209,512 research outputs found

    Electrophotolysis oxidation system for measurement of organic concentration in water

    Get PDF
    Methods and apparatus for determining organic carbon in aqueous solution are described. The method comprises subjecting the aqueous solution to electrolysis, for generating oxygen from water, and simultaneously to ultraviolet radiation, for oxidation of substantially all organic carbon to carbon dioxide. The carbon dioxide is measured and the value is related to the concentration of organic carbon in the aqueous solution

    Elevated pCO2 enhances bacterioplankton removal of organic carbon.

    Get PDF
    Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000-1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 -~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean

    Shortcut biological nitrogen removal (SBNR) in microbial fuel cells (MFCs)

    Get PDF
    Microbial Fuel Cells (MFCs) represent nowadays a promising technology for the treatment of industrial wastewater. In this work the Shortcut Nitritation/Denitritation process in H-type MFC was investigated. The cell was fed by sodium acetate and fumaric acid, as organic carbon source, and ammonium sulphate, sodium nitrite and sodium nitrate as nitrogen source. Anaerobic digestion supernatant (digestate) was used as bacterial source. Batch tests were performed at a TOC/N ratio of 0.35, and Total Organic Carbon (TOC), pH and Open Circuit Voltage (OCV) were daily monitored. High organic carbon removal (up to 85%) in short time (within 6 days) were achieved. The nitritation proved to be independent of organic carbon amount and composition: an ammonium content reduction of about 45% was observed. Regarding the denitritation step, an almost quantitative removal of nitrite and nitrate was observed when fumaric acid was used as a carbon source

    Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters

    Get PDF
    Biogeochemical processes that utilize dissolved organic carbon are widely thought to be responsible for the liberation of arsenic from sediments to shallow groundwater in south and southeast Asia. The accumulation of this known carcinogen to hazardously high concentrations has occurred in the primary source of drinking water in large parts of densely populated countries in this region. Both surface and sedimentary sources of organic matter have been suggested to contribute dissolved organic carbon in these aquifers. However, identification of the source of organic carbon responsible for driving arsenic release remains enigmatic and even controversial. Here, we provide the most extensive interrogation to date of the isotopic signature of ground and surface waters at a known arsenic hotspot in Cambodia. We present tritium and radiocarbon data that demonstrates that recharge through ponds and/or clay windows can transport young, surface derived organic matter in to groundwater to depths of 44 m under natural flow conditions. Young organic matter dominates the dissolved organic carbon pool in groundwater that is in close proximity to these surface water sources and we suggest this is likely a regional relationship. In locations distal to surface water contact, dissolved organic carbon represents a mixture of both young surface and older sedimentary derived organic matter. Ground-surface water interaction therefore strongly influences the average dissolved organic carbon age and how this is distributed spatially across the field site. Arsenic mobilization rates appear to be controlled by the age of dissolved organic matter present in these groundwaters. Arsenic concentrations in shallow groundwaters (< 20 m) increase by 1 μg/l for every year increase in dissolved organic carbon age compared to only 0.25 μg/l for every year increase in dissolved organic carbon age in deeper (> 20 m) groundwaters. We suggest that, while the rate of arsenic release is greatest in shallow aquifer sediments, arsenic release also occurs in deeper aquifer sediments and as such remains an important process in controlling the spatial distribution of arsenic in the groundwaters of SE Asia. Our findings suggest that any anthropogenic activities that alter the source of groundwater recharge or the timescales over which recharge takes place may also drive changes in the natural composition of dissolved organic carbon in these groundwaters. Such changes have the potential to influence both the spatial and temporal evolution of the current groundwater arsenic hazard in this region

    Development of a fully coupled biogeochemical reactive transport model to simulate microbial oxidation of organic carbon and pyrite under nitrate‐reducing conditions

    Get PDF
    ©2018. American Geophysical UnionIn regions with intensive agriculture nitrate is one of the most relevant contaminants in groundwater. Denitrification reduces elevated nitrate concentrations in many aquifers, yet the denitrification potential is limited by the concentration of available electron donors. The aim of this work was to study the denitrification potential and its limitation in natural sediments. A column experiment was conducted using sediments with elevated concentrations of organic carbon (total organic carbon 3,247 mg C/kg) and pyrite (chromium reducible sulfur 150 mg/kg). Groundwater with high nitrate concentration (100 mg/L) was injected. Measurements were taken over 160 days at five different depths including N‐ and S‐isotope analysis for selected samples. A reactive transport model was developed, which couples nitrate reduction with the oxidation of organic carbon (heterotrophic denitrification) and pyrite (autolithotrophic denitrification), and considers also transport and growth of denitrifying microbes. The denitrification pathway showed a temporal sequence from initially heterotrophic to autolithotrophic. However, maximum rates were lower for heterotrophic (11 mmol N/(L*a)) than for autolithotrophic denitrification (48 mmol N/(L*a)). The modeling showed that denitrifying microbes initially preferred highly reactive organic carbon as the electron donor for denitrification but were also able to utilize pyrite. The results show that after 160 days nitrate increased again to 50 mg/L. At this time only 0.5% of the total organic carbon and 46% of the available pyrite was oxidized. This indicates that denitrification rates strongly decrease before the electron donors are depleted either by a low reactivity (total organic carbon) or a diminishing reactive surface possibly due to the presence of coatings (pyrite)

    Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, SW France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements

    Get PDF
    This study highlights the role of interactions between surface and sub-surface water of the riparian zone of a large river (the Garonne, SW France). Information is given about the role of surface water in supplying Dissolved Organic Carbon (DOC ) to the riparian zone for nitrate removal processes. The densities of bacteria (up to 3.3106 cell m L-1) in groundwater are strongly conditioned by the water moving during flood events. Total bacterial densities in groundwater were related to surface water bacterial densities. In sediment, total bacteria are attached mainly to fine particles (90 % in the fraction < 1 mm). Spatial variations in organic carbon and nitrate content in groundwater at the site studied are correlated with exchanges between the groundwater and the river, from the upstream to the downstream part of the meander. Total bacterial densities, nitrate and decressing organic carbon concentrations follow the same pattern. These results suggest that, in this kind of riparian wetland, nitrate from alluvial groundwater influenced by agricultural practices may be denitrified by bacteria in the presence of organic carbon from river surface water

    Organic carbon transport and C/N ratio variations in a large tropical river: Godavari as a case study, India

    Get PDF
    This study gives an insight into the source of organic carbon and nitrogen in the Godavari river and its tributaries, the yield of organic carbon from the catchment, seasonal variability in their concentration and the ultimate flux of organic and inorganic carbon into the Bay of Bengal. Particulate organic carbon/particulate organic nitrogen (POC/PON or C/N) ratios revealed that the dominant source of organic matter in the high season is from the soil (C/N = 8–14), while in the rest of the seasons, the river-derived (in situ) phytoplankton is the major source (C/N = l–8). Amount of organic materials carried from the lower catchment and flood plains to the oceans during the high season are 3 to 91 times higher than in the moderate and low seasons. Large-scale erosion and deforestation in the catchment has led to higher net yield of organic carbon in the Godavari catchment when compared to other major world rivers. The total flux of POC, and dissolved inorganic carbon (DIC) from the Godavari river to the Bay of Bengal is estimated as 756 · 109 and 2520 · 109 g yr1, respectively. About 22% of POC is lost in the main channel because of oxidation of labile organic matter, entrapment of organic material behind dams/sedimentation along flood plains and river channel; the DIC fluxes as a function of alkalinity are conservative throughout the river channel. Finally, the C/N ratios (12) of the ultimate fluxes of particulate organic carbon suggest the dominance of refractory/ stable soil organic matter that could eventually get buried in the coastal sediments on a geological time scale

    Bioavailability of soil organic carbon and Fe as influenced by forestry practices in a subtropical coastal catchment

    Get PDF
    Potential impacts of plantation forestry practices on soil organic carbon and Fe available to microorganisms were investigated in a subtropical coastal catchment. The impacts of harvesting or replanting were largely limited to the soil top layer (0–10 cm depth). The thirty-year-old Pinus plantation showed low soil moisture content (Wc) and relatively high levels of soil total organic carbon (TOC). Harvesting and replanting increased soil Wc but reduced TOC levels. Mean dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased in harvested or replanted soils, but such changes were not statistically significant (P > 0.05). Total dithionite-citrate and aqua regia-extractable Fe did not respond to forestry practices, but acid ammonium oxalate and pyrophosphate-extractable, bioavailable Fe decreased markedly after harvesting or replanting. Numbers of heterotrophic bacteria were significantly correlated with DOC levels (P < 0.05), whereas Fe-reducing bacteria and S-bacteria detected using laboratory cultivation techniques did not show strong correlation with either soil DOC or Fe content

    Atmospheric CO2 consumption by continental erosion : present-day controls and implications for the last glacial maximum

    Get PDF
    The export of carbon from land to sea by rivers represents a major link in the global carbon cycle. For all principal carbon forms, the main factors that control the present-day fluxes at the global scale have been determined in order to establish global budgets and to predict regional fluxes. Dissolved organic carbon fluxes are mainly related to drainage intensity, basin slope, and the amount of carbon stored in soils. Particulate organic carbon fluxes are calculated as a function of sediment yields and of drainage intensity. The consumption of atmospheric/soil CO2 by chemical rock weathering depends mainly on the rock type and on the drainage intensity. Our empirical models yield a total of 0.721 Gt of carbon (Gt C) that is exported from the continents to the oceans each year. From this figure, 0.096 Gt C come from carbonate mineral dissolution and the remaining 0.625 Gt C stem from the atmosphere (FCO2). Of this atmospheric carbon, 33% is discharged as dissolved organic carbon, 30% as particulate organic carbon, and 37% as bicarbonate ions. Predicted inorganic carbon fluxes were further compared with observed fluxes for a set of 35 major world rivers, and possible additional climatic effects on the consumption of atmospheric CO2 by rock weathering were investigated in these river basins. Finally, we discuss the implications of our results for the river carbon fluxes and the role of continental erosion in the global carbon cycle during the last glacial maximum

    Spatial and temporal variation in degradation of dissolved organic carbon on the main stem of the Lamprey River

    Get PDF
    Degradation of dissolved organic carbon by microbial and photolytic processes was examined along the main stem of the Lamprey River Watershed located in southeastern New Hampshire. Eight sites were chosen and sampled biweekly throughout the seasonal hydrograph. Lab incubations were employed to assess microbial degradation of dissolved organic carbon (DOC) where one set of samples was exposed to natural sunlight for a day to assess photolytic degradation. Mean biodegradable dissolved organic carbon (BDOC) throughout the study period was 5.8% with no significant variation observed between sites. Temporal variation was found to be a much stronger driver of DOC composition with summer showing the highest degradation of 8.6% and winter the lowest. Initial DOC concentration was found to be the only significant positive predictor of BDOC on both an annual and seasonal scale. Photolysis had no significant effect on DOC degradation or availability of DOC to the microbial pool. Findings suggest that temporal variation is a significant driver of DOC composition via DOC sources that change throughout the season
    corecore