.1195 0.1734 −0.0914
0.1323 0.1323 0.1376 −0.1379 −0.1465
−0.0644 −0.0644 −0.0767 −0.2272 0.0445

 (10.96)

K2 =


−0.4717 −0.4717 0.0740 −0.3389 −0.1111
0.0997 0.0997 0.1134 0.1525 −0.0882
0.1316 0.1316 0.1350 −0.1497 −0.1456
−0.0629 −0.0629 −0.0715 −0.2097 0.0418

 (10.97)

K3 =


−0.4708 −0.4708 0.0737 −0.3393 −0.1109
0.1076 0.1076 0.1036 0.1816 −0.0755
0.1341 0.1341 0.1296 −0.1303 −0.1380
−0.0692 −0.0692 −0.0633 −0.2350 0.0309

 (10.98)

and

ε11
= 3.4415, ε12

= 4.1738, ε13
= 3.2964

ε21
= 3.0604, ε22

= 3.3477, ε23
= 8.5395. (10.99)

We assume the initial state to be a random variable which is uniformly distributed on
X̄ = [−5, 5]3 and the initial state of the controller is fixed to

[
0 0 0

]T
. The optimal

upper bound obtained is 6.13. Figure 10.1 shows a simulation of the nominal system with
the controller and Figure 10.2 shows a simulation of the system with the controller with
maximum uncertainty. As it is expected the system is stabilized in both cases but the
performance of the system is better in the nominal case.

6 Conclusion

We proposed a new approach for output feedback control of uncertain discrete time piece-
wise linear systems. The controller design is based on piecewise quadratic Lyapunov
function. It is assumed that the controller switching is based on the estimated state and
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Figure 10.1: Simulation results of the nominal system
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Figure 10.2: Simulation results of system with maximum uncertainty

therefore the transition of the controller and the system are not synchronized. Existence
of the controller is casted as the feasibility of a set of BMIs. The controller guarantees
an upper bound on the performance cost which can be minimized solving an optimiza-
tion problem with BMI constraints. The optimization problem is solved using the V-K
iteration algorithm.
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[18] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in MATLAB,” in
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[19] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in
System and Control Theory. Society for Industrial Mathematics, 1994.

146


	Contents
	Preface
	Abstract
	Synopsis
	1 Introduction
	1.1 Motivation
	1.2 Background and State of the Art
	1.3 Outline of the Thesis

	2 Methodology
	2.1 Fault diagnosis
	2.2 Fault Tolerant Control
	2.3 Hybrid systems
	2.4 Mixed Logical Dynamical System
	2.5 Piecewise Affine systems
	2.6 Equivalence between different classes

	3 Summary of Contributions
	3.1 Active Fault Diagnosis of Hybrid systems
	3.2 Fault-Tolerant Control of Hybrid System

	4 Conclusions and Future Work
	References
	Articles
	Paper A: Active Fault Diagnosis of Linear Hybrid Systems
	1 Introduction
	2 Outline of the Method
	3 The proposed algorithm
	4 Example
	5 Conclusion and future works
	References

	Paper B: Automatic Sensor Assignment of a Supermarket Refrigeration System
	1 INTRODUCTION
	2 Preliminaries and Problem formulation
	3 The proposed algorithm
	4 System Description
	5 The Hybrid Model of the System
	6 Simulation Results
	7 Conclusion
	References

	Paper C: Active Diagnosis of MLD Systems using Distinguishable Steady Outputs
	1 Introduction
	2 Preliminaries and Problem formulation
	3 The Proposed Algorithm
	4 Example
	5 Simulation Results
	6 Conclusion
	References

	Paper D: Stabilizable Active Diagnosis of Hybrid Systems
	1 Introduction
	2 Preliminaries and Problem formulation
	3 The Proposed Algorithm
	4 Example
	5 Simulation Results
	6 Conclusion
	References

	Paper E: Passive Fault-tolerant Control of Piecewise Linear Systems against Actuator Faults
	1 Introduction
	2 Piecewise linear systems and actuator fault models
	3 State Feedback Design for PWL systems
	4 Conclusion
	References

	Paper F: Output Feedback Guaranteed Cost Control of Uncertain Discrete-time Piecewise Linear Systems
	1 Introduction
	2 Uncertain Piecewise linear systems
	3 State Feedback Design for uncertain PWL systems
	4 Output Feedback Control
	5 Example
	6 Conclusion
	References



