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Abstract
Justin Z. Tang, BE (Hons 1) Doctor of Philosophy
The University of Sydney June 2017

Optimization-based Framework for
Stability and Robustness of
Bipedal Walking Robots

As robots become more sophisticated and move out of the laboratory, they need to be
able to reliably traverse difficult and rugged environments. Legged robots – as inspired
by nature – are most suitable for navigating through terrain too rough or irregular for
wheels. However, control design and stability analysis is inherently difficult since their
dynamics are highly nonlinear, hybrid (mixing continuous dynamics with discrete
impact events), and the target motion is a limit cycle (or more complex trajectory),
rather than an equilibrium. For such walkers, stability and robustness analysis of
even stable walking on flat ground is difficult.

This thesis proposes new theoretical methods to analyse the stability and robustness of
periodic walking motions. The methods are implemented as a series of pointwise linear
matrix inequalities (LMI), enabling the use of convex optimization tools such as sum-
of-squares programming in verifying the stability and robustness of the walker. To
ensure computational tractability of the resulting optimization program, construction
of a novel reduced coordinate system is proposed and implemented.

To validate theoretic and algorithmic developments in this thesis, a custom-built
“Compass gait” walking robot is used to demonstrate the efficacy of the proposed
methods. The hardware setup, system identification and walking controller are dis-
cussed. Using the proposed analysis tools, the stability property of the hardware
walker was successfully verified, which corroborated with the computational results.
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Chapter 1

Introduction

1.1 Background

The development of legged robots that realise the stability, efficiency and agility of

human walking has been the subject of intense research in recent years [21, 33, 85].

Underactuated ‘dynamic walkers’ can demonstrate amazing feats of efficiency [7], but

control design and stability analysis is inherently difficult since their dynamics are

highly nonlinear, hybrid (mixing continuous dynamics with discrete impact events),

and the target motion is a limit cycle (or more complex trajectory), rather than an

equilibrium [33]. For such walkers, stability and robustness analysis of even stable

walking on flat ground is difficult.

Efficient computation of basins of stability or robustness (or more generally forward

invariant sets) for dynamic walking robots would be an enabling technology for nu-

merous practical problems. For example, they could be used to evaluate different

robot designs [61], and to construct switching feedback controllers with guaranteed

stability [32, 80].

This thesis makes contributions in this body of research by proposing new theoretical

methods to analyse stability and robustness of periodic walking motion – i.e., nonlin-

ear hybrid limit cycles. Computational implementations using convex optimisation
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tools are extensively discussed to demonstrate numerical tractability of the proposed

methods. Finally, physical hardware verification on a bipedal walker using the new

methods are also implemented and discussed.

1.2 Principal Contributions

The principal contributions of this thesis are:

• We propose an extension of the transverse contraction framework to enable

computation of inner estimates of the region of stability for limit cycles of hybrid

nonlinear systems. Unlike traditional Lyapunov-based methods, the transverse

contraction framework developed in this thesis enables proof of stability without

prior knowledge of the exact location of the limit cycle in state space. Further,

the framework is implemented as a series of pointwise linear matrix inequalities,

enabling the use of convex optimisation tools.

• The proposed contraction framework is further extended to study robustness

to parametric uncertainty for hybrid nonlinear limit cycles. Since traditional

Lyapunov based methods require knowledge of the exact location of the limit

cycle in state space, they are not applicable when the system dynamics are

uncertain, as uncertainty will generally change the location of the limit cycle.

The new proposed framework overcomes this shortcoming.

• For nonlinear hybrid systems of higher dimensions, we introduce simplified con-

struction of the transverse coordinates system, enabling more efficient compu-

tation of stability certificates in the reduced coordinates.

• We provide hardware verification of the resulting regions of stability on a real

bipedal walking robot. System identification of the walker was carried out and

stability analysis via the methods proposed in this thesis was implemented.

Physical experiments with the walker successfully validated the computational

results.
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1.3 Publications

This thesis includes materials from the following peer-reviewed articles which are

published or submitted:

• J. Z. Tang, I. R. Manchester. Transverse Contraction Criteria for Stability of

Nonlinear Hybrid Limit Cycles. Proceedings of IEEE Conference on Decision

and Control, 2014. (Published)

• J. Z. Tang, A. M. Boudali, I. R. Manchester. Invariant Funnels for Under-

actuated Dynamic Walking Robots: New Phase Variable and Experimental

Validation. Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2017. (Accepted)

• A. M. Boudali, F. Kong, J. Martinez, J. Z. Tang, I. R. Manchester. Design and

Modelling of an Open Platform for Dynamic Walking Research. Proceedings of

the IEEE International Conference on Mechatronics, 2017. (Published)

• J. Z. Tang, I. R. Manchester. Transverse Contracting Hybrid Systems and

Robust Stability of Dynamic Walking Robots. (Under review)

1.4 Thesis Structure

This thesis proceeds as follows. A literature review covering the current state-of-the-

art is presented in Chapter 2. The new transverse contraction analysis framework for

hybrid nonlinear systems is presented in Chapter 3. For higher dimensional systems, a

simplified construction of the transverse dynamics and the associated reduced coordi-

nate system is presented in Chapter 4. Finally, hardware verification of the proposed

method is presented in Chapter 5.
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Chapter 2

Literature Review

Stability theory plays a central role in system engineering, especially in the field of

control and automation. Stability of a dynamical system, with or without control

and disturbance, is a fundamental requirement for its practical value in real-world

applications [43]. This is especially true for walking robots, where the control sta-

bilization problem is inherently difficult due the nonlinearity, open-loop instability,

hybrid dynamics, and limit-cycle behaviour with target motions which are not neces-

sarily known in advance.

The basic concept of stability emerged as early as 1644 from the study of E. Torricelli,

who investigated the equilibrium of a rigid body under the natural force of gravity. In

1788, J. L. Lagrange formulated the classical stability theorem that defines sufficient

conditions for stability of equilibrium of any conservative system [59].

Arguably the biggest leap in stability theory was ushered in by the celebrated PhD

thesis of A. M. Lyapunov in 1892. Lyapunov’s thesis is so fundamental that its basic

ideas and techniques are still in use in stability analysis and control of dynamical

systems today [18].

In section 2.1, we first discuss the definition and stability analysis of nonlinear limit

cycles. Section 2.2 discusses stability analysis of hybrid systems via Lyapunov-based

theorems. Then, Section 2.3 introduces recent developments in the notion of con-

traction theory in stability analysis and its advantages over Lyapunov-based analysis.
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An overview of the study of stability and robustness for walking robots is given in

Section 2.4. Finally, Section 2.5 outlines the use of semidefinite optimization which

provides computationally tractable algorithms for the execution of both Lyapunov

and contraction analyses.

2.1 Stability of nonlinear limit cycle

Nonlinear dynamical systems exhibiting oscillating limit cycles are found in a large

variety of fields including biology, chemistry, mechanics and electronics [8, 30]. In

general, the motion of walking robots can be seen as nonlinear hybrid limit cycles

[38, 57]. Studies of limit cycle stability has a long history, dating back to the work of

Poincaré in the 19th century.

Consider the dynamics generated by the differential equation:

dx

dt
= f(x), x ∈ G ⊂ Rn (2.1)

where G is closed bounded domain in Rn, f is Lipschitz continuous on G. Further,

we denote by x(t, x0), 0 ≤ t < +∞ , the solution of (2.1) with initial condition

x0 = x(0, x0)

Definition 2.1 (Oscillations). The system in (2.1) oscillates when it has a nontrivial

periodic solution:

x(t+ T, x0) = x(t, x0), ∀t ≥ 0 (2.2)

for some T > 0. The minimum T for which (2.2) is true is called the period. A set

O ⊂ G is a periodic orbit of (2.1) if

O = {x ∈ G : x = x(t, x0), t ∈ R} (2.3)

for some periodic solution x(t, x0) of (2.2).

Definition 2.2 (Limit Cycles). A limit cycle of the system (2.1) is a closed curve
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Γ ⊂ Rn such that Γ is the limit set (or ω-limit set) of the periodic orbit O defined in

(2.3). It follows that a limit cycle is compact and invariant [35, p.106].

2.1.1 Lyapunov Stability of a Periodic Orbit

Lyapunov’s results on stability analysis, along with the Barbashin-Krasovsskii-LaSalle

invariance principle, provide a powerful framework for analyzing the stability of non-

linear dynamical systems, as well as feedback controllers that guarantee closed-loop

system stability [35].

In particular, for systems with an equilibrium point, the Lyapunov direct method pro-

vides local and global stability conclusions if a continuously differentiable positive-

definite function of the nonlinear system states (a Lyapunov function) can be con-

structed for which its time derivative due to perturbations in a neighbourhood of the

system’s equilibrium is always negative. The reader is referred to [35] and [43] for

overview on elementary results of Lyapunov theory for stability analysis of nonlinear

system with an equilibrium point.

Here, we provide an overview of the definition of stability in the sense of Lyapunov,

which is specifically applicable for limit cycles. Denote the solution trajectory as:

L+(x0) = {x(t, x0) | t ∈ [0,+∞)} (2.4)

Denote Bδ(x) be the open ball with centre x and radius δ.

With this notation, Lyapunov stability is defined as follows: A solution x(t, x0) to

(2.1) system is Lyapunov stable if for each ε > 0, there exists δ(ε) > 0 such that for

every y0 ∈ Bδ(x0), the relation:

|x(t, x0)− x(t, y0)| < ε holds for all t ≥ 0 (2.5)

where | · | is the Euclidean norm. This stability means that if two orbits are near in

the beginning, then they remain near together synchronously for all times t ≥ 0
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Similarly, a solution x(t, x0) to system (2.1) is asymptotically Lyapunov stable if

it is Lyapunov stable and there exists η > 0 such that for every y0 ∈ Bη(x0), we yield:

||x(t, x0)− x(t, y0)|| → 0 as t→∞ (2.6)

2.1.2 Poincaré Return Map and Poincaré stability

Poincaré Theorem [68] is a powerful tool in analysing the stability properties of limit

cycles. It provides necessary and sufficient conditions for stability of periodic orbits

based on the stability properties of a fixed point of a discrete-time dynamical system

constructed from a Poincaré return map.

For a candidate periodic trajectory, the Poincaré return map is defined by an (n−1)-

dimensional hyperplane constructed transversal to the periodic orbit. Trajectories

starting on the hyperplane close to a point on the periodic orbit will intersect the

return map again after a time close to the period of the orbit. This return map

essentially traces out the system trajectory from a point on the hyperplane to its next

corresponding intersection with the hyperplane. Therefore, the Poincaré return map

reduces the stability properties of an n-dimensional dynamical system with periodic

solutions to the stability properties of an equilibrium point of an (n−1) discrete-time

system.

To verify stability, often a linearization of the return map is computed numerically,

and its eigenvalues can be used to verify local orbital stability [54]. However, as we

will explore later, it is often impractical to directly apply the Poincaré return map in

the analysis of nonlinear system stability because it often cannot be found explicitly,

is typically highly nonlinear, multivalued and discontinuous.

Poincaré (or Orbital) stability describes the closeness of two orbits in terms of distance

of two sets in the phase space of the system [87]. Define a distance ρ from a point h

to the set L as

ρ(h, L) = inf
y∈L
|h− y| (2.7)
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where | · | is Euclidean norm in Rn.

Definition 2.3 (Poincaré stability). The system (2.1) is asymptotically stable if for

any ε > 0, there exists a number δ(ε) > 0 such that for all y0 satisfying the inequality

|x0 − y0| ≤ δ(ε), the relation following relation is satisfied:

ρ(L+(x0), x(t, y0)) ≤ ε, ∀t ≥ 0 (2.8)

Definition 2.4 (Asymptotic Poincaré stability). In addition to above, if for some δ0

and for all y0 satisfying |x0 − y0| ≤ δ0, the following relation holds:

lim
t→+∞

ρ(L+(x0), x(t, y0)) = 0 (2.9)

then the trajectory x(t, x0) is asymptotically Poincaré stable.

2.1.3 Time reparameterization and Zhukovski Stability

A more precise concept of orbital stability is in the sense of Zhukovski [18, 45, 46].

This type of stability is often regarded as Poincaré stability in physical literature since

it characterizes also the mutual behaviour of orbits of system (2.1) in phase space [87].

However, while Poincaré stability is a global characterization of mutual stability of

an orbit, the Zhukovski stability is a local characterization of mutual stability of an

orbit.

To introduce definition of Zhukovski stability, we need the following set of homeo-

morphisms (i.e., a continuous map whose inverse exists and is also continuous)

Hom = {τ(·) | τ : [0,+∞)→ [0,+∞), τ(0) = 0} (2.10)

The functions τ(t) from the set Hom play the role of the reparameterization of time

for the trajectories of the system (2.1).

Definition 2.5 (Zhukovski stability). The trajectory x(t, x0) of the system (2.1) is

Zhukovski stable if for any number ε > 0 there exists a number δ(ε) > 0 such that
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for any vector y0 satisfying the inequality |x0 − y0| ≤ δ(ε), there exists a function

τ(·) ∈ Hom such that the following inequality is valid:

|x(t, x0)− x(τ(t), y0)| ≤ ε ∀t ≥ 0 (2.11)

Definition 2.6 (Asymptotic Zhukovski stability). If in addition to above, for some

number δ0 > 0 and any y0 from the ball {y | ‖x0 − y‖ ≤ δ0} there exists a function

τ(·) ∈ Hom such that

lim
t→+∞

|x(t, x0)− x(τ(t), y0)| = 0 (2.12)

then, the trajectory x(t, x0) is asymptotically Zhukovski stable.

Proposition 2.1 (Connection between stability in the sense of Lyapunov, Zhukovski

and Poincaré). For dynamical system (2.1), Lyapunov stability implies Zhukovski

stability and Zhukovski stability implies Poincaré stability.

However, it is important to note that the converse is not true. The three types of

stability are equivalent in case of x(t, x0) being an equilibrium point.

2.1.4 Moving Poincaré Section

Since Zhukovski Stability is the Lyapunov stability of reparameterized trajectories,

Zhukovski stability can be explored with methods developed for the study of Lyapunov

stability. Based on Zhukovski stability, the moving Poincaré section, as introduced in

[45], is an extension over the Poincaré return map as described in Section 2.1.2. By

introducing not one just one return map but a family of transverse surfaces param-

eterized by the points on the cyclic trajectories, we essentially “force" the Poincaré

section to move along the trajectory x(t, t0).

The classical Poincaré return map describes the behaviour of trajectories by drawing

the intersection points of a trajectory and the hyperplane at discrete moments of time.

The reparameterization of time in Zhukovski stability enables the organization of

motion along the trajectory such that at a time t, all trajectories cross simultaneously

the same moving Poincaré section.
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2.1.5 Transverse Linearization and Transverse Lyapunov The-

ory

In [37, 57, 73], the technique of moving Poincaré section is further extended by taking

advantage of the “transversal coordinates" and thereby extending the use of Lyapunov

theory for limit cycles.

For a nonlinear system with a stable equilibrium point, the quadratic Lyapunov func-

tion derived from its linearization is a valid Lyapunov function for the original non-

linear system [43]. However, [37] shows that this technique cannot be directly applied

to exponentially stable limit cycles – even if a periodic orbit is exponentially stable,

its linearization will not be exponentially stable. This is because variations tangent

to the orbit do not asymptotically converge to zero since they correspond to initial

conditions on the orbit. Instead, local stability of an orbit is defined as follows.

Suppose we have dynamical system:

ẋ = f(x) (2.13)

on Rn and suppose that η ⊂ Rn is a periodic solution for (2.13) with period T .

Using the distance function:

d(x, η) := min
y∈η
‖x− y‖ (2.14)

An ε-neighbourhood of η can be specified as

Bε(η) := {x ∈ Rn : d(x, η) < ε} (2.15)

The orbit η is stable if trajectories starting near η stay near η. That is, for every

ε > 0, there exists δ > 0 such that x ∈ Bδ(η)→ ψft (x) ∈ Bε(η) for all t ≥ 0 (ψft is the

flow of the vector field f). Further, the orbit is exponentially stable (orbitally stable)

if it is asymptotically stable and the convergence is exponential. That is, there exists

δ,M, λ > 0, such that d(ψft (x), η) ≤ d(x, η)Me−λt, for all x ∈ Bδ(η).
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[37] shows that a periodic orbit is exponentially stable if and only if the linearization of

the dynamics transverse to the orbit are exponentially stable. Based on this principle,

[54, 73] proves orbital stability by first constructing a local coordinate system around

the orbit which separates tangential and transverse dynamics of the system. Then, an

autonomous Lyapunov function is constructed which proves the exponential stability

of the periodic orbit.

The method of constructing local coordinates about a periodic orbit is outlined in [37].

These coordinates highlight the tangential and transverse dynamics of the system,

with stability determined by analysing the n− 1 transverse dynamics.

2.2 Stability of Hybrid Systems via Lyapunov-based

Theories

Broadly speaking, hybrid systems consist of continuous time and/or discrete time

processes interfaced with some logical or decision-making process which may be a

function of the state [23]. Examples of hybrid systems include transmission and

stepper motors [5, 88], and biologically inspired robot locomotion [57]. This section

summarises Lyapunov-based techniques in proving stability of hybrid systems.

The need for separate theories to be developed to analyse the Lyapunov stability

of Hybrid system arises from the fact that stability of a hybrid system depends on

both the dynamics of the constituent parts, as well as the switching rules. [13]

provides ample examples where two globally asymptotically stable systems with a

switching scheme that sends all trajectories to infinity. Similarly, an appropriate

switching between two unstable system can produce a stable system. Therefore, even

if Lyapunov functions exists for each constituent subsystems individually, restrictions

need to be imposed on switching to guarantee stability. This section summarises

major results in the Lyapunov stability of finite-dimensional hybrid systems.



2.2 Stability of Hybrid Systems via Lyapunov-based Theories 31

2.2.1 Multiple Lyapunov Theorem

Introduced in [12] and further reviewed in [13], the multiple Lyapunov theorem im-

poses restrictions on switching that are sufficient to guarantee stability, enabling the

use of multiple Lyapunov functions to prove the overall stability of a hybrid system.

Here, we consider systems that switch among vector fields (respectively difference

equations) over time or region of state space.

Suppose S(r), B(r) and B̄(r) represent the sphere, ball, and closed ball of Euclidean

radius r about the origin in Rn, respectively. Consider the prototypical example for

a switched system

ẋ(t) = fi(x(t)), i ∈ Q = {1, ...N} (2.16)

Suppose we have a switching sequence, indexed by an initial state:

S = x0; (i0, t0), (i1, t1), ..., (iN , tN) (2.17)

The sequence (2.17), along with (2.16) completely describes the trajectory, according

to the rule: (ik, tk) means that the system evolves according to ẋ(t) = fik(x(t), t) for

tk ≤ t < tk+1. We denote this trajectory by xS(·).

We can take projections of this sequence onto its first and second coordinates, yielding

the sequence of indices:

π1(S) = x0; i0, i1, ..., iN , ... (2.18)

and the sequence of switching times

π2(S) = x0; t0, t1, ..., tN , ... (2.19)

Using switching sequence from (2.17), we define S|i as the endpoints of the times that

system i is active in both the continuous- and discrete-time cases.

The interval completion I(T ) of a strictly increasing sequence of times T = t0, t1, ..., tN , ...
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is the set

I(T ) =
⋃
j∈Z+

[t2j, t2j+1] (2.20)

so, I(S|i) is the set of times that the ith system is active (up to a set of measure zero

in the continuous-time case). Finally, denote the even sequence of T by E(T ).

We now review the multiple Lyapunov theory.

Definition 2.7 (Lyapunov-like functions). A function V is “Lyapunov-like" function

if V is radially unbounded and is a continuous positive definite function (about the

origin, 0) with continuous partial derivatives and V (0) = 0. Further, the function

must satisfy the condition V̇ (x(t)) ≤ 0 for all t ∈ I(t). Finally, V must be monoton-

ically non-increasing on E(T )

Theorem 2.1 (Multiple Lyapunov Theory). [12, Theorem 2.3] Suppose we have a

candidate Lyapunov functions Vi, for i = 1, ...N for all i, vector fields ẋ = fi(x), with

fi(0) = 0. Further, let S be the set of all switching sequences associated with the

system. If for each S ∈ S, we have that for all i, Vi is Lyapunov-like for fi and xS(·)
over S|i, then the overall system is stable in the sense of Lyapunov.

It is possible to use different conditions on the Vi to ensure stability. An example is

given below.

Definition 2.8 (Non-increasing sequence condition). [12, Def 2.6] [88] If there are

candidate Lyapunov functions Vi corresponding to fi for all i, we say they satisfy the

sequence non-increasing condition for a trajectory x(·) if

Vij+1
(x(tj+1)) < Vij(x(tj)) (2.21)

Consider system where the index set is an arbitrary compact set

ẋ = f(x, λ), x ∈ K, compact. (2.22)

Here, x ∈ Rn, f is globally Lipschitz in x, continuous in λ. Similar to Eq.(2.17), we

define switching sequence:
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S = x0; (λ0, t0), (λ1, t1), ..., (λN , tN) (2.23)

Theorem 2.2 (Multiple Lyapunov with Sequence Non-increasing Condition). For

a system in (2.22) with f(0, λ) = 0, for each λ ∈ K, suppose we have candidate

Lyapunov functions Vλ ≡ V (·, λ) such that V : Rn × K → R+ is continuous. Also,

define S be the set of all switching sequences associated with the system.

If, for each S ∈ S we have that for all λ, Vλ is Lyapunov-like for fλ and xS(·) over

S|λ and Vλ satisfy the sequence non-increasing condition for xS(·), then the overall

system is stable in the sense of Lyapunov.

2.2.2 Piecewise Quadratic Lyapunov Function (PQLF)

In [41], stability analysis of nonlinear hybrid systems with piecewise affine dynamics

was investigated by constructing Lyapunov functions that are piecewise quadratic

(PQLF). Importantly, this method relaxes the problem of finding a Lyapunov certifi-

cate for hybrid systems to a solution of a convex optimisation problem with a finite-

dimensional set of linear matrix inequalities (LMI). The method partitions the state

space into a number of closed (possibly unbounded) polyhedral cells with pairwise

disjoint interior. This enables the Lyapunov functions to have certain discontinuity,

with each Lyapunov function only catering for its respective partition.

However, there are certain drawbacks on the PQLF method. First, PQLF is unable

to analyse limit cycles since the method constructs Lyapunov functions directly in the

state space. In addition, when partitioning the state space, it is often insufficient to

use the natural partition of the system – further refinement of partitions is typically

necessary for effective analysis [31]. As the number of dimension increases, the number

of partitions required for analysis also increases significantly. Hence, the method does

not scale well with the dimension of the system.



34 Literature Review

2.2.3 Surface Lyapunov Function (SuLF) for Impact Maps

To improve upon the method of PQLF, [30, 31] introduces the notion of Surface Lya-

punov functions (SuLF), which infers global properties of Piecewise Linear Systems

(PLS) solely by studying their behaviour of switching surface. To facilitate this, the

notion of impact maps was introduced, which is the mapping between one switching

surface to the next switching surface. Then, the method essentially demonstrates

overall system stability by proving the impact maps are contracting by construct-

ing surface Lyapunov functions. Compared with PQLF, SuLF enables the analysis

of both limit cycles and equilibrium points and is scalable with higher dimensional

system. We now present a brief overview of the method.

Suppose we have system ẋ = Ax+B, part of some larger PLS, defined on some open

polytopical set X ⊂ Rn. Consider the following hyperplanes in the boundary of X:

S0 = {x ∈ Rn : C0Sx = d0} S1 = {x ∈ Rn : C1x = d1} (2.24)

Assume at t = 0, x arrives in a subset of S0 and the PLS switches to the system.

The impact map is defined as a map from some subset of S0 to some subset of S1.

Now, suppose Sd0 is some polytopical subset of S0 where any trajectory starting at Sd0
satisfies x(t) ∈ S1, for some finite t ≥ 0. Also, let Sa1 ⊂ S1 be the set of those points

x1 = x(t).

We are interested in studying the impact map from x0 ∈ Sd0 to x1 ∈ Sa1 . Since both

x0, x1 belong to switching surfaces, they can be parameterized in their respective

hyperplanes. Let x0 = x∗0 + ∆0 and x1 = x∗1 + ∆1, where x∗0 ∈ S0, x∗1 ∈ S1, and ∆0,∆1

are any vectors such that ∆0 ∈ Sd0−{x∗0} and ∆1 ∈ Sa1−{x∗1}. This reparameterization

essentially reduces the map from ∆0 to ∆1.

Then, to prove stability of the system, we construct Lyapunov functions V0 and V1 on

switching surfaces Sd0 ⊂ S0 and Sa1 ⊂ S1 respectively such that the following holds.

V1(∆1) < V0(∆0) ∀∆0 ∈ Sd0 − x∗0 (2.25)
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If V0 and V1 exists, then the impact map from Sd0 to Sa1 is a contraction.

2.3 Stability of Hybrid Systems via Contraction Anal-

ysis

While the Lyapunov-based theories outlined in the preceding section provide a “cer-

tificate” proving existence and stability of limit cycles, these Lyapunov certificates

must generally be constructed about a known equilibrium. Therefore, those meth-

ods are not applicable when the system dynamics are uncertain, as uncertainty will

generally change the location of the limit cycle in state space.

An alternative to Lyapunov-based methods is to search for a contraction metric, first

developed in [49, 50]. An important advantage of the Contraction Analysis framework

over Lyapunov-based methods is that it does not require specific knowledge of the

nominal trajectory. Instead, a contraction metric implies the existence of a stable

equilibrium indirectly. This section outlines the basics of the Contraction Analysis

framework and its application to analysing the stability of limit cycles.

2.3.1 Contraction Analysis for Nonlinear Systems

The Contraction Analysis framework [49, 51] is derived using elementary tools from

continuum mechanics and differential geometry. Traditionally, stability is viewed rel-

ative to some nominal motion or equilibrium. Contraction Analysis is motivated by

the insight that defining stability does not necessarily require prior knowledge of a

nominal trajectory - a system is stable if initial conditions or temporary disturbances

are somehow “forgotten". That is, if the final behaviour of the system is independent

of initial conditions - all trajectories then converge to the nominal motion. There-

fore, stability can be analysed differentially by analysing whether nearby trajectories

converge to one another.
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Consider a system described by a nonlinear deterministic differential equation in the

form:

ẋ = f(x, t) (2.26)

where x is the n-dimensional state vector and f is a non-linear vector field. Further,

we assume all quantities are real and smooth and any solution x(x0, t). Under these

assumptions, we can obtain the following differential relation from (2.26):

δẋ(t) = δf =
∂f

∂x
(x, t)δx (2.27)

The δx(t) in (2.27) is known as the virtual displacement at a fixed time, and its

use is one of the main features of contraction theory. Roughly speaking, virtual

displacements of the state x consists of a slight modification of the state to see the

change it produces on the velocity vector ẋ [42].

Suppose now we define a state dependent local and virtual change of coordinate on

(2.27):

δz = Θ(x, t)δx (2.28)

Then, the virtual squared-length in the δz coordinates is:

δzT δz = δxTM(x, t)δx (2.29)

where M(x, t) = ΘTΘ is a symmetric, uniformly positive definite and continuously

differentiable metric. (Formally, this defines a Riemannian manifold, as per [50])

Further, the generalised virtual dynamics can be expressed in the new δz-coordinate

as:

δż = F (x, t)δz (2.30)

where the generalized Jacobian F is given by:
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F =

(
Θ̇ + Θ

∂f

∂x

)
Θ−1 (2.31)

Definition 2.9 (Contraction region). Given system equation (2.26), a region of the

state space is called a contraction region with respect to a uniformly positive definite

metric M(x, t) in (2.29) if there exists a strictly positive constant βM such that

F =

(
Θ̇ + Θ

∂f

∂x

)
Θ−1 ≤ −βMI (2.32)

or equivalently:

∂f

∂x

T

M(x) +M(x)
∂f

∂x
+ Ṁ ≤ −2βMM (2.33)

is verified in that region.

Theorem 2.3 (Contraction Theory [51]). Given system equation (2.26), any trajec-

tory, which starts in a ball of constant radius with respect to the metric M(x, t) in

(2.29) centred at a given trajectory and contained at all times in a contraction region

with respect toMi, remains in the ball and converges exponentially to this trajectory.

The mathematical proof of the above theorem can be found in [51]. Intuitively, the

above result means that if the evolution of a virtual displacement tends to zero as

time goes to infinity, the whole flow will “shrink" to an equilibrium point - hence the

term “contraction”.

2.3.2 Contraction Analysis on Synchronised Oscillators

Contraction theory has also been extended to analyse synchronisation phenomena

in distributed networks of nonlinearly coupled oscillators [67, 70, 74, 84]. Generally

in these works, a virtual axillary system is constructed whose particular solutions

include the individual subsystems’ states. Proof of synchronization follows from the

proof of contracting property with respect to the virtual state variables.
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2.3.3 Transverse Contraction for Nonlinear Limit Cycles

In [56], the contraction analysis framework is extended to enable analysis of limit

cycles. Solutions starting in a transverse contracting region will converge to a unique

limit cycle.

The transverse contraction condition requires the metric to be contracting as per

(2.33) whenever the transverse condition δxTMf = 0 is satisfied. [56] shows that this

condition can be written as a linear matrix inequality. A system (2.26) is transverses

contracting if we can search for a symmetric positive-definite matrix function W (x)

and a function ρ(x) ≥ 0 such that:

W (x)A(x)T + A(x)W (x)− Ẇ (x) + λW (x)− ρ(x)Q(x) ≤ 0 (2.34)

where Q(x) = f(x)f(x)T . Transverse contraction is a strictly weaker condition than

contraction, so every contracting system is also transverse contracting. Therefore,

periodic solution to which a transverse contracting system converges may be trivially

periodic - i.e., an equilibrium.

2.3.4 Contraction Analysis of Switched or Hybrid Systems

While classical contraction analysis focused on systems with continuously differen-

tiable vector fields, recent extensions for incremental stability of non-differentiable

vector fields have been presented in the literature.

[51] discusses the incremental stability of piecewise smooth continuous systems, and

of hybrid systems whose switches are fixed in time. The study of such hybrid systems

is extended in [26] where dwell-time-based conditions are proposed for exponential

convergence of nonlinear nonautonomous resetting systems. In [66], stability of hybrid

stochastic systems are discussed using contraction analysis. Note that in these works,

hybrid systems whose switches are fixed in time are considered – a simpler case

compared to the state-dependent switches considered in this thesis.
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In [24, 25, 28], contraction analysis is further applied to the study the incremental

stability of different classes of Filippov systems including piecewise smooth systems,

piecewise affine systems and relay feedback systems.

2.4 Stability and Robustness Analysis of Walking

Robots

The development of legged robots that realise the stability, efficiency and agility

of human walking has been the subject of intensive research in recent years (e.g.

[21, 33, 85]). Underactuated bipedal "dynamic walkers" can demonstrate amazing

feats of efficiency [7], but control design and stability analysis is inherently difficult

since their dynamics are highly nonlinear, hybrid (mixing continuous dynamics with

discrete impact events), and the target motion is a limit cycle (or more complex

trajectory), rather than an equilibrium [33].

The most common approach in studying the stability of periodic bipedal walking

motion is via the Poincaré map as discussed in Section 2.1.2 [58] [85]. To measure

the robustness of limit cycle walkers, the gait sensitivity norm based on a Poincaré

map is used in [39]. In [14], metastability analysis is applied to limit cycle dynamics

on the Poincaré map to study robustness to unknown terrain.

However, for models of walking robots, the Poincaré map generally cannot be found

explicitly and hence can only be numerically approximated. Further, since the sys-

tem’s evolution is only analysed on a single surface, regions of stability in the full

state space are difficult to evaluate. [22] avoids the use of Poincaré map by using the

continuous formulation of the hybrid dynamical system to construct a linear robust

controller which minimizes the L2 gain from terrain perturbations. The theoreti-

cal contribution of this thesis will enable the study of stability and robustness to

parametric uncertainty of nonlinear hybrid limit cycles.
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2.5 Semidefinite Optimization for Stability Analysis

Semidefinite programming (SDP) is the optimization of a linear function subject to

linear matrix inequality (LMI) constraints. It generalizes several kinds of problems

such as linear programming and quadratic programming [10]. SDPs can be solved

effectively using interior point methods, which have polynomial worst-case complexity

and perform well in practice [86].

A recent important development in SDP is Sum of Squares (SOS) programming [64],

which addresses the question of whether there exists a sum of squares decomposition

for a given multivariate polynomial. Such a decomposition is a sufficient condition

for the polynomial’s global nonnegativity.

Testing global nonnegativity of a polynomial function, which is required for applica-

tions in Lyapunov theory and contraction theory, is NP-hard. This computational

complexity can be avoided by using the sum of squares decomposition as a sufficient

condition for global nonnegativity, which can be attained in polynomial time via a

SDP.

2.5.1 Sums-of-Squares Programming

As an example on the application of SOS [62], consider the example polynomial from

[82]:

q(x1, x2) := x2
1 + 2x4

1 + 2x3
1x2 − x2

1x
2
2 + 5x4

2 (2.35)

Equation (2.35) can be represented in Gram matrix representation where p(x) =

zTQz(x) where z(x) is a vector of monomials of degree less than or equal to d, and

Q is a symmetric matrix:

z(x) :=


x1

x2
1

x1x2

x2
2

 (2.36)
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Q :=


1 0 0 0

0 2 1 −0.5

0 1 0 0

0 −0.5 0 5

 (2.37)

The existence of a symmetric positive semidefinite Q proves the feasibility of a SOS

decomposition p(x). Note that the Gram matrix Q is not unique due to dependencies

among the monomials in z. In this example, x2
1x

2
2 can be expressed as (x1x2)(x1x2)

or (x2
1)(x2

2). Therefore, suppose:

N :=


0 0 0 0

0 0 0 −0.5

0 0 1 0

0 −0.5 0 0

 (2.38)

then zT (x)Nz(x) = 0 for all x, and thus Q+ λN also gives a Gram matrix represen-

tation of q,∀λ ∈ R.

We now consider more vigorously the SOS condition and the associated algorithm for

decomposition, as introduced in [62].

Definition 2.10 (Sum-of-squares polynomial). A polynomial p of degree 2d is an

SOS if and only if there exists Q < 0 (positive semidefinite) such that p(x) =

zT (x)Qz(x), ∀x, where z(x) is the vector of all monomials of degree up to d.

The above Definition 2.10 follows from the following equivalent statements for a poly-

nomial p of degree 2d and the vector z of all monomials of degree ≤ d as explored in

[82]:

1. p is SOS.

2. ∃ row vectors L1, ..., LN ∈ R1×lz such that p(x) =
∑N

i=1(Liz(x))2, ∀x ∈ Rn

3. There exists a matrix L ∈ RN×lz such that p(x) = zT (x)LTLz(x), ∀x ∈ Rn
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4. There exists a positive-semidefinite matrix Q such that p(x) = zT (x)Qz(x)

Suppose now we parameterize all Gram matrix representations by defining a linear

operator L that maps symmetric matrix Q to the polynomial zT (x)Qz(x), where z(x)

is a vector of monomials of degree up to d. Then, each Gram matrix representation for

p is a solution for p is a solution of L(Q) = p. Now, define the matrices N1, ..., NM ∈
Rv×v where v is the length of z(x), span the null space of L, that is, L maps each Ni

to the zero polynomial and every matrix in the null space of L is a linear combination

of N1, ..., Nm. Then, we get that for every value of λi ∈ R, Q = Q0 +
∑n

i=1 λiNi, is a

solution to L(Q) = p.

Therefore, p is an SOS iff there exist λ1, ..., λm such that

Q0 +
M∑
i=1

λiNi < 0 (2.39)

which is a LMI feasibility problem. A matrix representation of L can be computed

since both the domain and range spaces of L is finite dimensional. Solving L(Q) = p

for a particular solution and L(Q) = 0 for all homogenous solutions, i.e. forN1, ..., Nm,

reduces to standard matrix operations.

There exists several software packages for solving SOS programs, including SOS-

TOOLS [69], YALMIP [47] and Spotless [2]. Both packages are compatible with

open-source solver SeDuMi [75] and commercial solver MOSEK.

2.5.2 Generalised S-procedure

In Lyapunov and contraction analyses, we often encounter problems with constraints

of the form

g0(x) ≥ 0 (2.40)

for all x satisfying

g1(x) ≥ 0, ..., gm(x) ≥ 0 (2.41)
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where g0, g1, ..., gm : Rn → R. Note that Equations (2.40) and (2.41) can equivalently

be written as the set-containment constraint:

{x ∈ Rn : g1(x) ≥ 0, ..., gm(x) ≥ 0} ⊆ {x ∈ Rn : g0(x) ≥ 0} (2.42)

The S-procedure is a useful relaxation widely deployed in solving the above problem

[82]. We provide an overview here.

Theorem 2.4 (S-procedure). A potentially conservative but useful algebraic suf-

ficient condition for Eqs.(2.40) and (2.41) is the existence of positive-semidefinite

functions s1, ..., sm : Rn → R such that

g0(x)−
m∑
i=1

si(x)gi(x) ≥ 0 ∀x ∈ Rn (2.43)

Proof. Take an arbitrary point x such that g1(x) ≥ 0, ..., gm(x) ≥ 0. Then, gi(x)si(x) ≥
0 for all i = 1, ...,m. Consequently, g0(x) ≥ 0 is satisfied due to Eq. (2.43), and the

constraints in (2.40) and (2.41) holds.

For cases in which g0, g1, ..., gm are quadratic functions, the sufficient condition in

(2.43) is known as the S-procedure relaxation [11].

2.5.3 Using SOS to search for Lyapunov and Contraction cer-

tificates

A combination of SOS techniques, Positivestellensatz and the S-procedure has been

applied in finding Lyapunov certificates [81] [82] and contraction metrics [6]. We

provide an overview of the method for searching a Lyapunov certificate.

Suppose we have autonomous nonlinear dynamical system:

ẋ(t) = f (x(t)) (2.44)
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where x(t) ∈ Rn is the state vector, and the locally Lipschitz function f : Rn → Rn

determines the system dynamics. Define φ(ξ, t) as the solution to (2.44) at time t

with the initial condition φ(ξ, 0) = ξ

The region of attraction for the equilibrium x = 0 of the system (2.44) is {ξ ∈
Rn : limt→∞ φ(ξ, t) = 0}. To demonstrate stability, we search for a positive definite

Lyapunov function V , such that the following Lemma holds.

Lemma 2.1 (SOS conditions for Lyapunov function). Suppose γ > 0 and suppose

there exists a continuously differentiable function V : Rn → R such that

ΩV,γ : = {x ∈ Rn : V (x) ≤ γ} is bounded (2.45)

V (0) = 0, V (x) ≥ 0 for all nonzero x ∈ Rn (2.46)

ΩV,γ\{0} ⊂ {x ∈ Rn : ∇V (x)f(x) < 0} (2.47)

Then, for all ξ ∈ ΩV,γ, the solution φ(ξ, ·) of (2.44) exists on [0,∞), satisfies φ(ξ, ·) ∈
ΩV,γ for all t ≥ 0 and limt→∞ φ(ξ, t) = 0

The S-procedure (as outlined in Section 2.5.2) can be used to verify the above con-

ditions. Using the S-procedure, if l : Rn → R is positive definite and s : Rn → R is

positive semidefinite, and

− [l(x) +∇V (x)f(x)] + s(x) [v(x)− γ] ≥ 0 for all x (2.48)

then, (2.47) holds.

Proof. Let x be nonzero and satisfy V (x) ≤ γ. Since s(x) ≥ 0 it follows from (2.48)

that ∇V (x)f(x) ≤ −l(x) < 0

This sufficient condition leads to the following optimisation, which can enlarge the

value of γ such that ΩV,γ is an invariant subset of the region of attraction by the

choice of positive-semidefinite function s



2.6 Summary 45

max
γ,s

γ (2.49)

subject to

s(x) ≥ 0 for all x (2.50)

− [l(x) +∇V (x)f(x)] + s(x) [V (x)− γ] ≥ 0 for all x (2.51)

where V, l are given; the scalar γ and function s are decision variables. [82] provides

a worked-example of the above theorems.

2.6 Summary

The control stabilization problem for dynamic walking robots are inherently difficult,

due to the nonlinearity, open-loop instability, hybrid (impact) dynamics and limit

cycles behaviour which may not be precisely known in advance. This chapter has

outlined current stability analysis tools for both hybrid systems and nonlinear limit

cycles. These methods require Lyapunov functions to be constructed around a known

solution which may not be available in advance for a walking robot.

Recent developments in contraction analysis provide a promising framework for sta-

bility analysis for walking robots. Unlike methods based on Lyapunov theory, con-

traction analysis does not require knowledge of the location of the limit cycle in state

space a priori. This thesis builds on these results in contraction to develop new sta-

bility analysis tools for hybrid nonlinear limit cycles, applicable to the control and

stability for walking robots.
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Chapter 3

Stability and Robustness of nonlinear

hybrid limit cycles

via a transverse contraction approach

The results presented in this chapter has been published in the proceedings of IEEE

Conference on Decision and Control (2014) entitled “Transverse Contraction for Sta-

bility of Nonlinear Hybrid Limit Cycles” ([77]), as well as in a journal article entitled

“Transverse Contracting Hybrid Systems and Robust Stability of Dynamic Walking

Robots” ([78]) currently under review.

3.1 Introduction

Nonlinear hybrid dynamical systems with periodic solutions are widely found in di-

verse engineering and scientific fields such as chemistry, electronics and biomechanics,

e.g. [16, 27, 72]. These hybrid systems contain continuous-time and discrete, impul-

sive dynamics which interact with each other. Stability of these dynamical systems

is often a fundamental requirement for their practical value in applications.

In this chapter, we address the question: do all solutions of a hybrid nonlinear system
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starting in a particular set K converge to a periodic solution, i.e. a unique stable

limit cycle?

A major motivation of this work is the study of underactuated bipedal locomotion

[21], where even the analysis of stable walking motion on flat ground – i.e. limit

cycles in state space – is difficult [85]. This is because the associated dynamics are

inherently hybrid due to impacts, and are highly nonlinear [73].

The most well-known stability analysis tool for limit cycles is the Poincaré map [34],

which describes the repeated passes of the system through a single transversal hyper-

surface. However, for nonlinear systems, the Poincaré map generally cannot be found

explicitly. Further, since the system’s evolution is only analyzed on a single surface,

regions of stability in the full state space are difficult to evaluate.

In practice, stability in the full state space is often estimated using cell-to-cell mapping

[40], which has been applied to analysis of walking robots [71]. However, computa-

tional costs of these methods are exponential in the dimension of the system.

In recent years, convex optimization methods have been widely applied in search for

a “stability certificate” based on Lyapunov theory [43]. To characterize regions of

stability for limit cycles, [31] and [30] introduced the notion of the Surface Lyapunov

function, which verifies stability based on the “impact map" between one switching

surfaces to the next switching surface. The method is limited to Piecewise Linear Sys-

tems. In [54], nonlinear limit cycle stability analysis was performed by constructing

Lyapunov functions in the transverse dynamics.

However, these Lyapunov based methods require knowledge of the exact location of

the limit cycle in state space, and hence are not applicable when the system dynamics

are uncertain, since uncertainty will generally change the location of the limit cycle.

An alternative approach to Lyapunov methods is to search for a contraction metric

[6, 50]. By defining stability incrementally between any two trajectories, contraction

analysis answers the question of whether the limiting behaviour of a given dynamical

system is independent of its initial conditions.
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Contraction theory has been extended to analyse synchronisation phenomena in dis-

tributed networks of nonlinearly coupled oscillators in [67, 70, 74, 84]. Generally in

these works, a virtual axillary system is constructed whose particular solutions in-

clude the individual subsystems’ states. Proof of synchronization follows from the

proof of contracting property with respect to the virtual state variables.

In [24, 25, 28], contraction analysis is further applied to the study the incremental

stability of different classes of Filippov systems including piecewise smooth systems,

piecewise affine systems and relay feedback systems. For analysis of limit cycles,

transverse contraction was first introduced in [56].

In this chapter, we propose a transverse contraction framework for analysis of hybrid

limit cycles, building on the work of transversal surface construction in [54], and

continuous transverse contraction of [56]. For the purposes of robustness analysis,

an important advantage is that Lyapunov functions must be generally constructed

around a known equilibrium, whereas a contraction metric derived herein implies

existence of a stable equilibrium indirectly. This is vital if the equilibrium may change

location depending on unknown dynamics.

This chapter proceeds as follows. Problem formulation and preliminaries are out-

lined in Section 3.2. In Section 3.3, the transverse contraction conditions guaran-

teeing stability of a limit cycle in a nonlinear hybrid system is presented. We then

formulate convex criteria enforcing these conditions on the nonlinear system in Sec-

tion 3.4, thereby enabling the search for stability certificates via convex optimisation

techniques such as sum-of-squares programming. Using the techniques presented, a

framework for robustness analysis for limit cycle is presented in Section 3.5. An il-

lustrative analytical examples on a dynamic walking model is presented in Section

3.6.
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3.2 Preliminaries and Problem Formulation

We consider the following class of autonomous hybrid dynamical systems.

ẋ = f(x) x /∈ S−i (3.1)

x+ = g(x) x ∈ S−i (3.2)

We define the set K as a non-empty, compact subset of Rn. Further, x ∈ K; f , g are

smooth; and f : K → Rn. We assume x is strictly forward invariant under f , i.e.,

any solutions of (3.1), (3.2) starting in x(0) ∈ K is in the interior of K for all t > 0.

For simplicity, we assume that the region K is broken into a finite sequence of contin-

uous region in the state space, each denoted Ki for i = 1, 2, ..., N ; i.e., K =
⋃N
i=1 Ki.

Each Ki is a path-connected region and contains no equilibrium point, i.e., ∀x ∈
Ki, f(x) 6= 0.

We define the switching surface where trajectories ‘exits’ or ‘enters’ the i-th section

as S−i and S+
i respectively for i = 1, 2..., N . We define each switching surface by

S±i := {x | h±i (x) = 0}, each a (n − 1)-dimensional hypersurface with all h±i (x)

smooth. We assume that for i = 1, ..., (N − 1), S−i maps to S+
i+1; with S

−
N mapping

to S+
1 . We assume that S+

i does not intersect S−i inside Ki, for all i .

Further, assume that ∀x ∈ S±i , f(x)T z±i (x) > 0 where z±i (x) is the corresponding

normal vector of the switching surface S±i ; i.e., z
±
i (x) :=

dh±i
dx

. Finally, we assume

that for all S+
i , h

+
i (x) > 0 ∀x ∈ Ki; while for all S+

i , h
−
i (x) < 0 ∀x ∈ Ki. This means

∀i, z−i (x) points ‘into’ Ki for all S−i ; while z
+
i (x) points ‘away’ from Ki for all S+

i .

We denote the solution curve of the system as Φ(x0, t), such that x(t) = Φ(x0, t)

is the solution at time t > 0 of the dynamical system with initial state x(0) = x0.

If the system exhibits a non-trivial T -periodic orbit, i.e., for a periodic solution x∗,

there exists some T > 0 such that x?(t) = x?(t+ T ) for all t. Such a solution cannot

be asymptotically stable, as perturbations in phase are persistent. Instead, orbital

stability is better posed [36].
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S1

S2

Figure 3.1 – Region of stability around a hybrid limit cycle

The orbit of a periodic solution is the set X ? := {x ∈ Rn : ∃t ∈ [0, T ) : x = x?(t)}.
The solution is said to be orbitally stable if there exists a b > 0 such that for any x(0)

satisfying dist(x(0),X ?) < b, a unique solution exists and dist(Φ(x0, t),X ?) → 0 as

t→∞.

Our goal is to verify that, in our hybrid system (3.1), (3.2), all solutions starting

in the particular region K are orbitally stable and converge to a unique limit cycle.

This is illustrated in Fig 3.1 for a system with two continuous phases and two switch-

ing surfaces. The verified region is shaded green, and the stable limit cycle in red.

Continuous dynamics are shown in solid line with discrete impulse between switching

surfaces shown in dotted line.

To achieve our goal, we will present extensions of contraction analysis [50] specifically

for hybrid limit cycles.

We will hereafter refer to the Jacobian of f as A(x) := ∂f
∂x
.

For completeness, we now restate the transverse contraction condition for continuous

systems derived in [56]. It was shown in [56] that if a system is transverse contracting,

then all solutions starting with x(0) ∈ K are stable under time reparameterization,

or “Zhukovski stable" [45], and hence converge to a unique limit cycle. We assume a

Riemannian distance metric M(x) which is symmetric positive-definite for all x.

Condition 3.1 (Transverse Contraction). A continuous system ẋ = f(x) is transverse



52
Stability and Robustness of nonlinear hybrid limit cycles

via a transverse contraction approach

contracting with rate λ if there exists a Riemannian metric M(x) satisfying

Ṁ(x) +
∂f

∂x

T

M(x) +M(x)
∂f

∂x
+ 2λM(x) ≤ 0 (3.3)

for all δx 6= 0 such that δTxM(x)f = 0.

The latter condition requires δx to be transverse to the flow of the system, i.e., δx and

f(x) are orthogonal with respect to the metric M(x). We hereafter refer this as the

orthogonality condition.

We will derive two methods of enforcing this orthogonality condition for hybrid limit

cycles in this thesis. First, in section 3.3 and 3.4 we explore embedding the condition

directly into the search for the metric M itself. Second, in Chapter 4, we explore

defining orthorgonality through the construction of a new coordinate system around

a known trajectory. The former results in a n-dimensional metric,M , while the latter

results in a (n− 1)-dimensional metric, M⊥.

3.3 Contraction Conditions for Limit Cycles in Hy-

brid Systems

In this section, we derive the transverse contraction conditions for hybrid nonlinear

limit cycles with a n-dimensional metric,M , and show that these conditions guarantee

the stability of a unique limit cycle within a particular set K.

We first present the conditions on the discrete part of the systems which enables proof

of a unique stable limit cycle for the hybrid system.

Condition 3.2 (Condition on M on switching surface). Given switching surface

Si := {x|hi(x) = 0}, ∀x ∈ S−i ,

δTx zi(x) = 0 =⇒ δTxM(x)f(x) = 0 (3.4)

where zi(x) := dhi
dx

is the normal vector for S−.
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Note that if Condition 3.2 is satisfied, according to the Riemannian metric M(x),

all trajectories approach the switching surface orthogonally. This is true since the

direction vector of any trajectory on the switching surface x ∈ S−i is given by f(x).

Condition 3.3 (Metric condition on discrete dynamics). The discrete part of the

system in Eq. (3.2) satisfies

δTx

(
∂g

∂x

T

M(g(x))
∂g

∂x
−M(x)

)
δx ≤ 0 (3.5)

for all δTxM(x)f(x) = 0 and x ∈ S−i .

Theorem 3.1 (Orbital Stability for Hybrid Limit Cycles). Consider the system

(3.1),(3.2) which are in a strictly forward invariant set K. If, there exists a met-

ric M(x) which satisfies the following three criteria:

i) the continuous part(s) of the system in Eq. (3.1) are all transverse contracting

according to Definition 3.1 w.r.t. M(x);

ii) M(x) satisfies Condition 3.2 on all switching surface(s); and

iii) the discrete part(s) of the system g(x) satisfies Condition 3.3 w.r.t. M(x);

then, all solutions starting in any particular Ki converge to a unique limit cycle that

is orbitally stable.

Proof. The proof will be presented in 2 steps.

1. The conditions stipulate all trajectories in any particular Ki are stable under

some time-reparameterization, i.e., all trajectories are stable in the sense of

Zhukovski;

2. Therefore, there exists a unique limit cycle that is orbitally stable.

These two steps will now be respectively presented in Lemma 3.1 and 3.2.
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Figure 3.2 – Illustration of the parameterization of a path, c(s, t), between x1(t), x2(t).
In (a) x1(t), x2(t) is shown under the system vector field. c(s, t) is a path connecting
the two trajectories. In (b) under the s, t parameterization, the evolution of the
path under system dynamics can be represented as a 2-dimensional surface Q. A
line of constant t is highlighted in red on the left on the system vector field and on
the right for the 2-dimensional surface parameterized by s, t.

Lemma 3.1 (Zhukovski Stability). If the conditions of Theorem 3.1 are satisfied, for

every pair of solutions x1(t) and x2(t) starting in any Ki, there exists time reparame-

terization τ(t) such that x1(t)→ x2(τ(t)) as t→∞. That is, all solutions are stable

in the sense of Zhukovski.

Proof. Suppose there are two initial conditions x1(0), x2(0) ∈ Ki for a particular i.

We pick any arbitrary smooth path c0(s), where c0(s) : [0, 1] → Ki connecting these

two initial conditions, such that c0(0) = x1(0) and c0(1) = x2(0).

We now define c(s, t) : [0, 1] × R+ → K with initial condition c(s, 0) = c0(s) and

boundary conditions c(0, t) = x1(t) and c(1, t) = x2(t). The path evolves in time with

system dynamics for each s ∈ [0, 1] s.t. d
dt

(c(s, t)) = f(c(s, t)). By smoothness of

f and c0, we have ∂c
∂s
6= 0, ∀s, t. Therefore, the evolution of this path under system

dynamics can be represented by a 2-dimensional surface parameterized by s and t as

shown in Fig 3.2. We denote this 2-dimensional surface as a sub-manifold Q of Ki.

We now demonstrate for s ∈ (0, 1], we can construct a new curve c̄(s, t)) : [0, 1]×R+ →
K which always locally satisfies the orthogonality condition, i.e. dc̄(s,t)

ds

T
M(c̄(s, t))f(c̄(s, t)) =

0,∀s, t. We will further demonstrate the existence and uniqueness of such path c̄(s, t)
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in Q. This will be achieved in the following 2 steps:

1. We construct tangent vector field δ⊥(x), which is unique for each x = c(s, t) ∈
Q.

2. We construct the path c̄(s, t) by integrating along the tangent vector δ⊥ we had

constructed. We demonstrate that such path c̄(s, t) exists and a unique path

passes through each x = c(s, t) ∈ Q.

First, we construct a tangent vector field, δ⊥(x) at each x = c(s, t) ∈ Q. Consider

the tangent plane of Q evaluated at x, TxQ, which is spanned by basis vectors in the

direction of dc(x)
ds

and f(x). Hence, in general a tangent vector δ⊥(x) takes the form:

δ⊥(x) = δ⊥(c(s, t)) =
dc

ds
δs + f(x)δt. (3.6)

We fix δs = 1, i.e., the s component of δ(x) is equal to that of c(x); whereas the t

component of δ(x) advances in the direction of f(x) scaled by δt to be derived below.

We additionally impose the orthogonality condition on δ⊥(x):

δ⊥(x)TM(x)f(x) = 0 (3.7)

Hence, substituting (3.6) to (3.7), we yield the definition of δt:

[
dc

ds
+ f(x)δt

]T
M(x)f(x) = 0 (3.8)

δt =
− dc
ds
M(x)f(x)

f(x)TM(x)f(x)
. (3.9)

Since f(x) 6= 0 and M > 0, (3.9) and (3.6) uniquely defines δ⊥(x), for all x ∈ Q.

Second, using the vector field defined by δ⊥(x),∀x = c(s, t) ∈ Q, we can define the

path c̄(s, t) by integrating along δ⊥(c(s, t)) over s:
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Figure 3.3 – The line c̄(s, 2) is highlighted in red on the left on the system vector field
and on the right for the 2-dimensional surface parameterized by s, t.

c̄(s, t) =

∫ s

0

δ⊥(c(σ, t))dσ. (3.10)

with initial condition for s = 0 defined as:

c̄(0, t) = x1(t). (3.11)

Due to uniqueness of solution for planar differential equations which are smooth and

Lipschitz, there exists a unique path c̄(s, t) with tangent vector δ⊥(x) passing through

each point x = c(s, t).

Note that by the construction of δ⊥(x), the s component of c̄(s, t) remains unchanged

from x = c(s, t), while the t component is reparameterised to satisfy the orthogonality

condition. We define such time reparameterization τ(s, t), where for s = 0, τ(0, t) = t.

For s ∈ (0, 1], c̄(s, t) = c(s, τ(s, t)). Hence, we have constructed a unique time repa-

rameterization τ(s, t) which forms the path c(s, τ(s, t)) satisfying the orthogonality

condition dc(s,τ(s,t)
ds

M(s, τ(s, t))f(s, τ(s, t)) = 0, ∀s, t. An example curve of c̄(s, 2) is

shown in Fig 3.3.

Another result of the uniqueness of such time reparameterised curve is that the map-

ping t 7→ τ(s, t) is homomorphic ∀s. Hence, for any given s, we yield that τ(s, t) is
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monotonically increasing w.r.t. t, that is,

τ̇(s, t) > 0, ∀s, t. (3.12)

We now consider the switching surface. Since this path c(s, τ(s, t)) is unique for each

x ∈ Q, and on each switching surface the same orthogonality condition is satisfied by

the criterion (ii) in Theorem 3.1, we can hence deduce that each switching surface

coincide with the curve c(s, τ(s, t)) at a given fixed τ . This result also ensures that

no impact occurs between c0(s) and c̄(s, 0). Therefore, combining the continuous

phase and discrete phase, the path c(s, τ(s, t)) under τ -parameterization is smooth

and remain connected across the switching surface.

We now show that such time-reparameterized path is always shrinking when the

conditions of Theorem 3.1 are satisfied. Consider c(s, τ) and its length, l, under

the Riemannian metric M(x) and associated distance function metric V (x, δx) =

δTxM(x)δx. During continuous time dynamics, the time derivative of length l is given

by:
d

dt
l(c(s, τ)) =

∫ 1

0

d

dt

[
V

(
c(s, τ),

∂

∂s
c(s, τ)

)]
ds. (3.13)

During the discrete switching events, the length is guaranteed to be non-increasing

if:

l+(c(s, τ+)) ≤ l−(c(s, τ−))∫ 1

0

V

(
c(s, τ+),

∂

∂s
c(s, τ+)

)
ds ≤

∫ 1

0

V

(
c(s, τ−),

∂

∂s
c(s, τ−)

)
ds. (3.14)

We first study l(s, τ) under continuous dynamics. Consider, pointwise, the integrand

of the right hand side of Equation (3.13):

d

dt
(δTxMδx) = δTx Ṁδx + 2δTxMδ̇x (3.15)
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evaluated at x = c(s, t) and δx = ∂c(s,t)
∂s

, i.e.

ẋ = f(c(s, t))τ̇(s, t) (3.16)

δ̇x =
∂f(c(s, t)))

∂x
δxτ̇ + f(c(s, t))

∂τ̇

∂s
. (3.17)

Substituting (3.16), (3.17) to (3.15), we yield

d

dt
(δTxMδx) =

δTx Ṁδx + 2δTxM

[
∂f(c(s, t)))

∂x
δxτ̇ + f(c(s, t))

∂τ̇

∂s

]
.

Note that due to the orthogonality condition δTxMf = 0, the last term of the above

equation goes to zero, hence:

d

dt
(δTxMδx) = δTx Ṁδx + 2δTxM

[
∂f(c(s, t)))

∂x
δxτ̇

]
(3.18)

= δTx

(
∂M

∂x
fτ̇ + 2M

[
∂f(c(s, t)))

∂x
τ̇

])
δx. (3.19)

Knowing that τ̇ > 0 from (3.12), we can factoring out τ̇ and (3.19) is guaranteed

to be uniformly negative in the continuous phase of the system by condition (i) of

Theorem 3.1.

We now study l(s, τ) under discrete switching dynamics. Consider, pointwise, the

integrands on both sides of (3.14), as shown below:

δ+
xMδ+

x < δ−xMδ−x (3.20)

δ−Tx

(
∂g

∂x

T

M
∂g

∂x
−M

)
δ−x ≤ 0. (3.21)

By condition (iii) of Theorem 3.1, (3.21) is guaranteed to be satisfied and therefore
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l(s, τ) is guaranteed to be non-increasing over the discrete part(s) of the system.

Therefore, l(s, τ)→ 0 as t→∞. Hence, x1(t)→ x2(τ(t)) as t→∞.

Lemma 3.2 (Orbital Stability). If all conditions of Theorem 3.1 are satisfied, there

exists a unique limit cycle that is orbitally stable.

Proof. Since K is strictly forward invariant and compact, it follows that the omega-

limit set, Ω(x), exists and is a compact subset of K. Further, an implication of

Lemma 3.1 is that all points in K have the same ω-limit set, which we denote Ω(K).

Pick a point x? in Ω(K), by strict forward invariance, this is an interior point of

K. We know that f(x?) 6= 0, otherwise the results of [50] prove convergence to an

equilibrium (see Section 2.3.1). Construct a hyperplane orthogonal to f(x?), which

we denote by H. We prove convergence to a limit cycle by constructing a Poincaré

map on H.

Since f(·) is smooth, for x in some neighbourhoodB of x? we have that f(x)Tf(x) > 0,

so in BH := B ∩ H solution curves are transversal to H and pass through it in the

same direction as at x?.

Since x? is in the ω-limit set for all points in K, and BH is transversal, the evolution

of the system from any point x(t) ∈ BH eventually passes through BH again. That

is, x(t+ s) ∈ BH where s > 0 depends on x. This evolution can be represented by a

Poincaré map T : BH → BH .

Take the distance between two points d(x1, x2) in BH to be the Riemannian metric

distance from Lemma 3.1. By Lemma 3.1, we have that d(T (x1), T (x2)) < d(x1, x2).

Hence, T is a contractive map from BH unto itself. By the Banach fixed point theorem

it has a unique stable fixed point, which is its only limit point so must be x?. By

standard results on Poincaré maps this implies that x? is a point on a limit cycle, to

which all solutions converge, by Lemma 3.1.
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3.4 Convex Criteria for Limit Cycle Stability in Hy-

brid Systems

In this section, we give convex conditions for transverse contraction of hybrid systems

via a n-dimensional metric, M , enabling the search for the metric via sum-of-squares

programming for systems with polynomial dynamics.

For the continuous phase, we first state a convex condition that is necessary and

sufficient for transverse contraction derived in [56] for smooth continuous systems.

Definition 3.1 (Convex Criterion for Transverse Contraction). A system ẋ = f(x)

is transverse contracting with rate λ and a metric V (x, δx) = δTxM(x)δx if and only

if there exists a function W (x) := M(x)−1 and ρ(x) ≥ 0 such that

W (x)A(x)T + A(x)W (x)− Ẇ (x) + 2λW (x)− ρ(x)Q(x) ≤ 0 (3.22)

where Q(x) := f(x)f(x)T .

We now derive stability conditions for the switching phase of the hybrid system which

are convex.

Theorem 3.2 (Metric Condition linear in W ). Suppose the normal vector of the

switching surface is z(x). If the Riemannian metric M and the continuous dynamics

f satisfies

α(x)f(x)−W (x)z(x) = β(x)c(x) (3.23)

for some scalar function α(x) > 0 and some vector function β(x); then Condition 3.2

is satisfied and all trajectories approach the switching surface orthogonally.

Proof. For the orthogonality condition of (3.4) in Condition 3.2 to hold, we require

fTM(x)δx = 0 to hold for all z(x)T δx = 0. This is equivalent to requiring for some

scalar α(x) > 0, the following holds

z(x)T = α(x)f(x)TM(x) (3.24)
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for all x ∈ S. Reformulating this in terms of W := M−1 we yield the requirement

α(x)f(x) = W (x)z(x) (3.25)

for all c(x) = 0. Using the S-procedure formulation [62], we yield the equivalent

equality constraint with multiplier β(x):

α(x)f(x)−W (x)z(x) = β(x)c(x) (3.26)

which is the required condition for all x.

Theorem 3.3 (Convex Conditions for Limit Cycle Stability in Hybrid Nonlinear Sys-

tems). Suppose, firstly, there exists a Riemannian metric M(x) for nonlinear system

(3.1) and (3.2) which satisfies Condition 3.2; secondly, the continuous dynamics of the

system satisfies (3.22) in Definition 3.1; and thirdly, the discrete switching dynamics

g(x) of the system satisfies the following LMI

W (x) + ζ(x)Q(x) W (x) ∂g
∂x

T

∂g
∂x
W (x) W (x)

 ≥ 0. (3.27)

For some ζ(x) ≥ 0, then the overall hybrid system is contracting with respect to

metric M .

Proof. We prove contraction by showing the convex conditions satisfies all require-

ments stipulated in Theorem 3.1. First, by Condition 3.2, the requirements of Con-

dition 3.2 are satisifed.

We require the following condition to be satisfied in Condition 3.3:

δTx

(
∂g

∂x

T

M
∂g

∂x
−M

)
δx ≤ 0 (3.28)

for all δTxMf = 0 and x ∈ S−i .
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Reformulating in terms of the gradient of the metric, i.e. η := M(x)δx such that

δx = M−1η := Wη, we yield the equivalent condition:

ηT
(
W
∂g

∂x

T

W−1 ∂g

∂x
W −W

)
η ≤ 0. (3.29)

The transversality condition δTxMf = 0 becomes ηTf(x) = 0. Now, define matrix

function Q(x) := f(x)f(x)T which is rank-one and positive-semidefinite. Hence the

sets {η : ηTf(x) = 0}, {η : ηTQη = 0} and {η : ηTQ(x)η ≤ 0} are equivalent.

Using this reformulation, the transverse contraction of the discrete switching can be

proved by the existence of W (x) such that:

ηTQ(x)η ≤ 0⇒

ηT
(
W
∂g

∂x

T

W−1 ∂g

∂x
W −W

)
η ≤ 0. (3.30)

By the S-procedure, (3.30) is only true if and only if there exists ζ(x) ≥ 0 such that

ηT
(
W + ζ(x)Q(x)−W ∂g

∂x

T

W−1 ∂g

∂x
W

)
η ≥ 0. (3.31)

Using the Schur Complement, (3.31) is true if and only if (3.27) holds. Hence, all

conditions of Theorem 3.1 are satisfied which completes the proof.

Note that these conditions are all linear in the unknown functionsW (x), α(x), β(x), ρ(x),

and ζ(x), i.e., it consists of a linear matrix inequality at each point x. For polyno-

mial systems, these conditions can be verified efficiently using sum-of-squares (SOS)

programming and Positivstellensatz arguments [76].
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3.5 Robust Stability analysis for Hybrid Limit Cy-

cles

The contraction framework is especially suitable for uncertain systems where the limit

cycle location changes with parametric uncertainty. This is because the framework

eliminates the need for linearization or the need to know the exact location of the

limit cycle, which often changes with uncertainty.

Consider the hybrid system with parametric uncertainty.

ẋ = fδ(x, δ) = f0(x) + δf1(x) x /∈ S−i (3.32)

x+ = gδ(x, δ) = g0(x) + δg1(x) x ∈ S−i (3.33)

where δ is some parametric uncertainty.

Robustness to parametric uncertainty can be ascertained by verifying the contraction

conditions are satisfied for any given range δ. There is an obvious trade-off between

the volume of the stability region and the magnitude of the uncertainty – maximising

the stability region volume necessarily decreases the allowable uncertainty magnitude

and vice versa. The set of optimal values for these two variables form a Pareto frontier

as illustrated in Fig 3.4.

There are two options in optimising for a useful uncertainty:

1. Fix a desired stability region and maximise the allowable uncertainty magnitude

within the said region; or

2. Fix a particular desired uncertainty magnitude and maximise the volume of the

stability region which allows for said uncertainty.

Some combination of the two options can also be used. We now illustrate how these

two options can be implemented numerically.
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Figure 3.4 – Typical trade-off between stability region volume and the magnitude of
allowable uncertainty, which forms a Pareto frontier for the set of optimal values.
The plot shows allowable magnitude of uncertainty in the hip viscous friction for
varying regions of guaranteed stability of a compass gait biped. This example will
be discussed in detail in Section 4.6.
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Figure 3.5 – The rimless wheel model

The first option can be implemented by using the same contraction metric for the

nominal undisturbed system, then maximise (or minimise) the allowable error which

maintains contraction. That is, find the largest (or smallest) δ which satisfies the

contraction condition with dynamics from (3.32), (3.33).

The second option can be implemented by searching for a new metric which maximises

the uncertainty intervals on the error. This can be achieved using the S-procedure

with Lagrange multipliers. Implementation of these methods are further discussed in

Section 4.5.

3.6 Application Example

The rimless wheel is a simple planar model of dynamic walking, exhibiting hybrid

(switching) behaviour. It consists of a central mass, of mass g, with equally spaced

spikes, of length l extending radially outwards. The system rolls down an incline of

pitch γ, as shown in Fig. 3.5.

At any given moment, the rimless wheel rotates about the stance foot without slip-

ping, behaving like an inverted pendulum. When the next foot contacts the ground,

it is assumed that an elastic collision occurs such that the old stance foot lifts off and

the system now rotates about the new stance foot.

The Rimless Wheel state space x = [θ, θ̇]T can be represented with the following
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hybrid system dynamics:

d

dt

θ
θ̇

 = f(θ, θ̇) =

 θ̇

g
l

sin θ

 for θ − γ − α 6= 0 (3.34)

θ+

θ̇+

 = g(θ̇−) =

 γ − α
cos(2α)θ̇−

 for θ − γ − α = 0. (3.35)

On a sufficiently inclined slope, the system has a stable limit cycle, for which the

energy lost in collision is perfectly compensated by the change in potential energy.

The system has been studied extensively and its basin of attraction has ben computed

exactly. [20]

Figure 3.6 shows the phase portrait of the rimless wheel, with blue arrows indicating

the direction of the continuous dynamics. The dotted line on the right of the graph

indicates the collision surface that maps to the left edge of the graph (or vice-versa,

depending on the direction of dynamics). The grey and red lines represent the homo-

clinic orbits of the system and the stable limit cycle respectively. Using the method

outlined in Section 3.4 and convex conditions in Theorem 3.3, we formulate SOS

and Positivestellansatz conditions which verifies transverse contraction for the hybrid

system in a region defined by the switching surfaces and a Bézier polynomial b(x).

Let H = A(x)W (x)+W (x)A(x)T −Ẇ (x)+2λW (x). We approximate the continuous

dynamics f(x) with a third order taylor series expansion.

The conditions verified are given below.

W (x)− (f(x)Tf(x)− ε)L1(x)

−(θ − (γ − α))L2(x)

−((α + γ)− θ)L3(x)

−(θ̇ − b(x))L4(x) ∈ SoS

(3.36)

αf(x)−W (x)∇c = β(x)c(x) (3.37)



3.6 Application Example 67

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Phase Portrait Trajectories of a Rimless Wheel

θ [rad]

dθ
/d

t [
ra

d/
s]

Figure 3.6 – Phase diagram of the rimless wheel model
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−H − ρ(x)f(x)f(x)T

−(f(x)Tf(x)− ε)L5(x)

−(θ − (γ − α))L6(x)

−((α + γ)− θ)L7(x)

−(θ̇ − b(x))L8(x) ∈ SoS

(3.38)

W (x) + ζ(x)Q(x) W (x) ∂g
∂x

T

∂g
∂x
W (x) W (x)

 ∈ SoS (3.39)

L1, L2, L3, L4, L5, L6, L7, L8, β(x) ∈ SoS (3.40)

α(x), ρ(x), ζ(x) ∈ SoS (3.41)

(3.36) verifies the positive-definiteness of W within the defined region; (3.37) verifies

Condition 3.2; (3.38) and (3.39) verifies the conditions of Theorem 3.3; and, finally,

(3.40) and (3.41) verifies positive semi-definiteness of the Lagrange multipliers and

scalar functions.

The above conditions were formulated in YALMIP [47, 48] and solved by commercial

SDP solver MOSEK v.8.0. The code has been made available online [3]. We found

that these conditions could be verfified with W (x) and β(x) a matrix of degree-four

polynomials, and Li(x), α(x), ζ(x), ρ(x) degree-two. Figure 3.7 shows verified regions

of stability coloured in green.

3.7 Conclusion

We have derived differential conditions guaranteeing the orbital stability of nonlin-

ear hybrid limit cycles. These conditions are presented as pointwise linear matrix

inequalities, enabling an efficient search for a stability certificate.

The main advantages of this approach over traditional Lyapunov-based methods are
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that the transverse contraction framework decouples the question of convergence from

knowledge of a particular solution. This opens doors to robustness analysis when the

exact location of the limit cycle is unknown due to uncertainty in the dynamics.



Chapter 4

Prescribed Co-ordinates for

Simplified Stability Analysis of

Nonlinear Hybrid Limit Cycles

While the theoretical results presented in the previous chapter enables stability anal-

ysis for nonlinear hybrid limit cycles, two problems remain for systems with higher

dimensions:

1. For systems of high dimensionality, the resulting SOS conditions from the pre-

vious chapter can be numerically difficult to solve; and

2. Regions of stability for underactuated robots with non-trivial periodic solutions

is naturally small and not easily defined in the full state space by Positivestel-

lensatz.

In this chapter, we address these practical issues by constructing a new set of trans-

verse co-ordinates, enabling simplified stability analysis on a set of reduced coor-

diantes.

This chapter includes results accepted and published in the 2017 IEEE International

Conference on Robotics and Automation entitled “Invariant Funnels for Underactu-

ated Dynamic Walking Robots: New Phase Variable and Experimental Validation”
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([79]); as well as journal article entitled “Transverse Contracting Hybrid Systems and

Robust Stability of Dynamic Walking Robots.” ([78])

4.1 Introduction and Background

In recent years, computational methods using sum-of-squares representations and

semidefinite programming [63] have been developed for region-of-attraction estimation

for equilibria, e.g. [81], [76], and constructing feedback controllers, e.g. [52, 80].

Notable applications have included analysis of the falling-leaf mode of an F/A-18

fighter [17] and control design for a perching glider [60].

These computational methods are extended to analyse the stability of nonlinear hy-

brid limit cycles in [54, 57] by leveraging the concept of transverse dynamics, pre-

viously applied to local stability analysis and control of walking robots in [29, 55].

In [54, 57] a new coordinate system is defined on a family of transversal hypersur-

faces which move about the limit cycle in accordance to a phase variable. Stability

certificates can then be to be computed on the new transversal coordinates.

In this chapter, we demonstrate that for typical models of walking robots a significant

simplification of the construction in [54, 57] is possible by use of a new phase variable.

The relationship between this new phase variable and standard choice used in the

virtual constraints methodology (e.g. in [55, 85]) is discussed in detail.

This chapter proceeds as follows. Section 4.2 introduces the class of problems that are

considered in this paper and preliminaries. We explore and demonstrate the use of

virtual constraints and the traditional choice of phase variable on a classic dynamic

walking model – the compass gait walker – in Section 4.3. We then introduce a

novel, optimal construction of the phase variable, with comparisons to the traditional

choice. Using this new phase variable, we demonstrate ROA analysis in Section

4.4 with illustrative numerical results demonstrating the utility of our framework in

Section 4.6.
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Fig. 4. Schematic and photograph of compass-gait biped used in the experiments.

Table 1. Parameters of the compass-gait biped.

Parameters Values

Masses [kg] m = 1.3, mH = 2.2,
mHg = −1.2

Inertia [kgm2] Ic = 0.0168
Lengths [m] l = 0.32, lc = 0.0596
Gravitational constant [m/s2] g = 9.81
Ratio current/input [A] kI = 1.1
Motor torque constant [Nm/A] kτ = 0.0671
Coulomb friction [Nm] FC = 0.02
Viscous friction [Nm s] FV = 0.01

d
dt

[
q̂
ˆ̇q

]
=

[ ˆ̇q
M( q̂)−1 (−C( q̂, ˆ̇q) ˆ̇q− G( q̂)+B( q̂) u)

]

+L( y− q̂) ,
q̂+ = #qq̂, ˆ̇q+ = #q̇( q̂) ˆ̇q,

where y is the measurement of q. A simple choice for
the observer gain is L = [1/ε 2/ε2], which places the
eigenvalues of the linearized error system at −1/ε. In
our experiments we found that ε = 0.02 gave a reason-
able compromise between speed of convergence and noise
rejection.

5.1. Polynomial representation of desired motion
In this paper, we represent planned trajectories in the form
of virtual holonomic constraints: one coordinate (or func-
tion of coordinates) which evolves monotonically is chosen
as a “phase” variable, and the desired motions of all other
coordinates are represented as functions of this variable.

For the compass biped we take θ = q2, the “ankle”
angle of the stance leg relative to horizontal. Then to spec-
ify the path through configuration space for each step j, we
need to specify only the inter-leg angle q1 as a function of
the ankle angle: q!

1 = φj( θ ). We chose to construct the
φj functions as Bézier polynomials, which can represent a
wide range of useful motions with quite a low number of
parameters. For details, see Westervelt et al. (2007, Ch. 6),
in which Bézier polynomials were used to design periodic
trajectories.
A trajectory q∗

1( θ ) can be represented as

φj( σ ) :=
M∑

k=0
ak

M!
k!(M − k) !

σ k
j ( 1− σj)M−k ,

where σj ∈ [0, 1] is a mapping of the evolution of θ for the
j-th footstep into the interval [0, 1]:

σj =
θ − θ ( t+j )

θ ( t−j+1)−θ ( t+j )
.

This method is straightforward to adapt to non-periodic
trajectories. For the experiments in this paper, we hand-
chose parameters of fourth-order Bézier polynomials which
achieved a walking motion over our terrain. Real-time plan-
ning in this framework may offer significant efficiency
benefits, and will be part of our future work.

6. Experimental results
To test the controller experimentally, a relatively simple
task was chosen: the robot should walk flat for two steps,
then down two “stairs”, and then continue along the flat.

 at SSRT-Tech Serv on July 29, 2012ijr.sagepub.comDownloaded from 

Figure 4.1 – The Compass Gait Walker, used as an example throughout this Chapter.

4.2 Problem Formulation and Preliminaries

Consider a hybrid system, with state space x ∈ Rn and continuous dynamics repre-

sented by

ẋ = f(x, u). (4.1)

On a given switching surface S− ∈ Rn the system (4.1) undergoes an instantaneous

update

x+ = g(x−) x− ∈ S−. (4.2)

Suppose x?(·) represents a periodic walking motion for the system, i.e., a non-trivial

T -periodic trajectory satisfying (4.1), (4.2), with u?(·) the associated input trajectory.

The overall objective is twofold. First, we seek to compute an invariant funnel for

periodic walking motion. That is, we seek to compute a region of state space D ⊂ Rn

around x?, from which all solutions would remain in that region while maintaining

forward motion. For the compass gait walker in Fig 4.1, forward motion is defined as

positive angular velocity for q2, thereby inducing forward movement of the hip.

Second, we seek to apply the contraction framework discussed in Chapter 3 to compute

a stability funnel for the periodic walking motion. That is, we seek to compute a region

of state space D ⊂ Rn around x?, from which all solutions converge to a unique stable

limit cycle.

Our approach is to first construct a set of transverse dynamics in regions around x?(·)
as suggested in [54], which in turn enables:
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1. the search for a Lyapunov function in the transverse dynamics to prove the

invariance condition; and

2. the search for a contraction metric in the transverse dynamics to prove the

stability condition.

For completeness, we now briefly restate the transverse coordinate construction from

[54], highlighting improvements and simplifications made in this paper.

We define a smooth local change of coordinates x 7→ (τ, x⊥). At each point t ∈ [0, T ],

we define a hyperplane S(t), with S(0) = S(T ). These transversal surfaces are defined

by

S(τ) = {y ∈ Rn : z(τ)T (y − x?(τ)) = 0} (4.3)

where z : [0, T ] → Rn is a vector function defining the normal vector of each sur-

face and would be optimised in Section 4.3. S(τ) is a valid transversal surface iff

z(τ)Tf(x?(τ)) > 0,∀τ ∈ [0, τ ].

Given a point x nearby x?(·), the phase variable τ ∈ [0, T ) represents which of these

transversal surfaces S(τ) the current state x inhabits; the vector x⊥ ∈ Rn−1 is the

transversal state representing the location of x within the hyperplane S(τ), with

x⊥ = 0 implying that x = x?(τ). More precisely,

x⊥ = Π(τ)(x− x?(τ)) (4.4)

where Π(τ) is a projection operator constructed from z(τ), as will be discussed in

Section 4.4.

The dynamics of the system in these new coordinates can be expressed as [54, Theorem

1] :

τ̇ =
z(τ)Tf(x?(τ) + Π(τ)Tx⊥)

z(τ)Tf(x?(τ))− ∂z(τ)
∂τ

T
Π(τ)Tx⊥

=:
n(x⊥, τ)

d(x⊥, τ)
(4.5)

ẋ⊥ = τ̇

[
d

dτ
Π(τ)

]
Π(τ)Tx⊥ + Π(τ)f

(
x∗(τ) (4.6)
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+ Π(τ)Tx⊥

)
− Π(τ)f (x?(τ)) τ̇ .

The construction of z(τ) and Π(τ) in this paper has been significantly simplified

compared to that proposed in [54]. We achieve this by making three assumptions

about the properties of the system in consideration: its dynamics; its switching surface

S−; and its target trajectory x?.

First, we assume that the state space can be represented in terms of the configuration

space and its velocities x =
[
qT , q̇T

]T ; and that its dynamics can be written in the

form f =
[
q̇T , f̂(q, q̇, u)T

]T
.

This assumption is satisfied for mechanical systems written in Euler-Lagrange form:

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u. (4.7)

or equivalently represented in n-dimensional state space with x = [q1, q2, q̇1, q̇2]T and,

f̂(q, q̇, u) = M−1(q)[−C(q, q̇)q̇ −G(q) +B(q)u]

Second, we assume that the switching surface S− is a hyperplane which can be entirely

represented in terms of the configuration space q. That is, it can be defined as

aT q + b = 0 for some vector a of length n/2 and some scalar b.

Third, we assume that the periodic walking motion x?(·) can be represented by a

monotonic phase variable dependent only on q. In particular for our system, this

can be guaranteed if x?(·) was designed by a set of virtual constraints. In a virtual

constraint, a monotonic phase variable τ(q) is used to parameterize the motion of

the robot within a step. Traditionally, τ(q) would be synthesized from angular mea-

surements, an inclinometer, or some combination of these. We represent the virtual

constraint like so:

q := φ(τ) = [φ1(τ), · · ·, φn/2(τ)]T . (4.8)
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4.3 Virtual Constraints and Phase Variable Selec-

tion

In this section, we first illustrate the use of a traditional choice of phase variable in a

virtual constraint, and its incompatibility with regional analysis. We then provide a

simplified and novel construction of a phase variable which addresses these issues and

significantly simplifies the construction of transverse dynamics in Eqs. (4.5)-(4.6).

Throughout the remainder of this paper, we will illustrate our method with our

hardware platform, modelled after the classic underactuated compass gait walker as

shown in Figure 4.1. Here, q1 is referred to as the ‘swing leg’ while q2 is referred to as

the ‘stance leg’. The hybrid dynamics of the walker can be found in the Appendix.

Note that we adopt the convention of positive angle as clockwise, hence the stance

leg angle, θst is monotonically increasing through a footstep.

Foot impact occurs when the swing leg hits the ground. Hence, the switching surface

S− as defined in the discrete update Eq. (4.2) is

S− = {x ∈ Rn : q1 = 2q2}. (4.9)

With appropriate parameter configurations and control law, the compass gait walker

can follow a designated limit cycle trajectory. Figure 4.2 plots the 4-dimensional state

space of one such limit cycle as tested in the hardware, with the stance leg dynamics

superimposed with the swing leg dynamics. The green circles show the starting points

for both the stance leg and the swing leg immediately after impact; while the magenta

crosses illustrate the impact point.

4.3.1 The Traditional Phase Variable on the Compass Gait

Typically in virtual constraint design for the compass gait walker [85], it is common

to select the stance leg angle, θst, as the phase variable, i.e.,
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Figure 4.2 – The phase portrait for the compass gait hardware in limit cycle motion.
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τ(q) = θst.

In Figure 4.3, we highlight the use of this traditional choice of phase variable and the

difficulties this presents in transverse stability analysis. The black solid line shows

the same trajectory represented in Figure 4.2, with the black arrow indicating the

direction of the dynamics. Red arrows drawn throughout the trajectory indicate the

vector z(τ) which represents the direction in which the phase variable advances at

that point.

In this case, the phase variable only advances in the direction of the stance leg angle

throughout the cycle and hence θst is the only component in these vectors, i.e., z =

[0, 1, 0, 0]T . Note that monotonicity of the phase variable is equivalent to the red

arrows forming acute angles with the direction of the black trajectory or zT ẋ > 0 –

i.e., the flow of the trajectory is constantly advancing the phase variable.

As per Eq. (4.3), the vertical blue lines in Figure 4.3 are surfaces transverse to z(τ).

These transversal surfaces represent the set of states that can be associated with a

particular phase value. For example, the leftmost transversal surface here represents

the set of possible states that can be associated with τ ≈ −0.17 rads.

For simplicity, it is often assumed that switching occurs at a predesignated phase θdst
(see, e.g., [85, pp. 165-166]). This assumes the switching surface S− to take the form,

S− = {x ∈ Rn : θst = θdst}. (4.10)

In Figure 4.3, this switching surface is equivalent to the leftmost transversal surface.

However, this could only occur if one of the following two conditions hold true.

Condition 4.1 (Impact point in state space). The point of impact always precisely

equals that of on the nominal trajectory. This essentially assumes a finite-time con-

troller guarantees the walker reach and remain on the target trajectory within one

foot step.
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Figure 4.3 – Illustration of traditional phase variable for the compass gait walker –
θst. Red arrows indicates the direction of z(τ) i.e., the direction in which the phase
variable is increasing; blue lines indicate the transversal surfaces – the set of possible
states corresponding to a particular phase value.



80
Prescribed Co-ordinates for

Simplified Stability Analysis of Nonlinear Hybrid Limit Cycles

Condition 4.2 (Impact trigger). The walker has the ability to artificially trigger

impact at the instant the designated final phase variable (θdst) is reached.

Both Conditions 4.1 and 4.2 are arguably difficult to realise precisely with physical

hardware. Indeed, if either conditions were not perfectly followed, impact would

naturally occur when Equation (4.9) is satisfied, which is illustrated as black dotted

line in Figure 4.3.

Given the discrepancy between the switching surface that this traditional choice of

phase variable assumes – Eq. (4.10) – and the “natural interpretation" of the switching

surface – Eq. (4.9) – the yellow shaded areas in Figure 4.3 mark problematic regions

for analysis. In these regions – which occur when the Conditions 4.1 and 4.2 are not

strictly met and the walker deviates from the nominal trajectory – the state would

be undefined by this traditional phase variable. Therefore, any feedback controller

expressed as a function of this phase variable would “run out of tape" in these shaded

regions.

For transverse analysis, the shaded regions are undefined as they are not associated

with any phase variable. Intuitively, if the leftmost and rightmost blue line aligned

with the dotted line, the yellow shaded regions would disappear. Figure 4.4 shows

the result of such arrangement, which will now be discussed.

4.3.2 Construction of a Novel Phase Variable

We now propose the construction of a new phase variable which aligns with the

switching surface, overcoming the issues described in the previous section, and yet is

significantly simpler than the construction proposed in [54].

Geometrically from Figure 4.4, to align the transversal surfaces with the switching

surface in Eq. (4.9) is equivalent to enforcing the direction of the two outermost red

arrows being [−1, 2, 0, 0]T . To simplify derivations of the transverse dynamics, we
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Figure 4.4 – Illustration of a new phase variable for the compass gait walker - a
combination of both stance and swing angle. Red arrows indicates the direction
z(τ), i.e. the direction in which the phase variable is increasing.
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enforce |z| = 1, hence this condition becomes:

z(x+) = z(x−) =

[
−1√

5
,

2√
5
, 0, 0

]T
. (4.11)

For the compass-gait walker, we propose a simple parametrization of z in terms of

the angle of the red arrows in Fig 4.4, ψ:

z(ψ(τ)) = [cos(ψ(τ)), sin(ψ(τ)), 0, 0]T , (4.12)

with
∂z(τ)

∂τ
= [− sin(ψ)ψ̇, cos(ψ)ψ̇, 0, 0]T .

Computations can be further simplified by parametrizing ψ(τ) as a Bezier polynomial,

which allows the enforcement of (4.11) by simply fixing the first and last coefficients.

In addition to aligning with the switching surface, z(τ) must ensure that the transfor-

mation to transverse dynamics is well-posed. From Equation (4.5), it is apparent that

the transformation x 7→ (x⊥, τ) is ill-defined when the denominator of τ̇ , or d(x⊥, τ),

is zero, i.e.,

z(τ)Tf(x?(τ), u?(τ))− ∂z(τ)

∂τ

T

Π(τ)Tx⊥ = 0. (4.13)

As derived in [54], the smallest transversal x†⊥ for which (4.13) is true has norm

|x†⊥(τ)| = |z(τ)Tf(x?(τ), u?(τ)))|
|∂z(τ)
∂τ
|

.

In this paper, we modify the method of [54] by considering the distance from x†⊥

to its projection on to the line spanned by f(x?(τ), u?), as illustrated in Fig. 4.5.

The resulting distance d approximates the distance from x†⊥ to the trajectory, and is

computed like so:

d = |x†⊥(τ)| cos(α) =
|z(τ)Tf(x?(τ), u?(τ))|

|∂z(τ)
∂τ
|

z(τ)T f̄(τ), (4.14)
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Figure 4.5 – Illustration of the distance, d, to be optimized in order to maximise the
region that can be represented by the transverse dynamics.

where f̄(τ) = f(x?(τ),u?(τ))
|f(x?(τ),u?(τ))| and α is the angle between z(τ) and f(x?(τ), u?(τ)).

However, note that the denominator in (4.14) contains ∂z(τ)
∂τ

. The optimum solution

may contain constant z(τ) for some interval of τ ; thereby causing (4.14) to go to

infinity. Hence, instead of maximising (4.14), we find it is better numerically posed

to optimise for z by minimizing the inverse of (4.14):

arg min
z(τ)

(∫ T

0

|∂z(τ)
∂τ
|p

|z(τ)Tf(x?(τ), u?(τ))zT f̄ |p
dτ

)1/p

(4.15)

s.t. z(x+) = z(x−) =

[
−1√

5
,

2√
5
, 0, 0

]T
z(τ)Tf(x?(τ), u?(τ)) > δ.

The decision variables for the optimization are the coefficients of the Bezier polyno-

mial defining ψ in (4.12). The authors have had success setting p = 100 and δ = 0.06.

With a desktop computer equipped with a 3.4 GHz Intel i7 and 24 GB of RAM, this

can be solved within 5 seconds with ψ parameterised as a 5th order Bezier polynomial,

with results shown in Fig 4.4.

This construction is simpler than that in [54] since z only has non-zero entries in

θsw and θst, the optimization for z(τ) can be directly computed from any virtual

constraint definition in the form of (4.8).
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4.4 Transverse analysis with a geometric phase vari-

able via sums-of-squares programming

With the new simplified phase variable derived in Section 4.3, we now demonstrate

transverse stability analysis leading to an explicit region of stability in the full state

space of the compass gait walker. Our approach proceeds as follows:

1. Compute the transverse dynamics using the simplified phase variable, as dis-

cussed in Section 4.4.1

2. Design a stabilizing controller and derive an initial seed for the Lyapunov func-

tion or contraction metric, as discussed in Section 4.4.2;

3. Define τ -varying regions around x?(·) for which the invariance or stability con-

ditions will be checked. Then, leverage the S-procedure and sum-of-squares

optimization to iteratively maximise:

(a) the invariance region, to be discussed in Section 4.4.3; or

(b) the contracting region, to be discussed in Section 4.4.4.

We now explore each of these steps, highlighting improvements and simplifications

made in our approach over that reported in [54].

4.4.1 Transverse Dynamics Computation

The new simplified phase variable, as defined by z(τ) in (4.12), enables significantly

simpler computation for the transverse dynamics. For the compass gait, the projection
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operator, i.e. Π in (4.4), and its derivative can now be analytically computed:

Π(τ) =


− sin(ψ(τ)) cos(ψ(τ)) 0 0

0 0 1 0

0 0 0 1


d

dτ
Π(τ) =


− cos(ψ(τ))dψ

dτ
− sin(ψ(τ))dψ

dτ
0 0

0 0 0 0

0 0 0 0

 .

Note that the analytical construction of Π and d
dτ

Π and the resulting sparsity of these

variables significantly simplifies computations compared with methods suggested in

[54]. Specifically, since
[
d
dτ

Π(τ)
]

Π(τ)T = 0, the first term of (4.6) goes to zero,

resulting in vastly simpler transverse dynamics:

ẋ⊥ = Π(τ)(f⊥(τ)− f?(τ)τ̇) (4.16)

where f⊥(τ) = f
(
x∗(τ) + Π(τ)Tx⊥, u(x⊥, τ)

)
and f?(τ) = f(x?(τ), u?(τ)).

The switching condition in the new coordinates is given by:

x+
⊥ = g⊥(x−⊥) = Π(τ+)[x+ − x?+]

= Π(τ+)
[
g
(
ΠT (τ−)x−⊥ + x?−

)
− x?+

]
(4.17)

Using the transverse dynamics in (4.16), we can now construct Lyapunov functions

which prove orbital stability by showing x⊥ → 0 as t→∞.

4.4.2 Stabilizing Controller and Initial Seed for the Lyapunov

Function

A natural candidate for a stabilizing controller can be obtained via the solution of

the transverse-jump-Riccati equation.
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−Ṗ = ATP + PA− PB⊥R−1BT
⊥P +Q⊥, t 6= ti

P (τ−i ) = Ad(τi)
TP (τ+

i )Ad(τi) +Qi, t = ti

where R,Q,Qi > 0;

B⊥ = Π(τ)
∂f(x?(τ), u?(τ))

∂u
− Π(τ)f(x?(τ), u?(τ))

∂τ̇

∂u
;

and A is the linearization of ẋ⊥ w.r.t. x⊥. Given the simplification of the transverse

dynamics in (4.16), a simplified expression of A over [54, Eq. (18)] is:

A(t) = Π(t)

(
∂f(x?(t), u?(t))

∂x
Π(t)T − f(x?(t), u?(t))

∂τ̇

∂x⊥

∣∣∣∣
x⊥=0

)
.

The solution of the transverse-jump-Riccati equation forms a locally stabilizing, phase-

varying feedback controller:

u(τ, x⊥) = u?(τ)−R−1B⊥(τ)TP (τ)x⊥. (4.18)

Using the transverse-LQR controller in (4.18), we yield the close loop system which,

for brevity, we will hereafter refer to as follows:

fcl(x) = f(x, u(τ, x⊥))

where u(τ, x⊥) is defined in (4.18).

The transverse-jump-Riccati solution also forms a locally valid Lyapunov function for

the closed-loop system, V (x⊥, τ) for a small region around x? like so

V (x⊥, τ) = xT⊥P (τ)x⊥. (4.19)
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we now demonstrate verification of the stability of the closed loop system by:

(i) constructing invariant funnels using Lyapunov functions in Section 4.4.3; and

(ii) constructing stability funnels using contraction metrics in Section 4.4.4.

4.4.3 Constructing Invariant Funnels via Lyapunov Function

To construct the invariant funnels, we seek to compute a the τ -varying sets D(τ) such

that for some t0 ∈ [0,∞),

x⊥(τ(t0)) ∈ D(τ(t0)) =⇒ x⊥(τ(t)) ∈ D(τ(t))

∀t ∈ [t0,∞).

We describe this invariant funnel as a τ -varying sub-level set of a function V̌ (x⊥, τ):

D(τ) = {x⊥ | V̌ (x⊥, τ) < ρ(τ)}. (4.20)

In the continuous phase of the system, we require the invariance condition on the

boundary of the funnel:

V̌ (x⊥, τ) = ρ(τ) =⇒ V̇ (x⊥, τ) < ρ̇(τ). (4.21)

To allow the condition ˙̌V < ρ̇ to be verified via sums-of-squares (SOS) programming,

we multiply ˙̄V through by d(x⊥, τ), with d(x⊥, τ) defined in Eq. (4.5). This results

in an equivalent Lyapunov condition in (4.22), as shown below.
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DV :=
∂V̌

∂τ
n(x⊥, τ) +

∂V̌

∂x⊥

{
d(x⊥, τ)Π(τ)fcl

(
x∗(τ) + Π(τ)Tx⊥

)
−

Π(τ)fcl (x
?(τ))n(x⊥, τ)

}
≤ d(x⊥, τ)ρ̇

(4.22)

We also approximated the closed-loop dynamics with a third-order Taylor series ex-

pansion. We will discuss the ramification of the Taylor approximation in Section

4.6.

In the discrete phase of the system, the condition to be verified at the time of switching

is:

V̌ (x+
⊥, τ

+) ≤ V̌ (x−⊥, τ
−). (4.23)

Applying the transverse transformation, this becomes:

V̌

(
Π(τ+

i )
[
gi
(
x?(τi) + Π(τ−i )Tx⊥

)
−

x?(τ+
i )
]
, τ+
i

)
− V̌ (x⊥, τ

−
i ) ≤ 0

Similar to [57], we verify the continuous (4.21) and discrete (4.23) invariance condi-

tions on the boundary of the invariant funnel D by sampling N = 40 values of τ along

the limit cycle trajectory.

In theory, we can parameterise the Lyapunov function V̌ by polynomial in x⊥ and τ .

However, this often leads to numerical problems in the resulting SOS program due to

the high number of decision variables. We therefore parameterise V̌ by incorporating

a τ -varying matrix Φ to the ‘initial seed’ of the Lyapunov function in (4.19), like so:

V̌ = xT⊥(P (τ) + Φ(τ))x⊥.
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We can now maximise the invariant funnel for the limit cycle by using the integral

of ρ as a surrogate for maximising the volume of the regions. Hence, the verification

using SOS, with the S-procedure and Lagrange multipliers l1(x⊥, τ) and l2(x⊥, τ) is:

max
V̌ ,ρ(τ),l1,l2

∫ T

0

ρ(τ)dτ (4.24)

subject to

−DV (x⊥, τ)− d(x⊥, τ)ρ̇

−l1(x⊥)(ρ− V (x⊥, τ)) ∈ SoS, (4.25)

d(x⊥, τ)− l2(x⊥)(ρ− V (x⊥, τ)) ∈ SoS, (4.26)

V̌ (x−⊥, τ
−)− V̌ (x+

⊥, τ
+) ∈ SoS, (4.27)

Vguess(Σjej, τ)− V̌ (Σjej) > 0, (4.28)

l2 ∈ SoS. (4.29)

Similar to [52], (4.28), is a constraint which prevents a large ρ to be returned simply

by the scaling of Φ; where ej is the j-th standard basis vector for the state space Rn,

and Vguess is defined by (4.19).

As can be seen, the above optimisation program is non-convex as the conditions are

bilinear in the decision variables. Hence, we perform a bilinear search for the funnel

as shown in Algorithm 1. In our approach, we find that formulating ρ as a Chebyshev

polynomial reduces numerical problems in the resulting SOS program, when compared

with parameterizing it as a piecewise polynomial or with a monomial basis.

4.4.4 Constructing Stability Funnels via Contraction Metric

In Chapter 3, orthogonality has been defined via the Riemannian metric M . Such

approach combines the search for both the stability certificate and the orthogonality

definition into one convex problem – the search for M . However, even with current
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Algorithm 1 Maximising Invariant Funnel Volume
1: Initialise: set Φ = 0; and set ρ as the maximal constant (via bisection search)

that satisfies (4.21) and (4.23) throughout the limit cycle trajectory;
2: converged = 0;
3: previousObj = 0;
4: while not converged do
5: Multiplier-step: Fix ρ and solve feasibility problem

to find Lagrange multipliers l1, l2 satisfying (4.25) to
(4.29).

6: ρ-step: Fix the l1, l2 and maximise the objective∫
ρ dτ in (4.24) satisfying (4.25) to (4.29).

7: if
∫
ρ dτ−previousObj

previousObj < ε then
8: converged = 1;
9: end if

10: previousObj =
∫
ρ dτ

11: compare integral with previous; save current integral
12: end while
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state-of-the-art numerical solver, the authors found that the resulting search for such

M may be intractable for some higher dimensional systems.

We now demonstrate that the enforcement for the orthogonality condition can be per-

formed separately by using the explicit transverse coordinates construction outlined

in Section 4.4.1. This transformation enables the direct search for a reduced (n− 1)-

dimensional metric, M⊥, significantly simplifying the resulting numerical search for

a metric. The obvious trade-off is the need to construct the new set of transverse

coordinates outlined in Section 4.4.1.

Theorem 4.1 (Contraction in reduced transverse coordinates). Suppose we can de-

fine a phase variable τ which is monotonically increasing along the cycle: i.e., with
∂τ
∂x

=: z(τ), z(τ)Tf(x(τ)) > 0. We construct a new set of coordinates x⊥ orthogonal to

z(τ). Further, during switching, z(τ) aligns with the normal of the switching surface

Si in (3.2).

If there exists a contraction metric in x⊥, that is, firstly during the continuous phase,

there exists M⊥ satisfying

∂f⊥
∂x⊥

T

M⊥(x) + M⊥(x)
∂f⊥
∂x⊥

+ Ṁ⊥(x) < 0. (4.30)

and secondly during the discrete phase,

∂g⊥
∂x⊥

T

M+
⊥
∂g⊥
∂x⊥

−M−
⊥ < 0 (4.31)

then the system is transverse contracting and there exists a stable limit cycle.

Proof. Construct a set of bases e1, ..., en using the new coordinates, where e1 =: z(τ)

and e2, ...en are transverse to z(τ). Proof of stable limit cycle follows from construction

in Lemma 3.2 with BH constructed from e2...en which are contracting.

Remark 4.1 (Existence of angular variable). Existence of τ is closely related to

the study of foliation of codimension one. From [15, Theorem 4.1], if there exists

an asymptotically stable periodic orbit, then there exists a smooth, diffeomorphic

transformation which admits τ , an angular variable.



92
Prescribed Co-ordinates for

Simplified Stability Analysis of Nonlinear Hybrid Limit Cycles

Using the construction of the transverse dynamics in (4.16), (4.17), stability can now

be proved by searching for a contraction metric M⊥ which satisfies (4.30), (4.31). As

mentioned in Section 4.4.2, to attain an initial seed for the contraction metric M⊥
and a locally optimal feedback controller, it is common to solve the jump-Riccati

equation associated with the linearization of the transverse dynamics like so:

−Ṗ = AT⊥P + PA⊥ − PB⊥R−1BT
⊥P +Q⊥, t 6= ti (4.32a)

P (τ−i ) = Ad(τi)
TP (τ+

i )Ad(τi) +Qi, t = ti (4.32b)

where R,Q,Qi > 0;

B⊥ = Π(τ)
∂f(x?(τ), u?(τ))

∂u
− Π(τ)f(x?(τ), u?(τ))

∂τ̇

∂u
;

and A⊥ is the linearization of ẋ⊥ in (4.6) w.r.t. x⊥; Ad is the linearization of x+
⊥ in

(4.17) w.r.t. x⊥. The feedback law is given by:

u(τ, x⊥) = u?(τ)−R−1B⊥(τ)TP (τ)x⊥. (4.33)

We seek to verify the contraction region of the closed loop system, of which P (τ) is a

locally valid contraction metric around x⊥ = 0. In theory, one can directly search for

the metric M⊥ parameterizing it as a polynomial in x⊥ and τ . However, this often

leads to numerical problems in the resulting SOS program due to the high number of

decision variables. Therefore, we use the solution of the jump-Riccati equation, P (τ),

as a valid initial seed for contraction metric in some small region satisfying for some

small ρinit:

Vinit(x⊥, τ) :=
xT⊥P (τ)x⊥

ρinit
< 1. (4.34)

Using this initial seed, extra flexibility for the contraction metric can be attained by
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adding a τ -varying matrix, Φ(τ) to a new metric, M⊥ like so:

M⊥(τ) =
P (τ)

ρinit
+ Φ(τ) (4.35)

With M⊥ the contraction condition becomes(
dP

dτ

1

ρinit
+
dΦ

dτ

)
τ̇ +

∂f⊥
∂x⊥

T

M⊥ +M⊥
∂f⊥
∂x⊥

< 0. (4.36)

Suppose now τ̇ = n(x⊥,τ)
d(x⊥,τ)

, we multiply through above by d(x⊥, τ) to yield (4.37).

J := n(x⊥, τ)

(
dP

dτ

1

ρinit
+
dΦ

dτ

)
+d(x⊥, τ)

[
∂f⊥
∂x⊥

T

(P (τ) + Φ(τ)) + (P (τ) + Φ(τ))
∂f⊥
∂x⊥

]
< 0

(4.37)

We verify the contraction criteria in a τ -varying ellipsoidal region, i.e., a tubular

region around x? in the full state-space:

V (x⊥, τ) := xT⊥M⊥(τ)x⊥ < ρ (4.38)

We can now maximise the contraction region for the limit cycle by using the value

of ρ as a surrogate for maximising the volume of the regions. Hence, the verification

using SOS, with Positivestellansatz [63] and Lagrange multipliers l is:

max
Φ(τ),ρ,l1,l2

ρ (4.39)

subject to

−J(x⊥, τ)− l1(x⊥)(ρ− V (x⊥, τ)) ∈ SoS, (4.40)

d(x⊥, τ)− l2(x⊥)(ρ− V (x⊥, τ)) ∈ SoS, (4.41)

M−
⊥ −

(
∂g⊥
∂x⊥

T

M+
⊥
∂g⊥
∂x⊥

)
∈ SoS, (4.42)

Vinit(Σjej, τ)− V (Σjej, τ) > 0, (4.43)

l1, l2 ∈ SoS. (4.44)



94
Prescribed Co-ordinates for

Simplified Stability Analysis of Nonlinear Hybrid Limit Cycles

Similar to [52], (4.43) is a constraint which prevents a large ρ to be returned simply

by the scaling of Φ; where ej is the j-th standard basis vector for the state space Rn;

and Vinit, V are defined by (4.34) and (4.38) respectively.

As can be seen, the above optimisation program is non-convex as the conditions are

bilinear in the decision variables. Hence, maximization of the contraction region can

be done via a bilinear search as shown in Algorithm 2.

Algorithm 2 Maximising Contraction Funnel Volume
1: Initialise: set Φ = 0; and set ρinit as the maximal constant (via bisection search)

that satisfies the contraction criteria throughout the limit cycle trajectory;
2: converged = 0;
3: previousObj = 0;
4: while not converged do
5: Multiplier-step: Fix ρ and solve feasibility problem

to find Lagrange multipliers l1, l2 satisfying (4.40) to
(4.44).

6: ρ-step: Fix the l1, l2 and maximise the objective
ρ in (4.39) satisfying (4.40) to (4.44) over decision
variables ρ, Φ(τ).

7: if ρ−previousObj
previousObj < threshold then

8: converged = 1;
9: end if

10: previousObj = ρ
11: end while

It is important to note that the formulation of the contraction metric in this section

automatically guarantees strict forward invariance of the verified contraction region.

This is because:

1. x?(τ), corresponding to x⊥(τ) = 0, is a valid trajectory of the system for all τ ;

2. the metric M⊥, as defined in (4.35), is independent of x⊥ and therefore all

geodesic distance between trajectories for a given τ is a straight line.

Therefore, the geodesic distance between x?(τ) and any trajectories in the contracting

region defined by (4.38) would constantly decrease and therefore the region is also

strictly forward invariant.
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4.5 Maximising Robust Stability Regions

As discussed in Section 3.5, the contraction framework is especially suitable for un-

certain systems where the limit cycle location changes with parametric uncertainty.

This is because the framework eliminates the need for linearization or the need to

know the exact location of the limit cycle, which often changes with uncertainty. We

now demosntrate that using the results of Section 4.4.4 further simplifies such robust-

ness analysis by enabling the search for stability certificate in the reduced transverse

coordinates.

Consider the hybrid system with parametric uncertainty.

ẋ = fδ(x, δ) = f0(x) + δf1(x) x /∈ S−i (4.45)

x+ = gδ(x, δ) = g0(x) + δg1(x) x ∈ S−i (4.46)

Robustness to parametric uncertainty can be ascertained by searching for a new con-

traction metric which maximises the uncertainty intervals on the error. For symmetric

bounds, this can be done by incorporating one Lagrange multiplier L as below.

J − L(ε− δT δ) < 0 (4.47)

where J is defined in (4.37), and L > 0. For asymmetric bounds, two Lagrange

multipliers L1, L2 > 0 are required:

J − L1(δ − εmin)− L2(εmax − δ) < 0 (4.48)

Incorporating Positivestellansatz conditions for the region, the SOS conditions for the

robustness analysis becomes:
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max
Φ(τ),L1,L2

ε (4.49)

subject to

−J(x⊥, τ)− L1(δ − εmin)− L2(εmax − δ)

−l1(x⊥)(ρ− V (x⊥, τ)) ∈ SoS, (4.50)

d(x⊥, τ)− L1(δ − εmin)− L2(εmax − δ)

−l2(x⊥)(ρ− V (x⊥, τ)) ∈ SoS, (4.51)

M−
⊥ −

(
∂g⊥
∂x⊥

T

M+
⊥
∂g⊥
∂x⊥

)
∈ SoS, (4.52)

L1, L2 ∈ SoS. (4.53)

As can be seen, the above condition is bilinear in the decision variables L and ε.

Similar to Algorithm 1, the bounds can be maximised using a bilinear search as

shown in Algorithm 3.

Algorithm 3 Maximising Robust Contraction Bounds
1: Initialise: set Φ, ρinit with optimized results from Algorithm 1;
2: converged = 0;
3: previousObj = 0;
4: while not converged do
5: Multiplier-step: Fix ε and solve feasibility problem

to find Lagrange multipliers L1, L2 satisfying (4.50)
to (4.53).

6: ε-step: Fix L1, L2 and maximise the objective
ε in (4.49) satisfying (4.50) to (4.53).

7: if ε−previousObj
previousObj < threshold then

8: converged = 1;
9: end if

10: previousObj = ε
11: end while

In general, strict invariance is not automatically guaranteed by the contracting region

when uncertainty is considered. This is because it can no longer be taken granted that

x?(τ), or x⊥(τ) = 0 is necessarily a valid system trajectory for all τ under uncertainty.
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Figure 4.6 – Invariant funnel of the Compass Gait Walker.

Therefore, the strict forward invariance of the contracting region must be verified by

ascertaining V (x⊥, τ) = ρ ⇒ V̇ (x⊥, τ) < 0.

4.6 Numerical results

4.6.1 Invariant Funnel and Stability Funnel of The Compass

Gait Walker

Using the SPOTless toolbox [2] and commercial solver MOSEK version 7.1.0.46, we

applied Algorithm 1 to compute an invariant funnel for our compass gait hardware

model. The funnel is shown in Fig. 4.6.

We then applied Algorithm 2 to compute the contracting stability funnel for the same

model, as shown in Figure 4.7. As is expected, the invariant funnel is larger in volume

than that of the stability funnel because the former is a more relaxed condition.
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Figure 4.7 – Contraction region of the Compass Gait Walker.
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Table 4.1 – Range of friction coefficients Fv for which the system is contracting w.r.t.
the nominal metric

Verified region (as
% of maximised
ρ)

Bounds for Fv
(multiples of the nominal value)
Lower Bound Upper Bound

100% 0.0 12.2
80% 0.0 15.5
60% 0.0 18.5
40% 0.0 21.3
20% 0.0 24.0

4.6.2 Robustness of The Compass Gait Walker

We now show robustness analysis to parametric uncertainty for the compass gait

walker by studying variations in the friction coefficient Fv.

First, using the metric from the nominal system, the upper and lower bounds for

variations in Fv was found by respectively maximising and minimizing the error terms

in the contraction conditions in (4.48) as discussed in Algorithm 3. The results are

shown in Table 4.1.

As can be seen, the more conservative the region, the larger the bounds for uncer-

tainty.

Second, we used Algorithm 3 to search for a new metric which maximises the upper

bounds for Fv. Similar to methods used to enlarge the region, a bilinear search was

used. The upper bound converges to 2.13e−2, or 17.1 times the original value, with

80% of ρ after five iterations. This represents a 9.7% increase in allowable friction

coefficient over that for the nominal metric.

As noted in Section 3.5, the invariance condition needs to be separately checked

when uncertainty is incorporated. This was ascertained by sampling the invariance

condition, i.e. V = ρ⇒ V̇ < 0, at 40,000 points along the surface of the funnel.

We now address several observations from our numerical implementation.
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4.6.3 Accuracy of Taylor Series Expansion

As mentioned in Section 4.4-C, we used a third-order Taylor approximation along the

limit cycle to verify the invariance conditions using SOS. Hence, it was vital to ensure

the conditions are also satisfied on the original Euler-Lagrange model.

For verification, we sampled 40,000 states on the boundary of the funnel with the

Euler Lagrange model; and all achieved the required ˙̌V < ρ̇.

4.6.4 Numerical performance and implementation details

The method outlined in this paper often results in large SOS programs which require

special attention to numerical conditioning of the problem. Several strategies which

the authors have successfully utilised to overcome numerical issues associated with

large SOS problems are now discussed.

• Numerical balancing. Similar to [80], solutions to the jump-transverse-

Riccati differential equation can have a large range of eigenvalues, particularly

for underactuated systems such as the compass gait. In order to avoid numerical

issues in semidefinite programming, it is vital to find a coordinate transforma-

tion

xb = Tx

where T numerically conditions the problem by ensuring the matrices TTM⊥T

from (4.38) and TT (H(J)))T are as close to the identity matrix as possible;

with H(J) being the Hessian of J from (4.37) evaluated at x⊥ = 0.

• Solving a feasiblility problem to recover the analytic centre solution.

It is known that in practice, SDP solvers may not return strictly valid cer-

tificates for SOS programs, due to termination criteria and infeasible methods

in these solvers, and fundamental limitations of floating-point implementations
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[48]. This poses a problem in the ρ-step (line 6 of Algorithm 1) of our method

as the SDP solver often returns a ‘maximised’ ρ that is slightly infeasible. The

slightly questionable ρ in turn causes questionable solutions in the multiplier-

step, thereby degenerating into worsening numerical problems in subsequent

iterations. Solving the ρ-step problem twice – once as a maximization problem

to optimize funnel volume; and a second time as a feasibility problem with a

lower bound for the previously optimized objective – ensures a strictly feasible

ρ is obtained at every iteration. This is shown Algorithm 4.

• Using partial facial reduction. We applied [65] and found simplifications

could be found to reduce the dimensionality of resulting program by nearly 50%.

For the problem formulations in both Algorithm 1 and 3, simplifications were

consistently found in the multiplier-step, while no simplifications were found in

the ρ−step or ε−step.

Algorithm 4 Backtracking Algorithm for Obtaining Strictly Feasible Funnel for the
ρ-step in Line 6 of Algorithm 1
1: strictlyFeasible = 0;
2: backtrackingMargin = 0.9;
3: Maximisation-step: Fix l1, l2 and maximise the

objective ρ in (4.24) satisfying (4.25) to (4.29).
4: feasibleCandidate = ρ;
5: while not strictlyFeasible do
6: ρ =feasibleCandidate;
7: Feasibility-step: Fix l1, l2, ρ, and solve feasibility

problem satisfying (4.25) to (4.29).
8: if Feasibility-step succeeds then
9: strictlyFeasible = 1;

10: else
11: feasibleCandidate = ρ×backtrackingMargin;
12: end if
13: end while
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4.6.5 Example Implementation

A MATLAB implementation of the framework outlined herein has been made avail-

able online at [1].

4.7 Conclusion

We have developed a simplified analytical framework which systematically generates

an inner-estimate of the region of stability for walking motions under virtual con-

straints. This framework enables rigorous comparison of global stability properties

for different virtual constraint candidates and controllers, vital for informed design

decisions.

While the compass gait walker has been used as illustration in this paper, this frame-

work is applicable to higher dimensional systems and will be the focus of future work.



Chapter 5

Hardware Experimental Verifications

5.1 Introduction

In this chapter we present a hardware compass gait walker platform as introduced

in Chapter 4, with aims of demonstrating the utility of the new proposed transverse

coordinates and computation of stability funnels in a physical setup.

The work presented in this chapter has been partially published in [9] and [79]. In [9],

this author was responsible for the system identification portion of the paper which

is the focus of the first half of this chapter.

5.2 Hardware bipedal walker setup

Given the compass-gait model is a planar walking model, a common way of realizing

it in our three-dimensional reality is to mount the walker to a rotating boom (e.g.,

[19]). In our setup, the rotating boom is made of carbon fibre tube for its light weight

and high stiffness. The boom is supported by a pole forming the centre of the walking

circle, constraining the robot to walk along a circle of 2.2m radius, which is a sufficient

approximation of a planar walking motion as there is only 42mm distance between

both toes when the legs are parallel. A counterweight of 5kg set at a distance of 78cm
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from the central pole is used to make the net weight of the walker lighter to avoid

damaging some components and ensure that the servos could support the walker

during impacts. Figure 5.1 shows the hardware walker along with the schematic

diagram of the compass gait walker.

Figure 5.1 – The Compass Gait Walker Hardware

The motor is directly connected to both legs, avoiding backlash and additional friction

and inertia that would be introduced by a gearbox system. The stator is mounted on

the outer leg and the rotor is connected to the inner leg.

The walker is equipped with two incremental encoders. Encoder 1 (Figure 5.1(b))

measures the angle between both legs ψ1, whereas Encoder 2 measures the angle of

the inner leg with respect to the boom ψ2. Hence, swing leg angle q1 and the stance

angle q2 are derived as follows:

• when inner leg is stance → q1 = ψ1 and q2 = −ψ2.

• when outer leg is stance → q1 = −ψ1 and q2 = −ψ2 + ψ1.
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Table 5.1 – Fixed vs free parameters in Experiment 1 and Experiment 2

Variable Expt 1 Expt 2
Leg mass m [kg] fixed fixed
Leg length l [m] fixed fixed
Gravitational hip mass mHg [kg] — fixed
Inertia Ic [kgm2] free fixed
Length to COM lc [m] free fixed
Coulomb friction Fc [Nm] free fixed
Viscous friction Fv [Nms] free fixed
Inertial hip mass mH [kg] — free

5.3 Parameter Estimation

Because of the large number of model parameters which needed to be identified,

we have performed the parameter estimation process over two seperate experiments,

enabling different parameters to be identified independently as much as possible. This

approach avoids over-fitting and improves the identifiability of the system.

Firstly, the mass m and length l of each leg were easily measured using a scale and a

ruler, respectively. Similarly, the gravitational hip mass mHg (i.e. the net weight of

the walker mounted on the boomminus the weight of the legs) is also easily measurable

using a scale. Now that these parameters have been established, we consider them to

be fixed in the remaining experiments.

We now describe the two experiments used to identify the remaining parameters.

Table 5.1 shows the ‘free’ and ‘fixed’ parameters for each experiment – the free pa-

rameters are the ones being estimated in each respective experiment.

5.3.1 Experiment 1: Simple Pendulum Model

In the first case, the walker is set up such that its motion replicate a simple pendulum

with dynamics as follows.

Icq̈1 = Γ−mglc sin(q1)− F (q̇1), (5.1)
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where the torque Γ = Ktu; Ic the inertia of a single leg; and F (q̇1) = Fv q̇1+Fcsign(q̇1)

the friction (Fv and Fc are respectively viscous and coulomb friction). The data

collection for this experiment is summarised as follows.

Experiment 1

Aim: Identify Ic, lc, Fv, Fc for each leg.

Objective function:

min
Ic,lc,Fv ,Fc

∫ tf

t0

‖y(t)− ŷ(t)‖2dt

where y(t) are the recorded angles, and ŷ(t) are the simulated angles q(t) using

(5.1).

Fixed parameters: m, g, Kt

Procedure:

1. Fix the inner leg at its downward equilibrium.

2. Start logging data.

3. Lift the other leg to the horizontal (so as to make the hip angle 90◦), then

release to achieve a free-swinging motion. Let the leg settle at its downward

equilibrium.

4. Actuate the motor with a square pulse with 90mNm magnitude and a period

of 10 seconds. Do this for three cycles, and let the leg settle again.

5. Actuate the motor with a 55mNm chirp ranging from 0.5 to 60Hz over a 60

second interval.

6. Stop logging data.

7. Repeat steps 1-6 with the outer leg fixed, and record the inner leg swinging.

8. Perform minimization of the above objective function for each leg separately.
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This simple pendulum model leads to an estimate of Fc and Fv, and gives values for

the leg’s inertia Ic as well as the length to center of mass (COM) lc. These values

will in turn be used in the full compass-gait model of the walker, thus reducing the

number of parameters left to be estimated.

We used MATLAB’s built-in parameter estimation toolbox to perform a nonlinear

least squares fit using the trust-region-reflective algorithm.

Figure 5.2 represents the friction f(q̇1) as a function of the angular velocity of the

swing leg, which is obtained by differentiating the filtered angular position using a

zero phase Butterworth lowpass filter (12th order, half power frequency of 0.15). As

the figure suggests, that viscous and coulomb friction terms alone are insufficient

to perfectly describe the complex effects of friction of the walker. However, given

that the walker is mostly operating in low speed (less than 2 rad/s), it is deemed

that such model is sufficient. Table 5.2 shows the results of parameter estimation on

Experiment 1. Figure 5.4 and Figure 5.3 show the free swing motion for the inner

and outer leg, respectively.

Figure 5.2 – Friction identification using Experiment 1

There is a minor difference in the behaviour of the inner leg compared to the outer
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Table 5.2 – Measured and identified parameters from Experiment 1

Variable Initial guess Inner leg Outer leg

Kt [mNm/V] − 18.3 18.3

m [kg] − 0.7 0.7

mHg [kg] − −0.4 −0.4

l [m] − 0.278 0.278

Fc [Nm] 2e−3 5.4434e−3 6.7777e−3

Fv [Nms] 2e−3 1.4038e−3 1.7189e−3

lc [m] 4.37e−2 4.4754e−2 5.0154e−2

Ic [kgm2] 3e−3 4.3238e−3 4.3694e−3

leg, possibly due to the cables connecting the motor to the rest of the hardware.

Figure 5.3 – Outer leg model and hardware response comparison.
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Figure 5.4 – Inner leg model and hardware response comparison.

5.3.2 Experiment 2: Compass-Gait Model with Friction

Using the parameters identified from Experiment 1, the only remaining unidentified

parameter of the walker – the hip mass, mH – can now be identified by fitting walking

data to a modified compass gait dynamical model.

Dynamical model of the compass gait walker

Due to the mechanical construction specific to this walker, the traditional compass

gait walker model has been modified to reflect the physical properties of the hardware

setup.

Firstly, adjustments were made to cater for the fact that the robot is mounted on

a boom arm with a counterweight, and therefore walks in a circular path. The

dynamical effect of the boom and the counterweight is approximated by using a

different hip mass for inertial (mH) and gravitational (mHg) terms in the model.
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Secondly, the masses, COM, and inertia of either legs in the walker are not exactly

identical due to cables and motor attachments. This causes the robot to be slightly

asymmetric – in contrast with the classical compass gait walker model which assumes

symmetry between the two legs. This issue is addressed by including separate masses,

COMs and inertias for the swing and stance legs in the model.

The dynamical model of the compass gait walker with viscous friction (Fv) and

Coulomb friction (Fc) terms are shown in compressed form in (5.2). The full model

can be found in Appendix A.

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)(u− F (q̇)) (5.2)

Experimental Design

It is well known that parameter estimation for closed loop systems is inherently dif-

ficult due to issues with identifiability, see e.g.,[83]. To overcome the identifiability

issues and avoid over-fitting to a particular walking gait, the walking data was col-

lected using three different control strategies, with and without a feedback control,

as well as a parallel combination of the two.

The procedure of Experiment 2 is summarised below.

Experiment 2

Aim: Identify the mH for each leg.

Objective function:

min
mH

∑
i

∫ T

0

‖y(t)− ŷ(t)‖dt. (5.3)

where y represents the measured angles and ŷ represents the angles from simulated

dynamics

Procedure:

1. Select four virtual constraints (VCs) as reference trajectories.
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Table 5.3 – Identified Parameter from Experiment 2

Robot Side Identified mH value (kg) Variance

Inner-leg as Stance leg 1.00 1.62× 10−3

Outer-leg as Stance leg 1.00 1.49× 10−3

2. Select three controllers – one feedback controller, one feedforward controller

and one parallel combination of the two as follows:

• PD controller

• Phase indexed Iterative Learning Controller (ILC)

• PD controller and phase indexed ILC as described in [44]

3. For each combination of reference trajectory and controller, record walking

motion for the walker until stable walking motion is achieved for at least 50

steps.

4. From each run, select 9 to 10 consecutive steps of stable walking motion to

form the data to be used in the parameter estimation.

The data collected in Experiment 2 is first processed to segment the continuous

phase of every step. For better identification of the continuous dynamics, vibration

associated with foot impact are eliminated from the data by removing 20 milliseconds

of data immediately before and after impact.

The segmented and processed data are then used in the estimation of the hip mass

(mH) using MATLAB’s nonlinear grey-box estimation toolbox, with nonlinear least-

squares to minimize output error. The identified value from both sides of the walker

are shown in Table 5.3. As the results demonstrate, both sides of the asymmetric

model result in an identical hip mass as per physical intuition.
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Figure 5.5 – Real data and identified model of the continuous dynamics. Best (a) and
worst (b) fitting from 114 steps of Experiment 2.

5.4 Experimental Results for Funnel Verification

We used the compass gait walker to test – in hardware – the efficacy of the proposed

transverse coordinate construction, the transverse-LQR controller, and the verified

invariant funnels computed in Section 4.6.

Figure 5.6 shows the phase portrait of 15 steps for the walker while in stable walking

motion. Note that while the vibrations from the boom could be observed in the

stance leg; the trajectory remained within the invariant funnel as predicted. The

only exception occurs at the very beginning of a few steps, which can be attributed

to the vibrations during impact, unaccounted for in our impact model which assumes

an inelastic collision with no slip or bounce.

To test the behaviour of the system closer to the boundary of the invariant funnel,

a disturbance torque in the hip motor was applied at various stages of a step. The

results are shown in Figure 5.7. Note that all trajectories successfully re-enter or

remain in the invariant funnel after the disturbance torque has been applied.
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Figure 5.6 – Hardware experimental results superimposed with the computed invariant
funnel.

5.5 Summary

In this chapter we outlined the design and construction of a hardware compass gait

walker. Extensive experiments were done for accurate parameter estimation . The

resulting model was used to construct transversal coordinates and forward invariant

funnels as per Chapter 4. The funnels were then successfully verified in hardware.
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Figure 5.7 – Experimental results where disturbance torques were applied to the hip
motor. Note that all trajectories either (a) successfully re-enters the invariant
funnels after the disturbance; or (b) remain in the invariant funnel throughout the
disturbance.



Chapter 6

Conclusion

This thesis has proposed new theoretical methods to analyse stability and robust-

ness of periodic walking motions. The computational implementation of the methods

using convex optimisation tools were also extensively discussed to demonstrate nu-

merical tractability. Finally, physical hardware verification on a bipedal walker was

successfully implemented.

6.1 Summary

In Chapter 2, current work in the field of stability analysis for nonlinear and hy-

brid systems was discussed, highlighting the difficulties in analysing the stability of

dynamic walking robot motion.

InChapter 3, the new transverse contraction analysis framework for hybrid nonlinear

limit cycles was introduced, enabling stability and robustness analysis of such systems.

Unlike traditional Lyapunov-based tools, the contraction framework developed in this

thesis enables proof of stability without prior knowledge of the exact location of the

limit cycle in state space. Numerical application example on a dynamic walking robot

– the rimless wheel – was also successfully implemented.
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Chapter 4 demonstrates that for nonlinear systems with higher dimensions, a sim-

plified construction of the transverse coordinates is possible for typical models of

underactuated walking robots. This enables more efficient computation of stability

certificate in the reduced coordinates.

To validate the work in Chapter 3 and Chapter 4, a physical walking robot – the

Compass Gait walker – was implemented in Chapter 5. System identification of the

walker was carried out and stability analysis via the methods proposed in this the-

sis was implemented. Hardware experiments successfully verified the computational

results.

6.2 Future Work

This thesis has demonstrated the computation of stability funnels for dynamic walking

robots via convex optimisation tools. This is an enabling technology for numerous

practical problems which should be the focus of future works.

While the rimless wheel and the compass gait walker has been used as illustration in

this thesis, the framework proposed herein is applicable to higher dimensional systems

and would naturally be the focus on future work. Such studies would include more

sophisticated walking models, for example the 3-link or 5-link walker as illustrated in

[85]. It is commonly known that SOS scales poorly with dimensionality and therefore

works such as DSOS and SDSOS by [4, 53] would be vital for numerical tractability

of the resulting problem.

Further, the stability analysis tools developed in this thesis can be applied to eval-

uate competing robot designs. It can also be used to construct switching feedback

controllers with guaranteed stability. These applications would enable a more system-

atic and informed design approach for robots based on their stability and robustness

properties.
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Appendix A

The Compass Gait Walker

The continuous dynamics of the compass gait walker, as shown in Fig. 4.1, can be

represented in the form of Eq. (A.1),

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u. (A.1)

with q = [θsw, θst]
T , and

M(q) =

M11 M12

M21 M22

 (A.2)

M11 = ml2c + Ic

M12 = M12 = −ml2c − Ic +mllc cos(q1)

M22 = 2Ic + mHl
2 + 2m(l2 + l2c)− 2mllc(1 + cos(q1))

C(q, q̇) =

C11 C12

C21 C22

 (A.3)

C11 = 0

C12 = −mllcq̇2 sin(q1)
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C21 = −mllc (q̇1 − q̇2) sin(q1)

C22 = mllcq̇1 sin(q1)

G(q) =

G1

G2

 (A.4)

G1 = g0mlc sin(q1 − q2)

G2 = −g0 (mlc sin(q1 − q2) + (2ml −mlc + mHgl) sin(q2))

B(q) =

1

0

 . (A.5)

Assuming instantaneous and rigid impact of the swing leg without rebound and slip,

the impact model is defined as:

∆q =

−1 0

−1 1

 (A.6)

∆q̇(q
−) = ∆q[H

+(q−)]−1H−(q−) (A.7)

where H+
1,1(q−) = p1 + p3

H+
2,1(q−) = H+

1,2(q−) = p2 cos(q−1 )− p1 − p3

H+
1,1(q−) = −2p2 cos(q−1 ) + p3 + 2p1

H−1,1(q−) = p1 − p2; H−2,1(q−) = −p1 + p2

H−1,2(q−) = p3 cos(q1)− p1 + p2; H−2,2(q−) = p3 cos(q1)

p1 = ml2c + Ic; p2 = lmlc; p3 = mH l
2 + 2ml(l − lc)
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